1 /*
2 * Copyright (C) 2013 Shaohua Li <shli@kernel.org>
3 * Copyright (C) 2014 Red Hat, Inc.
4 * Copyright (C) 2015 Arrikto, Inc.
5 * Copyright (C) 2017 Chinamobile, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include <linux/spinlock.h>
22 #include <linux/module.h>
23 #include <linux/idr.h>
24 #include <linux/kernel.h>
25 #include <linux/timer.h>
26 #include <linux/parser.h>
27 #include <linux/vmalloc.h>
28 #include <linux/uio_driver.h>
29 #include <linux/radix-tree.h>
30 #include <linux/stringify.h>
31 #include <linux/bitops.h>
32 #include <linux/highmem.h>
33 #include <linux/configfs.h>
34 #include <linux/mutex.h>
35 #include <linux/workqueue.h>
36 #include <net/genetlink.h>
37 #include <scsi/scsi_common.h>
38 #include <scsi/scsi_proto.h>
39 #include <target/target_core_base.h>
40 #include <target/target_core_fabric.h>
41 #include <target/target_core_backend.h>
42
43 #include <linux/target_core_user.h>
44
45 /**
46 * DOC: Userspace I/O
47 * Userspace I/O
48 * -------------
49 *
50 * Define a shared-memory interface for LIO to pass SCSI commands and
51 * data to userspace for processing. This is to allow backends that
52 * are too complex for in-kernel support to be possible.
53 *
54 * It uses the UIO framework to do a lot of the device-creation and
55 * introspection work for us.
56 *
57 * See the .h file for how the ring is laid out. Note that while the
58 * command ring is defined, the particulars of the data area are
59 * not. Offset values in the command entry point to other locations
60 * internal to the mmap-ed area. There is separate space outside the
61 * command ring for data buffers. This leaves maximum flexibility for
62 * moving buffer allocations, or even page flipping or other
63 * allocation techniques, without altering the command ring layout.
64 *
65 * SECURITY:
66 * The user process must be assumed to be malicious. There's no way to
67 * prevent it breaking the command ring protocol if it wants, but in
68 * order to prevent other issues we must only ever read *data* from
69 * the shared memory area, not offsets or sizes. This applies to
70 * command ring entries as well as the mailbox. Extra code needed for
71 * this may have a 'UAM' comment.
72 */
73
74 #define TCMU_TIME_OUT (30 * MSEC_PER_SEC)
75
76 /* For cmd area, the size is fixed 8MB */
77 #define CMDR_SIZE (8 * 1024 * 1024)
78
79 /*
80 * For data area, the block size is PAGE_SIZE and
81 * the total size is 256K * PAGE_SIZE.
82 */
83 #define DATA_BLOCK_SIZE PAGE_SIZE
84 #define DATA_BLOCK_SHIFT PAGE_SHIFT
85 #define DATA_BLOCK_BITS_DEF (256 * 1024)
86
87 #define TCMU_MBS_TO_BLOCKS(_mbs) (_mbs << (20 - DATA_BLOCK_SHIFT))
88 #define TCMU_BLOCKS_TO_MBS(_blocks) (_blocks >> (20 - DATA_BLOCK_SHIFT))
89
90 /*
91 * Default number of global data blocks(512K * PAGE_SIZE)
92 * when the unmap thread will be started.
93 */
94 #define TCMU_GLOBAL_MAX_BLOCKS_DEF (512 * 1024)
95
96 static u8 tcmu_kern_cmd_reply_supported;
97 static u8 tcmu_netlink_blocked;
98
99 static struct device *tcmu_root_device;
100
101 struct tcmu_hba {
102 u32 host_id;
103 };
104
105 #define TCMU_CONFIG_LEN 256
106
107 static DEFINE_MUTEX(tcmu_nl_cmd_mutex);
108 static LIST_HEAD(tcmu_nl_cmd_list);
109
110 struct tcmu_dev;
111
112 struct tcmu_nl_cmd {
113 /* wake up thread waiting for reply */
114 struct completion complete;
115 struct list_head nl_list;
116 struct tcmu_dev *udev;
117 int cmd;
118 int status;
119 };
120
121 struct tcmu_dev {
122 struct list_head node;
123 struct kref kref;
124
125 struct se_device se_dev;
126
127 char *name;
128 struct se_hba *hba;
129
130 #define TCMU_DEV_BIT_OPEN 0
131 #define TCMU_DEV_BIT_BROKEN 1
132 #define TCMU_DEV_BIT_BLOCKED 2
133 unsigned long flags;
134
135 struct uio_info uio_info;
136
137 struct inode *inode;
138
139 struct tcmu_mailbox *mb_addr;
140 uint64_t dev_size;
141 u32 cmdr_size;
142 u32 cmdr_last_cleaned;
143 /* Offset of data area from start of mb */
144 /* Must add data_off and mb_addr to get the address */
145 size_t data_off;
146 size_t data_size;
147 uint32_t max_blocks;
148 size_t ring_size;
149
150 struct mutex cmdr_lock;
151 struct list_head cmdr_queue;
152
153 uint32_t dbi_max;
154 uint32_t dbi_thresh;
155 unsigned long *data_bitmap;
156 struct radix_tree_root data_blocks;
157
158 struct idr commands;
159
160 struct timer_list cmd_timer;
161 unsigned int cmd_time_out;
162
163 struct timer_list qfull_timer;
164 int qfull_time_out;
165
166 struct list_head timedout_entry;
167
168 struct tcmu_nl_cmd curr_nl_cmd;
169
170 char dev_config[TCMU_CONFIG_LEN];
171
172 int nl_reply_supported;
173 };
174
175 #define TCMU_DEV(_se_dev) container_of(_se_dev, struct tcmu_dev, se_dev)
176
177 #define CMDR_OFF sizeof(struct tcmu_mailbox)
178
179 struct tcmu_cmd {
180 struct se_cmd *se_cmd;
181 struct tcmu_dev *tcmu_dev;
182 struct list_head cmdr_queue_entry;
183
184 uint16_t cmd_id;
185
186 /* Can't use se_cmd when cleaning up expired cmds, because if
187 cmd has been completed then accessing se_cmd is off limits */
188 uint32_t dbi_cnt;
189 uint32_t dbi_cur;
190 uint32_t *dbi;
191
192 unsigned long deadline;
193
194 #define TCMU_CMD_BIT_EXPIRED 0
195 unsigned long flags;
196 };
197 /*
198 * To avoid dead lock the mutex lock order should always be:
199 *
200 * mutex_lock(&root_udev_mutex);
201 * ...
202 * mutex_lock(&tcmu_dev->cmdr_lock);
203 * mutex_unlock(&tcmu_dev->cmdr_lock);
204 * ...
205 * mutex_unlock(&root_udev_mutex);
206 */
207 static DEFINE_MUTEX(root_udev_mutex);
208 static LIST_HEAD(root_udev);
209
210 static DEFINE_SPINLOCK(timed_out_udevs_lock);
211 static LIST_HEAD(timed_out_udevs);
212
213 static struct kmem_cache *tcmu_cmd_cache;
214
215 static atomic_t global_db_count = ATOMIC_INIT(0);
216 static struct delayed_work tcmu_unmap_work;
217 static int tcmu_global_max_blocks = TCMU_GLOBAL_MAX_BLOCKS_DEF;
218
tcmu_set_global_max_data_area(const char * str,const struct kernel_param * kp)219 static int tcmu_set_global_max_data_area(const char *str,
220 const struct kernel_param *kp)
221 {
222 int ret, max_area_mb;
223
224 ret = kstrtoint(str, 10, &max_area_mb);
225 if (ret)
226 return -EINVAL;
227
228 if (max_area_mb <= 0) {
229 pr_err("global_max_data_area must be larger than 0.\n");
230 return -EINVAL;
231 }
232
233 tcmu_global_max_blocks = TCMU_MBS_TO_BLOCKS(max_area_mb);
234 if (atomic_read(&global_db_count) > tcmu_global_max_blocks)
235 schedule_delayed_work(&tcmu_unmap_work, 0);
236 else
237 cancel_delayed_work_sync(&tcmu_unmap_work);
238
239 return 0;
240 }
241
tcmu_get_global_max_data_area(char * buffer,const struct kernel_param * kp)242 static int tcmu_get_global_max_data_area(char *buffer,
243 const struct kernel_param *kp)
244 {
245 return sprintf(buffer, "%d", TCMU_BLOCKS_TO_MBS(tcmu_global_max_blocks));
246 }
247
248 static const struct kernel_param_ops tcmu_global_max_data_area_op = {
249 .set = tcmu_set_global_max_data_area,
250 .get = tcmu_get_global_max_data_area,
251 };
252
253 module_param_cb(global_max_data_area_mb, &tcmu_global_max_data_area_op, NULL,
254 S_IWUSR | S_IRUGO);
255 MODULE_PARM_DESC(global_max_data_area_mb,
256 "Max MBs allowed to be allocated to all the tcmu device's "
257 "data areas.");
258
tcmu_get_block_netlink(char * buffer,const struct kernel_param * kp)259 static int tcmu_get_block_netlink(char *buffer,
260 const struct kernel_param *kp)
261 {
262 return sprintf(buffer, "%s\n", tcmu_netlink_blocked ?
263 "blocked" : "unblocked");
264 }
265
tcmu_set_block_netlink(const char * str,const struct kernel_param * kp)266 static int tcmu_set_block_netlink(const char *str,
267 const struct kernel_param *kp)
268 {
269 int ret;
270 u8 val;
271
272 ret = kstrtou8(str, 0, &val);
273 if (ret < 0)
274 return ret;
275
276 if (val > 1) {
277 pr_err("Invalid block netlink value %u\n", val);
278 return -EINVAL;
279 }
280
281 tcmu_netlink_blocked = val;
282 return 0;
283 }
284
285 static const struct kernel_param_ops tcmu_block_netlink_op = {
286 .set = tcmu_set_block_netlink,
287 .get = tcmu_get_block_netlink,
288 };
289
290 module_param_cb(block_netlink, &tcmu_block_netlink_op, NULL, S_IWUSR | S_IRUGO);
291 MODULE_PARM_DESC(block_netlink, "Block new netlink commands.");
292
tcmu_fail_netlink_cmd(struct tcmu_nl_cmd * nl_cmd)293 static int tcmu_fail_netlink_cmd(struct tcmu_nl_cmd *nl_cmd)
294 {
295 struct tcmu_dev *udev = nl_cmd->udev;
296
297 if (!tcmu_netlink_blocked) {
298 pr_err("Could not reset device's netlink interface. Netlink is not blocked.\n");
299 return -EBUSY;
300 }
301
302 if (nl_cmd->cmd != TCMU_CMD_UNSPEC) {
303 pr_debug("Aborting nl cmd %d on %s\n", nl_cmd->cmd, udev->name);
304 nl_cmd->status = -EINTR;
305 list_del(&nl_cmd->nl_list);
306 complete(&nl_cmd->complete);
307 }
308 return 0;
309 }
310
tcmu_set_reset_netlink(const char * str,const struct kernel_param * kp)311 static int tcmu_set_reset_netlink(const char *str,
312 const struct kernel_param *kp)
313 {
314 struct tcmu_nl_cmd *nl_cmd, *tmp_cmd;
315 int ret;
316 u8 val;
317
318 ret = kstrtou8(str, 0, &val);
319 if (ret < 0)
320 return ret;
321
322 if (val != 1) {
323 pr_err("Invalid reset netlink value %u\n", val);
324 return -EINVAL;
325 }
326
327 mutex_lock(&tcmu_nl_cmd_mutex);
328 list_for_each_entry_safe(nl_cmd, tmp_cmd, &tcmu_nl_cmd_list, nl_list) {
329 ret = tcmu_fail_netlink_cmd(nl_cmd);
330 if (ret)
331 break;
332 }
333 mutex_unlock(&tcmu_nl_cmd_mutex);
334
335 return ret;
336 }
337
338 static const struct kernel_param_ops tcmu_reset_netlink_op = {
339 .set = tcmu_set_reset_netlink,
340 };
341
342 module_param_cb(reset_netlink, &tcmu_reset_netlink_op, NULL, S_IWUSR);
343 MODULE_PARM_DESC(reset_netlink, "Reset netlink commands.");
344
345 /* multicast group */
346 enum tcmu_multicast_groups {
347 TCMU_MCGRP_CONFIG,
348 };
349
350 static const struct genl_multicast_group tcmu_mcgrps[] = {
351 [TCMU_MCGRP_CONFIG] = { .name = "config", },
352 };
353
354 static struct nla_policy tcmu_attr_policy[TCMU_ATTR_MAX+1] = {
355 [TCMU_ATTR_DEVICE] = { .type = NLA_STRING },
356 [TCMU_ATTR_MINOR] = { .type = NLA_U32 },
357 [TCMU_ATTR_CMD_STATUS] = { .type = NLA_S32 },
358 [TCMU_ATTR_DEVICE_ID] = { .type = NLA_U32 },
359 [TCMU_ATTR_SUPP_KERN_CMD_REPLY] = { .type = NLA_U8 },
360 };
361
tcmu_genl_cmd_done(struct genl_info * info,int completed_cmd)362 static int tcmu_genl_cmd_done(struct genl_info *info, int completed_cmd)
363 {
364 struct tcmu_dev *udev = NULL;
365 struct tcmu_nl_cmd *nl_cmd;
366 int dev_id, rc, ret = 0;
367
368 if (!info->attrs[TCMU_ATTR_CMD_STATUS] ||
369 !info->attrs[TCMU_ATTR_DEVICE_ID]) {
370 printk(KERN_ERR "TCMU_ATTR_CMD_STATUS or TCMU_ATTR_DEVICE_ID not set, doing nothing\n");
371 return -EINVAL;
372 }
373
374 dev_id = nla_get_u32(info->attrs[TCMU_ATTR_DEVICE_ID]);
375 rc = nla_get_s32(info->attrs[TCMU_ATTR_CMD_STATUS]);
376
377 mutex_lock(&tcmu_nl_cmd_mutex);
378 list_for_each_entry(nl_cmd, &tcmu_nl_cmd_list, nl_list) {
379 if (nl_cmd->udev->se_dev.dev_index == dev_id) {
380 udev = nl_cmd->udev;
381 break;
382 }
383 }
384
385 if (!udev) {
386 pr_err("tcmu nl cmd %u/%d completion could not find device with dev id %u.\n",
387 completed_cmd, rc, dev_id);
388 ret = -ENODEV;
389 goto unlock;
390 }
391 list_del(&nl_cmd->nl_list);
392
393 pr_debug("%s genl cmd done got id %d curr %d done %d rc %d stat %d\n",
394 udev->name, dev_id, nl_cmd->cmd, completed_cmd, rc,
395 nl_cmd->status);
396
397 if (nl_cmd->cmd != completed_cmd) {
398 pr_err("Mismatched commands on %s (Expecting reply for %d. Current %d).\n",
399 udev->name, completed_cmd, nl_cmd->cmd);
400 ret = -EINVAL;
401 goto unlock;
402 }
403
404 nl_cmd->status = rc;
405 complete(&nl_cmd->complete);
406 unlock:
407 mutex_unlock(&tcmu_nl_cmd_mutex);
408 return ret;
409 }
410
tcmu_genl_rm_dev_done(struct sk_buff * skb,struct genl_info * info)411 static int tcmu_genl_rm_dev_done(struct sk_buff *skb, struct genl_info *info)
412 {
413 return tcmu_genl_cmd_done(info, TCMU_CMD_REMOVED_DEVICE);
414 }
415
tcmu_genl_add_dev_done(struct sk_buff * skb,struct genl_info * info)416 static int tcmu_genl_add_dev_done(struct sk_buff *skb, struct genl_info *info)
417 {
418 return tcmu_genl_cmd_done(info, TCMU_CMD_ADDED_DEVICE);
419 }
420
tcmu_genl_reconfig_dev_done(struct sk_buff * skb,struct genl_info * info)421 static int tcmu_genl_reconfig_dev_done(struct sk_buff *skb,
422 struct genl_info *info)
423 {
424 return tcmu_genl_cmd_done(info, TCMU_CMD_RECONFIG_DEVICE);
425 }
426
tcmu_genl_set_features(struct sk_buff * skb,struct genl_info * info)427 static int tcmu_genl_set_features(struct sk_buff *skb, struct genl_info *info)
428 {
429 if (info->attrs[TCMU_ATTR_SUPP_KERN_CMD_REPLY]) {
430 tcmu_kern_cmd_reply_supported =
431 nla_get_u8(info->attrs[TCMU_ATTR_SUPP_KERN_CMD_REPLY]);
432 printk(KERN_INFO "tcmu daemon: command reply support %u.\n",
433 tcmu_kern_cmd_reply_supported);
434 }
435
436 return 0;
437 }
438
439 static const struct genl_ops tcmu_genl_ops[] = {
440 {
441 .cmd = TCMU_CMD_SET_FEATURES,
442 .flags = GENL_ADMIN_PERM,
443 .policy = tcmu_attr_policy,
444 .doit = tcmu_genl_set_features,
445 },
446 {
447 .cmd = TCMU_CMD_ADDED_DEVICE_DONE,
448 .flags = GENL_ADMIN_PERM,
449 .policy = tcmu_attr_policy,
450 .doit = tcmu_genl_add_dev_done,
451 },
452 {
453 .cmd = TCMU_CMD_REMOVED_DEVICE_DONE,
454 .flags = GENL_ADMIN_PERM,
455 .policy = tcmu_attr_policy,
456 .doit = tcmu_genl_rm_dev_done,
457 },
458 {
459 .cmd = TCMU_CMD_RECONFIG_DEVICE_DONE,
460 .flags = GENL_ADMIN_PERM,
461 .policy = tcmu_attr_policy,
462 .doit = tcmu_genl_reconfig_dev_done,
463 },
464 };
465
466 /* Our generic netlink family */
467 static struct genl_family tcmu_genl_family __ro_after_init = {
468 .module = THIS_MODULE,
469 .hdrsize = 0,
470 .name = "TCM-USER",
471 .version = 2,
472 .maxattr = TCMU_ATTR_MAX,
473 .mcgrps = tcmu_mcgrps,
474 .n_mcgrps = ARRAY_SIZE(tcmu_mcgrps),
475 .netnsok = true,
476 .ops = tcmu_genl_ops,
477 .n_ops = ARRAY_SIZE(tcmu_genl_ops),
478 };
479
480 #define tcmu_cmd_set_dbi_cur(cmd, index) ((cmd)->dbi_cur = (index))
481 #define tcmu_cmd_reset_dbi_cur(cmd) tcmu_cmd_set_dbi_cur(cmd, 0)
482 #define tcmu_cmd_set_dbi(cmd, index) ((cmd)->dbi[(cmd)->dbi_cur++] = (index))
483 #define tcmu_cmd_get_dbi(cmd) ((cmd)->dbi[(cmd)->dbi_cur++])
484
tcmu_cmd_free_data(struct tcmu_cmd * tcmu_cmd,uint32_t len)485 static void tcmu_cmd_free_data(struct tcmu_cmd *tcmu_cmd, uint32_t len)
486 {
487 struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
488 uint32_t i;
489
490 for (i = 0; i < len; i++)
491 clear_bit(tcmu_cmd->dbi[i], udev->data_bitmap);
492 }
493
tcmu_get_empty_block(struct tcmu_dev * udev,struct tcmu_cmd * tcmu_cmd)494 static inline bool tcmu_get_empty_block(struct tcmu_dev *udev,
495 struct tcmu_cmd *tcmu_cmd)
496 {
497 struct page *page;
498 int ret, dbi;
499
500 dbi = find_first_zero_bit(udev->data_bitmap, udev->dbi_thresh);
501 if (dbi == udev->dbi_thresh)
502 return false;
503
504 page = radix_tree_lookup(&udev->data_blocks, dbi);
505 if (!page) {
506 if (atomic_add_return(1, &global_db_count) >
507 tcmu_global_max_blocks)
508 schedule_delayed_work(&tcmu_unmap_work, 0);
509
510 /* try to get new page from the mm */
511 page = alloc_page(GFP_KERNEL);
512 if (!page)
513 goto err_alloc;
514
515 ret = radix_tree_insert(&udev->data_blocks, dbi, page);
516 if (ret)
517 goto err_insert;
518 }
519
520 if (dbi > udev->dbi_max)
521 udev->dbi_max = dbi;
522
523 set_bit(dbi, udev->data_bitmap);
524 tcmu_cmd_set_dbi(tcmu_cmd, dbi);
525
526 return true;
527 err_insert:
528 __free_page(page);
529 err_alloc:
530 atomic_dec(&global_db_count);
531 return false;
532 }
533
tcmu_get_empty_blocks(struct tcmu_dev * udev,struct tcmu_cmd * tcmu_cmd)534 static bool tcmu_get_empty_blocks(struct tcmu_dev *udev,
535 struct tcmu_cmd *tcmu_cmd)
536 {
537 int i;
538
539 for (i = tcmu_cmd->dbi_cur; i < tcmu_cmd->dbi_cnt; i++) {
540 if (!tcmu_get_empty_block(udev, tcmu_cmd))
541 return false;
542 }
543 return true;
544 }
545
546 static inline struct page *
tcmu_get_block_page(struct tcmu_dev * udev,uint32_t dbi)547 tcmu_get_block_page(struct tcmu_dev *udev, uint32_t dbi)
548 {
549 return radix_tree_lookup(&udev->data_blocks, dbi);
550 }
551
tcmu_free_cmd(struct tcmu_cmd * tcmu_cmd)552 static inline void tcmu_free_cmd(struct tcmu_cmd *tcmu_cmd)
553 {
554 kfree(tcmu_cmd->dbi);
555 kmem_cache_free(tcmu_cmd_cache, tcmu_cmd);
556 }
557
tcmu_cmd_get_data_length(struct tcmu_cmd * tcmu_cmd)558 static inline size_t tcmu_cmd_get_data_length(struct tcmu_cmd *tcmu_cmd)
559 {
560 struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
561 size_t data_length = round_up(se_cmd->data_length, DATA_BLOCK_SIZE);
562
563 if (se_cmd->se_cmd_flags & SCF_BIDI) {
564 BUG_ON(!(se_cmd->t_bidi_data_sg && se_cmd->t_bidi_data_nents));
565 data_length += round_up(se_cmd->t_bidi_data_sg->length,
566 DATA_BLOCK_SIZE);
567 }
568
569 return data_length;
570 }
571
tcmu_cmd_get_block_cnt(struct tcmu_cmd * tcmu_cmd)572 static inline uint32_t tcmu_cmd_get_block_cnt(struct tcmu_cmd *tcmu_cmd)
573 {
574 size_t data_length = tcmu_cmd_get_data_length(tcmu_cmd);
575
576 return data_length / DATA_BLOCK_SIZE;
577 }
578
tcmu_alloc_cmd(struct se_cmd * se_cmd)579 static struct tcmu_cmd *tcmu_alloc_cmd(struct se_cmd *se_cmd)
580 {
581 struct se_device *se_dev = se_cmd->se_dev;
582 struct tcmu_dev *udev = TCMU_DEV(se_dev);
583 struct tcmu_cmd *tcmu_cmd;
584
585 tcmu_cmd = kmem_cache_zalloc(tcmu_cmd_cache, GFP_KERNEL);
586 if (!tcmu_cmd)
587 return NULL;
588
589 INIT_LIST_HEAD(&tcmu_cmd->cmdr_queue_entry);
590 tcmu_cmd->se_cmd = se_cmd;
591 tcmu_cmd->tcmu_dev = udev;
592
593 tcmu_cmd_reset_dbi_cur(tcmu_cmd);
594 tcmu_cmd->dbi_cnt = tcmu_cmd_get_block_cnt(tcmu_cmd);
595 tcmu_cmd->dbi = kcalloc(tcmu_cmd->dbi_cnt, sizeof(uint32_t),
596 GFP_KERNEL);
597 if (!tcmu_cmd->dbi) {
598 kmem_cache_free(tcmu_cmd_cache, tcmu_cmd);
599 return NULL;
600 }
601
602 return tcmu_cmd;
603 }
604
tcmu_flush_dcache_range(void * vaddr,size_t size)605 static inline void tcmu_flush_dcache_range(void *vaddr, size_t size)
606 {
607 unsigned long offset = offset_in_page(vaddr);
608 void *start = vaddr - offset;
609
610 size = round_up(size+offset, PAGE_SIZE);
611
612 while (size) {
613 flush_dcache_page(virt_to_page(start));
614 start += PAGE_SIZE;
615 size -= PAGE_SIZE;
616 }
617 }
618
619 /*
620 * Some ring helper functions. We don't assume size is a power of 2 so
621 * we can't use circ_buf.h.
622 */
spc_used(size_t head,size_t tail,size_t size)623 static inline size_t spc_used(size_t head, size_t tail, size_t size)
624 {
625 int diff = head - tail;
626
627 if (diff >= 0)
628 return diff;
629 else
630 return size + diff;
631 }
632
spc_free(size_t head,size_t tail,size_t size)633 static inline size_t spc_free(size_t head, size_t tail, size_t size)
634 {
635 /* Keep 1 byte unused or we can't tell full from empty */
636 return (size - spc_used(head, tail, size) - 1);
637 }
638
head_to_end(size_t head,size_t size)639 static inline size_t head_to_end(size_t head, size_t size)
640 {
641 return size - head;
642 }
643
new_iov(struct iovec ** iov,int * iov_cnt)644 static inline void new_iov(struct iovec **iov, int *iov_cnt)
645 {
646 struct iovec *iovec;
647
648 if (*iov_cnt != 0)
649 (*iov)++;
650 (*iov_cnt)++;
651
652 iovec = *iov;
653 memset(iovec, 0, sizeof(struct iovec));
654 }
655
656 #define UPDATE_HEAD(head, used, size) smp_store_release(&head, ((head % size) + used) % size)
657
658 /* offset is relative to mb_addr */
get_block_offset_user(struct tcmu_dev * dev,int dbi,int remaining)659 static inline size_t get_block_offset_user(struct tcmu_dev *dev,
660 int dbi, int remaining)
661 {
662 return dev->data_off + dbi * DATA_BLOCK_SIZE +
663 DATA_BLOCK_SIZE - remaining;
664 }
665
iov_tail(struct iovec * iov)666 static inline size_t iov_tail(struct iovec *iov)
667 {
668 return (size_t)iov->iov_base + iov->iov_len;
669 }
670
scatter_data_area(struct tcmu_dev * udev,struct tcmu_cmd * tcmu_cmd,struct scatterlist * data_sg,unsigned int data_nents,struct iovec ** iov,int * iov_cnt,bool copy_data)671 static void scatter_data_area(struct tcmu_dev *udev,
672 struct tcmu_cmd *tcmu_cmd, struct scatterlist *data_sg,
673 unsigned int data_nents, struct iovec **iov,
674 int *iov_cnt, bool copy_data)
675 {
676 int i, dbi;
677 int block_remaining = 0;
678 void *from, *to = NULL;
679 size_t copy_bytes, to_offset, offset;
680 struct scatterlist *sg;
681 struct page *page;
682
683 for_each_sg(data_sg, sg, data_nents, i) {
684 int sg_remaining = sg->length;
685 from = kmap_atomic(sg_page(sg)) + sg->offset;
686 while (sg_remaining > 0) {
687 if (block_remaining == 0) {
688 if (to)
689 kunmap_atomic(to);
690
691 block_remaining = DATA_BLOCK_SIZE;
692 dbi = tcmu_cmd_get_dbi(tcmu_cmd);
693 page = tcmu_get_block_page(udev, dbi);
694 to = kmap_atomic(page);
695 }
696
697 /*
698 * Covert to virtual offset of the ring data area.
699 */
700 to_offset = get_block_offset_user(udev, dbi,
701 block_remaining);
702
703 /*
704 * The following code will gather and map the blocks
705 * to the same iovec when the blocks are all next to
706 * each other.
707 */
708 copy_bytes = min_t(size_t, sg_remaining,
709 block_remaining);
710 if (*iov_cnt != 0 &&
711 to_offset == iov_tail(*iov)) {
712 /*
713 * Will append to the current iovec, because
714 * the current block page is next to the
715 * previous one.
716 */
717 (*iov)->iov_len += copy_bytes;
718 } else {
719 /*
720 * Will allocate a new iovec because we are
721 * first time here or the current block page
722 * is not next to the previous one.
723 */
724 new_iov(iov, iov_cnt);
725 (*iov)->iov_base = (void __user *)to_offset;
726 (*iov)->iov_len = copy_bytes;
727 }
728
729 if (copy_data) {
730 offset = DATA_BLOCK_SIZE - block_remaining;
731 memcpy(to + offset,
732 from + sg->length - sg_remaining,
733 copy_bytes);
734 tcmu_flush_dcache_range(to, copy_bytes);
735 }
736
737 sg_remaining -= copy_bytes;
738 block_remaining -= copy_bytes;
739 }
740 kunmap_atomic(from - sg->offset);
741 }
742
743 if (to)
744 kunmap_atomic(to);
745 }
746
gather_data_area(struct tcmu_dev * udev,struct tcmu_cmd * cmd,bool bidi,uint32_t read_len)747 static void gather_data_area(struct tcmu_dev *udev, struct tcmu_cmd *cmd,
748 bool bidi, uint32_t read_len)
749 {
750 struct se_cmd *se_cmd = cmd->se_cmd;
751 int i, dbi;
752 int block_remaining = 0;
753 void *from = NULL, *to;
754 size_t copy_bytes, offset;
755 struct scatterlist *sg, *data_sg;
756 struct page *page;
757 unsigned int data_nents;
758 uint32_t count = 0;
759
760 if (!bidi) {
761 data_sg = se_cmd->t_data_sg;
762 data_nents = se_cmd->t_data_nents;
763 } else {
764
765 /*
766 * For bidi case, the first count blocks are for Data-Out
767 * buffer blocks, and before gathering the Data-In buffer
768 * the Data-Out buffer blocks should be discarded.
769 */
770 count = DIV_ROUND_UP(se_cmd->data_length, DATA_BLOCK_SIZE);
771
772 data_sg = se_cmd->t_bidi_data_sg;
773 data_nents = se_cmd->t_bidi_data_nents;
774 }
775
776 tcmu_cmd_set_dbi_cur(cmd, count);
777
778 for_each_sg(data_sg, sg, data_nents, i) {
779 int sg_remaining = sg->length;
780 to = kmap_atomic(sg_page(sg)) + sg->offset;
781 while (sg_remaining > 0 && read_len > 0) {
782 if (block_remaining == 0) {
783 if (from)
784 kunmap_atomic(from);
785
786 block_remaining = DATA_BLOCK_SIZE;
787 dbi = tcmu_cmd_get_dbi(cmd);
788 page = tcmu_get_block_page(udev, dbi);
789 from = kmap_atomic(page);
790 }
791 copy_bytes = min_t(size_t, sg_remaining,
792 block_remaining);
793 if (read_len < copy_bytes)
794 copy_bytes = read_len;
795 offset = DATA_BLOCK_SIZE - block_remaining;
796 tcmu_flush_dcache_range(from, copy_bytes);
797 memcpy(to + sg->length - sg_remaining, from + offset,
798 copy_bytes);
799
800 sg_remaining -= copy_bytes;
801 block_remaining -= copy_bytes;
802 read_len -= copy_bytes;
803 }
804 kunmap_atomic(to - sg->offset);
805 if (read_len == 0)
806 break;
807 }
808 if (from)
809 kunmap_atomic(from);
810 }
811
spc_bitmap_free(unsigned long * bitmap,uint32_t thresh)812 static inline size_t spc_bitmap_free(unsigned long *bitmap, uint32_t thresh)
813 {
814 return thresh - bitmap_weight(bitmap, thresh);
815 }
816
817 /*
818 * We can't queue a command until we have space available on the cmd ring *and*
819 * space available on the data area.
820 *
821 * Called with ring lock held.
822 */
is_ring_space_avail(struct tcmu_dev * udev,struct tcmu_cmd * cmd,size_t cmd_size,size_t data_needed)823 static bool is_ring_space_avail(struct tcmu_dev *udev, struct tcmu_cmd *cmd,
824 size_t cmd_size, size_t data_needed)
825 {
826 struct tcmu_mailbox *mb = udev->mb_addr;
827 uint32_t blocks_needed = (data_needed + DATA_BLOCK_SIZE - 1)
828 / DATA_BLOCK_SIZE;
829 size_t space, cmd_needed;
830 u32 cmd_head;
831
832 tcmu_flush_dcache_range(mb, sizeof(*mb));
833
834 cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
835
836 /*
837 * If cmd end-of-ring space is too small then we need space for a NOP plus
838 * original cmd - cmds are internally contiguous.
839 */
840 if (head_to_end(cmd_head, udev->cmdr_size) >= cmd_size)
841 cmd_needed = cmd_size;
842 else
843 cmd_needed = cmd_size + head_to_end(cmd_head, udev->cmdr_size);
844
845 space = spc_free(cmd_head, udev->cmdr_last_cleaned, udev->cmdr_size);
846 if (space < cmd_needed) {
847 pr_debug("no cmd space: %u %u %u\n", cmd_head,
848 udev->cmdr_last_cleaned, udev->cmdr_size);
849 return false;
850 }
851
852 /* try to check and get the data blocks as needed */
853 space = spc_bitmap_free(udev->data_bitmap, udev->dbi_thresh);
854 if ((space * DATA_BLOCK_SIZE) < data_needed) {
855 unsigned long blocks_left =
856 (udev->max_blocks - udev->dbi_thresh) + space;
857
858 if (blocks_left < blocks_needed) {
859 pr_debug("no data space: only %lu available, but ask for %zu\n",
860 blocks_left * DATA_BLOCK_SIZE,
861 data_needed);
862 return false;
863 }
864
865 udev->dbi_thresh += blocks_needed;
866 if (udev->dbi_thresh > udev->max_blocks)
867 udev->dbi_thresh = udev->max_blocks;
868 }
869
870 return tcmu_get_empty_blocks(udev, cmd);
871 }
872
tcmu_cmd_get_base_cmd_size(size_t iov_cnt)873 static inline size_t tcmu_cmd_get_base_cmd_size(size_t iov_cnt)
874 {
875 return max(offsetof(struct tcmu_cmd_entry, req.iov[iov_cnt]),
876 sizeof(struct tcmu_cmd_entry));
877 }
878
tcmu_cmd_get_cmd_size(struct tcmu_cmd * tcmu_cmd,size_t base_command_size)879 static inline size_t tcmu_cmd_get_cmd_size(struct tcmu_cmd *tcmu_cmd,
880 size_t base_command_size)
881 {
882 struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
883 size_t command_size;
884
885 command_size = base_command_size +
886 round_up(scsi_command_size(se_cmd->t_task_cdb),
887 TCMU_OP_ALIGN_SIZE);
888
889 WARN_ON(command_size & (TCMU_OP_ALIGN_SIZE-1));
890
891 return command_size;
892 }
893
tcmu_setup_cmd_timer(struct tcmu_cmd * tcmu_cmd,unsigned int tmo,struct timer_list * timer)894 static int tcmu_setup_cmd_timer(struct tcmu_cmd *tcmu_cmd, unsigned int tmo,
895 struct timer_list *timer)
896 {
897 struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
898 int cmd_id;
899
900 if (tcmu_cmd->cmd_id)
901 goto setup_timer;
902
903 cmd_id = idr_alloc(&udev->commands, tcmu_cmd, 1, USHRT_MAX, GFP_NOWAIT);
904 if (cmd_id < 0) {
905 pr_err("tcmu: Could not allocate cmd id.\n");
906 return cmd_id;
907 }
908 tcmu_cmd->cmd_id = cmd_id;
909
910 pr_debug("allocated cmd %u for dev %s tmo %lu\n", tcmu_cmd->cmd_id,
911 udev->name, tmo / MSEC_PER_SEC);
912
913 setup_timer:
914 if (!tmo)
915 return 0;
916
917 tcmu_cmd->deadline = round_jiffies_up(jiffies + msecs_to_jiffies(tmo));
918 mod_timer(timer, tcmu_cmd->deadline);
919 return 0;
920 }
921
add_to_cmdr_queue(struct tcmu_cmd * tcmu_cmd)922 static int add_to_cmdr_queue(struct tcmu_cmd *tcmu_cmd)
923 {
924 struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
925 unsigned int tmo;
926 int ret;
927
928 /*
929 * For backwards compat if qfull_time_out is not set use
930 * cmd_time_out and if that's not set use the default time out.
931 */
932 if (!udev->qfull_time_out)
933 return -ETIMEDOUT;
934 else if (udev->qfull_time_out > 0)
935 tmo = udev->qfull_time_out;
936 else if (udev->cmd_time_out)
937 tmo = udev->cmd_time_out;
938 else
939 tmo = TCMU_TIME_OUT;
940
941 ret = tcmu_setup_cmd_timer(tcmu_cmd, tmo, &udev->qfull_timer);
942 if (ret)
943 return ret;
944
945 list_add_tail(&tcmu_cmd->cmdr_queue_entry, &udev->cmdr_queue);
946 pr_debug("adding cmd %u on dev %s to ring space wait queue\n",
947 tcmu_cmd->cmd_id, udev->name);
948 return 0;
949 }
950
951 /**
952 * queue_cmd_ring - queue cmd to ring or internally
953 * @tcmu_cmd: cmd to queue
954 * @scsi_err: TCM error code if failure (-1) returned.
955 *
956 * Returns:
957 * -1 we cannot queue internally or to the ring.
958 * 0 success
959 * 1 internally queued to wait for ring memory to free.
960 */
queue_cmd_ring(struct tcmu_cmd * tcmu_cmd,int * scsi_err)961 static sense_reason_t queue_cmd_ring(struct tcmu_cmd *tcmu_cmd, int *scsi_err)
962 {
963 struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
964 struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
965 size_t base_command_size, command_size;
966 struct tcmu_mailbox *mb;
967 struct tcmu_cmd_entry *entry;
968 struct iovec *iov;
969 int iov_cnt, ret;
970 uint32_t cmd_head;
971 uint64_t cdb_off;
972 bool copy_to_data_area;
973 size_t data_length = tcmu_cmd_get_data_length(tcmu_cmd);
974
975 *scsi_err = TCM_NO_SENSE;
976
977 if (test_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags)) {
978 *scsi_err = TCM_LUN_BUSY;
979 return -1;
980 }
981
982 if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags)) {
983 *scsi_err = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
984 return -1;
985 }
986
987 /*
988 * Must be a certain minimum size for response sense info, but
989 * also may be larger if the iov array is large.
990 *
991 * We prepare as many iovs as possbile for potential uses here,
992 * because it's expensive to tell how many regions are freed in
993 * the bitmap & global data pool, as the size calculated here
994 * will only be used to do the checks.
995 *
996 * The size will be recalculated later as actually needed to save
997 * cmd area memories.
998 */
999 base_command_size = tcmu_cmd_get_base_cmd_size(tcmu_cmd->dbi_cnt);
1000 command_size = tcmu_cmd_get_cmd_size(tcmu_cmd, base_command_size);
1001
1002 if (!list_empty(&udev->cmdr_queue))
1003 goto queue;
1004
1005 mb = udev->mb_addr;
1006 cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
1007 if ((command_size > (udev->cmdr_size / 2)) ||
1008 data_length > udev->data_size) {
1009 pr_warn("TCMU: Request of size %zu/%zu is too big for %u/%zu "
1010 "cmd ring/data area\n", command_size, data_length,
1011 udev->cmdr_size, udev->data_size);
1012 *scsi_err = TCM_INVALID_CDB_FIELD;
1013 return -1;
1014 }
1015
1016 if (!is_ring_space_avail(udev, tcmu_cmd, command_size, data_length)) {
1017 /*
1018 * Don't leave commands partially setup because the unmap
1019 * thread might need the blocks to make forward progress.
1020 */
1021 tcmu_cmd_free_data(tcmu_cmd, tcmu_cmd->dbi_cur);
1022 tcmu_cmd_reset_dbi_cur(tcmu_cmd);
1023 goto queue;
1024 }
1025
1026 /* Insert a PAD if end-of-ring space is too small */
1027 if (head_to_end(cmd_head, udev->cmdr_size) < command_size) {
1028 size_t pad_size = head_to_end(cmd_head, udev->cmdr_size);
1029
1030 entry = (void *) mb + CMDR_OFF + cmd_head;
1031 tcmu_hdr_set_op(&entry->hdr.len_op, TCMU_OP_PAD);
1032 tcmu_hdr_set_len(&entry->hdr.len_op, pad_size);
1033 entry->hdr.cmd_id = 0; /* not used for PAD */
1034 entry->hdr.kflags = 0;
1035 entry->hdr.uflags = 0;
1036 tcmu_flush_dcache_range(entry, sizeof(*entry));
1037
1038 UPDATE_HEAD(mb->cmd_head, pad_size, udev->cmdr_size);
1039 tcmu_flush_dcache_range(mb, sizeof(*mb));
1040
1041 cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
1042 WARN_ON(cmd_head != 0);
1043 }
1044
1045 entry = (void *) mb + CMDR_OFF + cmd_head;
1046 memset(entry, 0, command_size);
1047 tcmu_hdr_set_op(&entry->hdr.len_op, TCMU_OP_CMD);
1048
1049 /* Handle allocating space from the data area */
1050 tcmu_cmd_reset_dbi_cur(tcmu_cmd);
1051 iov = &entry->req.iov[0];
1052 iov_cnt = 0;
1053 copy_to_data_area = (se_cmd->data_direction == DMA_TO_DEVICE
1054 || se_cmd->se_cmd_flags & SCF_BIDI);
1055 scatter_data_area(udev, tcmu_cmd, se_cmd->t_data_sg,
1056 se_cmd->t_data_nents, &iov, &iov_cnt,
1057 copy_to_data_area);
1058 entry->req.iov_cnt = iov_cnt;
1059
1060 /* Handle BIDI commands */
1061 iov_cnt = 0;
1062 if (se_cmd->se_cmd_flags & SCF_BIDI) {
1063 iov++;
1064 scatter_data_area(udev, tcmu_cmd, se_cmd->t_bidi_data_sg,
1065 se_cmd->t_bidi_data_nents, &iov, &iov_cnt,
1066 false);
1067 }
1068 entry->req.iov_bidi_cnt = iov_cnt;
1069
1070 ret = tcmu_setup_cmd_timer(tcmu_cmd, udev->cmd_time_out,
1071 &udev->cmd_timer);
1072 if (ret) {
1073 tcmu_cmd_free_data(tcmu_cmd, tcmu_cmd->dbi_cnt);
1074
1075 *scsi_err = TCM_OUT_OF_RESOURCES;
1076 return -1;
1077 }
1078 entry->hdr.cmd_id = tcmu_cmd->cmd_id;
1079
1080 /*
1081 * Recalaulate the command's base size and size according
1082 * to the actual needs
1083 */
1084 base_command_size = tcmu_cmd_get_base_cmd_size(entry->req.iov_cnt +
1085 entry->req.iov_bidi_cnt);
1086 command_size = tcmu_cmd_get_cmd_size(tcmu_cmd, base_command_size);
1087
1088 tcmu_hdr_set_len(&entry->hdr.len_op, command_size);
1089
1090 /* All offsets relative to mb_addr, not start of entry! */
1091 cdb_off = CMDR_OFF + cmd_head + base_command_size;
1092 memcpy((void *) mb + cdb_off, se_cmd->t_task_cdb, scsi_command_size(se_cmd->t_task_cdb));
1093 entry->req.cdb_off = cdb_off;
1094 tcmu_flush_dcache_range(entry, sizeof(*entry));
1095
1096 UPDATE_HEAD(mb->cmd_head, command_size, udev->cmdr_size);
1097 tcmu_flush_dcache_range(mb, sizeof(*mb));
1098
1099 /* TODO: only if FLUSH and FUA? */
1100 uio_event_notify(&udev->uio_info);
1101
1102 return 0;
1103
1104 queue:
1105 if (add_to_cmdr_queue(tcmu_cmd)) {
1106 *scsi_err = TCM_OUT_OF_RESOURCES;
1107 return -1;
1108 }
1109
1110 return 1;
1111 }
1112
1113 static sense_reason_t
tcmu_queue_cmd(struct se_cmd * se_cmd)1114 tcmu_queue_cmd(struct se_cmd *se_cmd)
1115 {
1116 struct se_device *se_dev = se_cmd->se_dev;
1117 struct tcmu_dev *udev = TCMU_DEV(se_dev);
1118 struct tcmu_cmd *tcmu_cmd;
1119 sense_reason_t scsi_ret;
1120 int ret;
1121
1122 tcmu_cmd = tcmu_alloc_cmd(se_cmd);
1123 if (!tcmu_cmd)
1124 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1125
1126 mutex_lock(&udev->cmdr_lock);
1127 ret = queue_cmd_ring(tcmu_cmd, &scsi_ret);
1128 mutex_unlock(&udev->cmdr_lock);
1129 if (ret < 0)
1130 tcmu_free_cmd(tcmu_cmd);
1131 return scsi_ret;
1132 }
1133
tcmu_handle_completion(struct tcmu_cmd * cmd,struct tcmu_cmd_entry * entry)1134 static void tcmu_handle_completion(struct tcmu_cmd *cmd, struct tcmu_cmd_entry *entry)
1135 {
1136 struct se_cmd *se_cmd = cmd->se_cmd;
1137 struct tcmu_dev *udev = cmd->tcmu_dev;
1138 bool read_len_valid = false;
1139 uint32_t read_len = se_cmd->data_length;
1140
1141 /*
1142 * cmd has been completed already from timeout, just reclaim
1143 * data area space and free cmd
1144 */
1145 if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags))
1146 goto out;
1147
1148 tcmu_cmd_reset_dbi_cur(cmd);
1149
1150 if (entry->hdr.uflags & TCMU_UFLAG_UNKNOWN_OP) {
1151 pr_warn("TCMU: Userspace set UNKNOWN_OP flag on se_cmd %p\n",
1152 cmd->se_cmd);
1153 entry->rsp.scsi_status = SAM_STAT_CHECK_CONDITION;
1154 goto done;
1155 }
1156
1157 if (se_cmd->data_direction == DMA_FROM_DEVICE &&
1158 (entry->hdr.uflags & TCMU_UFLAG_READ_LEN) && entry->rsp.read_len) {
1159 read_len_valid = true;
1160 if (entry->rsp.read_len < read_len)
1161 read_len = entry->rsp.read_len;
1162 }
1163
1164 if (entry->rsp.scsi_status == SAM_STAT_CHECK_CONDITION) {
1165 transport_copy_sense_to_cmd(se_cmd, entry->rsp.sense_buffer);
1166 if (!read_len_valid )
1167 goto done;
1168 else
1169 se_cmd->se_cmd_flags |= SCF_TREAT_READ_AS_NORMAL;
1170 }
1171 if (se_cmd->se_cmd_flags & SCF_BIDI) {
1172 /* Get Data-In buffer before clean up */
1173 gather_data_area(udev, cmd, true, read_len);
1174 } else if (se_cmd->data_direction == DMA_FROM_DEVICE) {
1175 gather_data_area(udev, cmd, false, read_len);
1176 } else if (se_cmd->data_direction == DMA_TO_DEVICE) {
1177 /* TODO: */
1178 } else if (se_cmd->data_direction != DMA_NONE) {
1179 pr_warn("TCMU: data direction was %d!\n",
1180 se_cmd->data_direction);
1181 }
1182
1183 done:
1184 if (read_len_valid) {
1185 pr_debug("read_len = %d\n", read_len);
1186 target_complete_cmd_with_length(cmd->se_cmd,
1187 entry->rsp.scsi_status, read_len);
1188 } else
1189 target_complete_cmd(cmd->se_cmd, entry->rsp.scsi_status);
1190
1191 out:
1192 cmd->se_cmd = NULL;
1193 tcmu_cmd_free_data(cmd, cmd->dbi_cnt);
1194 tcmu_free_cmd(cmd);
1195 }
1196
tcmu_handle_completions(struct tcmu_dev * udev)1197 static unsigned int tcmu_handle_completions(struct tcmu_dev *udev)
1198 {
1199 struct tcmu_mailbox *mb;
1200 int handled = 0;
1201
1202 if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags)) {
1203 pr_err("ring broken, not handling completions\n");
1204 return 0;
1205 }
1206
1207 mb = udev->mb_addr;
1208 tcmu_flush_dcache_range(mb, sizeof(*mb));
1209
1210 while (udev->cmdr_last_cleaned != READ_ONCE(mb->cmd_tail)) {
1211
1212 struct tcmu_cmd_entry *entry = (void *) mb + CMDR_OFF + udev->cmdr_last_cleaned;
1213 struct tcmu_cmd *cmd;
1214
1215 tcmu_flush_dcache_range(entry, sizeof(*entry));
1216
1217 if (tcmu_hdr_get_op(entry->hdr.len_op) == TCMU_OP_PAD) {
1218 UPDATE_HEAD(udev->cmdr_last_cleaned,
1219 tcmu_hdr_get_len(entry->hdr.len_op),
1220 udev->cmdr_size);
1221 continue;
1222 }
1223 WARN_ON(tcmu_hdr_get_op(entry->hdr.len_op) != TCMU_OP_CMD);
1224
1225 cmd = idr_remove(&udev->commands, entry->hdr.cmd_id);
1226 if (!cmd) {
1227 pr_err("cmd_id %u not found, ring is broken\n",
1228 entry->hdr.cmd_id);
1229 set_bit(TCMU_DEV_BIT_BROKEN, &udev->flags);
1230 break;
1231 }
1232
1233 tcmu_handle_completion(cmd, entry);
1234
1235 UPDATE_HEAD(udev->cmdr_last_cleaned,
1236 tcmu_hdr_get_len(entry->hdr.len_op),
1237 udev->cmdr_size);
1238
1239 handled++;
1240 }
1241
1242 if (mb->cmd_tail == mb->cmd_head) {
1243 /* no more pending commands */
1244 del_timer(&udev->cmd_timer);
1245
1246 if (list_empty(&udev->cmdr_queue)) {
1247 /*
1248 * no more pending or waiting commands so try to
1249 * reclaim blocks if needed.
1250 */
1251 if (atomic_read(&global_db_count) >
1252 tcmu_global_max_blocks)
1253 schedule_delayed_work(&tcmu_unmap_work, 0);
1254 }
1255 }
1256
1257 return handled;
1258 }
1259
tcmu_check_expired_cmd(int id,void * p,void * data)1260 static int tcmu_check_expired_cmd(int id, void *p, void *data)
1261 {
1262 struct tcmu_cmd *cmd = p;
1263 struct tcmu_dev *udev = cmd->tcmu_dev;
1264 u8 scsi_status;
1265 struct se_cmd *se_cmd;
1266 bool is_running;
1267
1268 if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags))
1269 return 0;
1270
1271 if (!time_after(jiffies, cmd->deadline))
1272 return 0;
1273
1274 is_running = list_empty(&cmd->cmdr_queue_entry);
1275 se_cmd = cmd->se_cmd;
1276
1277 if (is_running) {
1278 /*
1279 * If cmd_time_out is disabled but qfull is set deadline
1280 * will only reflect the qfull timeout. Ignore it.
1281 */
1282 if (!udev->cmd_time_out)
1283 return 0;
1284
1285 set_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags);
1286 /*
1287 * target_complete_cmd will translate this to LUN COMM FAILURE
1288 */
1289 scsi_status = SAM_STAT_CHECK_CONDITION;
1290 } else {
1291 list_del_init(&cmd->cmdr_queue_entry);
1292
1293 idr_remove(&udev->commands, id);
1294 tcmu_free_cmd(cmd);
1295 scsi_status = SAM_STAT_TASK_SET_FULL;
1296 }
1297
1298 pr_debug("Timing out cmd %u on dev %s that is %s.\n",
1299 id, udev->name, is_running ? "inflight" : "queued");
1300
1301 target_complete_cmd(se_cmd, scsi_status);
1302 return 0;
1303 }
1304
tcmu_device_timedout(struct tcmu_dev * udev)1305 static void tcmu_device_timedout(struct tcmu_dev *udev)
1306 {
1307 spin_lock(&timed_out_udevs_lock);
1308 if (list_empty(&udev->timedout_entry))
1309 list_add_tail(&udev->timedout_entry, &timed_out_udevs);
1310 spin_unlock(&timed_out_udevs_lock);
1311
1312 schedule_delayed_work(&tcmu_unmap_work, 0);
1313 }
1314
tcmu_cmd_timedout(struct timer_list * t)1315 static void tcmu_cmd_timedout(struct timer_list *t)
1316 {
1317 struct tcmu_dev *udev = from_timer(udev, t, cmd_timer);
1318
1319 pr_debug("%s cmd timeout has expired\n", udev->name);
1320 tcmu_device_timedout(udev);
1321 }
1322
tcmu_qfull_timedout(struct timer_list * t)1323 static void tcmu_qfull_timedout(struct timer_list *t)
1324 {
1325 struct tcmu_dev *udev = from_timer(udev, t, qfull_timer);
1326
1327 pr_debug("%s qfull timeout has expired\n", udev->name);
1328 tcmu_device_timedout(udev);
1329 }
1330
tcmu_attach_hba(struct se_hba * hba,u32 host_id)1331 static int tcmu_attach_hba(struct se_hba *hba, u32 host_id)
1332 {
1333 struct tcmu_hba *tcmu_hba;
1334
1335 tcmu_hba = kzalloc(sizeof(struct tcmu_hba), GFP_KERNEL);
1336 if (!tcmu_hba)
1337 return -ENOMEM;
1338
1339 tcmu_hba->host_id = host_id;
1340 hba->hba_ptr = tcmu_hba;
1341
1342 return 0;
1343 }
1344
tcmu_detach_hba(struct se_hba * hba)1345 static void tcmu_detach_hba(struct se_hba *hba)
1346 {
1347 kfree(hba->hba_ptr);
1348 hba->hba_ptr = NULL;
1349 }
1350
tcmu_alloc_device(struct se_hba * hba,const char * name)1351 static struct se_device *tcmu_alloc_device(struct se_hba *hba, const char *name)
1352 {
1353 struct tcmu_dev *udev;
1354
1355 udev = kzalloc(sizeof(struct tcmu_dev), GFP_KERNEL);
1356 if (!udev)
1357 return NULL;
1358 kref_init(&udev->kref);
1359
1360 udev->name = kstrdup(name, GFP_KERNEL);
1361 if (!udev->name) {
1362 kfree(udev);
1363 return NULL;
1364 }
1365
1366 udev->hba = hba;
1367 udev->cmd_time_out = TCMU_TIME_OUT;
1368 udev->qfull_time_out = -1;
1369
1370 udev->max_blocks = DATA_BLOCK_BITS_DEF;
1371 mutex_init(&udev->cmdr_lock);
1372
1373 INIT_LIST_HEAD(&udev->node);
1374 INIT_LIST_HEAD(&udev->timedout_entry);
1375 INIT_LIST_HEAD(&udev->cmdr_queue);
1376 idr_init(&udev->commands);
1377
1378 timer_setup(&udev->qfull_timer, tcmu_qfull_timedout, 0);
1379 timer_setup(&udev->cmd_timer, tcmu_cmd_timedout, 0);
1380
1381 INIT_RADIX_TREE(&udev->data_blocks, GFP_KERNEL);
1382
1383 return &udev->se_dev;
1384 }
1385
run_cmdr_queue(struct tcmu_dev * udev,bool fail)1386 static bool run_cmdr_queue(struct tcmu_dev *udev, bool fail)
1387 {
1388 struct tcmu_cmd *tcmu_cmd, *tmp_cmd;
1389 LIST_HEAD(cmds);
1390 bool drained = true;
1391 sense_reason_t scsi_ret;
1392 int ret;
1393
1394 if (list_empty(&udev->cmdr_queue))
1395 return true;
1396
1397 pr_debug("running %s's cmdr queue forcefail %d\n", udev->name, fail);
1398
1399 list_splice_init(&udev->cmdr_queue, &cmds);
1400
1401 list_for_each_entry_safe(tcmu_cmd, tmp_cmd, &cmds, cmdr_queue_entry) {
1402 list_del_init(&tcmu_cmd->cmdr_queue_entry);
1403
1404 pr_debug("removing cmd %u on dev %s from queue\n",
1405 tcmu_cmd->cmd_id, udev->name);
1406
1407 if (fail) {
1408 idr_remove(&udev->commands, tcmu_cmd->cmd_id);
1409 /*
1410 * We were not able to even start the command, so
1411 * fail with busy to allow a retry in case runner
1412 * was only temporarily down. If the device is being
1413 * removed then LIO core will do the right thing and
1414 * fail the retry.
1415 */
1416 target_complete_cmd(tcmu_cmd->se_cmd, SAM_STAT_BUSY);
1417 tcmu_free_cmd(tcmu_cmd);
1418 continue;
1419 }
1420
1421 ret = queue_cmd_ring(tcmu_cmd, &scsi_ret);
1422 if (ret < 0) {
1423 pr_debug("cmd %u on dev %s failed with %u\n",
1424 tcmu_cmd->cmd_id, udev->name, scsi_ret);
1425
1426 idr_remove(&udev->commands, tcmu_cmd->cmd_id);
1427 /*
1428 * Ignore scsi_ret for now. target_complete_cmd
1429 * drops it.
1430 */
1431 target_complete_cmd(tcmu_cmd->se_cmd,
1432 SAM_STAT_CHECK_CONDITION);
1433 tcmu_free_cmd(tcmu_cmd);
1434 } else if (ret > 0) {
1435 pr_debug("ran out of space during cmdr queue run\n");
1436 /*
1437 * cmd was requeued, so just put all cmds back in
1438 * the queue
1439 */
1440 list_splice_tail(&cmds, &udev->cmdr_queue);
1441 drained = false;
1442 goto done;
1443 }
1444 }
1445 if (list_empty(&udev->cmdr_queue))
1446 del_timer(&udev->qfull_timer);
1447 done:
1448 return drained;
1449 }
1450
tcmu_irqcontrol(struct uio_info * info,s32 irq_on)1451 static int tcmu_irqcontrol(struct uio_info *info, s32 irq_on)
1452 {
1453 struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
1454
1455 mutex_lock(&udev->cmdr_lock);
1456 tcmu_handle_completions(udev);
1457 run_cmdr_queue(udev, false);
1458 mutex_unlock(&udev->cmdr_lock);
1459
1460 return 0;
1461 }
1462
1463 /*
1464 * mmap code from uio.c. Copied here because we want to hook mmap()
1465 * and this stuff must come along.
1466 */
tcmu_find_mem_index(struct vm_area_struct * vma)1467 static int tcmu_find_mem_index(struct vm_area_struct *vma)
1468 {
1469 struct tcmu_dev *udev = vma->vm_private_data;
1470 struct uio_info *info = &udev->uio_info;
1471
1472 if (vma->vm_pgoff < MAX_UIO_MAPS) {
1473 if (info->mem[vma->vm_pgoff].size == 0)
1474 return -1;
1475 return (int)vma->vm_pgoff;
1476 }
1477 return -1;
1478 }
1479
tcmu_try_get_block_page(struct tcmu_dev * udev,uint32_t dbi)1480 static struct page *tcmu_try_get_block_page(struct tcmu_dev *udev, uint32_t dbi)
1481 {
1482 struct page *page;
1483
1484 mutex_lock(&udev->cmdr_lock);
1485 page = tcmu_get_block_page(udev, dbi);
1486 if (likely(page)) {
1487 mutex_unlock(&udev->cmdr_lock);
1488 return page;
1489 }
1490
1491 /*
1492 * Userspace messed up and passed in a address not in the
1493 * data iov passed to it.
1494 */
1495 pr_err("Invalid addr to data block mapping (dbi %u) on device %s\n",
1496 dbi, udev->name);
1497 page = NULL;
1498 mutex_unlock(&udev->cmdr_lock);
1499
1500 return page;
1501 }
1502
tcmu_vma_fault(struct vm_fault * vmf)1503 static vm_fault_t tcmu_vma_fault(struct vm_fault *vmf)
1504 {
1505 struct tcmu_dev *udev = vmf->vma->vm_private_data;
1506 struct uio_info *info = &udev->uio_info;
1507 struct page *page;
1508 unsigned long offset;
1509 void *addr;
1510
1511 int mi = tcmu_find_mem_index(vmf->vma);
1512 if (mi < 0)
1513 return VM_FAULT_SIGBUS;
1514
1515 /*
1516 * We need to subtract mi because userspace uses offset = N*PAGE_SIZE
1517 * to use mem[N].
1518 */
1519 offset = (vmf->pgoff - mi) << PAGE_SHIFT;
1520
1521 if (offset < udev->data_off) {
1522 /* For the vmalloc()ed cmd area pages */
1523 addr = (void *)(unsigned long)info->mem[mi].addr + offset;
1524 page = vmalloc_to_page(addr);
1525 } else {
1526 uint32_t dbi;
1527
1528 /* For the dynamically growing data area pages */
1529 dbi = (offset - udev->data_off) / DATA_BLOCK_SIZE;
1530 page = tcmu_try_get_block_page(udev, dbi);
1531 if (!page)
1532 return VM_FAULT_SIGBUS;
1533 }
1534
1535 get_page(page);
1536 vmf->page = page;
1537 return 0;
1538 }
1539
1540 static const struct vm_operations_struct tcmu_vm_ops = {
1541 .fault = tcmu_vma_fault,
1542 };
1543
tcmu_mmap(struct uio_info * info,struct vm_area_struct * vma)1544 static int tcmu_mmap(struct uio_info *info, struct vm_area_struct *vma)
1545 {
1546 struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
1547
1548 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1549 vma->vm_ops = &tcmu_vm_ops;
1550
1551 vma->vm_private_data = udev;
1552
1553 /* Ensure the mmap is exactly the right size */
1554 if (vma_pages(vma) != (udev->ring_size >> PAGE_SHIFT))
1555 return -EINVAL;
1556
1557 return 0;
1558 }
1559
tcmu_open(struct uio_info * info,struct inode * inode)1560 static int tcmu_open(struct uio_info *info, struct inode *inode)
1561 {
1562 struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
1563
1564 /* O_EXCL not supported for char devs, so fake it? */
1565 if (test_and_set_bit(TCMU_DEV_BIT_OPEN, &udev->flags))
1566 return -EBUSY;
1567
1568 udev->inode = inode;
1569 kref_get(&udev->kref);
1570
1571 pr_debug("open\n");
1572
1573 return 0;
1574 }
1575
tcmu_dev_call_rcu(struct rcu_head * p)1576 static void tcmu_dev_call_rcu(struct rcu_head *p)
1577 {
1578 struct se_device *dev = container_of(p, struct se_device, rcu_head);
1579 struct tcmu_dev *udev = TCMU_DEV(dev);
1580
1581 kfree(udev->uio_info.name);
1582 kfree(udev->name);
1583 kfree(udev);
1584 }
1585
tcmu_check_and_free_pending_cmd(struct tcmu_cmd * cmd)1586 static int tcmu_check_and_free_pending_cmd(struct tcmu_cmd *cmd)
1587 {
1588 if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) {
1589 kmem_cache_free(tcmu_cmd_cache, cmd);
1590 return 0;
1591 }
1592 return -EINVAL;
1593 }
1594
tcmu_blocks_release(struct radix_tree_root * blocks,int start,int end)1595 static void tcmu_blocks_release(struct radix_tree_root *blocks,
1596 int start, int end)
1597 {
1598 int i;
1599 struct page *page;
1600
1601 for (i = start; i < end; i++) {
1602 page = radix_tree_delete(blocks, i);
1603 if (page) {
1604 __free_page(page);
1605 atomic_dec(&global_db_count);
1606 }
1607 }
1608 }
1609
tcmu_dev_kref_release(struct kref * kref)1610 static void tcmu_dev_kref_release(struct kref *kref)
1611 {
1612 struct tcmu_dev *udev = container_of(kref, struct tcmu_dev, kref);
1613 struct se_device *dev = &udev->se_dev;
1614 struct tcmu_cmd *cmd;
1615 bool all_expired = true;
1616 int i;
1617
1618 vfree(udev->mb_addr);
1619 udev->mb_addr = NULL;
1620
1621 spin_lock_bh(&timed_out_udevs_lock);
1622 if (!list_empty(&udev->timedout_entry))
1623 list_del(&udev->timedout_entry);
1624 spin_unlock_bh(&timed_out_udevs_lock);
1625
1626 /* Upper layer should drain all requests before calling this */
1627 mutex_lock(&udev->cmdr_lock);
1628 idr_for_each_entry(&udev->commands, cmd, i) {
1629 if (tcmu_check_and_free_pending_cmd(cmd) != 0)
1630 all_expired = false;
1631 }
1632 idr_destroy(&udev->commands);
1633 WARN_ON(!all_expired);
1634
1635 tcmu_blocks_release(&udev->data_blocks, 0, udev->dbi_max + 1);
1636 kfree(udev->data_bitmap);
1637 mutex_unlock(&udev->cmdr_lock);
1638
1639 call_rcu(&dev->rcu_head, tcmu_dev_call_rcu);
1640 }
1641
tcmu_release(struct uio_info * info,struct inode * inode)1642 static int tcmu_release(struct uio_info *info, struct inode *inode)
1643 {
1644 struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
1645
1646 clear_bit(TCMU_DEV_BIT_OPEN, &udev->flags);
1647
1648 pr_debug("close\n");
1649 /* release ref from open */
1650 kref_put(&udev->kref, tcmu_dev_kref_release);
1651 return 0;
1652 }
1653
tcmu_init_genl_cmd_reply(struct tcmu_dev * udev,int cmd)1654 static int tcmu_init_genl_cmd_reply(struct tcmu_dev *udev, int cmd)
1655 {
1656 struct tcmu_nl_cmd *nl_cmd = &udev->curr_nl_cmd;
1657
1658 if (!tcmu_kern_cmd_reply_supported)
1659 return 0;
1660
1661 if (udev->nl_reply_supported <= 0)
1662 return 0;
1663
1664 mutex_lock(&tcmu_nl_cmd_mutex);
1665
1666 if (tcmu_netlink_blocked) {
1667 mutex_unlock(&tcmu_nl_cmd_mutex);
1668 pr_warn("Failing nl cmd %d on %s. Interface is blocked.\n", cmd,
1669 udev->name);
1670 return -EAGAIN;
1671 }
1672
1673 if (nl_cmd->cmd != TCMU_CMD_UNSPEC) {
1674 mutex_unlock(&tcmu_nl_cmd_mutex);
1675 pr_warn("netlink cmd %d already executing on %s\n",
1676 nl_cmd->cmd, udev->name);
1677 return -EBUSY;
1678 }
1679
1680 memset(nl_cmd, 0, sizeof(*nl_cmd));
1681 nl_cmd->cmd = cmd;
1682 nl_cmd->udev = udev;
1683 init_completion(&nl_cmd->complete);
1684 INIT_LIST_HEAD(&nl_cmd->nl_list);
1685
1686 list_add_tail(&nl_cmd->nl_list, &tcmu_nl_cmd_list);
1687
1688 mutex_unlock(&tcmu_nl_cmd_mutex);
1689 return 0;
1690 }
1691
tcmu_wait_genl_cmd_reply(struct tcmu_dev * udev)1692 static int tcmu_wait_genl_cmd_reply(struct tcmu_dev *udev)
1693 {
1694 struct tcmu_nl_cmd *nl_cmd = &udev->curr_nl_cmd;
1695 int ret;
1696
1697 if (!tcmu_kern_cmd_reply_supported)
1698 return 0;
1699
1700 if (udev->nl_reply_supported <= 0)
1701 return 0;
1702
1703 pr_debug("sleeping for nl reply\n");
1704 wait_for_completion(&nl_cmd->complete);
1705
1706 mutex_lock(&tcmu_nl_cmd_mutex);
1707 nl_cmd->cmd = TCMU_CMD_UNSPEC;
1708 ret = nl_cmd->status;
1709 mutex_unlock(&tcmu_nl_cmd_mutex);
1710
1711 return ret;
1712 }
1713
tcmu_netlink_event_init(struct tcmu_dev * udev,enum tcmu_genl_cmd cmd,struct sk_buff ** buf,void ** hdr)1714 static int tcmu_netlink_event_init(struct tcmu_dev *udev,
1715 enum tcmu_genl_cmd cmd,
1716 struct sk_buff **buf, void **hdr)
1717 {
1718 struct sk_buff *skb;
1719 void *msg_header;
1720 int ret = -ENOMEM;
1721
1722 skb = genlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
1723 if (!skb)
1724 return ret;
1725
1726 msg_header = genlmsg_put(skb, 0, 0, &tcmu_genl_family, 0, cmd);
1727 if (!msg_header)
1728 goto free_skb;
1729
1730 ret = nla_put_string(skb, TCMU_ATTR_DEVICE, udev->uio_info.name);
1731 if (ret < 0)
1732 goto free_skb;
1733
1734 ret = nla_put_u32(skb, TCMU_ATTR_MINOR, udev->uio_info.uio_dev->minor);
1735 if (ret < 0)
1736 goto free_skb;
1737
1738 ret = nla_put_u32(skb, TCMU_ATTR_DEVICE_ID, udev->se_dev.dev_index);
1739 if (ret < 0)
1740 goto free_skb;
1741
1742 *buf = skb;
1743 *hdr = msg_header;
1744 return ret;
1745
1746 free_skb:
1747 nlmsg_free(skb);
1748 return ret;
1749 }
1750
tcmu_netlink_event_send(struct tcmu_dev * udev,enum tcmu_genl_cmd cmd,struct sk_buff * skb,void * msg_header)1751 static int tcmu_netlink_event_send(struct tcmu_dev *udev,
1752 enum tcmu_genl_cmd cmd,
1753 struct sk_buff *skb, void *msg_header)
1754 {
1755 int ret;
1756
1757 genlmsg_end(skb, msg_header);
1758
1759 ret = tcmu_init_genl_cmd_reply(udev, cmd);
1760 if (ret) {
1761 nlmsg_free(skb);
1762 return ret;
1763 }
1764
1765 ret = genlmsg_multicast_allns(&tcmu_genl_family, skb, 0,
1766 TCMU_MCGRP_CONFIG, GFP_KERNEL);
1767 /* We don't care if no one is listening */
1768 if (ret == -ESRCH)
1769 ret = 0;
1770 if (!ret)
1771 ret = tcmu_wait_genl_cmd_reply(udev);
1772 return ret;
1773 }
1774
tcmu_send_dev_add_event(struct tcmu_dev * udev)1775 static int tcmu_send_dev_add_event(struct tcmu_dev *udev)
1776 {
1777 struct sk_buff *skb = NULL;
1778 void *msg_header = NULL;
1779 int ret = 0;
1780
1781 ret = tcmu_netlink_event_init(udev, TCMU_CMD_ADDED_DEVICE, &skb,
1782 &msg_header);
1783 if (ret < 0)
1784 return ret;
1785 return tcmu_netlink_event_send(udev, TCMU_CMD_ADDED_DEVICE, skb,
1786 msg_header);
1787 }
1788
tcmu_send_dev_remove_event(struct tcmu_dev * udev)1789 static int tcmu_send_dev_remove_event(struct tcmu_dev *udev)
1790 {
1791 struct sk_buff *skb = NULL;
1792 void *msg_header = NULL;
1793 int ret = 0;
1794
1795 ret = tcmu_netlink_event_init(udev, TCMU_CMD_REMOVED_DEVICE,
1796 &skb, &msg_header);
1797 if (ret < 0)
1798 return ret;
1799 return tcmu_netlink_event_send(udev, TCMU_CMD_REMOVED_DEVICE,
1800 skb, msg_header);
1801 }
1802
tcmu_update_uio_info(struct tcmu_dev * udev)1803 static int tcmu_update_uio_info(struct tcmu_dev *udev)
1804 {
1805 struct tcmu_hba *hba = udev->hba->hba_ptr;
1806 struct uio_info *info;
1807 size_t size, used;
1808 char *str;
1809
1810 info = &udev->uio_info;
1811 size = snprintf(NULL, 0, "tcm-user/%u/%s/%s", hba->host_id, udev->name,
1812 udev->dev_config);
1813 size += 1; /* for \0 */
1814 str = kmalloc(size, GFP_KERNEL);
1815 if (!str)
1816 return -ENOMEM;
1817
1818 used = snprintf(str, size, "tcm-user/%u/%s", hba->host_id, udev->name);
1819 if (udev->dev_config[0])
1820 snprintf(str + used, size - used, "/%s", udev->dev_config);
1821
1822 /* If the old string exists, free it */
1823 kfree(info->name);
1824 info->name = str;
1825
1826 return 0;
1827 }
1828
tcmu_configure_device(struct se_device * dev)1829 static int tcmu_configure_device(struct se_device *dev)
1830 {
1831 struct tcmu_dev *udev = TCMU_DEV(dev);
1832 struct uio_info *info;
1833 struct tcmu_mailbox *mb;
1834 int ret = 0;
1835
1836 ret = tcmu_update_uio_info(udev);
1837 if (ret)
1838 return ret;
1839
1840 info = &udev->uio_info;
1841
1842 mutex_lock(&udev->cmdr_lock);
1843 udev->data_bitmap = kcalloc(BITS_TO_LONGS(udev->max_blocks),
1844 sizeof(unsigned long),
1845 GFP_KERNEL);
1846 mutex_unlock(&udev->cmdr_lock);
1847 if (!udev->data_bitmap) {
1848 ret = -ENOMEM;
1849 goto err_bitmap_alloc;
1850 }
1851
1852 udev->mb_addr = vzalloc(CMDR_SIZE);
1853 if (!udev->mb_addr) {
1854 ret = -ENOMEM;
1855 goto err_vzalloc;
1856 }
1857
1858 /* mailbox fits in first part of CMDR space */
1859 udev->cmdr_size = CMDR_SIZE - CMDR_OFF;
1860 udev->data_off = CMDR_SIZE;
1861 udev->data_size = udev->max_blocks * DATA_BLOCK_SIZE;
1862 udev->dbi_thresh = 0; /* Default in Idle state */
1863
1864 /* Initialise the mailbox of the ring buffer */
1865 mb = udev->mb_addr;
1866 mb->version = TCMU_MAILBOX_VERSION;
1867 mb->flags = TCMU_MAILBOX_FLAG_CAP_OOOC | TCMU_MAILBOX_FLAG_CAP_READ_LEN;
1868 mb->cmdr_off = CMDR_OFF;
1869 mb->cmdr_size = udev->cmdr_size;
1870
1871 WARN_ON(!PAGE_ALIGNED(udev->data_off));
1872 WARN_ON(udev->data_size % PAGE_SIZE);
1873 WARN_ON(udev->data_size % DATA_BLOCK_SIZE);
1874
1875 info->version = __stringify(TCMU_MAILBOX_VERSION);
1876
1877 info->mem[0].name = "tcm-user command & data buffer";
1878 info->mem[0].addr = (phys_addr_t)(uintptr_t)udev->mb_addr;
1879 info->mem[0].size = udev->ring_size = udev->data_size + CMDR_SIZE;
1880 info->mem[0].memtype = UIO_MEM_NONE;
1881
1882 info->irqcontrol = tcmu_irqcontrol;
1883 info->irq = UIO_IRQ_CUSTOM;
1884
1885 info->mmap = tcmu_mmap;
1886 info->open = tcmu_open;
1887 info->release = tcmu_release;
1888
1889 ret = uio_register_device(tcmu_root_device, info);
1890 if (ret)
1891 goto err_register;
1892
1893 /* User can set hw_block_size before enable the device */
1894 if (dev->dev_attrib.hw_block_size == 0)
1895 dev->dev_attrib.hw_block_size = 512;
1896 /* Other attributes can be configured in userspace */
1897 if (!dev->dev_attrib.hw_max_sectors)
1898 dev->dev_attrib.hw_max_sectors = 128;
1899 if (!dev->dev_attrib.emulate_write_cache)
1900 dev->dev_attrib.emulate_write_cache = 0;
1901 dev->dev_attrib.hw_queue_depth = 128;
1902
1903 /* If user didn't explicitly disable netlink reply support, use
1904 * module scope setting.
1905 */
1906 if (udev->nl_reply_supported >= 0)
1907 udev->nl_reply_supported = tcmu_kern_cmd_reply_supported;
1908
1909 /*
1910 * Get a ref incase userspace does a close on the uio device before
1911 * LIO has initiated tcmu_free_device.
1912 */
1913 kref_get(&udev->kref);
1914
1915 ret = tcmu_send_dev_add_event(udev);
1916 if (ret)
1917 goto err_netlink;
1918
1919 mutex_lock(&root_udev_mutex);
1920 list_add(&udev->node, &root_udev);
1921 mutex_unlock(&root_udev_mutex);
1922
1923 return 0;
1924
1925 err_netlink:
1926 kref_put(&udev->kref, tcmu_dev_kref_release);
1927 uio_unregister_device(&udev->uio_info);
1928 err_register:
1929 vfree(udev->mb_addr);
1930 udev->mb_addr = NULL;
1931 err_vzalloc:
1932 kfree(udev->data_bitmap);
1933 udev->data_bitmap = NULL;
1934 err_bitmap_alloc:
1935 kfree(info->name);
1936 info->name = NULL;
1937
1938 return ret;
1939 }
1940
tcmu_free_device(struct se_device * dev)1941 static void tcmu_free_device(struct se_device *dev)
1942 {
1943 struct tcmu_dev *udev = TCMU_DEV(dev);
1944
1945 /* release ref from init */
1946 kref_put(&udev->kref, tcmu_dev_kref_release);
1947 }
1948
tcmu_destroy_device(struct se_device * dev)1949 static void tcmu_destroy_device(struct se_device *dev)
1950 {
1951 struct tcmu_dev *udev = TCMU_DEV(dev);
1952
1953 del_timer_sync(&udev->cmd_timer);
1954 del_timer_sync(&udev->qfull_timer);
1955
1956 mutex_lock(&root_udev_mutex);
1957 list_del(&udev->node);
1958 mutex_unlock(&root_udev_mutex);
1959
1960 tcmu_send_dev_remove_event(udev);
1961
1962 uio_unregister_device(&udev->uio_info);
1963
1964 /* release ref from configure */
1965 kref_put(&udev->kref, tcmu_dev_kref_release);
1966 }
1967
tcmu_unblock_dev(struct tcmu_dev * udev)1968 static void tcmu_unblock_dev(struct tcmu_dev *udev)
1969 {
1970 mutex_lock(&udev->cmdr_lock);
1971 clear_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags);
1972 mutex_unlock(&udev->cmdr_lock);
1973 }
1974
tcmu_block_dev(struct tcmu_dev * udev)1975 static void tcmu_block_dev(struct tcmu_dev *udev)
1976 {
1977 mutex_lock(&udev->cmdr_lock);
1978
1979 if (test_and_set_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags))
1980 goto unlock;
1981
1982 /* complete IO that has executed successfully */
1983 tcmu_handle_completions(udev);
1984 /* fail IO waiting to be queued */
1985 run_cmdr_queue(udev, true);
1986
1987 unlock:
1988 mutex_unlock(&udev->cmdr_lock);
1989 }
1990
tcmu_reset_ring(struct tcmu_dev * udev,u8 err_level)1991 static void tcmu_reset_ring(struct tcmu_dev *udev, u8 err_level)
1992 {
1993 struct tcmu_mailbox *mb;
1994 struct tcmu_cmd *cmd;
1995 int i;
1996
1997 mutex_lock(&udev->cmdr_lock);
1998
1999 idr_for_each_entry(&udev->commands, cmd, i) {
2000 if (!list_empty(&cmd->cmdr_queue_entry))
2001 continue;
2002
2003 pr_debug("removing cmd %u on dev %s from ring (is expired %d)\n",
2004 cmd->cmd_id, udev->name,
2005 test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags));
2006
2007 idr_remove(&udev->commands, i);
2008 if (!test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) {
2009 if (err_level == 1) {
2010 /*
2011 * Userspace was not able to start the
2012 * command or it is retryable.
2013 */
2014 target_complete_cmd(cmd->se_cmd, SAM_STAT_BUSY);
2015 } else {
2016 /* hard failure */
2017 target_complete_cmd(cmd->se_cmd,
2018 SAM_STAT_CHECK_CONDITION);
2019 }
2020 }
2021 tcmu_cmd_free_data(cmd, cmd->dbi_cnt);
2022 tcmu_free_cmd(cmd);
2023 }
2024
2025 mb = udev->mb_addr;
2026 tcmu_flush_dcache_range(mb, sizeof(*mb));
2027 pr_debug("mb last %u head %u tail %u\n", udev->cmdr_last_cleaned,
2028 mb->cmd_tail, mb->cmd_head);
2029
2030 udev->cmdr_last_cleaned = 0;
2031 mb->cmd_tail = 0;
2032 mb->cmd_head = 0;
2033 tcmu_flush_dcache_range(mb, sizeof(*mb));
2034
2035 del_timer(&udev->cmd_timer);
2036
2037 mutex_unlock(&udev->cmdr_lock);
2038 }
2039
2040 enum {
2041 Opt_dev_config, Opt_dev_size, Opt_hw_block_size, Opt_hw_max_sectors,
2042 Opt_nl_reply_supported, Opt_max_data_area_mb, Opt_err,
2043 };
2044
2045 static match_table_t tokens = {
2046 {Opt_dev_config, "dev_config=%s"},
2047 {Opt_dev_size, "dev_size=%s"},
2048 {Opt_hw_block_size, "hw_block_size=%d"},
2049 {Opt_hw_max_sectors, "hw_max_sectors=%d"},
2050 {Opt_nl_reply_supported, "nl_reply_supported=%d"},
2051 {Opt_max_data_area_mb, "max_data_area_mb=%d"},
2052 {Opt_err, NULL}
2053 };
2054
tcmu_set_dev_attrib(substring_t * arg,u32 * dev_attrib)2055 static int tcmu_set_dev_attrib(substring_t *arg, u32 *dev_attrib)
2056 {
2057 int val, ret;
2058
2059 ret = match_int(arg, &val);
2060 if (ret < 0) {
2061 pr_err("match_int() failed for dev attrib. Error %d.\n",
2062 ret);
2063 return ret;
2064 }
2065
2066 if (val <= 0) {
2067 pr_err("Invalid dev attrib value %d. Must be greater than zero.\n",
2068 val);
2069 return -EINVAL;
2070 }
2071 *dev_attrib = val;
2072 return 0;
2073 }
2074
tcmu_set_max_blocks_param(struct tcmu_dev * udev,substring_t * arg)2075 static int tcmu_set_max_blocks_param(struct tcmu_dev *udev, substring_t *arg)
2076 {
2077 int val, ret;
2078
2079 ret = match_int(arg, &val);
2080 if (ret < 0) {
2081 pr_err("match_int() failed for max_data_area_mb=. Error %d.\n",
2082 ret);
2083 return ret;
2084 }
2085
2086 if (val <= 0) {
2087 pr_err("Invalid max_data_area %d.\n", val);
2088 return -EINVAL;
2089 }
2090
2091 mutex_lock(&udev->cmdr_lock);
2092 if (udev->data_bitmap) {
2093 pr_err("Cannot set max_data_area_mb after it has been enabled.\n");
2094 ret = -EINVAL;
2095 goto unlock;
2096 }
2097
2098 udev->max_blocks = TCMU_MBS_TO_BLOCKS(val);
2099 if (udev->max_blocks > tcmu_global_max_blocks) {
2100 pr_err("%d is too large. Adjusting max_data_area_mb to global limit of %u\n",
2101 val, TCMU_BLOCKS_TO_MBS(tcmu_global_max_blocks));
2102 udev->max_blocks = tcmu_global_max_blocks;
2103 }
2104
2105 unlock:
2106 mutex_unlock(&udev->cmdr_lock);
2107 return ret;
2108 }
2109
tcmu_set_configfs_dev_params(struct se_device * dev,const char * page,ssize_t count)2110 static ssize_t tcmu_set_configfs_dev_params(struct se_device *dev,
2111 const char *page, ssize_t count)
2112 {
2113 struct tcmu_dev *udev = TCMU_DEV(dev);
2114 char *orig, *ptr, *opts;
2115 substring_t args[MAX_OPT_ARGS];
2116 int ret = 0, token;
2117
2118 opts = kstrdup(page, GFP_KERNEL);
2119 if (!opts)
2120 return -ENOMEM;
2121
2122 orig = opts;
2123
2124 while ((ptr = strsep(&opts, ",\n")) != NULL) {
2125 if (!*ptr)
2126 continue;
2127
2128 token = match_token(ptr, tokens, args);
2129 switch (token) {
2130 case Opt_dev_config:
2131 if (match_strlcpy(udev->dev_config, &args[0],
2132 TCMU_CONFIG_LEN) == 0) {
2133 ret = -EINVAL;
2134 break;
2135 }
2136 pr_debug("TCMU: Referencing Path: %s\n", udev->dev_config);
2137 break;
2138 case Opt_dev_size:
2139 ret = match_u64(&args[0], &udev->dev_size);
2140 if (ret < 0)
2141 pr_err("match_u64() failed for dev_size=. Error %d.\n",
2142 ret);
2143 break;
2144 case Opt_hw_block_size:
2145 ret = tcmu_set_dev_attrib(&args[0],
2146 &(dev->dev_attrib.hw_block_size));
2147 break;
2148 case Opt_hw_max_sectors:
2149 ret = tcmu_set_dev_attrib(&args[0],
2150 &(dev->dev_attrib.hw_max_sectors));
2151 break;
2152 case Opt_nl_reply_supported:
2153 ret = match_int(&args[0], &udev->nl_reply_supported);
2154 if (ret < 0)
2155 pr_err("match_int() failed for nl_reply_supported=. Error %d.\n",
2156 ret);
2157 break;
2158 case Opt_max_data_area_mb:
2159 ret = tcmu_set_max_blocks_param(udev, &args[0]);
2160 break;
2161 default:
2162 break;
2163 }
2164
2165 if (ret)
2166 break;
2167 }
2168
2169 kfree(orig);
2170 return (!ret) ? count : ret;
2171 }
2172
tcmu_show_configfs_dev_params(struct se_device * dev,char * b)2173 static ssize_t tcmu_show_configfs_dev_params(struct se_device *dev, char *b)
2174 {
2175 struct tcmu_dev *udev = TCMU_DEV(dev);
2176 ssize_t bl = 0;
2177
2178 bl = sprintf(b + bl, "Config: %s ",
2179 udev->dev_config[0] ? udev->dev_config : "NULL");
2180 bl += sprintf(b + bl, "Size: %llu ", udev->dev_size);
2181 bl += sprintf(b + bl, "MaxDataAreaMB: %u\n",
2182 TCMU_BLOCKS_TO_MBS(udev->max_blocks));
2183
2184 return bl;
2185 }
2186
tcmu_get_blocks(struct se_device * dev)2187 static sector_t tcmu_get_blocks(struct se_device *dev)
2188 {
2189 struct tcmu_dev *udev = TCMU_DEV(dev);
2190
2191 return div_u64(udev->dev_size - dev->dev_attrib.block_size,
2192 dev->dev_attrib.block_size);
2193 }
2194
2195 static sense_reason_t
tcmu_parse_cdb(struct se_cmd * cmd)2196 tcmu_parse_cdb(struct se_cmd *cmd)
2197 {
2198 return passthrough_parse_cdb(cmd, tcmu_queue_cmd);
2199 }
2200
tcmu_cmd_time_out_show(struct config_item * item,char * page)2201 static ssize_t tcmu_cmd_time_out_show(struct config_item *item, char *page)
2202 {
2203 struct se_dev_attrib *da = container_of(to_config_group(item),
2204 struct se_dev_attrib, da_group);
2205 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2206
2207 return snprintf(page, PAGE_SIZE, "%lu\n", udev->cmd_time_out / MSEC_PER_SEC);
2208 }
2209
tcmu_cmd_time_out_store(struct config_item * item,const char * page,size_t count)2210 static ssize_t tcmu_cmd_time_out_store(struct config_item *item, const char *page,
2211 size_t count)
2212 {
2213 struct se_dev_attrib *da = container_of(to_config_group(item),
2214 struct se_dev_attrib, da_group);
2215 struct tcmu_dev *udev = container_of(da->da_dev,
2216 struct tcmu_dev, se_dev);
2217 u32 val;
2218 int ret;
2219
2220 if (da->da_dev->export_count) {
2221 pr_err("Unable to set tcmu cmd_time_out while exports exist\n");
2222 return -EINVAL;
2223 }
2224
2225 ret = kstrtou32(page, 0, &val);
2226 if (ret < 0)
2227 return ret;
2228
2229 udev->cmd_time_out = val * MSEC_PER_SEC;
2230 return count;
2231 }
2232 CONFIGFS_ATTR(tcmu_, cmd_time_out);
2233
tcmu_qfull_time_out_show(struct config_item * item,char * page)2234 static ssize_t tcmu_qfull_time_out_show(struct config_item *item, char *page)
2235 {
2236 struct se_dev_attrib *da = container_of(to_config_group(item),
2237 struct se_dev_attrib, da_group);
2238 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2239
2240 return snprintf(page, PAGE_SIZE, "%ld\n", udev->qfull_time_out <= 0 ?
2241 udev->qfull_time_out :
2242 udev->qfull_time_out / MSEC_PER_SEC);
2243 }
2244
tcmu_qfull_time_out_store(struct config_item * item,const char * page,size_t count)2245 static ssize_t tcmu_qfull_time_out_store(struct config_item *item,
2246 const char *page, size_t count)
2247 {
2248 struct se_dev_attrib *da = container_of(to_config_group(item),
2249 struct se_dev_attrib, da_group);
2250 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2251 s32 val;
2252 int ret;
2253
2254 ret = kstrtos32(page, 0, &val);
2255 if (ret < 0)
2256 return ret;
2257
2258 if (val >= 0) {
2259 udev->qfull_time_out = val * MSEC_PER_SEC;
2260 } else if (val == -1) {
2261 udev->qfull_time_out = val;
2262 } else {
2263 printk(KERN_ERR "Invalid qfull timeout value %d\n", val);
2264 return -EINVAL;
2265 }
2266 return count;
2267 }
2268 CONFIGFS_ATTR(tcmu_, qfull_time_out);
2269
tcmu_max_data_area_mb_show(struct config_item * item,char * page)2270 static ssize_t tcmu_max_data_area_mb_show(struct config_item *item, char *page)
2271 {
2272 struct se_dev_attrib *da = container_of(to_config_group(item),
2273 struct se_dev_attrib, da_group);
2274 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2275
2276 return snprintf(page, PAGE_SIZE, "%u\n",
2277 TCMU_BLOCKS_TO_MBS(udev->max_blocks));
2278 }
2279 CONFIGFS_ATTR_RO(tcmu_, max_data_area_mb);
2280
tcmu_dev_config_show(struct config_item * item,char * page)2281 static ssize_t tcmu_dev_config_show(struct config_item *item, char *page)
2282 {
2283 struct se_dev_attrib *da = container_of(to_config_group(item),
2284 struct se_dev_attrib, da_group);
2285 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2286
2287 return snprintf(page, PAGE_SIZE, "%s\n", udev->dev_config);
2288 }
2289
tcmu_send_dev_config_event(struct tcmu_dev * udev,const char * reconfig_data)2290 static int tcmu_send_dev_config_event(struct tcmu_dev *udev,
2291 const char *reconfig_data)
2292 {
2293 struct sk_buff *skb = NULL;
2294 void *msg_header = NULL;
2295 int ret = 0;
2296
2297 ret = tcmu_netlink_event_init(udev, TCMU_CMD_RECONFIG_DEVICE,
2298 &skb, &msg_header);
2299 if (ret < 0)
2300 return ret;
2301 ret = nla_put_string(skb, TCMU_ATTR_DEV_CFG, reconfig_data);
2302 if (ret < 0) {
2303 nlmsg_free(skb);
2304 return ret;
2305 }
2306 return tcmu_netlink_event_send(udev, TCMU_CMD_RECONFIG_DEVICE,
2307 skb, msg_header);
2308 }
2309
2310
tcmu_dev_config_store(struct config_item * item,const char * page,size_t count)2311 static ssize_t tcmu_dev_config_store(struct config_item *item, const char *page,
2312 size_t count)
2313 {
2314 struct se_dev_attrib *da = container_of(to_config_group(item),
2315 struct se_dev_attrib, da_group);
2316 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2317 int ret, len;
2318
2319 len = strlen(page);
2320 if (!len || len > TCMU_CONFIG_LEN - 1)
2321 return -EINVAL;
2322
2323 /* Check if device has been configured before */
2324 if (target_dev_configured(&udev->se_dev)) {
2325 ret = tcmu_send_dev_config_event(udev, page);
2326 if (ret) {
2327 pr_err("Unable to reconfigure device\n");
2328 return ret;
2329 }
2330 strlcpy(udev->dev_config, page, TCMU_CONFIG_LEN);
2331
2332 ret = tcmu_update_uio_info(udev);
2333 if (ret)
2334 return ret;
2335 return count;
2336 }
2337 strlcpy(udev->dev_config, page, TCMU_CONFIG_LEN);
2338
2339 return count;
2340 }
2341 CONFIGFS_ATTR(tcmu_, dev_config);
2342
tcmu_dev_size_show(struct config_item * item,char * page)2343 static ssize_t tcmu_dev_size_show(struct config_item *item, char *page)
2344 {
2345 struct se_dev_attrib *da = container_of(to_config_group(item),
2346 struct se_dev_attrib, da_group);
2347 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2348
2349 return snprintf(page, PAGE_SIZE, "%llu\n", udev->dev_size);
2350 }
2351
tcmu_send_dev_size_event(struct tcmu_dev * udev,u64 size)2352 static int tcmu_send_dev_size_event(struct tcmu_dev *udev, u64 size)
2353 {
2354 struct sk_buff *skb = NULL;
2355 void *msg_header = NULL;
2356 int ret = 0;
2357
2358 ret = tcmu_netlink_event_init(udev, TCMU_CMD_RECONFIG_DEVICE,
2359 &skb, &msg_header);
2360 if (ret < 0)
2361 return ret;
2362 ret = nla_put_u64_64bit(skb, TCMU_ATTR_DEV_SIZE,
2363 size, TCMU_ATTR_PAD);
2364 if (ret < 0) {
2365 nlmsg_free(skb);
2366 return ret;
2367 }
2368 return tcmu_netlink_event_send(udev, TCMU_CMD_RECONFIG_DEVICE,
2369 skb, msg_header);
2370 }
2371
tcmu_dev_size_store(struct config_item * item,const char * page,size_t count)2372 static ssize_t tcmu_dev_size_store(struct config_item *item, const char *page,
2373 size_t count)
2374 {
2375 struct se_dev_attrib *da = container_of(to_config_group(item),
2376 struct se_dev_attrib, da_group);
2377 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2378 u64 val;
2379 int ret;
2380
2381 ret = kstrtou64(page, 0, &val);
2382 if (ret < 0)
2383 return ret;
2384
2385 /* Check if device has been configured before */
2386 if (target_dev_configured(&udev->se_dev)) {
2387 ret = tcmu_send_dev_size_event(udev, val);
2388 if (ret) {
2389 pr_err("Unable to reconfigure device\n");
2390 return ret;
2391 }
2392 }
2393 udev->dev_size = val;
2394 return count;
2395 }
2396 CONFIGFS_ATTR(tcmu_, dev_size);
2397
tcmu_nl_reply_supported_show(struct config_item * item,char * page)2398 static ssize_t tcmu_nl_reply_supported_show(struct config_item *item,
2399 char *page)
2400 {
2401 struct se_dev_attrib *da = container_of(to_config_group(item),
2402 struct se_dev_attrib, da_group);
2403 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2404
2405 return snprintf(page, PAGE_SIZE, "%d\n", udev->nl_reply_supported);
2406 }
2407
tcmu_nl_reply_supported_store(struct config_item * item,const char * page,size_t count)2408 static ssize_t tcmu_nl_reply_supported_store(struct config_item *item,
2409 const char *page, size_t count)
2410 {
2411 struct se_dev_attrib *da = container_of(to_config_group(item),
2412 struct se_dev_attrib, da_group);
2413 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2414 s8 val;
2415 int ret;
2416
2417 ret = kstrtos8(page, 0, &val);
2418 if (ret < 0)
2419 return ret;
2420
2421 udev->nl_reply_supported = val;
2422 return count;
2423 }
2424 CONFIGFS_ATTR(tcmu_, nl_reply_supported);
2425
tcmu_emulate_write_cache_show(struct config_item * item,char * page)2426 static ssize_t tcmu_emulate_write_cache_show(struct config_item *item,
2427 char *page)
2428 {
2429 struct se_dev_attrib *da = container_of(to_config_group(item),
2430 struct se_dev_attrib, da_group);
2431
2432 return snprintf(page, PAGE_SIZE, "%i\n", da->emulate_write_cache);
2433 }
2434
tcmu_send_emulate_write_cache(struct tcmu_dev * udev,u8 val)2435 static int tcmu_send_emulate_write_cache(struct tcmu_dev *udev, u8 val)
2436 {
2437 struct sk_buff *skb = NULL;
2438 void *msg_header = NULL;
2439 int ret = 0;
2440
2441 ret = tcmu_netlink_event_init(udev, TCMU_CMD_RECONFIG_DEVICE,
2442 &skb, &msg_header);
2443 if (ret < 0)
2444 return ret;
2445 ret = nla_put_u8(skb, TCMU_ATTR_WRITECACHE, val);
2446 if (ret < 0) {
2447 nlmsg_free(skb);
2448 return ret;
2449 }
2450 return tcmu_netlink_event_send(udev, TCMU_CMD_RECONFIG_DEVICE,
2451 skb, msg_header);
2452 }
2453
tcmu_emulate_write_cache_store(struct config_item * item,const char * page,size_t count)2454 static ssize_t tcmu_emulate_write_cache_store(struct config_item *item,
2455 const char *page, size_t count)
2456 {
2457 struct se_dev_attrib *da = container_of(to_config_group(item),
2458 struct se_dev_attrib, da_group);
2459 struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
2460 u8 val;
2461 int ret;
2462
2463 ret = kstrtou8(page, 0, &val);
2464 if (ret < 0)
2465 return ret;
2466
2467 /* Check if device has been configured before */
2468 if (target_dev_configured(&udev->se_dev)) {
2469 ret = tcmu_send_emulate_write_cache(udev, val);
2470 if (ret) {
2471 pr_err("Unable to reconfigure device\n");
2472 return ret;
2473 }
2474 }
2475
2476 da->emulate_write_cache = val;
2477 return count;
2478 }
2479 CONFIGFS_ATTR(tcmu_, emulate_write_cache);
2480
tcmu_block_dev_show(struct config_item * item,char * page)2481 static ssize_t tcmu_block_dev_show(struct config_item *item, char *page)
2482 {
2483 struct se_device *se_dev = container_of(to_config_group(item),
2484 struct se_device,
2485 dev_action_group);
2486 struct tcmu_dev *udev = TCMU_DEV(se_dev);
2487
2488 if (test_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags))
2489 return snprintf(page, PAGE_SIZE, "%s\n", "blocked");
2490 else
2491 return snprintf(page, PAGE_SIZE, "%s\n", "unblocked");
2492 }
2493
tcmu_block_dev_store(struct config_item * item,const char * page,size_t count)2494 static ssize_t tcmu_block_dev_store(struct config_item *item, const char *page,
2495 size_t count)
2496 {
2497 struct se_device *se_dev = container_of(to_config_group(item),
2498 struct se_device,
2499 dev_action_group);
2500 struct tcmu_dev *udev = TCMU_DEV(se_dev);
2501 u8 val;
2502 int ret;
2503
2504 if (!target_dev_configured(&udev->se_dev)) {
2505 pr_err("Device is not configured.\n");
2506 return -EINVAL;
2507 }
2508
2509 ret = kstrtou8(page, 0, &val);
2510 if (ret < 0)
2511 return ret;
2512
2513 if (val > 1) {
2514 pr_err("Invalid block value %d\n", val);
2515 return -EINVAL;
2516 }
2517
2518 if (!val)
2519 tcmu_unblock_dev(udev);
2520 else
2521 tcmu_block_dev(udev);
2522 return count;
2523 }
2524 CONFIGFS_ATTR(tcmu_, block_dev);
2525
tcmu_reset_ring_store(struct config_item * item,const char * page,size_t count)2526 static ssize_t tcmu_reset_ring_store(struct config_item *item, const char *page,
2527 size_t count)
2528 {
2529 struct se_device *se_dev = container_of(to_config_group(item),
2530 struct se_device,
2531 dev_action_group);
2532 struct tcmu_dev *udev = TCMU_DEV(se_dev);
2533 u8 val;
2534 int ret;
2535
2536 if (!target_dev_configured(&udev->se_dev)) {
2537 pr_err("Device is not configured.\n");
2538 return -EINVAL;
2539 }
2540
2541 ret = kstrtou8(page, 0, &val);
2542 if (ret < 0)
2543 return ret;
2544
2545 if (val != 1 && val != 2) {
2546 pr_err("Invalid reset ring value %d\n", val);
2547 return -EINVAL;
2548 }
2549
2550 tcmu_reset_ring(udev, val);
2551 return count;
2552 }
2553 CONFIGFS_ATTR_WO(tcmu_, reset_ring);
2554
2555 static struct configfs_attribute *tcmu_attrib_attrs[] = {
2556 &tcmu_attr_cmd_time_out,
2557 &tcmu_attr_qfull_time_out,
2558 &tcmu_attr_max_data_area_mb,
2559 &tcmu_attr_dev_config,
2560 &tcmu_attr_dev_size,
2561 &tcmu_attr_emulate_write_cache,
2562 &tcmu_attr_nl_reply_supported,
2563 NULL,
2564 };
2565
2566 static struct configfs_attribute **tcmu_attrs;
2567
2568 static struct configfs_attribute *tcmu_action_attrs[] = {
2569 &tcmu_attr_block_dev,
2570 &tcmu_attr_reset_ring,
2571 NULL,
2572 };
2573
2574 static struct target_backend_ops tcmu_ops = {
2575 .name = "user",
2576 .owner = THIS_MODULE,
2577 .transport_flags = TRANSPORT_FLAG_PASSTHROUGH,
2578 .attach_hba = tcmu_attach_hba,
2579 .detach_hba = tcmu_detach_hba,
2580 .alloc_device = tcmu_alloc_device,
2581 .configure_device = tcmu_configure_device,
2582 .destroy_device = tcmu_destroy_device,
2583 .free_device = tcmu_free_device,
2584 .parse_cdb = tcmu_parse_cdb,
2585 .set_configfs_dev_params = tcmu_set_configfs_dev_params,
2586 .show_configfs_dev_params = tcmu_show_configfs_dev_params,
2587 .get_device_type = sbc_get_device_type,
2588 .get_blocks = tcmu_get_blocks,
2589 .tb_dev_action_attrs = tcmu_action_attrs,
2590 };
2591
find_free_blocks(void)2592 static void find_free_blocks(void)
2593 {
2594 struct tcmu_dev *udev;
2595 loff_t off;
2596 u32 start, end, block, total_freed = 0;
2597
2598 if (atomic_read(&global_db_count) <= tcmu_global_max_blocks)
2599 return;
2600
2601 mutex_lock(&root_udev_mutex);
2602 list_for_each_entry(udev, &root_udev, node) {
2603 mutex_lock(&udev->cmdr_lock);
2604
2605 if (!target_dev_configured(&udev->se_dev)) {
2606 mutex_unlock(&udev->cmdr_lock);
2607 continue;
2608 }
2609
2610 /* Try to complete the finished commands first */
2611 tcmu_handle_completions(udev);
2612
2613 /* Skip the udevs in idle */
2614 if (!udev->dbi_thresh) {
2615 mutex_unlock(&udev->cmdr_lock);
2616 continue;
2617 }
2618
2619 end = udev->dbi_max + 1;
2620 block = find_last_bit(udev->data_bitmap, end);
2621 if (block == udev->dbi_max) {
2622 /*
2623 * The last bit is dbi_max, so it is not possible
2624 * reclaim any blocks.
2625 */
2626 mutex_unlock(&udev->cmdr_lock);
2627 continue;
2628 } else if (block == end) {
2629 /* The current udev will goto idle state */
2630 udev->dbi_thresh = start = 0;
2631 udev->dbi_max = 0;
2632 } else {
2633 udev->dbi_thresh = start = block + 1;
2634 udev->dbi_max = block;
2635 }
2636
2637 /* Here will truncate the data area from off */
2638 off = udev->data_off + start * DATA_BLOCK_SIZE;
2639 unmap_mapping_range(udev->inode->i_mapping, off, 0, 1);
2640
2641 /* Release the block pages */
2642 tcmu_blocks_release(&udev->data_blocks, start, end);
2643 mutex_unlock(&udev->cmdr_lock);
2644
2645 total_freed += end - start;
2646 pr_debug("Freed %u blocks (total %u) from %s.\n", end - start,
2647 total_freed, udev->name);
2648 }
2649 mutex_unlock(&root_udev_mutex);
2650
2651 if (atomic_read(&global_db_count) > tcmu_global_max_blocks)
2652 schedule_delayed_work(&tcmu_unmap_work, msecs_to_jiffies(5000));
2653 }
2654
check_timedout_devices(void)2655 static void check_timedout_devices(void)
2656 {
2657 struct tcmu_dev *udev, *tmp_dev;
2658 LIST_HEAD(devs);
2659
2660 spin_lock_bh(&timed_out_udevs_lock);
2661 list_splice_init(&timed_out_udevs, &devs);
2662
2663 list_for_each_entry_safe(udev, tmp_dev, &devs, timedout_entry) {
2664 list_del_init(&udev->timedout_entry);
2665 spin_unlock_bh(&timed_out_udevs_lock);
2666
2667 mutex_lock(&udev->cmdr_lock);
2668 idr_for_each(&udev->commands, tcmu_check_expired_cmd, NULL);
2669 mutex_unlock(&udev->cmdr_lock);
2670
2671 spin_lock_bh(&timed_out_udevs_lock);
2672 }
2673
2674 spin_unlock_bh(&timed_out_udevs_lock);
2675 }
2676
tcmu_unmap_work_fn(struct work_struct * work)2677 static void tcmu_unmap_work_fn(struct work_struct *work)
2678 {
2679 check_timedout_devices();
2680 find_free_blocks();
2681 }
2682
tcmu_module_init(void)2683 static int __init tcmu_module_init(void)
2684 {
2685 int ret, i, k, len = 0;
2686
2687 BUILD_BUG_ON((sizeof(struct tcmu_cmd_entry) % TCMU_OP_ALIGN_SIZE) != 0);
2688
2689 INIT_DELAYED_WORK(&tcmu_unmap_work, tcmu_unmap_work_fn);
2690
2691 tcmu_cmd_cache = kmem_cache_create("tcmu_cmd_cache",
2692 sizeof(struct tcmu_cmd),
2693 __alignof__(struct tcmu_cmd),
2694 0, NULL);
2695 if (!tcmu_cmd_cache)
2696 return -ENOMEM;
2697
2698 tcmu_root_device = root_device_register("tcm_user");
2699 if (IS_ERR(tcmu_root_device)) {
2700 ret = PTR_ERR(tcmu_root_device);
2701 goto out_free_cache;
2702 }
2703
2704 ret = genl_register_family(&tcmu_genl_family);
2705 if (ret < 0) {
2706 goto out_unreg_device;
2707 }
2708
2709 for (i = 0; passthrough_attrib_attrs[i] != NULL; i++) {
2710 len += sizeof(struct configfs_attribute *);
2711 }
2712 for (i = 0; tcmu_attrib_attrs[i] != NULL; i++) {
2713 len += sizeof(struct configfs_attribute *);
2714 }
2715 len += sizeof(struct configfs_attribute *);
2716
2717 tcmu_attrs = kzalloc(len, GFP_KERNEL);
2718 if (!tcmu_attrs) {
2719 ret = -ENOMEM;
2720 goto out_unreg_genl;
2721 }
2722
2723 for (i = 0; passthrough_attrib_attrs[i] != NULL; i++) {
2724 tcmu_attrs[i] = passthrough_attrib_attrs[i];
2725 }
2726 for (k = 0; tcmu_attrib_attrs[k] != NULL; k++) {
2727 tcmu_attrs[i] = tcmu_attrib_attrs[k];
2728 i++;
2729 }
2730 tcmu_ops.tb_dev_attrib_attrs = tcmu_attrs;
2731
2732 ret = transport_backend_register(&tcmu_ops);
2733 if (ret)
2734 goto out_attrs;
2735
2736 return 0;
2737
2738 out_attrs:
2739 kfree(tcmu_attrs);
2740 out_unreg_genl:
2741 genl_unregister_family(&tcmu_genl_family);
2742 out_unreg_device:
2743 root_device_unregister(tcmu_root_device);
2744 out_free_cache:
2745 kmem_cache_destroy(tcmu_cmd_cache);
2746
2747 return ret;
2748 }
2749
tcmu_module_exit(void)2750 static void __exit tcmu_module_exit(void)
2751 {
2752 cancel_delayed_work_sync(&tcmu_unmap_work);
2753 target_backend_unregister(&tcmu_ops);
2754 kfree(tcmu_attrs);
2755 genl_unregister_family(&tcmu_genl_family);
2756 root_device_unregister(tcmu_root_device);
2757 kmem_cache_destroy(tcmu_cmd_cache);
2758 }
2759
2760 MODULE_DESCRIPTION("TCM USER subsystem plugin");
2761 MODULE_AUTHOR("Shaohua Li <shli@kernel.org>");
2762 MODULE_AUTHOR("Andy Grover <agrover@redhat.com>");
2763 MODULE_LICENSE("GPL");
2764
2765 module_init(tcmu_module_init);
2766 module_exit(tcmu_module_exit);
2767