1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30
31 #include "core.h"
32 #include "hw.h"
33
34 /* conversion functions */
our_req(struct usb_request * req)35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 return container_of(req, struct dwc2_hsotg_req, req);
38 }
39
our_ep(struct usb_ep * ep)40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44
to_hsotg(struct usb_gadget * gadget)45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49
dwc2_set_bit(struct dwc2_hsotg * hsotg,u32 offset,u32 val)50 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
51 {
52 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
53 }
54
dwc2_clear_bit(struct dwc2_hsotg * hsotg,u32 offset,u32 val)55 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
56 {
57 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
58 }
59
index_to_ep(struct dwc2_hsotg * hsotg,u32 ep_index,u32 dir_in)60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 u32 ep_index, u32 dir_in)
62 {
63 if (dir_in)
64 return hsotg->eps_in[ep_index];
65 else
66 return hsotg->eps_out[ep_index];
67 }
68
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71
72 /**
73 * using_dma - return the DMA status of the driver.
74 * @hsotg: The driver state.
75 *
76 * Return true if we're using DMA.
77 *
78 * Currently, we have the DMA support code worked into everywhere
79 * that needs it, but the AMBA DMA implementation in the hardware can
80 * only DMA from 32bit aligned addresses. This means that gadgets such
81 * as the CDC Ethernet cannot work as they often pass packets which are
82 * not 32bit aligned.
83 *
84 * Unfortunately the choice to use DMA or not is global to the controller
85 * and seems to be only settable when the controller is being put through
86 * a core reset. This means we either need to fix the gadgets to take
87 * account of DMA alignment, or add bounce buffers (yuerk).
88 *
89 * g_using_dma is set depending on dts flag.
90 */
using_dma(struct dwc2_hsotg * hsotg)91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 return hsotg->params.g_dma;
94 }
95
96 /*
97 * using_desc_dma - return the descriptor DMA status of the driver.
98 * @hsotg: The driver state.
99 *
100 * Return true if we're using descriptor DMA.
101 */
using_desc_dma(struct dwc2_hsotg * hsotg)102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 return hsotg->params.g_dma_desc;
105 }
106
107 /**
108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109 * @hs_ep: The endpoint
110 *
111 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
112 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
113 */
dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep * hs_ep)114 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
115 {
116 hs_ep->target_frame += hs_ep->interval;
117 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
118 hs_ep->frame_overrun = true;
119 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
120 } else {
121 hs_ep->frame_overrun = false;
122 }
123 }
124
125 /**
126 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
127 * @hsotg: The device state
128 * @ints: A bitmask of the interrupts to enable
129 */
dwc2_hsotg_en_gsint(struct dwc2_hsotg * hsotg,u32 ints)130 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
131 {
132 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
133 u32 new_gsintmsk;
134
135 new_gsintmsk = gsintmsk | ints;
136
137 if (new_gsintmsk != gsintmsk) {
138 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
139 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
140 }
141 }
142
143 /**
144 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
145 * @hsotg: The device state
146 * @ints: A bitmask of the interrupts to enable
147 */
dwc2_hsotg_disable_gsint(struct dwc2_hsotg * hsotg,u32 ints)148 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
149 {
150 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
151 u32 new_gsintmsk;
152
153 new_gsintmsk = gsintmsk & ~ints;
154
155 if (new_gsintmsk != gsintmsk)
156 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
157 }
158
159 /**
160 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
161 * @hsotg: The device state
162 * @ep: The endpoint index
163 * @dir_in: True if direction is in.
164 * @en: The enable value, true to enable
165 *
166 * Set or clear the mask for an individual endpoint's interrupt
167 * request.
168 */
dwc2_hsotg_ctrl_epint(struct dwc2_hsotg * hsotg,unsigned int ep,unsigned int dir_in,unsigned int en)169 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
170 unsigned int ep, unsigned int dir_in,
171 unsigned int en)
172 {
173 unsigned long flags;
174 u32 bit = 1 << ep;
175 u32 daint;
176
177 if (!dir_in)
178 bit <<= 16;
179
180 local_irq_save(flags);
181 daint = dwc2_readl(hsotg, DAINTMSK);
182 if (en)
183 daint |= bit;
184 else
185 daint &= ~bit;
186 dwc2_writel(hsotg, daint, DAINTMSK);
187 local_irq_restore(flags);
188 }
189
190 /**
191 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
192 *
193 * @hsotg: Programming view of the DWC_otg controller
194 */
dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg * hsotg)195 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
196 {
197 if (hsotg->hw_params.en_multiple_tx_fifo)
198 /* In dedicated FIFO mode we need count of IN EPs */
199 return hsotg->hw_params.num_dev_in_eps;
200 else
201 /* In shared FIFO mode we need count of Periodic IN EPs */
202 return hsotg->hw_params.num_dev_perio_in_ep;
203 }
204
205 /**
206 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
207 * device mode TX FIFOs
208 *
209 * @hsotg: Programming view of the DWC_otg controller
210 */
dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg * hsotg)211 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
212 {
213 int addr;
214 int tx_addr_max;
215 u32 np_tx_fifo_size;
216
217 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
218 hsotg->params.g_np_tx_fifo_size);
219
220 /* Get Endpoint Info Control block size in DWORDs. */
221 tx_addr_max = hsotg->hw_params.total_fifo_size;
222
223 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
224 if (tx_addr_max <= addr)
225 return 0;
226
227 return tx_addr_max - addr;
228 }
229
230 /**
231 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
232 * TX FIFOs
233 *
234 * @hsotg: Programming view of the DWC_otg controller
235 */
dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg * hsotg)236 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
237 {
238 int tx_fifo_count;
239 int tx_fifo_depth;
240
241 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
242
243 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
244
245 if (!tx_fifo_count)
246 return tx_fifo_depth;
247 else
248 return tx_fifo_depth / tx_fifo_count;
249 }
250
251 /**
252 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
253 * @hsotg: The device instance.
254 */
dwc2_hsotg_init_fifo(struct dwc2_hsotg * hsotg)255 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
256 {
257 unsigned int ep;
258 unsigned int addr;
259 int timeout;
260
261 u32 val;
262 u32 *txfsz = hsotg->params.g_tx_fifo_size;
263
264 /* Reset fifo map if not correctly cleared during previous session */
265 WARN_ON(hsotg->fifo_map);
266 hsotg->fifo_map = 0;
267
268 /* set RX/NPTX FIFO sizes */
269 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
270 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
271 FIFOSIZE_STARTADDR_SHIFT) |
272 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
273 GNPTXFSIZ);
274
275 /*
276 * arange all the rest of the TX FIFOs, as some versions of this
277 * block have overlapping default addresses. This also ensures
278 * that if the settings have been changed, then they are set to
279 * known values.
280 */
281
282 /* start at the end of the GNPTXFSIZ, rounded up */
283 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
284
285 /*
286 * Configure fifos sizes from provided configuration and assign
287 * them to endpoints dynamically according to maxpacket size value of
288 * given endpoint.
289 */
290 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
291 if (!txfsz[ep])
292 continue;
293 val = addr;
294 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
295 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
296 "insufficient fifo memory");
297 addr += txfsz[ep];
298
299 dwc2_writel(hsotg, val, DPTXFSIZN(ep));
300 val = dwc2_readl(hsotg, DPTXFSIZN(ep));
301 }
302
303 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
304 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
305 GDFIFOCFG);
306 /*
307 * according to p428 of the design guide, we need to ensure that
308 * all fifos are flushed before continuing
309 */
310
311 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
312 GRSTCTL_RXFFLSH, GRSTCTL);
313
314 /* wait until the fifos are both flushed */
315 timeout = 100;
316 while (1) {
317 val = dwc2_readl(hsotg, GRSTCTL);
318
319 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
320 break;
321
322 if (--timeout == 0) {
323 dev_err(hsotg->dev,
324 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
325 __func__, val);
326 break;
327 }
328
329 udelay(1);
330 }
331
332 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
333 }
334
335 /**
336 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
337 * @ep: USB endpoint to allocate request for.
338 * @flags: Allocation flags
339 *
340 * Allocate a new USB request structure appropriate for the specified endpoint
341 */
dwc2_hsotg_ep_alloc_request(struct usb_ep * ep,gfp_t flags)342 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
343 gfp_t flags)
344 {
345 struct dwc2_hsotg_req *req;
346
347 req = kzalloc(sizeof(*req), flags);
348 if (!req)
349 return NULL;
350
351 INIT_LIST_HEAD(&req->queue);
352
353 return &req->req;
354 }
355
356 /**
357 * is_ep_periodic - return true if the endpoint is in periodic mode.
358 * @hs_ep: The endpoint to query.
359 *
360 * Returns true if the endpoint is in periodic mode, meaning it is being
361 * used for an Interrupt or ISO transfer.
362 */
is_ep_periodic(struct dwc2_hsotg_ep * hs_ep)363 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
364 {
365 return hs_ep->periodic;
366 }
367
368 /**
369 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
370 * @hsotg: The device state.
371 * @hs_ep: The endpoint for the request
372 * @hs_req: The request being processed.
373 *
374 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
375 * of a request to ensure the buffer is ready for access by the caller.
376 */
dwc2_hsotg_unmap_dma(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)377 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
378 struct dwc2_hsotg_ep *hs_ep,
379 struct dwc2_hsotg_req *hs_req)
380 {
381 struct usb_request *req = &hs_req->req;
382
383 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
384 }
385
386 /*
387 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
388 * for Control endpoint
389 * @hsotg: The device state.
390 *
391 * This function will allocate 4 descriptor chains for EP 0: 2 for
392 * Setup stage, per one for IN and OUT data/status transactions.
393 */
dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg * hsotg)394 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
395 {
396 hsotg->setup_desc[0] =
397 dmam_alloc_coherent(hsotg->dev,
398 sizeof(struct dwc2_dma_desc),
399 &hsotg->setup_desc_dma[0],
400 GFP_KERNEL);
401 if (!hsotg->setup_desc[0])
402 goto fail;
403
404 hsotg->setup_desc[1] =
405 dmam_alloc_coherent(hsotg->dev,
406 sizeof(struct dwc2_dma_desc),
407 &hsotg->setup_desc_dma[1],
408 GFP_KERNEL);
409 if (!hsotg->setup_desc[1])
410 goto fail;
411
412 hsotg->ctrl_in_desc =
413 dmam_alloc_coherent(hsotg->dev,
414 sizeof(struct dwc2_dma_desc),
415 &hsotg->ctrl_in_desc_dma,
416 GFP_KERNEL);
417 if (!hsotg->ctrl_in_desc)
418 goto fail;
419
420 hsotg->ctrl_out_desc =
421 dmam_alloc_coherent(hsotg->dev,
422 sizeof(struct dwc2_dma_desc),
423 &hsotg->ctrl_out_desc_dma,
424 GFP_KERNEL);
425 if (!hsotg->ctrl_out_desc)
426 goto fail;
427
428 return 0;
429
430 fail:
431 return -ENOMEM;
432 }
433
434 /**
435 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
436 * @hsotg: The controller state.
437 * @hs_ep: The endpoint we're going to write for.
438 * @hs_req: The request to write data for.
439 *
440 * This is called when the TxFIFO has some space in it to hold a new
441 * transmission and we have something to give it. The actual setup of
442 * the data size is done elsewhere, so all we have to do is to actually
443 * write the data.
444 *
445 * The return value is zero if there is more space (or nothing was done)
446 * otherwise -ENOSPC is returned if the FIFO space was used up.
447 *
448 * This routine is only needed for PIO
449 */
dwc2_hsotg_write_fifo(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)450 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
451 struct dwc2_hsotg_ep *hs_ep,
452 struct dwc2_hsotg_req *hs_req)
453 {
454 bool periodic = is_ep_periodic(hs_ep);
455 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
456 int buf_pos = hs_req->req.actual;
457 int to_write = hs_ep->size_loaded;
458 void *data;
459 int can_write;
460 int pkt_round;
461 int max_transfer;
462
463 to_write -= (buf_pos - hs_ep->last_load);
464
465 /* if there's nothing to write, get out early */
466 if (to_write == 0)
467 return 0;
468
469 if (periodic && !hsotg->dedicated_fifos) {
470 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
471 int size_left;
472 int size_done;
473
474 /*
475 * work out how much data was loaded so we can calculate
476 * how much data is left in the fifo.
477 */
478
479 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
480
481 /*
482 * if shared fifo, we cannot write anything until the
483 * previous data has been completely sent.
484 */
485 if (hs_ep->fifo_load != 0) {
486 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
487 return -ENOSPC;
488 }
489
490 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
491 __func__, size_left,
492 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
493
494 /* how much of the data has moved */
495 size_done = hs_ep->size_loaded - size_left;
496
497 /* how much data is left in the fifo */
498 can_write = hs_ep->fifo_load - size_done;
499 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
500 __func__, can_write);
501
502 can_write = hs_ep->fifo_size - can_write;
503 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
504 __func__, can_write);
505
506 if (can_write <= 0) {
507 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
508 return -ENOSPC;
509 }
510 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
511 can_write = dwc2_readl(hsotg,
512 DTXFSTS(hs_ep->fifo_index));
513
514 can_write &= 0xffff;
515 can_write *= 4;
516 } else {
517 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
518 dev_dbg(hsotg->dev,
519 "%s: no queue slots available (0x%08x)\n",
520 __func__, gnptxsts);
521
522 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
523 return -ENOSPC;
524 }
525
526 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
527 can_write *= 4; /* fifo size is in 32bit quantities. */
528 }
529
530 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
531
532 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
533 __func__, gnptxsts, can_write, to_write, max_transfer);
534
535 /*
536 * limit to 512 bytes of data, it seems at least on the non-periodic
537 * FIFO, requests of >512 cause the endpoint to get stuck with a
538 * fragment of the end of the transfer in it.
539 */
540 if (can_write > 512 && !periodic)
541 can_write = 512;
542
543 /*
544 * limit the write to one max-packet size worth of data, but allow
545 * the transfer to return that it did not run out of fifo space
546 * doing it.
547 */
548 if (to_write > max_transfer) {
549 to_write = max_transfer;
550
551 /* it's needed only when we do not use dedicated fifos */
552 if (!hsotg->dedicated_fifos)
553 dwc2_hsotg_en_gsint(hsotg,
554 periodic ? GINTSTS_PTXFEMP :
555 GINTSTS_NPTXFEMP);
556 }
557
558 /* see if we can write data */
559
560 if (to_write > can_write) {
561 to_write = can_write;
562 pkt_round = to_write % max_transfer;
563
564 /*
565 * Round the write down to an
566 * exact number of packets.
567 *
568 * Note, we do not currently check to see if we can ever
569 * write a full packet or not to the FIFO.
570 */
571
572 if (pkt_round)
573 to_write -= pkt_round;
574
575 /*
576 * enable correct FIFO interrupt to alert us when there
577 * is more room left.
578 */
579
580 /* it's needed only when we do not use dedicated fifos */
581 if (!hsotg->dedicated_fifos)
582 dwc2_hsotg_en_gsint(hsotg,
583 periodic ? GINTSTS_PTXFEMP :
584 GINTSTS_NPTXFEMP);
585 }
586
587 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
588 to_write, hs_req->req.length, can_write, buf_pos);
589
590 if (to_write <= 0)
591 return -ENOSPC;
592
593 hs_req->req.actual = buf_pos + to_write;
594 hs_ep->total_data += to_write;
595
596 if (periodic)
597 hs_ep->fifo_load += to_write;
598
599 to_write = DIV_ROUND_UP(to_write, 4);
600 data = hs_req->req.buf + buf_pos;
601
602 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
603
604 return (to_write >= can_write) ? -ENOSPC : 0;
605 }
606
607 /**
608 * get_ep_limit - get the maximum data legnth for this endpoint
609 * @hs_ep: The endpoint
610 *
611 * Return the maximum data that can be queued in one go on a given endpoint
612 * so that transfers that are too long can be split.
613 */
get_ep_limit(struct dwc2_hsotg_ep * hs_ep)614 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
615 {
616 int index = hs_ep->index;
617 unsigned int maxsize;
618 unsigned int maxpkt;
619
620 if (index != 0) {
621 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
622 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
623 } else {
624 maxsize = 64 + 64;
625 if (hs_ep->dir_in)
626 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
627 else
628 maxpkt = 2;
629 }
630
631 /* we made the constant loading easier above by using +1 */
632 maxpkt--;
633 maxsize--;
634
635 /*
636 * constrain by packet count if maxpkts*pktsize is greater
637 * than the length register size.
638 */
639
640 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
641 maxsize = maxpkt * hs_ep->ep.maxpacket;
642
643 return maxsize;
644 }
645
646 /**
647 * dwc2_hsotg_read_frameno - read current frame number
648 * @hsotg: The device instance
649 *
650 * Return the current frame number
651 */
dwc2_hsotg_read_frameno(struct dwc2_hsotg * hsotg)652 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
653 {
654 u32 dsts;
655
656 dsts = dwc2_readl(hsotg, DSTS);
657 dsts &= DSTS_SOFFN_MASK;
658 dsts >>= DSTS_SOFFN_SHIFT;
659
660 return dsts;
661 }
662
663 /**
664 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
665 * DMA descriptor chain prepared for specific endpoint
666 * @hs_ep: The endpoint
667 *
668 * Return the maximum data that can be queued in one go on a given endpoint
669 * depending on its descriptor chain capacity so that transfers that
670 * are too long can be split.
671 */
dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep * hs_ep)672 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
673 {
674 int is_isoc = hs_ep->isochronous;
675 unsigned int maxsize;
676
677 if (is_isoc)
678 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
679 DEV_DMA_ISOC_RX_NBYTES_LIMIT;
680 else
681 maxsize = DEV_DMA_NBYTES_LIMIT;
682
683 /* Above size of one descriptor was chosen, multiple it */
684 maxsize *= MAX_DMA_DESC_NUM_GENERIC;
685
686 return maxsize;
687 }
688
689 /*
690 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
691 * @hs_ep: The endpoint
692 * @mask: RX/TX bytes mask to be defined
693 *
694 * Returns maximum data payload for one descriptor after analyzing endpoint
695 * characteristics.
696 * DMA descriptor transfer bytes limit depends on EP type:
697 * Control out - MPS,
698 * Isochronous - descriptor rx/tx bytes bitfield limit,
699 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
700 * have concatenations from various descriptors within one packet.
701 *
702 * Selects corresponding mask for RX/TX bytes as well.
703 */
dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep * hs_ep,u32 * mask)704 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
705 {
706 u32 mps = hs_ep->ep.maxpacket;
707 int dir_in = hs_ep->dir_in;
708 u32 desc_size = 0;
709
710 if (!hs_ep->index && !dir_in) {
711 desc_size = mps;
712 *mask = DEV_DMA_NBYTES_MASK;
713 } else if (hs_ep->isochronous) {
714 if (dir_in) {
715 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
716 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
717 } else {
718 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
719 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
720 }
721 } else {
722 desc_size = DEV_DMA_NBYTES_LIMIT;
723 *mask = DEV_DMA_NBYTES_MASK;
724
725 /* Round down desc_size to be mps multiple */
726 desc_size -= desc_size % mps;
727 }
728
729 return desc_size;
730 }
731
732 /*
733 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
734 * @hs_ep: The endpoint
735 * @dma_buff: DMA address to use
736 * @len: Length of the transfer
737 *
738 * This function will iterate over descriptor chain and fill its entries
739 * with corresponding information based on transfer data.
740 */
dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep * hs_ep,dma_addr_t dma_buff,unsigned int len)741 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
742 dma_addr_t dma_buff,
743 unsigned int len)
744 {
745 struct dwc2_hsotg *hsotg = hs_ep->parent;
746 int dir_in = hs_ep->dir_in;
747 struct dwc2_dma_desc *desc = hs_ep->desc_list;
748 u32 mps = hs_ep->ep.maxpacket;
749 u32 maxsize = 0;
750 u32 offset = 0;
751 u32 mask = 0;
752 int i;
753
754 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
755
756 hs_ep->desc_count = (len / maxsize) +
757 ((len % maxsize) ? 1 : 0);
758 if (len == 0)
759 hs_ep->desc_count = 1;
760
761 for (i = 0; i < hs_ep->desc_count; ++i) {
762 desc->status = 0;
763 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
764 << DEV_DMA_BUFF_STS_SHIFT);
765
766 if (len > maxsize) {
767 if (!hs_ep->index && !dir_in)
768 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
769
770 desc->status |= (maxsize <<
771 DEV_DMA_NBYTES_SHIFT & mask);
772 desc->buf = dma_buff + offset;
773
774 len -= maxsize;
775 offset += maxsize;
776 } else {
777 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
778
779 if (dir_in)
780 desc->status |= (len % mps) ? DEV_DMA_SHORT :
781 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
782 if (len > maxsize)
783 dev_err(hsotg->dev, "wrong len %d\n", len);
784
785 desc->status |=
786 len << DEV_DMA_NBYTES_SHIFT & mask;
787 desc->buf = dma_buff + offset;
788 }
789
790 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
791 desc->status |= (DEV_DMA_BUFF_STS_HREADY
792 << DEV_DMA_BUFF_STS_SHIFT);
793 desc++;
794 }
795 }
796
797 /*
798 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
799 * @hs_ep: The isochronous endpoint.
800 * @dma_buff: usb requests dma buffer.
801 * @len: usb request transfer length.
802 *
803 * Fills next free descriptor with the data of the arrived usb request,
804 * frame info, sets Last and IOC bits increments next_desc. If filled
805 * descriptor is not the first one, removes L bit from the previous descriptor
806 * status.
807 */
dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep * hs_ep,dma_addr_t dma_buff,unsigned int len)808 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
809 dma_addr_t dma_buff, unsigned int len)
810 {
811 struct dwc2_dma_desc *desc;
812 struct dwc2_hsotg *hsotg = hs_ep->parent;
813 u32 index;
814 u32 maxsize = 0;
815 u32 mask = 0;
816 u8 pid = 0;
817
818 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
819
820 index = hs_ep->next_desc;
821 desc = &hs_ep->desc_list[index];
822
823 /* Check if descriptor chain full */
824 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
825 DEV_DMA_BUFF_STS_HREADY) {
826 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
827 return 1;
828 }
829
830 /* Clear L bit of previous desc if more than one entries in the chain */
831 if (hs_ep->next_desc)
832 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
833
834 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
835 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
836
837 desc->status = 0;
838 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
839
840 desc->buf = dma_buff;
841 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
842 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
843
844 if (hs_ep->dir_in) {
845 if (len)
846 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
847 else
848 pid = 1;
849 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
850 DEV_DMA_ISOC_PID_MASK) |
851 ((len % hs_ep->ep.maxpacket) ?
852 DEV_DMA_SHORT : 0) |
853 ((hs_ep->target_frame <<
854 DEV_DMA_ISOC_FRNUM_SHIFT) &
855 DEV_DMA_ISOC_FRNUM_MASK);
856 }
857
858 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
859 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
860
861 /* Increment frame number by interval for IN */
862 if (hs_ep->dir_in)
863 dwc2_gadget_incr_frame_num(hs_ep);
864
865 /* Update index of last configured entry in the chain */
866 hs_ep->next_desc++;
867 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_GENERIC)
868 hs_ep->next_desc = 0;
869
870 return 0;
871 }
872
873 /*
874 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
875 * @hs_ep: The isochronous endpoint.
876 *
877 * Prepare descriptor chain for isochronous endpoints. Afterwards
878 * write DMA address to HW and enable the endpoint.
879 */
dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep * hs_ep)880 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
881 {
882 struct dwc2_hsotg *hsotg = hs_ep->parent;
883 struct dwc2_hsotg_req *hs_req, *treq;
884 int index = hs_ep->index;
885 int ret;
886 int i;
887 u32 dma_reg;
888 u32 depctl;
889 u32 ctrl;
890 struct dwc2_dma_desc *desc;
891
892 if (list_empty(&hs_ep->queue)) {
893 hs_ep->target_frame = TARGET_FRAME_INITIAL;
894 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
895 return;
896 }
897
898 /* Initialize descriptor chain by Host Busy status */
899 for (i = 0; i < MAX_DMA_DESC_NUM_GENERIC; i++) {
900 desc = &hs_ep->desc_list[i];
901 desc->status = 0;
902 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
903 << DEV_DMA_BUFF_STS_SHIFT);
904 }
905
906 hs_ep->next_desc = 0;
907 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
908 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
909 hs_req->req.length);
910 if (ret)
911 break;
912 }
913
914 hs_ep->compl_desc = 0;
915 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
916 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
917
918 /* write descriptor chain address to control register */
919 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
920
921 ctrl = dwc2_readl(hsotg, depctl);
922 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
923 dwc2_writel(hsotg, ctrl, depctl);
924 }
925
926 /**
927 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
928 * @hsotg: The controller state.
929 * @hs_ep: The endpoint to process a request for
930 * @hs_req: The request to start.
931 * @continuing: True if we are doing more for the current request.
932 *
933 * Start the given request running by setting the endpoint registers
934 * appropriately, and writing any data to the FIFOs.
935 */
dwc2_hsotg_start_req(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req,bool continuing)936 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
937 struct dwc2_hsotg_ep *hs_ep,
938 struct dwc2_hsotg_req *hs_req,
939 bool continuing)
940 {
941 struct usb_request *ureq = &hs_req->req;
942 int index = hs_ep->index;
943 int dir_in = hs_ep->dir_in;
944 u32 epctrl_reg;
945 u32 epsize_reg;
946 u32 epsize;
947 u32 ctrl;
948 unsigned int length;
949 unsigned int packets;
950 unsigned int maxreq;
951 unsigned int dma_reg;
952
953 if (index != 0) {
954 if (hs_ep->req && !continuing) {
955 dev_err(hsotg->dev, "%s: active request\n", __func__);
956 WARN_ON(1);
957 return;
958 } else if (hs_ep->req != hs_req && continuing) {
959 dev_err(hsotg->dev,
960 "%s: continue different req\n", __func__);
961 WARN_ON(1);
962 return;
963 }
964 }
965
966 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
967 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
968 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
969
970 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
971 __func__, dwc2_readl(hsotg, epctrl_reg), index,
972 hs_ep->dir_in ? "in" : "out");
973
974 /* If endpoint is stalled, we will restart request later */
975 ctrl = dwc2_readl(hsotg, epctrl_reg);
976
977 if (index && ctrl & DXEPCTL_STALL) {
978 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
979 return;
980 }
981
982 length = ureq->length - ureq->actual;
983 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
984 ureq->length, ureq->actual);
985
986 if (!using_desc_dma(hsotg))
987 maxreq = get_ep_limit(hs_ep);
988 else
989 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
990
991 if (length > maxreq) {
992 int round = maxreq % hs_ep->ep.maxpacket;
993
994 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
995 __func__, length, maxreq, round);
996
997 /* round down to multiple of packets */
998 if (round)
999 maxreq -= round;
1000
1001 length = maxreq;
1002 }
1003
1004 if (length)
1005 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1006 else
1007 packets = 1; /* send one packet if length is zero. */
1008
1009 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1010 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1011 return;
1012 }
1013
1014 if (dir_in && index != 0)
1015 if (hs_ep->isochronous)
1016 epsize = DXEPTSIZ_MC(packets);
1017 else
1018 epsize = DXEPTSIZ_MC(1);
1019 else
1020 epsize = 0;
1021
1022 /*
1023 * zero length packet should be programmed on its own and should not
1024 * be counted in DIEPTSIZ.PktCnt with other packets.
1025 */
1026 if (dir_in && ureq->zero && !continuing) {
1027 /* Test if zlp is actually required. */
1028 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1029 !(ureq->length % hs_ep->ep.maxpacket))
1030 hs_ep->send_zlp = 1;
1031 }
1032
1033 epsize |= DXEPTSIZ_PKTCNT(packets);
1034 epsize |= DXEPTSIZ_XFERSIZE(length);
1035
1036 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1037 __func__, packets, length, ureq->length, epsize, epsize_reg);
1038
1039 /* store the request as the current one we're doing */
1040 hs_ep->req = hs_req;
1041
1042 if (using_desc_dma(hsotg)) {
1043 u32 offset = 0;
1044 u32 mps = hs_ep->ep.maxpacket;
1045
1046 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1047 if (!dir_in) {
1048 if (!index)
1049 length = mps;
1050 else if (length % mps)
1051 length += (mps - (length % mps));
1052 }
1053
1054 /*
1055 * If more data to send, adjust DMA for EP0 out data stage.
1056 * ureq->dma stays unchanged, hence increment it by already
1057 * passed passed data count before starting new transaction.
1058 */
1059 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1060 continuing)
1061 offset = ureq->actual;
1062
1063 /* Fill DDMA chain entries */
1064 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1065 length);
1066
1067 /* write descriptor chain address to control register */
1068 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1069
1070 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1071 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1072 } else {
1073 /* write size / packets */
1074 dwc2_writel(hsotg, epsize, epsize_reg);
1075
1076 if (using_dma(hsotg) && !continuing && (length != 0)) {
1077 /*
1078 * write DMA address to control register, buffer
1079 * already synced by dwc2_hsotg_ep_queue().
1080 */
1081
1082 dwc2_writel(hsotg, ureq->dma, dma_reg);
1083
1084 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1085 __func__, &ureq->dma, dma_reg);
1086 }
1087 }
1088
1089 if (hs_ep->isochronous && hs_ep->interval == 1) {
1090 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1091 dwc2_gadget_incr_frame_num(hs_ep);
1092
1093 if (hs_ep->target_frame & 0x1)
1094 ctrl |= DXEPCTL_SETODDFR;
1095 else
1096 ctrl |= DXEPCTL_SETEVENFR;
1097 }
1098
1099 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1100
1101 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1102
1103 /* For Setup request do not clear NAK */
1104 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1105 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1106
1107 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1108 dwc2_writel(hsotg, ctrl, epctrl_reg);
1109
1110 /*
1111 * set these, it seems that DMA support increments past the end
1112 * of the packet buffer so we need to calculate the length from
1113 * this information.
1114 */
1115 hs_ep->size_loaded = length;
1116 hs_ep->last_load = ureq->actual;
1117
1118 if (dir_in && !using_dma(hsotg)) {
1119 /* set these anyway, we may need them for non-periodic in */
1120 hs_ep->fifo_load = 0;
1121
1122 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1123 }
1124
1125 /*
1126 * Note, trying to clear the NAK here causes problems with transmit
1127 * on the S3C6400 ending up with the TXFIFO becoming full.
1128 */
1129
1130 /* check ep is enabled */
1131 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1132 dev_dbg(hsotg->dev,
1133 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1134 index, dwc2_readl(hsotg, epctrl_reg));
1135
1136 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1137 __func__, dwc2_readl(hsotg, epctrl_reg));
1138
1139 /* enable ep interrupts */
1140 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1141 }
1142
1143 /**
1144 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1145 * @hsotg: The device state.
1146 * @hs_ep: The endpoint the request is on.
1147 * @req: The request being processed.
1148 *
1149 * We've been asked to queue a request, so ensure that the memory buffer
1150 * is correctly setup for DMA. If we've been passed an extant DMA address
1151 * then ensure the buffer has been synced to memory. If our buffer has no
1152 * DMA memory, then we map the memory and mark our request to allow us to
1153 * cleanup on completion.
1154 */
dwc2_hsotg_map_dma(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct usb_request * req)1155 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1156 struct dwc2_hsotg_ep *hs_ep,
1157 struct usb_request *req)
1158 {
1159 int ret;
1160
1161 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1162 if (ret)
1163 goto dma_error;
1164
1165 return 0;
1166
1167 dma_error:
1168 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1169 __func__, req->buf, req->length);
1170
1171 return -EIO;
1172 }
1173
dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)1174 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1175 struct dwc2_hsotg_ep *hs_ep,
1176 struct dwc2_hsotg_req *hs_req)
1177 {
1178 void *req_buf = hs_req->req.buf;
1179
1180 /* If dma is not being used or buffer is aligned */
1181 if (!using_dma(hsotg) || !((long)req_buf & 3))
1182 return 0;
1183
1184 WARN_ON(hs_req->saved_req_buf);
1185
1186 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1187 hs_ep->ep.name, req_buf, hs_req->req.length);
1188
1189 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1190 if (!hs_req->req.buf) {
1191 hs_req->req.buf = req_buf;
1192 dev_err(hsotg->dev,
1193 "%s: unable to allocate memory for bounce buffer\n",
1194 __func__);
1195 return -ENOMEM;
1196 }
1197
1198 /* Save actual buffer */
1199 hs_req->saved_req_buf = req_buf;
1200
1201 if (hs_ep->dir_in)
1202 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1203 return 0;
1204 }
1205
1206 static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)1207 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1208 struct dwc2_hsotg_ep *hs_ep,
1209 struct dwc2_hsotg_req *hs_req)
1210 {
1211 /* If dma is not being used or buffer was aligned */
1212 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1213 return;
1214
1215 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1216 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1217
1218 /* Copy data from bounce buffer on successful out transfer */
1219 if (!hs_ep->dir_in && !hs_req->req.status)
1220 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1221 hs_req->req.actual);
1222
1223 /* Free bounce buffer */
1224 kfree(hs_req->req.buf);
1225
1226 hs_req->req.buf = hs_req->saved_req_buf;
1227 hs_req->saved_req_buf = NULL;
1228 }
1229
1230 /**
1231 * dwc2_gadget_target_frame_elapsed - Checks target frame
1232 * @hs_ep: The driver endpoint to check
1233 *
1234 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1235 * corresponding transfer.
1236 */
dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep * hs_ep)1237 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1238 {
1239 struct dwc2_hsotg *hsotg = hs_ep->parent;
1240 u32 target_frame = hs_ep->target_frame;
1241 u32 current_frame = hsotg->frame_number;
1242 bool frame_overrun = hs_ep->frame_overrun;
1243
1244 if (!frame_overrun && current_frame >= target_frame)
1245 return true;
1246
1247 if (frame_overrun && current_frame >= target_frame &&
1248 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1249 return true;
1250
1251 return false;
1252 }
1253
1254 /*
1255 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1256 * @hsotg: The driver state
1257 * @hs_ep: the ep descriptor chain is for
1258 *
1259 * Called to update EP0 structure's pointers depend on stage of
1260 * control transfer.
1261 */
dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)1262 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1263 struct dwc2_hsotg_ep *hs_ep)
1264 {
1265 switch (hsotg->ep0_state) {
1266 case DWC2_EP0_SETUP:
1267 case DWC2_EP0_STATUS_OUT:
1268 hs_ep->desc_list = hsotg->setup_desc[0];
1269 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1270 break;
1271 case DWC2_EP0_DATA_IN:
1272 case DWC2_EP0_STATUS_IN:
1273 hs_ep->desc_list = hsotg->ctrl_in_desc;
1274 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1275 break;
1276 case DWC2_EP0_DATA_OUT:
1277 hs_ep->desc_list = hsotg->ctrl_out_desc;
1278 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1279 break;
1280 default:
1281 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1282 hsotg->ep0_state);
1283 return -EINVAL;
1284 }
1285
1286 return 0;
1287 }
1288
dwc2_hsotg_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)1289 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1290 gfp_t gfp_flags)
1291 {
1292 struct dwc2_hsotg_req *hs_req = our_req(req);
1293 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1294 struct dwc2_hsotg *hs = hs_ep->parent;
1295 bool first;
1296 int ret;
1297 u32 maxsize = 0;
1298 u32 mask = 0;
1299
1300
1301 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1302 ep->name, req, req->length, req->buf, req->no_interrupt,
1303 req->zero, req->short_not_ok);
1304
1305 /* Prevent new request submission when controller is suspended */
1306 if (hs->lx_state != DWC2_L0) {
1307 dev_dbg(hs->dev, "%s: submit request only in active state\n",
1308 __func__);
1309 return -EAGAIN;
1310 }
1311
1312 /* initialise status of the request */
1313 INIT_LIST_HEAD(&hs_req->queue);
1314 req->actual = 0;
1315 req->status = -EINPROGRESS;
1316
1317 /* In DDMA mode for ISOC's don't queue request if length greater
1318 * than descriptor limits.
1319 */
1320 if (using_desc_dma(hs) && hs_ep->isochronous) {
1321 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1322 if (hs_ep->dir_in && req->length > maxsize) {
1323 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1324 req->length, maxsize);
1325 return -EINVAL;
1326 }
1327
1328 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1329 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1330 req->length, hs_ep->ep.maxpacket);
1331 return -EINVAL;
1332 }
1333 }
1334
1335 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1336 if (ret)
1337 return ret;
1338
1339 /* if we're using DMA, sync the buffers as necessary */
1340 if (using_dma(hs)) {
1341 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1342 if (ret)
1343 return ret;
1344 }
1345 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1346 if (using_desc_dma(hs) && !hs_ep->index) {
1347 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1348 if (ret)
1349 return ret;
1350 }
1351
1352 first = list_empty(&hs_ep->queue);
1353 list_add_tail(&hs_req->queue, &hs_ep->queue);
1354
1355 /*
1356 * Handle DDMA isochronous transfers separately - just add new entry
1357 * to the descriptor chain.
1358 * Transfer will be started once SW gets either one of NAK or
1359 * OutTknEpDis interrupts.
1360 */
1361 if (using_desc_dma(hs) && hs_ep->isochronous) {
1362 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1363 dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1364 hs_req->req.length);
1365 }
1366 return 0;
1367 }
1368
1369 if (first) {
1370 if (!hs_ep->isochronous) {
1371 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1372 return 0;
1373 }
1374
1375 /* Update current frame number value. */
1376 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1377 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1378 dwc2_gadget_incr_frame_num(hs_ep);
1379 /* Update current frame number value once more as it
1380 * changes here.
1381 */
1382 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1383 }
1384
1385 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1386 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1387 }
1388 return 0;
1389 }
1390
dwc2_hsotg_ep_queue_lock(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)1391 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1392 gfp_t gfp_flags)
1393 {
1394 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1395 struct dwc2_hsotg *hs = hs_ep->parent;
1396 unsigned long flags = 0;
1397 int ret = 0;
1398
1399 spin_lock_irqsave(&hs->lock, flags);
1400 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1401 spin_unlock_irqrestore(&hs->lock, flags);
1402
1403 return ret;
1404 }
1405
dwc2_hsotg_ep_free_request(struct usb_ep * ep,struct usb_request * req)1406 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1407 struct usb_request *req)
1408 {
1409 struct dwc2_hsotg_req *hs_req = our_req(req);
1410
1411 kfree(hs_req);
1412 }
1413
1414 /**
1415 * dwc2_hsotg_complete_oursetup - setup completion callback
1416 * @ep: The endpoint the request was on.
1417 * @req: The request completed.
1418 *
1419 * Called on completion of any requests the driver itself
1420 * submitted that need cleaning up.
1421 */
dwc2_hsotg_complete_oursetup(struct usb_ep * ep,struct usb_request * req)1422 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1423 struct usb_request *req)
1424 {
1425 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1426 struct dwc2_hsotg *hsotg = hs_ep->parent;
1427
1428 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1429
1430 dwc2_hsotg_ep_free_request(ep, req);
1431 }
1432
1433 /**
1434 * ep_from_windex - convert control wIndex value to endpoint
1435 * @hsotg: The driver state.
1436 * @windex: The control request wIndex field (in host order).
1437 *
1438 * Convert the given wIndex into a pointer to an driver endpoint
1439 * structure, or return NULL if it is not a valid endpoint.
1440 */
ep_from_windex(struct dwc2_hsotg * hsotg,u32 windex)1441 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1442 u32 windex)
1443 {
1444 struct dwc2_hsotg_ep *ep;
1445 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1446 int idx = windex & 0x7F;
1447
1448 if (windex >= 0x100)
1449 return NULL;
1450
1451 if (idx > hsotg->num_of_eps)
1452 return NULL;
1453
1454 ep = index_to_ep(hsotg, idx, dir);
1455
1456 if (idx && ep->dir_in != dir)
1457 return NULL;
1458
1459 return ep;
1460 }
1461
1462 /**
1463 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1464 * @hsotg: The driver state.
1465 * @testmode: requested usb test mode
1466 * Enable usb Test Mode requested by the Host.
1467 */
dwc2_hsotg_set_test_mode(struct dwc2_hsotg * hsotg,int testmode)1468 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1469 {
1470 int dctl = dwc2_readl(hsotg, DCTL);
1471
1472 dctl &= ~DCTL_TSTCTL_MASK;
1473 switch (testmode) {
1474 case TEST_J:
1475 case TEST_K:
1476 case TEST_SE0_NAK:
1477 case TEST_PACKET:
1478 case TEST_FORCE_EN:
1479 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1480 break;
1481 default:
1482 return -EINVAL;
1483 }
1484 dwc2_writel(hsotg, dctl, DCTL);
1485 return 0;
1486 }
1487
1488 /**
1489 * dwc2_hsotg_send_reply - send reply to control request
1490 * @hsotg: The device state
1491 * @ep: Endpoint 0
1492 * @buff: Buffer for request
1493 * @length: Length of reply.
1494 *
1495 * Create a request and queue it on the given endpoint. This is useful as
1496 * an internal method of sending replies to certain control requests, etc.
1497 */
dwc2_hsotg_send_reply(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * ep,void * buff,int length)1498 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1499 struct dwc2_hsotg_ep *ep,
1500 void *buff,
1501 int length)
1502 {
1503 struct usb_request *req;
1504 int ret;
1505
1506 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1507
1508 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1509 hsotg->ep0_reply = req;
1510 if (!req) {
1511 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1512 return -ENOMEM;
1513 }
1514
1515 req->buf = hsotg->ep0_buff;
1516 req->length = length;
1517 /*
1518 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1519 * STATUS stage.
1520 */
1521 req->zero = 0;
1522 req->complete = dwc2_hsotg_complete_oursetup;
1523
1524 if (length)
1525 memcpy(req->buf, buff, length);
1526
1527 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1528 if (ret) {
1529 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1530 return ret;
1531 }
1532
1533 return 0;
1534 }
1535
1536 /**
1537 * dwc2_hsotg_process_req_status - process request GET_STATUS
1538 * @hsotg: The device state
1539 * @ctrl: USB control request
1540 */
dwc2_hsotg_process_req_status(struct dwc2_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1541 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1542 struct usb_ctrlrequest *ctrl)
1543 {
1544 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1545 struct dwc2_hsotg_ep *ep;
1546 __le16 reply;
1547 int ret;
1548
1549 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1550
1551 if (!ep0->dir_in) {
1552 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1553 return -EINVAL;
1554 }
1555
1556 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1557 case USB_RECIP_DEVICE:
1558 /*
1559 * bit 0 => self powered
1560 * bit 1 => remote wakeup
1561 */
1562 reply = cpu_to_le16(0);
1563 break;
1564
1565 case USB_RECIP_INTERFACE:
1566 /* currently, the data result should be zero */
1567 reply = cpu_to_le16(0);
1568 break;
1569
1570 case USB_RECIP_ENDPOINT:
1571 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1572 if (!ep)
1573 return -ENOENT;
1574
1575 reply = cpu_to_le16(ep->halted ? 1 : 0);
1576 break;
1577
1578 default:
1579 return 0;
1580 }
1581
1582 if (le16_to_cpu(ctrl->wLength) != 2)
1583 return -EINVAL;
1584
1585 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1586 if (ret) {
1587 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1588 return ret;
1589 }
1590
1591 return 1;
1592 }
1593
1594 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1595
1596 /**
1597 * get_ep_head - return the first request on the endpoint
1598 * @hs_ep: The controller endpoint to get
1599 *
1600 * Get the first request on the endpoint.
1601 */
get_ep_head(struct dwc2_hsotg_ep * hs_ep)1602 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1603 {
1604 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1605 queue);
1606 }
1607
1608 /**
1609 * dwc2_gadget_start_next_request - Starts next request from ep queue
1610 * @hs_ep: Endpoint structure
1611 *
1612 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1613 * in its handler. Hence we need to unmask it here to be able to do
1614 * resynchronization.
1615 */
dwc2_gadget_start_next_request(struct dwc2_hsotg_ep * hs_ep)1616 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1617 {
1618 u32 mask;
1619 struct dwc2_hsotg *hsotg = hs_ep->parent;
1620 int dir_in = hs_ep->dir_in;
1621 struct dwc2_hsotg_req *hs_req;
1622 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1623
1624 if (!list_empty(&hs_ep->queue)) {
1625 hs_req = get_ep_head(hs_ep);
1626 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1627 return;
1628 }
1629 if (!hs_ep->isochronous)
1630 return;
1631
1632 if (dir_in) {
1633 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1634 __func__);
1635 } else {
1636 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1637 __func__);
1638 mask = dwc2_readl(hsotg, epmsk_reg);
1639 mask |= DOEPMSK_OUTTKNEPDISMSK;
1640 dwc2_writel(hsotg, mask, epmsk_reg);
1641 }
1642 }
1643
1644 /**
1645 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1646 * @hsotg: The device state
1647 * @ctrl: USB control request
1648 */
dwc2_hsotg_process_req_feature(struct dwc2_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1649 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1650 struct usb_ctrlrequest *ctrl)
1651 {
1652 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1653 struct dwc2_hsotg_req *hs_req;
1654 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1655 struct dwc2_hsotg_ep *ep;
1656 int ret;
1657 bool halted;
1658 u32 recip;
1659 u32 wValue;
1660 u32 wIndex;
1661
1662 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1663 __func__, set ? "SET" : "CLEAR");
1664
1665 wValue = le16_to_cpu(ctrl->wValue);
1666 wIndex = le16_to_cpu(ctrl->wIndex);
1667 recip = ctrl->bRequestType & USB_RECIP_MASK;
1668
1669 switch (recip) {
1670 case USB_RECIP_DEVICE:
1671 switch (wValue) {
1672 case USB_DEVICE_REMOTE_WAKEUP:
1673 hsotg->remote_wakeup_allowed = 1;
1674 break;
1675
1676 case USB_DEVICE_TEST_MODE:
1677 if ((wIndex & 0xff) != 0)
1678 return -EINVAL;
1679 if (!set)
1680 return -EINVAL;
1681
1682 hsotg->test_mode = wIndex >> 8;
1683 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1684 if (ret) {
1685 dev_err(hsotg->dev,
1686 "%s: failed to send reply\n", __func__);
1687 return ret;
1688 }
1689 break;
1690 default:
1691 return -ENOENT;
1692 }
1693 break;
1694
1695 case USB_RECIP_ENDPOINT:
1696 ep = ep_from_windex(hsotg, wIndex);
1697 if (!ep) {
1698 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1699 __func__, wIndex);
1700 return -ENOENT;
1701 }
1702
1703 switch (wValue) {
1704 case USB_ENDPOINT_HALT:
1705 halted = ep->halted;
1706
1707 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1708
1709 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1710 if (ret) {
1711 dev_err(hsotg->dev,
1712 "%s: failed to send reply\n", __func__);
1713 return ret;
1714 }
1715
1716 /*
1717 * we have to complete all requests for ep if it was
1718 * halted, and the halt was cleared by CLEAR_FEATURE
1719 */
1720
1721 if (!set && halted) {
1722 /*
1723 * If we have request in progress,
1724 * then complete it
1725 */
1726 if (ep->req) {
1727 hs_req = ep->req;
1728 ep->req = NULL;
1729 list_del_init(&hs_req->queue);
1730 if (hs_req->req.complete) {
1731 spin_unlock(&hsotg->lock);
1732 usb_gadget_giveback_request(
1733 &ep->ep, &hs_req->req);
1734 spin_lock(&hsotg->lock);
1735 }
1736 }
1737
1738 /* If we have pending request, then start it */
1739 if (!ep->req)
1740 dwc2_gadget_start_next_request(ep);
1741 }
1742
1743 break;
1744
1745 default:
1746 return -ENOENT;
1747 }
1748 break;
1749 default:
1750 return -ENOENT;
1751 }
1752 return 1;
1753 }
1754
1755 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1756
1757 /**
1758 * dwc2_hsotg_stall_ep0 - stall ep0
1759 * @hsotg: The device state
1760 *
1761 * Set stall for ep0 as response for setup request.
1762 */
dwc2_hsotg_stall_ep0(struct dwc2_hsotg * hsotg)1763 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1764 {
1765 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1766 u32 reg;
1767 u32 ctrl;
1768
1769 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1770 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1771
1772 /*
1773 * DxEPCTL_Stall will be cleared by EP once it has
1774 * taken effect, so no need to clear later.
1775 */
1776
1777 ctrl = dwc2_readl(hsotg, reg);
1778 ctrl |= DXEPCTL_STALL;
1779 ctrl |= DXEPCTL_CNAK;
1780 dwc2_writel(hsotg, ctrl, reg);
1781
1782 dev_dbg(hsotg->dev,
1783 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1784 ctrl, reg, dwc2_readl(hsotg, reg));
1785
1786 /*
1787 * complete won't be called, so we enqueue
1788 * setup request here
1789 */
1790 dwc2_hsotg_enqueue_setup(hsotg);
1791 }
1792
1793 /**
1794 * dwc2_hsotg_process_control - process a control request
1795 * @hsotg: The device state
1796 * @ctrl: The control request received
1797 *
1798 * The controller has received the SETUP phase of a control request, and
1799 * needs to work out what to do next (and whether to pass it on to the
1800 * gadget driver).
1801 */
dwc2_hsotg_process_control(struct dwc2_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1802 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1803 struct usb_ctrlrequest *ctrl)
1804 {
1805 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1806 int ret = 0;
1807 u32 dcfg;
1808
1809 dev_dbg(hsotg->dev,
1810 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1811 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1812 ctrl->wIndex, ctrl->wLength);
1813
1814 if (ctrl->wLength == 0) {
1815 ep0->dir_in = 1;
1816 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1817 } else if (ctrl->bRequestType & USB_DIR_IN) {
1818 ep0->dir_in = 1;
1819 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1820 } else {
1821 ep0->dir_in = 0;
1822 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1823 }
1824
1825 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1826 switch (ctrl->bRequest) {
1827 case USB_REQ_SET_ADDRESS:
1828 hsotg->connected = 1;
1829 dcfg = dwc2_readl(hsotg, DCFG);
1830 dcfg &= ~DCFG_DEVADDR_MASK;
1831 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1832 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1833 dwc2_writel(hsotg, dcfg, DCFG);
1834
1835 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1836
1837 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1838 return;
1839
1840 case USB_REQ_GET_STATUS:
1841 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1842 break;
1843
1844 case USB_REQ_CLEAR_FEATURE:
1845 case USB_REQ_SET_FEATURE:
1846 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1847 break;
1848 }
1849 }
1850
1851 /* as a fallback, try delivering it to the driver to deal with */
1852
1853 if (ret == 0 && hsotg->driver) {
1854 spin_unlock(&hsotg->lock);
1855 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1856 spin_lock(&hsotg->lock);
1857 if (ret < 0)
1858 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1859 }
1860
1861 /*
1862 * the request is either unhandlable, or is not formatted correctly
1863 * so respond with a STALL for the status stage to indicate failure.
1864 */
1865
1866 if (ret < 0)
1867 dwc2_hsotg_stall_ep0(hsotg);
1868 }
1869
1870 /**
1871 * dwc2_hsotg_complete_setup - completion of a setup transfer
1872 * @ep: The endpoint the request was on.
1873 * @req: The request completed.
1874 *
1875 * Called on completion of any requests the driver itself submitted for
1876 * EP0 setup packets
1877 */
dwc2_hsotg_complete_setup(struct usb_ep * ep,struct usb_request * req)1878 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1879 struct usb_request *req)
1880 {
1881 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1882 struct dwc2_hsotg *hsotg = hs_ep->parent;
1883
1884 if (req->status < 0) {
1885 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1886 return;
1887 }
1888
1889 spin_lock(&hsotg->lock);
1890 if (req->actual == 0)
1891 dwc2_hsotg_enqueue_setup(hsotg);
1892 else
1893 dwc2_hsotg_process_control(hsotg, req->buf);
1894 spin_unlock(&hsotg->lock);
1895 }
1896
1897 /**
1898 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1899 * @hsotg: The device state.
1900 *
1901 * Enqueue a request on EP0 if necessary to received any SETUP packets
1902 * received from the host.
1903 */
dwc2_hsotg_enqueue_setup(struct dwc2_hsotg * hsotg)1904 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1905 {
1906 struct usb_request *req = hsotg->ctrl_req;
1907 struct dwc2_hsotg_req *hs_req = our_req(req);
1908 int ret;
1909
1910 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1911
1912 req->zero = 0;
1913 req->length = 8;
1914 req->buf = hsotg->ctrl_buff;
1915 req->complete = dwc2_hsotg_complete_setup;
1916
1917 if (!list_empty(&hs_req->queue)) {
1918 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1919 return;
1920 }
1921
1922 hsotg->eps_out[0]->dir_in = 0;
1923 hsotg->eps_out[0]->send_zlp = 0;
1924 hsotg->ep0_state = DWC2_EP0_SETUP;
1925
1926 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1927 if (ret < 0) {
1928 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1929 /*
1930 * Don't think there's much we can do other than watch the
1931 * driver fail.
1932 */
1933 }
1934 }
1935
dwc2_hsotg_program_zlp(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)1936 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1937 struct dwc2_hsotg_ep *hs_ep)
1938 {
1939 u32 ctrl;
1940 u8 index = hs_ep->index;
1941 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1942 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1943
1944 if (hs_ep->dir_in)
1945 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1946 index);
1947 else
1948 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1949 index);
1950 if (using_desc_dma(hsotg)) {
1951 /* Not specific buffer needed for ep0 ZLP */
1952 dma_addr_t dma = hs_ep->desc_list_dma;
1953
1954 if (!index)
1955 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1956
1957 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1958 } else {
1959 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1960 DXEPTSIZ_XFERSIZE(0),
1961 epsiz_reg);
1962 }
1963
1964 ctrl = dwc2_readl(hsotg, epctl_reg);
1965 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1966 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1967 ctrl |= DXEPCTL_USBACTEP;
1968 dwc2_writel(hsotg, ctrl, epctl_reg);
1969 }
1970
1971 /**
1972 * dwc2_hsotg_complete_request - complete a request given to us
1973 * @hsotg: The device state.
1974 * @hs_ep: The endpoint the request was on.
1975 * @hs_req: The request to complete.
1976 * @result: The result code (0 => Ok, otherwise errno)
1977 *
1978 * The given request has finished, so call the necessary completion
1979 * if it has one and then look to see if we can start a new request
1980 * on the endpoint.
1981 *
1982 * Note, expects the ep to already be locked as appropriate.
1983 */
dwc2_hsotg_complete_request(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req,int result)1984 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1985 struct dwc2_hsotg_ep *hs_ep,
1986 struct dwc2_hsotg_req *hs_req,
1987 int result)
1988 {
1989 if (!hs_req) {
1990 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1991 return;
1992 }
1993
1994 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1995 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1996
1997 /*
1998 * only replace the status if we've not already set an error
1999 * from a previous transaction
2000 */
2001
2002 if (hs_req->req.status == -EINPROGRESS)
2003 hs_req->req.status = result;
2004
2005 if (using_dma(hsotg))
2006 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2007
2008 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2009
2010 hs_ep->req = NULL;
2011 list_del_init(&hs_req->queue);
2012
2013 /*
2014 * call the complete request with the locks off, just in case the
2015 * request tries to queue more work for this endpoint.
2016 */
2017
2018 if (hs_req->req.complete) {
2019 spin_unlock(&hsotg->lock);
2020 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2021 spin_lock(&hsotg->lock);
2022 }
2023
2024 /* In DDMA don't need to proceed to starting of next ISOC request */
2025 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2026 return;
2027
2028 /*
2029 * Look to see if there is anything else to do. Note, the completion
2030 * of the previous request may have caused a new request to be started
2031 * so be careful when doing this.
2032 */
2033
2034 if (!hs_ep->req && result >= 0)
2035 dwc2_gadget_start_next_request(hs_ep);
2036 }
2037
2038 /*
2039 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2040 * @hs_ep: The endpoint the request was on.
2041 *
2042 * Get first request from the ep queue, determine descriptor on which complete
2043 * happened. SW discovers which descriptor currently in use by HW, adjusts
2044 * dma_address and calculates index of completed descriptor based on the value
2045 * of DEPDMA register. Update actual length of request, giveback to gadget.
2046 */
dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep * hs_ep)2047 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2048 {
2049 struct dwc2_hsotg *hsotg = hs_ep->parent;
2050 struct dwc2_hsotg_req *hs_req;
2051 struct usb_request *ureq;
2052 u32 desc_sts;
2053 u32 mask;
2054
2055 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2056
2057 /* Process only descriptors with buffer status set to DMA done */
2058 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2059 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2060
2061 hs_req = get_ep_head(hs_ep);
2062 if (!hs_req) {
2063 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2064 return;
2065 }
2066 ureq = &hs_req->req;
2067
2068 /* Check completion status */
2069 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2070 DEV_DMA_STS_SUCC) {
2071 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2072 DEV_DMA_ISOC_RX_NBYTES_MASK;
2073 ureq->actual = ureq->length - ((desc_sts & mask) >>
2074 DEV_DMA_ISOC_NBYTES_SHIFT);
2075
2076 /* Adjust actual len for ISOC Out if len is
2077 * not align of 4
2078 */
2079 if (!hs_ep->dir_in && ureq->length & 0x3)
2080 ureq->actual += 4 - (ureq->length & 0x3);
2081 }
2082
2083 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2084
2085 hs_ep->compl_desc++;
2086 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_GENERIC - 1))
2087 hs_ep->compl_desc = 0;
2088 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2089 }
2090 }
2091
2092 /*
2093 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2094 * @hs_ep: The isochronous endpoint.
2095 *
2096 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2097 * interrupt. Reset target frame and next_desc to allow to start
2098 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2099 * interrupt for OUT direction.
2100 */
dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep * hs_ep)2101 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2102 {
2103 struct dwc2_hsotg *hsotg = hs_ep->parent;
2104
2105 if (!hs_ep->dir_in)
2106 dwc2_flush_rx_fifo(hsotg);
2107 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2108
2109 hs_ep->target_frame = TARGET_FRAME_INITIAL;
2110 hs_ep->next_desc = 0;
2111 hs_ep->compl_desc = 0;
2112 }
2113
2114 /**
2115 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2116 * @hsotg: The device state.
2117 * @ep_idx: The endpoint index for the data
2118 * @size: The size of data in the fifo, in bytes
2119 *
2120 * The FIFO status shows there is data to read from the FIFO for a given
2121 * endpoint, so sort out whether we need to read the data into a request
2122 * that has been made for that endpoint.
2123 */
dwc2_hsotg_rx_data(struct dwc2_hsotg * hsotg,int ep_idx,int size)2124 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2125 {
2126 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2127 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2128 int to_read;
2129 int max_req;
2130 int read_ptr;
2131
2132 if (!hs_req) {
2133 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2134 int ptr;
2135
2136 dev_dbg(hsotg->dev,
2137 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2138 __func__, size, ep_idx, epctl);
2139
2140 /* dump the data from the FIFO, we've nothing we can do */
2141 for (ptr = 0; ptr < size; ptr += 4)
2142 (void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2143
2144 return;
2145 }
2146
2147 to_read = size;
2148 read_ptr = hs_req->req.actual;
2149 max_req = hs_req->req.length - read_ptr;
2150
2151 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2152 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2153
2154 if (to_read > max_req) {
2155 /*
2156 * more data appeared than we where willing
2157 * to deal with in this request.
2158 */
2159
2160 /* currently we don't deal this */
2161 WARN_ON_ONCE(1);
2162 }
2163
2164 hs_ep->total_data += to_read;
2165 hs_req->req.actual += to_read;
2166 to_read = DIV_ROUND_UP(to_read, 4);
2167
2168 /*
2169 * note, we might over-write the buffer end by 3 bytes depending on
2170 * alignment of the data.
2171 */
2172 dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2173 hs_req->req.buf + read_ptr, to_read);
2174 }
2175
2176 /**
2177 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2178 * @hsotg: The device instance
2179 * @dir_in: If IN zlp
2180 *
2181 * Generate a zero-length IN packet request for terminating a SETUP
2182 * transaction.
2183 *
2184 * Note, since we don't write any data to the TxFIFO, then it is
2185 * currently believed that we do not need to wait for any space in
2186 * the TxFIFO.
2187 */
dwc2_hsotg_ep0_zlp(struct dwc2_hsotg * hsotg,bool dir_in)2188 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2189 {
2190 /* eps_out[0] is used in both directions */
2191 hsotg->eps_out[0]->dir_in = dir_in;
2192 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2193
2194 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2195 }
2196
dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg * hsotg,u32 epctl_reg)2197 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2198 u32 epctl_reg)
2199 {
2200 u32 ctrl;
2201
2202 ctrl = dwc2_readl(hsotg, epctl_reg);
2203 if (ctrl & DXEPCTL_EOFRNUM)
2204 ctrl |= DXEPCTL_SETEVENFR;
2205 else
2206 ctrl |= DXEPCTL_SETODDFR;
2207 dwc2_writel(hsotg, ctrl, epctl_reg);
2208 }
2209
2210 /*
2211 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2212 * @hs_ep - The endpoint on which transfer went
2213 *
2214 * Iterate over endpoints descriptor chain and get info on bytes remained
2215 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2216 */
dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep * hs_ep)2217 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2218 {
2219 struct dwc2_hsotg *hsotg = hs_ep->parent;
2220 unsigned int bytes_rem = 0;
2221 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2222 int i;
2223 u32 status;
2224
2225 if (!desc)
2226 return -EINVAL;
2227
2228 for (i = 0; i < hs_ep->desc_count; ++i) {
2229 status = desc->status;
2230 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2231
2232 if (status & DEV_DMA_STS_MASK)
2233 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2234 i, status & DEV_DMA_STS_MASK);
2235 }
2236
2237 return bytes_rem;
2238 }
2239
2240 /**
2241 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2242 * @hsotg: The device instance
2243 * @epnum: The endpoint received from
2244 *
2245 * The RXFIFO has delivered an OutDone event, which means that the data
2246 * transfer for an OUT endpoint has been completed, either by a short
2247 * packet or by the finish of a transfer.
2248 */
dwc2_hsotg_handle_outdone(struct dwc2_hsotg * hsotg,int epnum)2249 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2250 {
2251 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2252 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2253 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2254 struct usb_request *req = &hs_req->req;
2255 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2256 int result = 0;
2257
2258 if (!hs_req) {
2259 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2260 return;
2261 }
2262
2263 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2264 dev_dbg(hsotg->dev, "zlp packet received\n");
2265 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2266 dwc2_hsotg_enqueue_setup(hsotg);
2267 return;
2268 }
2269
2270 if (using_desc_dma(hsotg))
2271 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2272
2273 if (using_dma(hsotg)) {
2274 unsigned int size_done;
2275
2276 /*
2277 * Calculate the size of the transfer by checking how much
2278 * is left in the endpoint size register and then working it
2279 * out from the amount we loaded for the transfer.
2280 *
2281 * We need to do this as DMA pointers are always 32bit aligned
2282 * so may overshoot/undershoot the transfer.
2283 */
2284
2285 size_done = hs_ep->size_loaded - size_left;
2286 size_done += hs_ep->last_load;
2287
2288 req->actual = size_done;
2289 }
2290
2291 /* if there is more request to do, schedule new transfer */
2292 if (req->actual < req->length && size_left == 0) {
2293 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2294 return;
2295 }
2296
2297 if (req->actual < req->length && req->short_not_ok) {
2298 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2299 __func__, req->actual, req->length);
2300
2301 /*
2302 * todo - what should we return here? there's no one else
2303 * even bothering to check the status.
2304 */
2305 }
2306
2307 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2308 if (!using_desc_dma(hsotg) && epnum == 0 &&
2309 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2310 /* Move to STATUS IN */
2311 dwc2_hsotg_ep0_zlp(hsotg, true);
2312 return;
2313 }
2314
2315 /*
2316 * Slave mode OUT transfers do not go through XferComplete so
2317 * adjust the ISOC parity here.
2318 */
2319 if (!using_dma(hsotg)) {
2320 if (hs_ep->isochronous && hs_ep->interval == 1)
2321 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2322 else if (hs_ep->isochronous && hs_ep->interval > 1)
2323 dwc2_gadget_incr_frame_num(hs_ep);
2324 }
2325
2326 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2327 }
2328
2329 /**
2330 * dwc2_hsotg_handle_rx - RX FIFO has data
2331 * @hsotg: The device instance
2332 *
2333 * The IRQ handler has detected that the RX FIFO has some data in it
2334 * that requires processing, so find out what is in there and do the
2335 * appropriate read.
2336 *
2337 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2338 * chunks, so if you have x packets received on an endpoint you'll get x
2339 * FIFO events delivered, each with a packet's worth of data in it.
2340 *
2341 * When using DMA, we should not be processing events from the RXFIFO
2342 * as the actual data should be sent to the memory directly and we turn
2343 * on the completion interrupts to get notifications of transfer completion.
2344 */
dwc2_hsotg_handle_rx(struct dwc2_hsotg * hsotg)2345 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2346 {
2347 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2348 u32 epnum, status, size;
2349
2350 WARN_ON(using_dma(hsotg));
2351
2352 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2353 status = grxstsr & GRXSTS_PKTSTS_MASK;
2354
2355 size = grxstsr & GRXSTS_BYTECNT_MASK;
2356 size >>= GRXSTS_BYTECNT_SHIFT;
2357
2358 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2359 __func__, grxstsr, size, epnum);
2360
2361 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2362 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2363 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2364 break;
2365
2366 case GRXSTS_PKTSTS_OUTDONE:
2367 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2368 dwc2_hsotg_read_frameno(hsotg));
2369
2370 if (!using_dma(hsotg))
2371 dwc2_hsotg_handle_outdone(hsotg, epnum);
2372 break;
2373
2374 case GRXSTS_PKTSTS_SETUPDONE:
2375 dev_dbg(hsotg->dev,
2376 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2377 dwc2_hsotg_read_frameno(hsotg),
2378 dwc2_readl(hsotg, DOEPCTL(0)));
2379 /*
2380 * Call dwc2_hsotg_handle_outdone here if it was not called from
2381 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2382 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2383 */
2384 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2385 dwc2_hsotg_handle_outdone(hsotg, epnum);
2386 break;
2387
2388 case GRXSTS_PKTSTS_OUTRX:
2389 dwc2_hsotg_rx_data(hsotg, epnum, size);
2390 break;
2391
2392 case GRXSTS_PKTSTS_SETUPRX:
2393 dev_dbg(hsotg->dev,
2394 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2395 dwc2_hsotg_read_frameno(hsotg),
2396 dwc2_readl(hsotg, DOEPCTL(0)));
2397
2398 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2399
2400 dwc2_hsotg_rx_data(hsotg, epnum, size);
2401 break;
2402
2403 default:
2404 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2405 __func__, grxstsr);
2406
2407 dwc2_hsotg_dump(hsotg);
2408 break;
2409 }
2410 }
2411
2412 /**
2413 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2414 * @mps: The maximum packet size in bytes.
2415 */
dwc2_hsotg_ep0_mps(unsigned int mps)2416 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2417 {
2418 switch (mps) {
2419 case 64:
2420 return D0EPCTL_MPS_64;
2421 case 32:
2422 return D0EPCTL_MPS_32;
2423 case 16:
2424 return D0EPCTL_MPS_16;
2425 case 8:
2426 return D0EPCTL_MPS_8;
2427 }
2428
2429 /* bad max packet size, warn and return invalid result */
2430 WARN_ON(1);
2431 return (u32)-1;
2432 }
2433
2434 /**
2435 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2436 * @hsotg: The driver state.
2437 * @ep: The index number of the endpoint
2438 * @mps: The maximum packet size in bytes
2439 * @mc: The multicount value
2440 * @dir_in: True if direction is in.
2441 *
2442 * Configure the maximum packet size for the given endpoint, updating
2443 * the hardware control registers to reflect this.
2444 */
dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg * hsotg,unsigned int ep,unsigned int mps,unsigned int mc,unsigned int dir_in)2445 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2446 unsigned int ep, unsigned int mps,
2447 unsigned int mc, unsigned int dir_in)
2448 {
2449 struct dwc2_hsotg_ep *hs_ep;
2450 u32 reg;
2451
2452 hs_ep = index_to_ep(hsotg, ep, dir_in);
2453 if (!hs_ep)
2454 return;
2455
2456 if (ep == 0) {
2457 u32 mps_bytes = mps;
2458
2459 /* EP0 is a special case */
2460 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2461 if (mps > 3)
2462 goto bad_mps;
2463 hs_ep->ep.maxpacket = mps_bytes;
2464 hs_ep->mc = 1;
2465 } else {
2466 if (mps > 1024)
2467 goto bad_mps;
2468 hs_ep->mc = mc;
2469 if (mc > 3)
2470 goto bad_mps;
2471 hs_ep->ep.maxpacket = mps;
2472 }
2473
2474 if (dir_in) {
2475 reg = dwc2_readl(hsotg, DIEPCTL(ep));
2476 reg &= ~DXEPCTL_MPS_MASK;
2477 reg |= mps;
2478 dwc2_writel(hsotg, reg, DIEPCTL(ep));
2479 } else {
2480 reg = dwc2_readl(hsotg, DOEPCTL(ep));
2481 reg &= ~DXEPCTL_MPS_MASK;
2482 reg |= mps;
2483 dwc2_writel(hsotg, reg, DOEPCTL(ep));
2484 }
2485
2486 return;
2487
2488 bad_mps:
2489 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2490 }
2491
2492 /**
2493 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2494 * @hsotg: The driver state
2495 * @idx: The index for the endpoint (0..15)
2496 */
dwc2_hsotg_txfifo_flush(struct dwc2_hsotg * hsotg,unsigned int idx)2497 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2498 {
2499 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2500 GRSTCTL);
2501
2502 /* wait until the fifo is flushed */
2503 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2504 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2505 __func__);
2506 }
2507
2508 /**
2509 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2510 * @hsotg: The driver state
2511 * @hs_ep: The driver endpoint to check.
2512 *
2513 * Check to see if there is a request that has data to send, and if so
2514 * make an attempt to write data into the FIFO.
2515 */
dwc2_hsotg_trytx(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)2516 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2517 struct dwc2_hsotg_ep *hs_ep)
2518 {
2519 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2520
2521 if (!hs_ep->dir_in || !hs_req) {
2522 /**
2523 * if request is not enqueued, we disable interrupts
2524 * for endpoints, excepting ep0
2525 */
2526 if (hs_ep->index != 0)
2527 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2528 hs_ep->dir_in, 0);
2529 return 0;
2530 }
2531
2532 if (hs_req->req.actual < hs_req->req.length) {
2533 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2534 hs_ep->index);
2535 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2536 }
2537
2538 return 0;
2539 }
2540
2541 /**
2542 * dwc2_hsotg_complete_in - complete IN transfer
2543 * @hsotg: The device state.
2544 * @hs_ep: The endpoint that has just completed.
2545 *
2546 * An IN transfer has been completed, update the transfer's state and then
2547 * call the relevant completion routines.
2548 */
dwc2_hsotg_complete_in(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)2549 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2550 struct dwc2_hsotg_ep *hs_ep)
2551 {
2552 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2553 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2554 int size_left, size_done;
2555
2556 if (!hs_req) {
2557 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2558 return;
2559 }
2560
2561 /* Finish ZLP handling for IN EP0 transactions */
2562 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2563 dev_dbg(hsotg->dev, "zlp packet sent\n");
2564
2565 /*
2566 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2567 * changed to IN. Change back to complete OUT transfer request
2568 */
2569 hs_ep->dir_in = 0;
2570
2571 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2572 if (hsotg->test_mode) {
2573 int ret;
2574
2575 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2576 if (ret < 0) {
2577 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2578 hsotg->test_mode);
2579 dwc2_hsotg_stall_ep0(hsotg);
2580 return;
2581 }
2582 }
2583 dwc2_hsotg_enqueue_setup(hsotg);
2584 return;
2585 }
2586
2587 /*
2588 * Calculate the size of the transfer by checking how much is left
2589 * in the endpoint size register and then working it out from
2590 * the amount we loaded for the transfer.
2591 *
2592 * We do this even for DMA, as the transfer may have incremented
2593 * past the end of the buffer (DMA transfers are always 32bit
2594 * aligned).
2595 */
2596 if (using_desc_dma(hsotg)) {
2597 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2598 if (size_left < 0)
2599 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2600 size_left);
2601 } else {
2602 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2603 }
2604
2605 size_done = hs_ep->size_loaded - size_left;
2606 size_done += hs_ep->last_load;
2607
2608 if (hs_req->req.actual != size_done)
2609 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2610 __func__, hs_req->req.actual, size_done);
2611
2612 hs_req->req.actual = size_done;
2613 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2614 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2615
2616 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2617 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2618 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2619 return;
2620 }
2621
2622 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2623 if (hs_ep->send_zlp) {
2624 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2625 hs_ep->send_zlp = 0;
2626 /* transfer will be completed on next complete interrupt */
2627 return;
2628 }
2629
2630 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2631 /* Move to STATUS OUT */
2632 dwc2_hsotg_ep0_zlp(hsotg, false);
2633 return;
2634 }
2635
2636 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2637 }
2638
2639 /**
2640 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2641 * @hsotg: The device state.
2642 * @idx: Index of ep.
2643 * @dir_in: Endpoint direction 1-in 0-out.
2644 *
2645 * Reads for endpoint with given index and direction, by masking
2646 * epint_reg with coresponding mask.
2647 */
dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg * hsotg,unsigned int idx,int dir_in)2648 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2649 unsigned int idx, int dir_in)
2650 {
2651 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2652 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2653 u32 ints;
2654 u32 mask;
2655 u32 diepempmsk;
2656
2657 mask = dwc2_readl(hsotg, epmsk_reg);
2658 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2659 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2660 mask |= DXEPINT_SETUP_RCVD;
2661
2662 ints = dwc2_readl(hsotg, epint_reg);
2663 ints &= mask;
2664 return ints;
2665 }
2666
2667 /**
2668 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2669 * @hs_ep: The endpoint on which interrupt is asserted.
2670 *
2671 * This interrupt indicates that the endpoint has been disabled per the
2672 * application's request.
2673 *
2674 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2675 * in case of ISOC completes current request.
2676 *
2677 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2678 * request starts it.
2679 */
dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep * hs_ep)2680 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2681 {
2682 struct dwc2_hsotg *hsotg = hs_ep->parent;
2683 struct dwc2_hsotg_req *hs_req;
2684 unsigned char idx = hs_ep->index;
2685 int dir_in = hs_ep->dir_in;
2686 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2687 int dctl = dwc2_readl(hsotg, DCTL);
2688
2689 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2690
2691 if (dir_in) {
2692 int epctl = dwc2_readl(hsotg, epctl_reg);
2693
2694 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2695
2696 if (hs_ep->isochronous) {
2697 dwc2_hsotg_complete_in(hsotg, hs_ep);
2698 return;
2699 }
2700
2701 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2702 int dctl = dwc2_readl(hsotg, DCTL);
2703
2704 dctl |= DCTL_CGNPINNAK;
2705 dwc2_writel(hsotg, dctl, DCTL);
2706 }
2707 return;
2708 }
2709
2710 if (dctl & DCTL_GOUTNAKSTS) {
2711 dctl |= DCTL_CGOUTNAK;
2712 dwc2_writel(hsotg, dctl, DCTL);
2713 }
2714
2715 if (!hs_ep->isochronous)
2716 return;
2717
2718 if (list_empty(&hs_ep->queue)) {
2719 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2720 __func__, hs_ep);
2721 return;
2722 }
2723
2724 do {
2725 hs_req = get_ep_head(hs_ep);
2726 if (hs_req)
2727 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2728 -ENODATA);
2729 dwc2_gadget_incr_frame_num(hs_ep);
2730 /* Update current frame number value. */
2731 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2732 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2733
2734 dwc2_gadget_start_next_request(hs_ep);
2735 }
2736
2737 /**
2738 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2739 * @ep: The endpoint on which interrupt is asserted.
2740 *
2741 * This is starting point for ISOC-OUT transfer, synchronization done with
2742 * first out token received from host while corresponding EP is disabled.
2743 *
2744 * Device does not know initial frame in which out token will come. For this
2745 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2746 * getting this interrupt SW starts calculation for next transfer frame.
2747 */
dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep * ep)2748 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2749 {
2750 struct dwc2_hsotg *hsotg = ep->parent;
2751 int dir_in = ep->dir_in;
2752 u32 doepmsk;
2753
2754 if (dir_in || !ep->isochronous)
2755 return;
2756
2757 if (using_desc_dma(hsotg)) {
2758 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2759 /* Start first ISO Out */
2760 ep->target_frame = hsotg->frame_number;
2761 dwc2_gadget_start_isoc_ddma(ep);
2762 }
2763 return;
2764 }
2765
2766 if (ep->interval > 1 &&
2767 ep->target_frame == TARGET_FRAME_INITIAL) {
2768 u32 ctrl;
2769
2770 ep->target_frame = hsotg->frame_number;
2771 dwc2_gadget_incr_frame_num(ep);
2772
2773 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2774 if (ep->target_frame & 0x1)
2775 ctrl |= DXEPCTL_SETODDFR;
2776 else
2777 ctrl |= DXEPCTL_SETEVENFR;
2778
2779 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2780 }
2781
2782 dwc2_gadget_start_next_request(ep);
2783 doepmsk = dwc2_readl(hsotg, DOEPMSK);
2784 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2785 dwc2_writel(hsotg, doepmsk, DOEPMSK);
2786 }
2787
2788 /**
2789 * dwc2_gadget_handle_nak - handle NAK interrupt
2790 * @hs_ep: The endpoint on which interrupt is asserted.
2791 *
2792 * This is starting point for ISOC-IN transfer, synchronization done with
2793 * first IN token received from host while corresponding EP is disabled.
2794 *
2795 * Device does not know when first one token will arrive from host. On first
2796 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2797 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2798 * sent in response to that as there was no data in FIFO. SW is basing on this
2799 * interrupt to obtain frame in which token has come and then based on the
2800 * interval calculates next frame for transfer.
2801 */
dwc2_gadget_handle_nak(struct dwc2_hsotg_ep * hs_ep)2802 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2803 {
2804 struct dwc2_hsotg *hsotg = hs_ep->parent;
2805 int dir_in = hs_ep->dir_in;
2806
2807 if (!dir_in || !hs_ep->isochronous)
2808 return;
2809
2810 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2811
2812 if (using_desc_dma(hsotg)) {
2813 hs_ep->target_frame = hsotg->frame_number;
2814 dwc2_gadget_incr_frame_num(hs_ep);
2815 dwc2_gadget_start_isoc_ddma(hs_ep);
2816 return;
2817 }
2818
2819 hs_ep->target_frame = hsotg->frame_number;
2820 if (hs_ep->interval > 1) {
2821 u32 ctrl = dwc2_readl(hsotg,
2822 DIEPCTL(hs_ep->index));
2823 if (hs_ep->target_frame & 0x1)
2824 ctrl |= DXEPCTL_SETODDFR;
2825 else
2826 ctrl |= DXEPCTL_SETEVENFR;
2827
2828 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2829 }
2830
2831 dwc2_hsotg_complete_request(hsotg, hs_ep,
2832 get_ep_head(hs_ep), 0);
2833 }
2834
2835 if (!using_desc_dma(hsotg))
2836 dwc2_gadget_incr_frame_num(hs_ep);
2837 }
2838
2839 /**
2840 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2841 * @hsotg: The driver state
2842 * @idx: The index for the endpoint (0..15)
2843 * @dir_in: Set if this is an IN endpoint
2844 *
2845 * Process and clear any interrupt pending for an individual endpoint
2846 */
dwc2_hsotg_epint(struct dwc2_hsotg * hsotg,unsigned int idx,int dir_in)2847 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2848 int dir_in)
2849 {
2850 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2851 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2852 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2853 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2854 u32 ints;
2855 u32 ctrl;
2856
2857 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2858 ctrl = dwc2_readl(hsotg, epctl_reg);
2859
2860 /* Clear endpoint interrupts */
2861 dwc2_writel(hsotg, ints, epint_reg);
2862
2863 if (!hs_ep) {
2864 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2865 __func__, idx, dir_in ? "in" : "out");
2866 return;
2867 }
2868
2869 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2870 __func__, idx, dir_in ? "in" : "out", ints);
2871
2872 /* Don't process XferCompl interrupt if it is a setup packet */
2873 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2874 ints &= ~DXEPINT_XFERCOMPL;
2875
2876 /*
2877 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2878 * stage and xfercomplete was generated without SETUP phase done
2879 * interrupt. SW should parse received setup packet only after host's
2880 * exit from setup phase of control transfer.
2881 */
2882 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2883 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2884 ints &= ~DXEPINT_XFERCOMPL;
2885
2886 if (ints & DXEPINT_XFERCOMPL) {
2887 dev_dbg(hsotg->dev,
2888 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2889 __func__, dwc2_readl(hsotg, epctl_reg),
2890 dwc2_readl(hsotg, epsiz_reg));
2891
2892 /* In DDMA handle isochronous requests separately */
2893 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2894 /* XferCompl set along with BNA */
2895 if (!(ints & DXEPINT_BNAINTR))
2896 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2897 } else if (dir_in) {
2898 /*
2899 * We get OutDone from the FIFO, so we only
2900 * need to look at completing IN requests here
2901 * if operating slave mode
2902 */
2903 if (hs_ep->isochronous && hs_ep->interval > 1)
2904 dwc2_gadget_incr_frame_num(hs_ep);
2905
2906 dwc2_hsotg_complete_in(hsotg, hs_ep);
2907 if (ints & DXEPINT_NAKINTRPT)
2908 ints &= ~DXEPINT_NAKINTRPT;
2909
2910 if (idx == 0 && !hs_ep->req)
2911 dwc2_hsotg_enqueue_setup(hsotg);
2912 } else if (using_dma(hsotg)) {
2913 /*
2914 * We're using DMA, we need to fire an OutDone here
2915 * as we ignore the RXFIFO.
2916 */
2917 if (hs_ep->isochronous && hs_ep->interval > 1)
2918 dwc2_gadget_incr_frame_num(hs_ep);
2919
2920 dwc2_hsotg_handle_outdone(hsotg, idx);
2921 }
2922 }
2923
2924 if (ints & DXEPINT_EPDISBLD)
2925 dwc2_gadget_handle_ep_disabled(hs_ep);
2926
2927 if (ints & DXEPINT_OUTTKNEPDIS)
2928 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2929
2930 if (ints & DXEPINT_NAKINTRPT)
2931 dwc2_gadget_handle_nak(hs_ep);
2932
2933 if (ints & DXEPINT_AHBERR)
2934 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2935
2936 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2937 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2938
2939 if (using_dma(hsotg) && idx == 0) {
2940 /*
2941 * this is the notification we've received a
2942 * setup packet. In non-DMA mode we'd get this
2943 * from the RXFIFO, instead we need to process
2944 * the setup here.
2945 */
2946
2947 if (dir_in)
2948 WARN_ON_ONCE(1);
2949 else
2950 dwc2_hsotg_handle_outdone(hsotg, 0);
2951 }
2952 }
2953
2954 if (ints & DXEPINT_STSPHSERCVD) {
2955 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2956
2957 /* Safety check EP0 state when STSPHSERCVD asserted */
2958 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2959 /* Move to STATUS IN for DDMA */
2960 if (using_desc_dma(hsotg))
2961 dwc2_hsotg_ep0_zlp(hsotg, true);
2962 }
2963
2964 }
2965
2966 if (ints & DXEPINT_BACK2BACKSETUP)
2967 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2968
2969 if (ints & DXEPINT_BNAINTR) {
2970 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2971 if (hs_ep->isochronous)
2972 dwc2_gadget_handle_isoc_bna(hs_ep);
2973 }
2974
2975 if (dir_in && !hs_ep->isochronous) {
2976 /* not sure if this is important, but we'll clear it anyway */
2977 if (ints & DXEPINT_INTKNTXFEMP) {
2978 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2979 __func__, idx);
2980 }
2981
2982 /* this probably means something bad is happening */
2983 if (ints & DXEPINT_INTKNEPMIS) {
2984 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2985 __func__, idx);
2986 }
2987
2988 /* FIFO has space or is empty (see GAHBCFG) */
2989 if (hsotg->dedicated_fifos &&
2990 ints & DXEPINT_TXFEMP) {
2991 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2992 __func__, idx);
2993 if (!using_dma(hsotg))
2994 dwc2_hsotg_trytx(hsotg, hs_ep);
2995 }
2996 }
2997 }
2998
2999 /**
3000 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3001 * @hsotg: The device state.
3002 *
3003 * Handle updating the device settings after the enumeration phase has
3004 * been completed.
3005 */
dwc2_hsotg_irq_enumdone(struct dwc2_hsotg * hsotg)3006 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3007 {
3008 u32 dsts = dwc2_readl(hsotg, DSTS);
3009 int ep0_mps = 0, ep_mps = 8;
3010
3011 /*
3012 * This should signal the finish of the enumeration phase
3013 * of the USB handshaking, so we should now know what rate
3014 * we connected at.
3015 */
3016
3017 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3018
3019 /*
3020 * note, since we're limited by the size of transfer on EP0, and
3021 * it seems IN transfers must be a even number of packets we do
3022 * not advertise a 64byte MPS on EP0.
3023 */
3024
3025 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3026 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3027 case DSTS_ENUMSPD_FS:
3028 case DSTS_ENUMSPD_FS48:
3029 hsotg->gadget.speed = USB_SPEED_FULL;
3030 ep0_mps = EP0_MPS_LIMIT;
3031 ep_mps = 1023;
3032 break;
3033
3034 case DSTS_ENUMSPD_HS:
3035 hsotg->gadget.speed = USB_SPEED_HIGH;
3036 ep0_mps = EP0_MPS_LIMIT;
3037 ep_mps = 1024;
3038 break;
3039
3040 case DSTS_ENUMSPD_LS:
3041 hsotg->gadget.speed = USB_SPEED_LOW;
3042 ep0_mps = 8;
3043 ep_mps = 8;
3044 /*
3045 * note, we don't actually support LS in this driver at the
3046 * moment, and the documentation seems to imply that it isn't
3047 * supported by the PHYs on some of the devices.
3048 */
3049 break;
3050 }
3051 dev_info(hsotg->dev, "new device is %s\n",
3052 usb_speed_string(hsotg->gadget.speed));
3053
3054 /*
3055 * we should now know the maximum packet size for an
3056 * endpoint, so set the endpoints to a default value.
3057 */
3058
3059 if (ep0_mps) {
3060 int i;
3061 /* Initialize ep0 for both in and out directions */
3062 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3063 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3064 for (i = 1; i < hsotg->num_of_eps; i++) {
3065 if (hsotg->eps_in[i])
3066 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3067 0, 1);
3068 if (hsotg->eps_out[i])
3069 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3070 0, 0);
3071 }
3072 }
3073
3074 /* ensure after enumeration our EP0 is active */
3075
3076 dwc2_hsotg_enqueue_setup(hsotg);
3077
3078 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3079 dwc2_readl(hsotg, DIEPCTL0),
3080 dwc2_readl(hsotg, DOEPCTL0));
3081 }
3082
3083 /**
3084 * kill_all_requests - remove all requests from the endpoint's queue
3085 * @hsotg: The device state.
3086 * @ep: The endpoint the requests may be on.
3087 * @result: The result code to use.
3088 *
3089 * Go through the requests on the given endpoint and mark them
3090 * completed with the given result code.
3091 */
kill_all_requests(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * ep,int result)3092 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3093 struct dwc2_hsotg_ep *ep,
3094 int result)
3095 {
3096 struct dwc2_hsotg_req *req, *treq;
3097 unsigned int size;
3098
3099 ep->req = NULL;
3100
3101 list_for_each_entry_safe(req, treq, &ep->queue, queue)
3102 dwc2_hsotg_complete_request(hsotg, ep, req,
3103 result);
3104
3105 if (!hsotg->dedicated_fifos)
3106 return;
3107 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3108 if (size < ep->fifo_size)
3109 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3110 }
3111
3112 /**
3113 * dwc2_hsotg_disconnect - disconnect service
3114 * @hsotg: The device state.
3115 *
3116 * The device has been disconnected. Remove all current
3117 * transactions and signal the gadget driver that this
3118 * has happened.
3119 */
dwc2_hsotg_disconnect(struct dwc2_hsotg * hsotg)3120 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3121 {
3122 unsigned int ep;
3123
3124 if (!hsotg->connected)
3125 return;
3126
3127 hsotg->connected = 0;
3128 hsotg->test_mode = 0;
3129
3130 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3131 if (hsotg->eps_in[ep])
3132 kill_all_requests(hsotg, hsotg->eps_in[ep],
3133 -ESHUTDOWN);
3134 if (hsotg->eps_out[ep])
3135 kill_all_requests(hsotg, hsotg->eps_out[ep],
3136 -ESHUTDOWN);
3137 }
3138
3139 call_gadget(hsotg, disconnect);
3140 hsotg->lx_state = DWC2_L3;
3141
3142 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3143 }
3144
3145 /**
3146 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3147 * @hsotg: The device state:
3148 * @periodic: True if this is a periodic FIFO interrupt
3149 */
dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg * hsotg,bool periodic)3150 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3151 {
3152 struct dwc2_hsotg_ep *ep;
3153 int epno, ret;
3154
3155 /* look through for any more data to transmit */
3156 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3157 ep = index_to_ep(hsotg, epno, 1);
3158
3159 if (!ep)
3160 continue;
3161
3162 if (!ep->dir_in)
3163 continue;
3164
3165 if ((periodic && !ep->periodic) ||
3166 (!periodic && ep->periodic))
3167 continue;
3168
3169 ret = dwc2_hsotg_trytx(hsotg, ep);
3170 if (ret < 0)
3171 break;
3172 }
3173 }
3174
3175 /* IRQ flags which will trigger a retry around the IRQ loop */
3176 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3177 GINTSTS_PTXFEMP | \
3178 GINTSTS_RXFLVL)
3179
3180 /**
3181 * dwc2_hsotg_core_init - issue softreset to the core
3182 * @hsotg: The device state
3183 * @is_usb_reset: Usb resetting flag
3184 *
3185 * Issue a soft reset to the core, and await the core finishing it.
3186 */
dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg * hsotg,bool is_usb_reset)3187 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3188 bool is_usb_reset)
3189 {
3190 u32 intmsk;
3191 u32 val;
3192 u32 usbcfg;
3193 u32 dcfg = 0;
3194
3195 /* Kill any ep0 requests as controller will be reinitialized */
3196 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3197
3198 if (!is_usb_reset)
3199 if (dwc2_core_reset(hsotg, true))
3200 return;
3201
3202 /*
3203 * we must now enable ep0 ready for host detection and then
3204 * set configuration.
3205 */
3206
3207 /* keep other bits untouched (so e.g. forced modes are not lost) */
3208 usbcfg = dwc2_readl(hsotg, GUSBCFG);
3209 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3210 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3211
3212 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3213 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3214 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3215 /* FS/LS Dedicated Transceiver Interface */
3216 usbcfg |= GUSBCFG_PHYSEL;
3217 } else {
3218 /* set the PLL on, remove the HNP/SRP and set the PHY */
3219 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3220 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3221 (val << GUSBCFG_USBTRDTIM_SHIFT);
3222 }
3223 dwc2_writel(hsotg, usbcfg, GUSBCFG);
3224
3225 dwc2_hsotg_init_fifo(hsotg);
3226
3227 if (!is_usb_reset)
3228 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3229
3230 dcfg |= DCFG_EPMISCNT(1);
3231
3232 switch (hsotg->params.speed) {
3233 case DWC2_SPEED_PARAM_LOW:
3234 dcfg |= DCFG_DEVSPD_LS;
3235 break;
3236 case DWC2_SPEED_PARAM_FULL:
3237 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3238 dcfg |= DCFG_DEVSPD_FS48;
3239 else
3240 dcfg |= DCFG_DEVSPD_FS;
3241 break;
3242 default:
3243 dcfg |= DCFG_DEVSPD_HS;
3244 }
3245
3246 if (hsotg->params.ipg_isoc_en)
3247 dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3248
3249 dwc2_writel(hsotg, dcfg, DCFG);
3250
3251 /* Clear any pending OTG interrupts */
3252 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3253
3254 /* Clear any pending interrupts */
3255 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3256 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3257 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3258 GINTSTS_USBRST | GINTSTS_RESETDET |
3259 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3260 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3261 GINTSTS_LPMTRANRCVD;
3262
3263 if (!using_desc_dma(hsotg))
3264 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3265
3266 if (!hsotg->params.external_id_pin_ctl)
3267 intmsk |= GINTSTS_CONIDSTSCHNG;
3268
3269 dwc2_writel(hsotg, intmsk, GINTMSK);
3270
3271 if (using_dma(hsotg)) {
3272 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3273 hsotg->params.ahbcfg,
3274 GAHBCFG);
3275
3276 /* Set DDMA mode support in the core if needed */
3277 if (using_desc_dma(hsotg))
3278 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3279
3280 } else {
3281 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3282 (GAHBCFG_NP_TXF_EMP_LVL |
3283 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3284 GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3285 }
3286
3287 /*
3288 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3289 * when we have no data to transfer. Otherwise we get being flooded by
3290 * interrupts.
3291 */
3292
3293 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3294 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3295 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3296 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3297 DIEPMSK);
3298
3299 /*
3300 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3301 * DMA mode we may need this and StsPhseRcvd.
3302 */
3303 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3304 DOEPMSK_STSPHSERCVDMSK) : 0) |
3305 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3306 DOEPMSK_SETUPMSK,
3307 DOEPMSK);
3308
3309 /* Enable BNA interrupt for DDMA */
3310 if (using_desc_dma(hsotg)) {
3311 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3312 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3313 }
3314
3315 dwc2_writel(hsotg, 0, DAINTMSK);
3316
3317 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3318 dwc2_readl(hsotg, DIEPCTL0),
3319 dwc2_readl(hsotg, DOEPCTL0));
3320
3321 /* enable in and out endpoint interrupts */
3322 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3323
3324 /*
3325 * Enable the RXFIFO when in slave mode, as this is how we collect
3326 * the data. In DMA mode, we get events from the FIFO but also
3327 * things we cannot process, so do not use it.
3328 */
3329 if (!using_dma(hsotg))
3330 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3331
3332 /* Enable interrupts for EP0 in and out */
3333 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3334 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3335
3336 if (!is_usb_reset) {
3337 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3338 udelay(10); /* see openiboot */
3339 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3340 }
3341
3342 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3343
3344 /*
3345 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3346 * writing to the EPCTL register..
3347 */
3348
3349 /* set to read 1 8byte packet */
3350 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3351 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3352
3353 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3354 DXEPCTL_CNAK | DXEPCTL_EPENA |
3355 DXEPCTL_USBACTEP,
3356 DOEPCTL0);
3357
3358 /* enable, but don't activate EP0in */
3359 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3360 DXEPCTL_USBACTEP, DIEPCTL0);
3361
3362 /* clear global NAKs */
3363 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3364 if (!is_usb_reset)
3365 val |= DCTL_SFTDISCON;
3366 dwc2_set_bit(hsotg, DCTL, val);
3367
3368 /* configure the core to support LPM */
3369 dwc2_gadget_init_lpm(hsotg);
3370
3371 /* must be at-least 3ms to allow bus to see disconnect */
3372 mdelay(3);
3373
3374 hsotg->lx_state = DWC2_L0;
3375
3376 dwc2_hsotg_enqueue_setup(hsotg);
3377
3378 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3379 dwc2_readl(hsotg, DIEPCTL0),
3380 dwc2_readl(hsotg, DOEPCTL0));
3381 }
3382
dwc2_hsotg_core_disconnect(struct dwc2_hsotg * hsotg)3383 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3384 {
3385 /* set the soft-disconnect bit */
3386 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3387 }
3388
dwc2_hsotg_core_connect(struct dwc2_hsotg * hsotg)3389 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3390 {
3391 /* remove the soft-disconnect and let's go */
3392 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3393 }
3394
3395 /**
3396 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3397 * @hsotg: The device state:
3398 *
3399 * This interrupt indicates one of the following conditions occurred while
3400 * transmitting an ISOC transaction.
3401 * - Corrupted IN Token for ISOC EP.
3402 * - Packet not complete in FIFO.
3403 *
3404 * The following actions will be taken:
3405 * - Determine the EP
3406 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3407 */
dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg * hsotg)3408 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3409 {
3410 struct dwc2_hsotg_ep *hs_ep;
3411 u32 epctrl;
3412 u32 daintmsk;
3413 u32 idx;
3414
3415 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3416
3417 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3418
3419 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3420 hs_ep = hsotg->eps_in[idx];
3421 /* Proceed only unmasked ISOC EPs */
3422 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3423 continue;
3424
3425 epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3426 if ((epctrl & DXEPCTL_EPENA) &&
3427 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3428 epctrl |= DXEPCTL_SNAK;
3429 epctrl |= DXEPCTL_EPDIS;
3430 dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3431 }
3432 }
3433
3434 /* Clear interrupt */
3435 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3436 }
3437
3438 /**
3439 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3440 * @hsotg: The device state:
3441 *
3442 * This interrupt indicates one of the following conditions occurred while
3443 * transmitting an ISOC transaction.
3444 * - Corrupted OUT Token for ISOC EP.
3445 * - Packet not complete in FIFO.
3446 *
3447 * The following actions will be taken:
3448 * - Determine the EP
3449 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3450 */
dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg * hsotg)3451 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3452 {
3453 u32 gintsts;
3454 u32 gintmsk;
3455 u32 daintmsk;
3456 u32 epctrl;
3457 struct dwc2_hsotg_ep *hs_ep;
3458 int idx;
3459
3460 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3461
3462 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3463 daintmsk >>= DAINT_OUTEP_SHIFT;
3464
3465 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3466 hs_ep = hsotg->eps_out[idx];
3467 /* Proceed only unmasked ISOC EPs */
3468 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3469 continue;
3470
3471 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3472 if ((epctrl & DXEPCTL_EPENA) &&
3473 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3474 /* Unmask GOUTNAKEFF interrupt */
3475 gintmsk = dwc2_readl(hsotg, GINTMSK);
3476 gintmsk |= GINTSTS_GOUTNAKEFF;
3477 dwc2_writel(hsotg, gintmsk, GINTMSK);
3478
3479 gintsts = dwc2_readl(hsotg, GINTSTS);
3480 if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3481 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3482 break;
3483 }
3484 }
3485 }
3486
3487 /* Clear interrupt */
3488 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3489 }
3490
3491 /**
3492 * dwc2_hsotg_irq - handle device interrupt
3493 * @irq: The IRQ number triggered
3494 * @pw: The pw value when registered the handler.
3495 */
dwc2_hsotg_irq(int irq,void * pw)3496 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3497 {
3498 struct dwc2_hsotg *hsotg = pw;
3499 int retry_count = 8;
3500 u32 gintsts;
3501 u32 gintmsk;
3502
3503 if (!dwc2_is_device_mode(hsotg))
3504 return IRQ_NONE;
3505
3506 spin_lock(&hsotg->lock);
3507 irq_retry:
3508 gintsts = dwc2_readl(hsotg, GINTSTS);
3509 gintmsk = dwc2_readl(hsotg, GINTMSK);
3510
3511 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3512 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3513
3514 gintsts &= gintmsk;
3515
3516 if (gintsts & GINTSTS_RESETDET) {
3517 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3518
3519 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3520
3521 /* This event must be used only if controller is suspended */
3522 if (hsotg->lx_state == DWC2_L2) {
3523 dwc2_exit_partial_power_down(hsotg, true);
3524 hsotg->lx_state = DWC2_L0;
3525 }
3526 }
3527
3528 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3529 u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3530 u32 connected = hsotg->connected;
3531
3532 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3533 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3534 dwc2_readl(hsotg, GNPTXSTS));
3535
3536 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3537
3538 /* Report disconnection if it is not already done. */
3539 dwc2_hsotg_disconnect(hsotg);
3540
3541 /* Reset device address to zero */
3542 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3543
3544 if (usb_status & GOTGCTL_BSESVLD && connected)
3545 dwc2_hsotg_core_init_disconnected(hsotg, true);
3546 }
3547
3548 if (gintsts & GINTSTS_ENUMDONE) {
3549 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3550
3551 dwc2_hsotg_irq_enumdone(hsotg);
3552 }
3553
3554 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3555 u32 daint = dwc2_readl(hsotg, DAINT);
3556 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3557 u32 daint_out, daint_in;
3558 int ep;
3559
3560 daint &= daintmsk;
3561 daint_out = daint >> DAINT_OUTEP_SHIFT;
3562 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3563
3564 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3565
3566 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3567 ep++, daint_out >>= 1) {
3568 if (daint_out & 1)
3569 dwc2_hsotg_epint(hsotg, ep, 0);
3570 }
3571
3572 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3573 ep++, daint_in >>= 1) {
3574 if (daint_in & 1)
3575 dwc2_hsotg_epint(hsotg, ep, 1);
3576 }
3577 }
3578
3579 /* check both FIFOs */
3580
3581 if (gintsts & GINTSTS_NPTXFEMP) {
3582 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3583
3584 /*
3585 * Disable the interrupt to stop it happening again
3586 * unless one of these endpoint routines decides that
3587 * it needs re-enabling
3588 */
3589
3590 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3591 dwc2_hsotg_irq_fifoempty(hsotg, false);
3592 }
3593
3594 if (gintsts & GINTSTS_PTXFEMP) {
3595 dev_dbg(hsotg->dev, "PTxFEmp\n");
3596
3597 /* See note in GINTSTS_NPTxFEmp */
3598
3599 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3600 dwc2_hsotg_irq_fifoempty(hsotg, true);
3601 }
3602
3603 if (gintsts & GINTSTS_RXFLVL) {
3604 /*
3605 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3606 * we need to retry dwc2_hsotg_handle_rx if this is still
3607 * set.
3608 */
3609
3610 dwc2_hsotg_handle_rx(hsotg);
3611 }
3612
3613 if (gintsts & GINTSTS_ERLYSUSP) {
3614 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3615 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3616 }
3617
3618 /*
3619 * these next two seem to crop-up occasionally causing the core
3620 * to shutdown the USB transfer, so try clearing them and logging
3621 * the occurrence.
3622 */
3623
3624 if (gintsts & GINTSTS_GOUTNAKEFF) {
3625 u8 idx;
3626 u32 epctrl;
3627 u32 gintmsk;
3628 u32 daintmsk;
3629 struct dwc2_hsotg_ep *hs_ep;
3630
3631 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3632 daintmsk >>= DAINT_OUTEP_SHIFT;
3633 /* Mask this interrupt */
3634 gintmsk = dwc2_readl(hsotg, GINTMSK);
3635 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3636 dwc2_writel(hsotg, gintmsk, GINTMSK);
3637
3638 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3639 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3640 hs_ep = hsotg->eps_out[idx];
3641 /* Proceed only unmasked ISOC EPs */
3642 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3643 continue;
3644
3645 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3646
3647 if (epctrl & DXEPCTL_EPENA) {
3648 epctrl |= DXEPCTL_SNAK;
3649 epctrl |= DXEPCTL_EPDIS;
3650 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3651 }
3652 }
3653
3654 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3655 }
3656
3657 if (gintsts & GINTSTS_GINNAKEFF) {
3658 dev_info(hsotg->dev, "GINNakEff triggered\n");
3659
3660 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3661
3662 dwc2_hsotg_dump(hsotg);
3663 }
3664
3665 if (gintsts & GINTSTS_INCOMPL_SOIN)
3666 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3667
3668 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3669 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3670
3671 /*
3672 * if we've had fifo events, we should try and go around the
3673 * loop again to see if there's any point in returning yet.
3674 */
3675
3676 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3677 goto irq_retry;
3678
3679 spin_unlock(&hsotg->lock);
3680
3681 return IRQ_HANDLED;
3682 }
3683
dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)3684 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3685 struct dwc2_hsotg_ep *hs_ep)
3686 {
3687 u32 epctrl_reg;
3688 u32 epint_reg;
3689
3690 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3691 DOEPCTL(hs_ep->index);
3692 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3693 DOEPINT(hs_ep->index);
3694
3695 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3696 hs_ep->name);
3697
3698 if (hs_ep->dir_in) {
3699 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3700 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3701 /* Wait for Nak effect */
3702 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3703 DXEPINT_INEPNAKEFF, 100))
3704 dev_warn(hsotg->dev,
3705 "%s: timeout DIEPINT.NAKEFF\n",
3706 __func__);
3707 } else {
3708 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3709 /* Wait for Nak effect */
3710 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3711 GINTSTS_GINNAKEFF, 100))
3712 dev_warn(hsotg->dev,
3713 "%s: timeout GINTSTS.GINNAKEFF\n",
3714 __func__);
3715 }
3716 } else {
3717 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3718 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3719
3720 /* Wait for global nak to take effect */
3721 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3722 GINTSTS_GOUTNAKEFF, 100))
3723 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3724 __func__);
3725 }
3726
3727 /* Disable ep */
3728 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3729
3730 /* Wait for ep to be disabled */
3731 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3732 dev_warn(hsotg->dev,
3733 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3734
3735 /* Clear EPDISBLD interrupt */
3736 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3737
3738 if (hs_ep->dir_in) {
3739 unsigned short fifo_index;
3740
3741 if (hsotg->dedicated_fifos || hs_ep->periodic)
3742 fifo_index = hs_ep->fifo_index;
3743 else
3744 fifo_index = 0;
3745
3746 /* Flush TX FIFO */
3747 dwc2_flush_tx_fifo(hsotg, fifo_index);
3748
3749 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3750 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3751 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3752
3753 } else {
3754 /* Remove global NAKs */
3755 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3756 }
3757 }
3758
3759 /**
3760 * dwc2_hsotg_ep_enable - enable the given endpoint
3761 * @ep: The USB endpint to configure
3762 * @desc: The USB endpoint descriptor to configure with.
3763 *
3764 * This is called from the USB gadget code's usb_ep_enable().
3765 */
dwc2_hsotg_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)3766 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3767 const struct usb_endpoint_descriptor *desc)
3768 {
3769 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3770 struct dwc2_hsotg *hsotg = hs_ep->parent;
3771 unsigned long flags;
3772 unsigned int index = hs_ep->index;
3773 u32 epctrl_reg;
3774 u32 epctrl;
3775 u32 mps;
3776 u32 mc;
3777 u32 mask;
3778 unsigned int dir_in;
3779 unsigned int i, val, size;
3780 int ret = 0;
3781 unsigned char ep_type;
3782
3783 dev_dbg(hsotg->dev,
3784 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3785 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3786 desc->wMaxPacketSize, desc->bInterval);
3787
3788 /* not to be called for EP0 */
3789 if (index == 0) {
3790 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3791 return -EINVAL;
3792 }
3793
3794 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3795 if (dir_in != hs_ep->dir_in) {
3796 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3797 return -EINVAL;
3798 }
3799
3800 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3801 mps = usb_endpoint_maxp(desc);
3802 mc = usb_endpoint_maxp_mult(desc);
3803
3804 /* ISOC IN in DDMA supported bInterval up to 10 */
3805 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3806 dir_in && desc->bInterval > 10) {
3807 dev_err(hsotg->dev,
3808 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3809 return -EINVAL;
3810 }
3811
3812 /* High bandwidth ISOC OUT in DDMA not supported */
3813 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3814 !dir_in && mc > 1) {
3815 dev_err(hsotg->dev,
3816 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3817 return -EINVAL;
3818 }
3819
3820 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3821
3822 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3823 epctrl = dwc2_readl(hsotg, epctrl_reg);
3824
3825 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3826 __func__, epctrl, epctrl_reg);
3827
3828 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3829 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3830 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3831 MAX_DMA_DESC_NUM_GENERIC *
3832 sizeof(struct dwc2_dma_desc),
3833 &hs_ep->desc_list_dma, GFP_ATOMIC);
3834 if (!hs_ep->desc_list) {
3835 ret = -ENOMEM;
3836 goto error2;
3837 }
3838 }
3839
3840 spin_lock_irqsave(&hsotg->lock, flags);
3841
3842 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3843 epctrl |= DXEPCTL_MPS(mps);
3844
3845 /*
3846 * mark the endpoint as active, otherwise the core may ignore
3847 * transactions entirely for this endpoint
3848 */
3849 epctrl |= DXEPCTL_USBACTEP;
3850
3851 /* update the endpoint state */
3852 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3853
3854 /* default, set to non-periodic */
3855 hs_ep->isochronous = 0;
3856 hs_ep->periodic = 0;
3857 hs_ep->halted = 0;
3858 hs_ep->interval = desc->bInterval;
3859
3860 switch (ep_type) {
3861 case USB_ENDPOINT_XFER_ISOC:
3862 epctrl |= DXEPCTL_EPTYPE_ISO;
3863 epctrl |= DXEPCTL_SETEVENFR;
3864 hs_ep->isochronous = 1;
3865 hs_ep->interval = 1 << (desc->bInterval - 1);
3866 hs_ep->target_frame = TARGET_FRAME_INITIAL;
3867 hs_ep->next_desc = 0;
3868 hs_ep->compl_desc = 0;
3869 if (dir_in) {
3870 hs_ep->periodic = 1;
3871 mask = dwc2_readl(hsotg, DIEPMSK);
3872 mask |= DIEPMSK_NAKMSK;
3873 dwc2_writel(hsotg, mask, DIEPMSK);
3874 } else {
3875 mask = dwc2_readl(hsotg, DOEPMSK);
3876 mask |= DOEPMSK_OUTTKNEPDISMSK;
3877 dwc2_writel(hsotg, mask, DOEPMSK);
3878 }
3879 break;
3880
3881 case USB_ENDPOINT_XFER_BULK:
3882 epctrl |= DXEPCTL_EPTYPE_BULK;
3883 break;
3884
3885 case USB_ENDPOINT_XFER_INT:
3886 if (dir_in)
3887 hs_ep->periodic = 1;
3888
3889 if (hsotg->gadget.speed == USB_SPEED_HIGH)
3890 hs_ep->interval = 1 << (desc->bInterval - 1);
3891
3892 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3893 break;
3894
3895 case USB_ENDPOINT_XFER_CONTROL:
3896 epctrl |= DXEPCTL_EPTYPE_CONTROL;
3897 break;
3898 }
3899
3900 /*
3901 * if the hardware has dedicated fifos, we must give each IN EP
3902 * a unique tx-fifo even if it is non-periodic.
3903 */
3904 if (dir_in && hsotg->dedicated_fifos) {
3905 u32 fifo_index = 0;
3906 u32 fifo_size = UINT_MAX;
3907
3908 size = hs_ep->ep.maxpacket * hs_ep->mc;
3909 for (i = 1; i < hsotg->num_of_eps; ++i) {
3910 if (hsotg->fifo_map & (1 << i))
3911 continue;
3912 val = dwc2_readl(hsotg, DPTXFSIZN(i));
3913 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3914 if (val < size)
3915 continue;
3916 /* Search for smallest acceptable fifo */
3917 if (val < fifo_size) {
3918 fifo_size = val;
3919 fifo_index = i;
3920 }
3921 }
3922 if (!fifo_index) {
3923 dev_err(hsotg->dev,
3924 "%s: No suitable fifo found\n", __func__);
3925 ret = -ENOMEM;
3926 goto error1;
3927 }
3928 hsotg->fifo_map |= 1 << fifo_index;
3929 epctrl |= DXEPCTL_TXFNUM(fifo_index);
3930 hs_ep->fifo_index = fifo_index;
3931 hs_ep->fifo_size = fifo_size;
3932 }
3933
3934 /* for non control endpoints, set PID to D0 */
3935 if (index && !hs_ep->isochronous)
3936 epctrl |= DXEPCTL_SETD0PID;
3937
3938 /* WA for Full speed ISOC IN in DDMA mode.
3939 * By Clear NAK status of EP, core will send ZLP
3940 * to IN token and assert NAK interrupt relying
3941 * on TxFIFO status only
3942 */
3943
3944 if (hsotg->gadget.speed == USB_SPEED_FULL &&
3945 hs_ep->isochronous && dir_in) {
3946 /* The WA applies only to core versions from 2.72a
3947 * to 4.00a (including both). Also for FS_IOT_1.00a
3948 * and HS_IOT_1.00a.
3949 */
3950 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
3951
3952 if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
3953 gsnpsid <= DWC2_CORE_REV_4_00a) ||
3954 gsnpsid == DWC2_FS_IOT_REV_1_00a ||
3955 gsnpsid == DWC2_HS_IOT_REV_1_00a)
3956 epctrl |= DXEPCTL_CNAK;
3957 }
3958
3959 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3960 __func__, epctrl);
3961
3962 dwc2_writel(hsotg, epctrl, epctrl_reg);
3963 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3964 __func__, dwc2_readl(hsotg, epctrl_reg));
3965
3966 /* enable the endpoint interrupt */
3967 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3968
3969 error1:
3970 spin_unlock_irqrestore(&hsotg->lock, flags);
3971
3972 error2:
3973 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3974 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3975 sizeof(struct dwc2_dma_desc),
3976 hs_ep->desc_list, hs_ep->desc_list_dma);
3977 hs_ep->desc_list = NULL;
3978 }
3979
3980 return ret;
3981 }
3982
3983 /**
3984 * dwc2_hsotg_ep_disable - disable given endpoint
3985 * @ep: The endpoint to disable.
3986 */
dwc2_hsotg_ep_disable(struct usb_ep * ep)3987 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3988 {
3989 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3990 struct dwc2_hsotg *hsotg = hs_ep->parent;
3991 int dir_in = hs_ep->dir_in;
3992 int index = hs_ep->index;
3993 unsigned long flags;
3994 u32 epctrl_reg;
3995 u32 ctrl;
3996
3997 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3998
3999 if (ep == &hsotg->eps_out[0]->ep) {
4000 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4001 return -EINVAL;
4002 }
4003
4004 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4005 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4006 return -EINVAL;
4007 }
4008
4009 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4010
4011 spin_lock_irqsave(&hsotg->lock, flags);
4012
4013 ctrl = dwc2_readl(hsotg, epctrl_reg);
4014
4015 if (ctrl & DXEPCTL_EPENA)
4016 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4017
4018 ctrl &= ~DXEPCTL_EPENA;
4019 ctrl &= ~DXEPCTL_USBACTEP;
4020 ctrl |= DXEPCTL_SNAK;
4021
4022 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4023 dwc2_writel(hsotg, ctrl, epctrl_reg);
4024
4025 /* disable endpoint interrupts */
4026 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4027
4028 /* terminate all requests with shutdown */
4029 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4030
4031 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4032 hs_ep->fifo_index = 0;
4033 hs_ep->fifo_size = 0;
4034
4035 spin_unlock_irqrestore(&hsotg->lock, flags);
4036 return 0;
4037 }
4038
4039 /**
4040 * on_list - check request is on the given endpoint
4041 * @ep: The endpoint to check.
4042 * @test: The request to test if it is on the endpoint.
4043 */
on_list(struct dwc2_hsotg_ep * ep,struct dwc2_hsotg_req * test)4044 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4045 {
4046 struct dwc2_hsotg_req *req, *treq;
4047
4048 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4049 if (req == test)
4050 return true;
4051 }
4052
4053 return false;
4054 }
4055
4056 /**
4057 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4058 * @ep: The endpoint to dequeue.
4059 * @req: The request to be removed from a queue.
4060 */
dwc2_hsotg_ep_dequeue(struct usb_ep * ep,struct usb_request * req)4061 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4062 {
4063 struct dwc2_hsotg_req *hs_req = our_req(req);
4064 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4065 struct dwc2_hsotg *hs = hs_ep->parent;
4066 unsigned long flags;
4067
4068 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4069
4070 spin_lock_irqsave(&hs->lock, flags);
4071
4072 if (!on_list(hs_ep, hs_req)) {
4073 spin_unlock_irqrestore(&hs->lock, flags);
4074 return -EINVAL;
4075 }
4076
4077 /* Dequeue already started request */
4078 if (req == &hs_ep->req->req)
4079 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4080
4081 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4082 spin_unlock_irqrestore(&hs->lock, flags);
4083
4084 return 0;
4085 }
4086
4087 /**
4088 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4089 * @ep: The endpoint to set halt.
4090 * @value: Set or unset the halt.
4091 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4092 * the endpoint is busy processing requests.
4093 *
4094 * We need to stall the endpoint immediately if request comes from set_feature
4095 * protocol command handler.
4096 */
dwc2_hsotg_ep_sethalt(struct usb_ep * ep,int value,bool now)4097 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4098 {
4099 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4100 struct dwc2_hsotg *hs = hs_ep->parent;
4101 int index = hs_ep->index;
4102 u32 epreg;
4103 u32 epctl;
4104 u32 xfertype;
4105
4106 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4107
4108 if (index == 0) {
4109 if (value)
4110 dwc2_hsotg_stall_ep0(hs);
4111 else
4112 dev_warn(hs->dev,
4113 "%s: can't clear halt on ep0\n", __func__);
4114 return 0;
4115 }
4116
4117 if (hs_ep->isochronous) {
4118 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4119 return -EINVAL;
4120 }
4121
4122 if (!now && value && !list_empty(&hs_ep->queue)) {
4123 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4124 ep->name);
4125 return -EAGAIN;
4126 }
4127
4128 if (hs_ep->dir_in) {
4129 epreg = DIEPCTL(index);
4130 epctl = dwc2_readl(hs, epreg);
4131
4132 if (value) {
4133 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4134 if (epctl & DXEPCTL_EPENA)
4135 epctl |= DXEPCTL_EPDIS;
4136 } else {
4137 epctl &= ~DXEPCTL_STALL;
4138 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4139 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4140 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4141 epctl |= DXEPCTL_SETD0PID;
4142 }
4143 dwc2_writel(hs, epctl, epreg);
4144 } else {
4145 epreg = DOEPCTL(index);
4146 epctl = dwc2_readl(hs, epreg);
4147
4148 if (value) {
4149 epctl |= DXEPCTL_STALL;
4150 } else {
4151 epctl &= ~DXEPCTL_STALL;
4152 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4153 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4154 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4155 epctl |= DXEPCTL_SETD0PID;
4156 }
4157 dwc2_writel(hs, epctl, epreg);
4158 }
4159
4160 hs_ep->halted = value;
4161
4162 return 0;
4163 }
4164
4165 /**
4166 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4167 * @ep: The endpoint to set halt.
4168 * @value: Set or unset the halt.
4169 */
dwc2_hsotg_ep_sethalt_lock(struct usb_ep * ep,int value)4170 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4171 {
4172 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4173 struct dwc2_hsotg *hs = hs_ep->parent;
4174 unsigned long flags = 0;
4175 int ret = 0;
4176
4177 spin_lock_irqsave(&hs->lock, flags);
4178 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4179 spin_unlock_irqrestore(&hs->lock, flags);
4180
4181 return ret;
4182 }
4183
4184 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4185 .enable = dwc2_hsotg_ep_enable,
4186 .disable = dwc2_hsotg_ep_disable,
4187 .alloc_request = dwc2_hsotg_ep_alloc_request,
4188 .free_request = dwc2_hsotg_ep_free_request,
4189 .queue = dwc2_hsotg_ep_queue_lock,
4190 .dequeue = dwc2_hsotg_ep_dequeue,
4191 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4192 /* note, don't believe we have any call for the fifo routines */
4193 };
4194
4195 /**
4196 * dwc2_hsotg_init - initialize the usb core
4197 * @hsotg: The driver state
4198 */
dwc2_hsotg_init(struct dwc2_hsotg * hsotg)4199 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4200 {
4201 u32 trdtim;
4202 u32 usbcfg;
4203 /* unmask subset of endpoint interrupts */
4204
4205 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4206 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4207 DIEPMSK);
4208
4209 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4210 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4211 DOEPMSK);
4212
4213 dwc2_writel(hsotg, 0, DAINTMSK);
4214
4215 /* Be in disconnected state until gadget is registered */
4216 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4217
4218 /* setup fifos */
4219
4220 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4221 dwc2_readl(hsotg, GRXFSIZ),
4222 dwc2_readl(hsotg, GNPTXFSIZ));
4223
4224 dwc2_hsotg_init_fifo(hsotg);
4225
4226 /* keep other bits untouched (so e.g. forced modes are not lost) */
4227 usbcfg = dwc2_readl(hsotg, GUSBCFG);
4228 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4229 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4230
4231 /* set the PLL on, remove the HNP/SRP and set the PHY */
4232 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4233 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4234 (trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4235 dwc2_writel(hsotg, usbcfg, GUSBCFG);
4236
4237 if (using_dma(hsotg))
4238 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4239 }
4240
4241 /**
4242 * dwc2_hsotg_udc_start - prepare the udc for work
4243 * @gadget: The usb gadget state
4244 * @driver: The usb gadget driver
4245 *
4246 * Perform initialization to prepare udc device and driver
4247 * to work.
4248 */
dwc2_hsotg_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)4249 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4250 struct usb_gadget_driver *driver)
4251 {
4252 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4253 unsigned long flags;
4254 int ret;
4255
4256 if (!hsotg) {
4257 pr_err("%s: called with no device\n", __func__);
4258 return -ENODEV;
4259 }
4260
4261 if (!driver) {
4262 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4263 return -EINVAL;
4264 }
4265
4266 if (driver->max_speed < USB_SPEED_FULL)
4267 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4268
4269 if (!driver->setup) {
4270 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4271 return -EINVAL;
4272 }
4273
4274 WARN_ON(hsotg->driver);
4275
4276 driver->driver.bus = NULL;
4277 hsotg->driver = driver;
4278 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4279 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4280
4281 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4282 ret = dwc2_lowlevel_hw_enable(hsotg);
4283 if (ret)
4284 goto err;
4285 }
4286
4287 if (!IS_ERR_OR_NULL(hsotg->uphy))
4288 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4289
4290 spin_lock_irqsave(&hsotg->lock, flags);
4291 if (dwc2_hw_is_device(hsotg)) {
4292 dwc2_hsotg_init(hsotg);
4293 dwc2_hsotg_core_init_disconnected(hsotg, false);
4294 }
4295
4296 hsotg->enabled = 0;
4297 spin_unlock_irqrestore(&hsotg->lock, flags);
4298
4299 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4300
4301 return 0;
4302
4303 err:
4304 hsotg->driver = NULL;
4305 return ret;
4306 }
4307
4308 /**
4309 * dwc2_hsotg_udc_stop - stop the udc
4310 * @gadget: The usb gadget state
4311 *
4312 * Stop udc hw block and stay tunned for future transmissions
4313 */
dwc2_hsotg_udc_stop(struct usb_gadget * gadget)4314 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4315 {
4316 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4317 unsigned long flags = 0;
4318 int ep;
4319
4320 if (!hsotg)
4321 return -ENODEV;
4322
4323 /* all endpoints should be shutdown */
4324 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4325 if (hsotg->eps_in[ep])
4326 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4327 if (hsotg->eps_out[ep])
4328 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4329 }
4330
4331 spin_lock_irqsave(&hsotg->lock, flags);
4332
4333 hsotg->driver = NULL;
4334 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4335 hsotg->enabled = 0;
4336
4337 spin_unlock_irqrestore(&hsotg->lock, flags);
4338
4339 if (!IS_ERR_OR_NULL(hsotg->uphy))
4340 otg_set_peripheral(hsotg->uphy->otg, NULL);
4341
4342 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4343 dwc2_lowlevel_hw_disable(hsotg);
4344
4345 return 0;
4346 }
4347
4348 /**
4349 * dwc2_hsotg_gadget_getframe - read the frame number
4350 * @gadget: The usb gadget state
4351 *
4352 * Read the {micro} frame number
4353 */
dwc2_hsotg_gadget_getframe(struct usb_gadget * gadget)4354 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4355 {
4356 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4357 }
4358
4359 /**
4360 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4361 * @gadget: The usb gadget state
4362 * @is_on: Current state of the USB PHY
4363 *
4364 * Connect/Disconnect the USB PHY pullup
4365 */
dwc2_hsotg_pullup(struct usb_gadget * gadget,int is_on)4366 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4367 {
4368 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4369 unsigned long flags = 0;
4370
4371 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4372 hsotg->op_state);
4373
4374 /* Don't modify pullup state while in host mode */
4375 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4376 hsotg->enabled = is_on;
4377 return 0;
4378 }
4379
4380 spin_lock_irqsave(&hsotg->lock, flags);
4381 if (is_on) {
4382 hsotg->enabled = 1;
4383 dwc2_hsotg_core_init_disconnected(hsotg, false);
4384 /* Enable ACG feature in device mode,if supported */
4385 dwc2_enable_acg(hsotg);
4386 dwc2_hsotg_core_connect(hsotg);
4387 } else {
4388 dwc2_hsotg_core_disconnect(hsotg);
4389 dwc2_hsotg_disconnect(hsotg);
4390 hsotg->enabled = 0;
4391 }
4392
4393 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4394 spin_unlock_irqrestore(&hsotg->lock, flags);
4395
4396 return 0;
4397 }
4398
dwc2_hsotg_vbus_session(struct usb_gadget * gadget,int is_active)4399 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4400 {
4401 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4402 unsigned long flags;
4403
4404 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4405 spin_lock_irqsave(&hsotg->lock, flags);
4406
4407 /*
4408 * If controller is hibernated, it must exit from power_down
4409 * before being initialized / de-initialized
4410 */
4411 if (hsotg->lx_state == DWC2_L2)
4412 dwc2_exit_partial_power_down(hsotg, false);
4413
4414 if (is_active) {
4415 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4416
4417 dwc2_hsotg_core_init_disconnected(hsotg, false);
4418 if (hsotg->enabled) {
4419 /* Enable ACG feature in device mode,if supported */
4420 dwc2_enable_acg(hsotg);
4421 dwc2_hsotg_core_connect(hsotg);
4422 }
4423 } else {
4424 dwc2_hsotg_core_disconnect(hsotg);
4425 dwc2_hsotg_disconnect(hsotg);
4426 }
4427
4428 spin_unlock_irqrestore(&hsotg->lock, flags);
4429 return 0;
4430 }
4431
4432 /**
4433 * dwc2_hsotg_vbus_draw - report bMaxPower field
4434 * @gadget: The usb gadget state
4435 * @mA: Amount of current
4436 *
4437 * Report how much power the device may consume to the phy.
4438 */
dwc2_hsotg_vbus_draw(struct usb_gadget * gadget,unsigned int mA)4439 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4440 {
4441 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4442
4443 if (IS_ERR_OR_NULL(hsotg->uphy))
4444 return -ENOTSUPP;
4445 return usb_phy_set_power(hsotg->uphy, mA);
4446 }
4447
4448 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4449 .get_frame = dwc2_hsotg_gadget_getframe,
4450 .udc_start = dwc2_hsotg_udc_start,
4451 .udc_stop = dwc2_hsotg_udc_stop,
4452 .pullup = dwc2_hsotg_pullup,
4453 .vbus_session = dwc2_hsotg_vbus_session,
4454 .vbus_draw = dwc2_hsotg_vbus_draw,
4455 };
4456
4457 /**
4458 * dwc2_hsotg_initep - initialise a single endpoint
4459 * @hsotg: The device state.
4460 * @hs_ep: The endpoint to be initialised.
4461 * @epnum: The endpoint number
4462 * @dir_in: True if direction is in.
4463 *
4464 * Initialise the given endpoint (as part of the probe and device state
4465 * creation) to give to the gadget driver. Setup the endpoint name, any
4466 * direction information and other state that may be required.
4467 */
dwc2_hsotg_initep(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,int epnum,bool dir_in)4468 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4469 struct dwc2_hsotg_ep *hs_ep,
4470 int epnum,
4471 bool dir_in)
4472 {
4473 char *dir;
4474
4475 if (epnum == 0)
4476 dir = "";
4477 else if (dir_in)
4478 dir = "in";
4479 else
4480 dir = "out";
4481
4482 hs_ep->dir_in = dir_in;
4483 hs_ep->index = epnum;
4484
4485 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4486
4487 INIT_LIST_HEAD(&hs_ep->queue);
4488 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4489
4490 /* add to the list of endpoints known by the gadget driver */
4491 if (epnum)
4492 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4493
4494 hs_ep->parent = hsotg;
4495 hs_ep->ep.name = hs_ep->name;
4496
4497 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4498 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4499 else
4500 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4501 epnum ? 1024 : EP0_MPS_LIMIT);
4502 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4503
4504 if (epnum == 0) {
4505 hs_ep->ep.caps.type_control = true;
4506 } else {
4507 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4508 hs_ep->ep.caps.type_iso = true;
4509 hs_ep->ep.caps.type_bulk = true;
4510 }
4511 hs_ep->ep.caps.type_int = true;
4512 }
4513
4514 if (dir_in)
4515 hs_ep->ep.caps.dir_in = true;
4516 else
4517 hs_ep->ep.caps.dir_out = true;
4518
4519 /*
4520 * if we're using dma, we need to set the next-endpoint pointer
4521 * to be something valid.
4522 */
4523
4524 if (using_dma(hsotg)) {
4525 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4526
4527 if (dir_in)
4528 dwc2_writel(hsotg, next, DIEPCTL(epnum));
4529 else
4530 dwc2_writel(hsotg, next, DOEPCTL(epnum));
4531 }
4532 }
4533
4534 /**
4535 * dwc2_hsotg_hw_cfg - read HW configuration registers
4536 * @hsotg: Programming view of the DWC_otg controller
4537 *
4538 * Read the USB core HW configuration registers
4539 */
dwc2_hsotg_hw_cfg(struct dwc2_hsotg * hsotg)4540 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4541 {
4542 u32 cfg;
4543 u32 ep_type;
4544 u32 i;
4545
4546 /* check hardware configuration */
4547
4548 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4549
4550 /* Add ep0 */
4551 hsotg->num_of_eps++;
4552
4553 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4554 sizeof(struct dwc2_hsotg_ep),
4555 GFP_KERNEL);
4556 if (!hsotg->eps_in[0])
4557 return -ENOMEM;
4558 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4559 hsotg->eps_out[0] = hsotg->eps_in[0];
4560
4561 cfg = hsotg->hw_params.dev_ep_dirs;
4562 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4563 ep_type = cfg & 3;
4564 /* Direction in or both */
4565 if (!(ep_type & 2)) {
4566 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4567 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4568 if (!hsotg->eps_in[i])
4569 return -ENOMEM;
4570 }
4571 /* Direction out or both */
4572 if (!(ep_type & 1)) {
4573 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4574 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4575 if (!hsotg->eps_out[i])
4576 return -ENOMEM;
4577 }
4578 }
4579
4580 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4581 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4582
4583 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4584 hsotg->num_of_eps,
4585 hsotg->dedicated_fifos ? "dedicated" : "shared",
4586 hsotg->fifo_mem);
4587 return 0;
4588 }
4589
4590 /**
4591 * dwc2_hsotg_dump - dump state of the udc
4592 * @hsotg: Programming view of the DWC_otg controller
4593 *
4594 */
dwc2_hsotg_dump(struct dwc2_hsotg * hsotg)4595 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4596 {
4597 #ifdef DEBUG
4598 struct device *dev = hsotg->dev;
4599 u32 val;
4600 int idx;
4601
4602 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4603 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4604 dwc2_readl(hsotg, DIEPMSK));
4605
4606 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4607 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4608
4609 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4610 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4611
4612 /* show periodic fifo settings */
4613
4614 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4615 val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4616 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4617 val >> FIFOSIZE_DEPTH_SHIFT,
4618 val & FIFOSIZE_STARTADDR_MASK);
4619 }
4620
4621 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4622 dev_info(dev,
4623 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4624 dwc2_readl(hsotg, DIEPCTL(idx)),
4625 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4626 dwc2_readl(hsotg, DIEPDMA(idx)));
4627
4628 val = dwc2_readl(hsotg, DOEPCTL(idx));
4629 dev_info(dev,
4630 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4631 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4632 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4633 dwc2_readl(hsotg, DOEPDMA(idx)));
4634 }
4635
4636 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4637 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4638 #endif
4639 }
4640
4641 /**
4642 * dwc2_gadget_init - init function for gadget
4643 * @hsotg: Programming view of the DWC_otg controller
4644 *
4645 */
dwc2_gadget_init(struct dwc2_hsotg * hsotg)4646 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4647 {
4648 struct device *dev = hsotg->dev;
4649 int epnum;
4650 int ret;
4651
4652 /* Dump fifo information */
4653 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4654 hsotg->params.g_np_tx_fifo_size);
4655 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4656
4657 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4658 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4659 hsotg->gadget.name = dev_name(dev);
4660 hsotg->remote_wakeup_allowed = 0;
4661
4662 if (hsotg->params.lpm)
4663 hsotg->gadget.lpm_capable = true;
4664
4665 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4666 hsotg->gadget.is_otg = 1;
4667 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4668 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4669
4670 ret = dwc2_hsotg_hw_cfg(hsotg);
4671 if (ret) {
4672 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4673 return ret;
4674 }
4675
4676 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4677 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4678 if (!hsotg->ctrl_buff)
4679 return -ENOMEM;
4680
4681 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4682 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4683 if (!hsotg->ep0_buff)
4684 return -ENOMEM;
4685
4686 if (using_desc_dma(hsotg)) {
4687 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4688 if (ret < 0)
4689 return ret;
4690 }
4691
4692 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4693 IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4694 if (ret < 0) {
4695 dev_err(dev, "cannot claim IRQ for gadget\n");
4696 return ret;
4697 }
4698
4699 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4700
4701 if (hsotg->num_of_eps == 0) {
4702 dev_err(dev, "wrong number of EPs (zero)\n");
4703 return -EINVAL;
4704 }
4705
4706 /* setup endpoint information */
4707
4708 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4709 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4710
4711 /* allocate EP0 request */
4712
4713 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4714 GFP_KERNEL);
4715 if (!hsotg->ctrl_req) {
4716 dev_err(dev, "failed to allocate ctrl req\n");
4717 return -ENOMEM;
4718 }
4719
4720 /* initialise the endpoints now the core has been initialised */
4721 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4722 if (hsotg->eps_in[epnum])
4723 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4724 epnum, 1);
4725 if (hsotg->eps_out[epnum])
4726 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4727 epnum, 0);
4728 }
4729
4730 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4731 if (ret) {
4732 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4733 hsotg->ctrl_req);
4734 return ret;
4735 }
4736 dwc2_hsotg_dump(hsotg);
4737
4738 return 0;
4739 }
4740
4741 /**
4742 * dwc2_hsotg_remove - remove function for hsotg driver
4743 * @hsotg: Programming view of the DWC_otg controller
4744 *
4745 */
dwc2_hsotg_remove(struct dwc2_hsotg * hsotg)4746 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4747 {
4748 usb_del_gadget_udc(&hsotg->gadget);
4749 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4750
4751 return 0;
4752 }
4753
dwc2_hsotg_suspend(struct dwc2_hsotg * hsotg)4754 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4755 {
4756 unsigned long flags;
4757
4758 if (hsotg->lx_state != DWC2_L0)
4759 return 0;
4760
4761 if (hsotg->driver) {
4762 int ep;
4763
4764 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4765 hsotg->driver->driver.name);
4766
4767 spin_lock_irqsave(&hsotg->lock, flags);
4768 if (hsotg->enabled)
4769 dwc2_hsotg_core_disconnect(hsotg);
4770 dwc2_hsotg_disconnect(hsotg);
4771 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4772 spin_unlock_irqrestore(&hsotg->lock, flags);
4773
4774 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4775 if (hsotg->eps_in[ep])
4776 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4777 if (hsotg->eps_out[ep])
4778 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4779 }
4780 }
4781
4782 return 0;
4783 }
4784
dwc2_hsotg_resume(struct dwc2_hsotg * hsotg)4785 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4786 {
4787 unsigned long flags;
4788
4789 if (hsotg->lx_state == DWC2_L2)
4790 return 0;
4791
4792 if (hsotg->driver) {
4793 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4794 hsotg->driver->driver.name);
4795
4796 spin_lock_irqsave(&hsotg->lock, flags);
4797 dwc2_hsotg_core_init_disconnected(hsotg, false);
4798 if (hsotg->enabled) {
4799 /* Enable ACG feature in device mode,if supported */
4800 dwc2_enable_acg(hsotg);
4801 dwc2_hsotg_core_connect(hsotg);
4802 }
4803 spin_unlock_irqrestore(&hsotg->lock, flags);
4804 }
4805
4806 return 0;
4807 }
4808
4809 /**
4810 * dwc2_backup_device_registers() - Backup controller device registers.
4811 * When suspending usb bus, registers needs to be backuped
4812 * if controller power is disabled once suspended.
4813 *
4814 * @hsotg: Programming view of the DWC_otg controller
4815 */
dwc2_backup_device_registers(struct dwc2_hsotg * hsotg)4816 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4817 {
4818 struct dwc2_dregs_backup *dr;
4819 int i;
4820
4821 dev_dbg(hsotg->dev, "%s\n", __func__);
4822
4823 /* Backup dev regs */
4824 dr = &hsotg->dr_backup;
4825
4826 dr->dcfg = dwc2_readl(hsotg, DCFG);
4827 dr->dctl = dwc2_readl(hsotg, DCTL);
4828 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
4829 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
4830 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
4831
4832 for (i = 0; i < hsotg->num_of_eps; i++) {
4833 /* Backup IN EPs */
4834 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
4835
4836 /* Ensure DATA PID is correctly configured */
4837 if (dr->diepctl[i] & DXEPCTL_DPID)
4838 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4839 else
4840 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4841
4842 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
4843 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
4844
4845 /* Backup OUT EPs */
4846 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
4847
4848 /* Ensure DATA PID is correctly configured */
4849 if (dr->doepctl[i] & DXEPCTL_DPID)
4850 dr->doepctl[i] |= DXEPCTL_SETD1PID;
4851 else
4852 dr->doepctl[i] |= DXEPCTL_SETD0PID;
4853
4854 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
4855 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
4856 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
4857 }
4858 dr->valid = true;
4859 return 0;
4860 }
4861
4862 /**
4863 * dwc2_restore_device_registers() - Restore controller device registers.
4864 * When resuming usb bus, device registers needs to be restored
4865 * if controller power were disabled.
4866 *
4867 * @hsotg: Programming view of the DWC_otg controller
4868 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
4869 *
4870 * Return: 0 if successful, negative error code otherwise
4871 */
dwc2_restore_device_registers(struct dwc2_hsotg * hsotg,int remote_wakeup)4872 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
4873 {
4874 struct dwc2_dregs_backup *dr;
4875 int i;
4876
4877 dev_dbg(hsotg->dev, "%s\n", __func__);
4878
4879 /* Restore dev regs */
4880 dr = &hsotg->dr_backup;
4881 if (!dr->valid) {
4882 dev_err(hsotg->dev, "%s: no device registers to restore\n",
4883 __func__);
4884 return -EINVAL;
4885 }
4886 dr->valid = false;
4887
4888 if (!remote_wakeup)
4889 dwc2_writel(hsotg, dr->dctl, DCTL);
4890
4891 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
4892 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
4893 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
4894
4895 for (i = 0; i < hsotg->num_of_eps; i++) {
4896 /* Restore IN EPs */
4897 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
4898 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
4899 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
4900 /** WA for enabled EPx's IN in DDMA mode. On entering to
4901 * hibernation wrong value read and saved from DIEPDMAx,
4902 * as result BNA interrupt asserted on hibernation exit
4903 * by restoring from saved area.
4904 */
4905 if (hsotg->params.g_dma_desc &&
4906 (dr->diepctl[i] & DXEPCTL_EPENA))
4907 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
4908 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
4909 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
4910 /* Restore OUT EPs */
4911 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
4912 /* WA for enabled EPx's OUT in DDMA mode. On entering to
4913 * hibernation wrong value read and saved from DOEPDMAx,
4914 * as result BNA interrupt asserted on hibernation exit
4915 * by restoring from saved area.
4916 */
4917 if (hsotg->params.g_dma_desc &&
4918 (dr->doepctl[i] & DXEPCTL_EPENA))
4919 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
4920 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
4921 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
4922 }
4923
4924 return 0;
4925 }
4926
4927 /**
4928 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
4929 *
4930 * @hsotg: Programming view of DWC_otg controller
4931 *
4932 */
dwc2_gadget_init_lpm(struct dwc2_hsotg * hsotg)4933 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
4934 {
4935 u32 val;
4936
4937 if (!hsotg->params.lpm)
4938 return;
4939
4940 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
4941 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
4942 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
4943 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
4944 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
4945 dwc2_writel(hsotg, val, GLPMCFG);
4946 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
4947 }
4948
4949 /**
4950 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
4951 *
4952 * @hsotg: Programming view of the DWC_otg controller
4953 *
4954 * Return non-zero if failed to enter to hibernation.
4955 */
dwc2_gadget_enter_hibernation(struct dwc2_hsotg * hsotg)4956 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
4957 {
4958 u32 gpwrdn;
4959 int ret = 0;
4960
4961 /* Change to L2(suspend) state */
4962 hsotg->lx_state = DWC2_L2;
4963 dev_dbg(hsotg->dev, "Start of hibernation completed\n");
4964 ret = dwc2_backup_global_registers(hsotg);
4965 if (ret) {
4966 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
4967 __func__);
4968 return ret;
4969 }
4970 ret = dwc2_backup_device_registers(hsotg);
4971 if (ret) {
4972 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
4973 __func__);
4974 return ret;
4975 }
4976
4977 gpwrdn = GPWRDN_PWRDNRSTN;
4978 gpwrdn |= GPWRDN_PMUACTV;
4979 dwc2_writel(hsotg, gpwrdn, GPWRDN);
4980 udelay(10);
4981
4982 /* Set flag to indicate that we are in hibernation */
4983 hsotg->hibernated = 1;
4984
4985 /* Enable interrupts from wake up logic */
4986 gpwrdn = dwc2_readl(hsotg, GPWRDN);
4987 gpwrdn |= GPWRDN_PMUINTSEL;
4988 dwc2_writel(hsotg, gpwrdn, GPWRDN);
4989 udelay(10);
4990
4991 /* Unmask device mode interrupts in GPWRDN */
4992 gpwrdn = dwc2_readl(hsotg, GPWRDN);
4993 gpwrdn |= GPWRDN_RST_DET_MSK;
4994 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
4995 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
4996 dwc2_writel(hsotg, gpwrdn, GPWRDN);
4997 udelay(10);
4998
4999 /* Enable Power Down Clamp */
5000 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5001 gpwrdn |= GPWRDN_PWRDNCLMP;
5002 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5003 udelay(10);
5004
5005 /* Switch off VDD */
5006 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5007 gpwrdn |= GPWRDN_PWRDNSWTCH;
5008 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5009 udelay(10);
5010
5011 /* Save gpwrdn register for further usage if stschng interrupt */
5012 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5013 dev_dbg(hsotg->dev, "Hibernation completed\n");
5014
5015 return ret;
5016 }
5017
5018 /**
5019 * dwc2_gadget_exit_hibernation()
5020 * This function is for exiting from Device mode hibernation by host initiated
5021 * resume/reset and device initiated remote-wakeup.
5022 *
5023 * @hsotg: Programming view of the DWC_otg controller
5024 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5025 * @reset: indicates whether resume is initiated by Reset.
5026 *
5027 * Return non-zero if failed to exit from hibernation.
5028 */
dwc2_gadget_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)5029 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5030 int rem_wakeup, int reset)
5031 {
5032 u32 pcgcctl;
5033 u32 gpwrdn;
5034 u32 dctl;
5035 int ret = 0;
5036 struct dwc2_gregs_backup *gr;
5037 struct dwc2_dregs_backup *dr;
5038
5039 gr = &hsotg->gr_backup;
5040 dr = &hsotg->dr_backup;
5041
5042 if (!hsotg->hibernated) {
5043 dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5044 return 1;
5045 }
5046 dev_dbg(hsotg->dev,
5047 "%s: called with rem_wakeup = %d reset = %d\n",
5048 __func__, rem_wakeup, reset);
5049
5050 dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5051
5052 if (!reset) {
5053 /* Clear all pending interupts */
5054 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5055 }
5056
5057 /* De-assert Restore */
5058 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5059 gpwrdn &= ~GPWRDN_RESTORE;
5060 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5061 udelay(10);
5062
5063 if (!rem_wakeup) {
5064 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5065 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5066 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5067 }
5068
5069 /* Restore GUSBCFG, DCFG and DCTL */
5070 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5071 dwc2_writel(hsotg, dr->dcfg, DCFG);
5072 dwc2_writel(hsotg, dr->dctl, DCTL);
5073
5074 /* De-assert Wakeup Logic */
5075 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5076 gpwrdn &= ~GPWRDN_PMUACTV;
5077 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5078
5079 if (rem_wakeup) {
5080 udelay(10);
5081 /* Start Remote Wakeup Signaling */
5082 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5083 } else {
5084 udelay(50);
5085 /* Set Device programming done bit */
5086 dctl = dwc2_readl(hsotg, DCTL);
5087 dctl |= DCTL_PWRONPRGDONE;
5088 dwc2_writel(hsotg, dctl, DCTL);
5089 }
5090 /* Wait for interrupts which must be cleared */
5091 mdelay(2);
5092 /* Clear all pending interupts */
5093 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5094
5095 /* Restore global registers */
5096 ret = dwc2_restore_global_registers(hsotg);
5097 if (ret) {
5098 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5099 __func__);
5100 return ret;
5101 }
5102
5103 /* Restore device registers */
5104 ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5105 if (ret) {
5106 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5107 __func__);
5108 return ret;
5109 }
5110
5111 if (rem_wakeup) {
5112 mdelay(10);
5113 dctl = dwc2_readl(hsotg, DCTL);
5114 dctl &= ~DCTL_RMTWKUPSIG;
5115 dwc2_writel(hsotg, dctl, DCTL);
5116 }
5117
5118 hsotg->hibernated = 0;
5119 hsotg->lx_state = DWC2_L0;
5120 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5121
5122 return ret;
5123 }
5124