1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
4 * All rights reserved.
5 */
6
7 #include <linux/spi/spi.h>
8
9 #include "wilc_wfi_netdevice.h"
10
11 struct wilc_spi {
12 int crc_off;
13 int nint;
14 int has_thrpt_enh;
15 };
16
17 static struct wilc_spi g_spi;
18 static const struct wilc_hif_func wilc_hif_spi;
19
20 /********************************************
21 *
22 * Crc7
23 *
24 ********************************************/
25
26 static const u8 crc7_syndrome_table[256] = {
27 0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f,
28 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
29 0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26,
30 0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e,
31 0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f, 0x04, 0x0d,
32 0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45,
33 0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14,
34 0x63, 0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c,
35 0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b,
36 0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13,
37 0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42,
38 0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a,
39 0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69,
40 0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21,
41 0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70,
42 0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38,
43 0x41, 0x48, 0x53, 0x5a, 0x65, 0x6c, 0x77, 0x7e,
44 0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36,
45 0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67,
46 0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f,
47 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
48 0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04,
49 0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55,
50 0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d,
51 0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a,
52 0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52,
53 0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03,
54 0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b,
55 0x17, 0x1e, 0x05, 0x0c, 0x33, 0x3a, 0x21, 0x28,
56 0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60,
57 0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31,
58 0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79
59 };
60
crc7_byte(u8 crc,u8 data)61 static u8 crc7_byte(u8 crc, u8 data)
62 {
63 return crc7_syndrome_table[(crc << 1) ^ data];
64 }
65
crc7(u8 crc,const u8 * buffer,u32 len)66 static u8 crc7(u8 crc, const u8 *buffer, u32 len)
67 {
68 while (len--)
69 crc = crc7_byte(crc, *buffer++);
70 return crc;
71 }
72
73 /********************************************
74 *
75 * Spi protocol Function
76 *
77 ********************************************/
78
79 #define CMD_DMA_WRITE 0xc1
80 #define CMD_DMA_READ 0xc2
81 #define CMD_INTERNAL_WRITE 0xc3
82 #define CMD_INTERNAL_READ 0xc4
83 #define CMD_TERMINATE 0xc5
84 #define CMD_REPEAT 0xc6
85 #define CMD_DMA_EXT_WRITE 0xc7
86 #define CMD_DMA_EXT_READ 0xc8
87 #define CMD_SINGLE_WRITE 0xc9
88 #define CMD_SINGLE_READ 0xca
89 #define CMD_RESET 0xcf
90
91 #define N_OK 1
92 #define N_FAIL 0
93 #define N_RESET -1
94 #define N_RETRY -2
95
96 #define DATA_PKT_SZ_256 256
97 #define DATA_PKT_SZ_512 512
98 #define DATA_PKT_SZ_1K 1024
99 #define DATA_PKT_SZ_4K (4 * 1024)
100 #define DATA_PKT_SZ_8K (8 * 1024)
101 #define DATA_PKT_SZ DATA_PKT_SZ_8K
102
103 #define USE_SPI_DMA 0
104
wilc_bus_probe(struct spi_device * spi)105 static int wilc_bus_probe(struct spi_device *spi)
106 {
107 int ret;
108 struct wilc *wilc;
109 struct gpio_desc *gpio;
110
111 gpio = gpiod_get(&spi->dev, "irq", GPIOD_IN);
112 if (IS_ERR(gpio)) {
113 /* get the GPIO descriptor from hardcode GPIO number */
114 gpio = gpio_to_desc(GPIO_NUM);
115 if (!gpio)
116 dev_err(&spi->dev, "failed to get the irq gpio\n");
117 }
118
119 ret = wilc_netdev_init(&wilc, NULL, HIF_SPI, &wilc_hif_spi);
120 if (ret)
121 return ret;
122
123 spi_set_drvdata(spi, wilc);
124 wilc->dev = &spi->dev;
125 wilc->gpio_irq = gpio;
126
127 return 0;
128 }
129
wilc_bus_remove(struct spi_device * spi)130 static int wilc_bus_remove(struct spi_device *spi)
131 {
132 struct wilc *wilc = spi_get_drvdata(spi);
133
134 /* free the GPIO in module remove */
135 if (wilc->gpio_irq)
136 gpiod_put(wilc->gpio_irq);
137 wilc_netdev_cleanup(wilc);
138 return 0;
139 }
140
141 static const struct of_device_id wilc_of_match[] = {
142 { .compatible = "microchip,wilc1000-spi", },
143 { /* sentinel */ }
144 };
145 MODULE_DEVICE_TABLE(of, wilc_of_match);
146
147 static struct spi_driver wilc_spi_driver = {
148 .driver = {
149 .name = MODALIAS,
150 .of_match_table = wilc_of_match,
151 },
152 .probe = wilc_bus_probe,
153 .remove = wilc_bus_remove,
154 };
155 module_spi_driver(wilc_spi_driver);
156 MODULE_LICENSE("GPL");
157
wilc_spi_tx(struct wilc * wilc,u8 * b,u32 len)158 static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
159 {
160 struct spi_device *spi = to_spi_device(wilc->dev);
161 int ret;
162 struct spi_message msg;
163
164 if (len > 0 && b) {
165 struct spi_transfer tr = {
166 .tx_buf = b,
167 .len = len,
168 .delay_usecs = 0,
169 };
170 char *r_buffer = kzalloc(len, GFP_KERNEL);
171
172 if (!r_buffer)
173 return -ENOMEM;
174
175 tr.rx_buf = r_buffer;
176 dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
177
178 memset(&msg, 0, sizeof(msg));
179 spi_message_init(&msg);
180 msg.spi = spi;
181 msg.is_dma_mapped = USE_SPI_DMA;
182 spi_message_add_tail(&tr, &msg);
183
184 ret = spi_sync(spi, &msg);
185 if (ret < 0)
186 dev_err(&spi->dev, "SPI transaction failed\n");
187
188 kfree(r_buffer);
189 } else {
190 dev_err(&spi->dev,
191 "can't write data with the following length: %d\n",
192 len);
193 ret = -EINVAL;
194 }
195
196 return ret;
197 }
198
wilc_spi_rx(struct wilc * wilc,u8 * rb,u32 rlen)199 static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
200 {
201 struct spi_device *spi = to_spi_device(wilc->dev);
202 int ret;
203
204 if (rlen > 0) {
205 struct spi_message msg;
206 struct spi_transfer tr = {
207 .rx_buf = rb,
208 .len = rlen,
209 .delay_usecs = 0,
210
211 };
212 char *t_buffer = kzalloc(rlen, GFP_KERNEL);
213
214 if (!t_buffer)
215 return -ENOMEM;
216
217 tr.tx_buf = t_buffer;
218
219 memset(&msg, 0, sizeof(msg));
220 spi_message_init(&msg);
221 msg.spi = spi;
222 msg.is_dma_mapped = USE_SPI_DMA;
223 spi_message_add_tail(&tr, &msg);
224
225 ret = spi_sync(spi, &msg);
226 if (ret < 0)
227 dev_err(&spi->dev, "SPI transaction failed\n");
228 kfree(t_buffer);
229 } else {
230 dev_err(&spi->dev,
231 "can't read data with the following length: %u\n",
232 rlen);
233 ret = -EINVAL;
234 }
235
236 return ret;
237 }
238
wilc_spi_tx_rx(struct wilc * wilc,u8 * wb,u8 * rb,u32 rlen)239 static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
240 {
241 struct spi_device *spi = to_spi_device(wilc->dev);
242 int ret;
243
244 if (rlen > 0) {
245 struct spi_message msg;
246 struct spi_transfer tr = {
247 .rx_buf = rb,
248 .tx_buf = wb,
249 .len = rlen,
250 .bits_per_word = 8,
251 .delay_usecs = 0,
252
253 };
254
255 memset(&msg, 0, sizeof(msg));
256 spi_message_init(&msg);
257 msg.spi = spi;
258 msg.is_dma_mapped = USE_SPI_DMA;
259
260 spi_message_add_tail(&tr, &msg);
261 ret = spi_sync(spi, &msg);
262 if (ret < 0)
263 dev_err(&spi->dev, "SPI transaction failed\n");
264 } else {
265 dev_err(&spi->dev,
266 "can't read data with the following length: %u\n",
267 rlen);
268 ret = -EINVAL;
269 }
270
271 return ret;
272 }
273
spi_cmd_complete(struct wilc * wilc,u8 cmd,u32 adr,u8 * b,u32 sz,u8 clockless)274 static int spi_cmd_complete(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz,
275 u8 clockless)
276 {
277 struct spi_device *spi = to_spi_device(wilc->dev);
278 u8 wb[32], rb[32];
279 u8 wix, rix;
280 u32 len2;
281 u8 rsp;
282 int len = 0;
283 int result = N_OK;
284 int retry;
285 u8 crc[2];
286
287 wb[0] = cmd;
288 switch (cmd) {
289 case CMD_SINGLE_READ: /* single word (4 bytes) read */
290 wb[1] = (u8)(adr >> 16);
291 wb[2] = (u8)(adr >> 8);
292 wb[3] = (u8)adr;
293 len = 5;
294 break;
295
296 case CMD_INTERNAL_READ: /* internal register read */
297 wb[1] = (u8)(adr >> 8);
298 if (clockless == 1)
299 wb[1] |= BIT(7);
300 wb[2] = (u8)adr;
301 wb[3] = 0x00;
302 len = 5;
303 break;
304
305 case CMD_TERMINATE:
306 wb[1] = 0x00;
307 wb[2] = 0x00;
308 wb[3] = 0x00;
309 len = 5;
310 break;
311
312 case CMD_REPEAT:
313 wb[1] = 0x00;
314 wb[2] = 0x00;
315 wb[3] = 0x00;
316 len = 5;
317 break;
318
319 case CMD_RESET:
320 wb[1] = 0xff;
321 wb[2] = 0xff;
322 wb[3] = 0xff;
323 len = 5;
324 break;
325
326 case CMD_DMA_WRITE: /* dma write */
327 case CMD_DMA_READ: /* dma read */
328 wb[1] = (u8)(adr >> 16);
329 wb[2] = (u8)(adr >> 8);
330 wb[3] = (u8)adr;
331 wb[4] = (u8)(sz >> 8);
332 wb[5] = (u8)(sz);
333 len = 7;
334 break;
335
336 case CMD_DMA_EXT_WRITE: /* dma extended write */
337 case CMD_DMA_EXT_READ: /* dma extended read */
338 wb[1] = (u8)(adr >> 16);
339 wb[2] = (u8)(adr >> 8);
340 wb[3] = (u8)adr;
341 wb[4] = (u8)(sz >> 16);
342 wb[5] = (u8)(sz >> 8);
343 wb[6] = (u8)(sz);
344 len = 8;
345 break;
346
347 case CMD_INTERNAL_WRITE: /* internal register write */
348 wb[1] = (u8)(adr >> 8);
349 if (clockless == 1)
350 wb[1] |= BIT(7);
351 wb[2] = (u8)(adr);
352 wb[3] = b[3];
353 wb[4] = b[2];
354 wb[5] = b[1];
355 wb[6] = b[0];
356 len = 8;
357 break;
358
359 case CMD_SINGLE_WRITE: /* single word write */
360 wb[1] = (u8)(adr >> 16);
361 wb[2] = (u8)(adr >> 8);
362 wb[3] = (u8)(adr);
363 wb[4] = b[3];
364 wb[5] = b[2];
365 wb[6] = b[1];
366 wb[7] = b[0];
367 len = 9;
368 break;
369
370 default:
371 result = N_FAIL;
372 break;
373 }
374
375 if (result != N_OK)
376 return result;
377
378 if (!g_spi.crc_off)
379 wb[len - 1] = (crc7(0x7f, (const u8 *)&wb[0], len - 1)) << 1;
380 else
381 len -= 1;
382
383 #define NUM_SKIP_BYTES (1)
384 #define NUM_RSP_BYTES (2)
385 #define NUM_DATA_HDR_BYTES (1)
386 #define NUM_DATA_BYTES (4)
387 #define NUM_CRC_BYTES (2)
388 #define NUM_DUMMY_BYTES (3)
389 if (cmd == CMD_RESET ||
390 cmd == CMD_TERMINATE ||
391 cmd == CMD_REPEAT) {
392 len2 = len + (NUM_SKIP_BYTES + NUM_RSP_BYTES + NUM_DUMMY_BYTES);
393 } else if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) {
394 int tmp = NUM_RSP_BYTES + NUM_DATA_HDR_BYTES + NUM_DATA_BYTES
395 + NUM_DUMMY_BYTES;
396 if (!g_spi.crc_off)
397 len2 = len + tmp + NUM_CRC_BYTES;
398 else
399 len2 = len + tmp;
400 } else {
401 len2 = len + (NUM_RSP_BYTES + NUM_DUMMY_BYTES);
402 }
403 #undef NUM_DUMMY_BYTES
404
405 if (len2 > ARRAY_SIZE(wb)) {
406 dev_err(&spi->dev, "spi buffer size too small (%d) (%zu)\n",
407 len2, ARRAY_SIZE(wb));
408 return N_FAIL;
409 }
410 /* zero spi write buffers. */
411 for (wix = len; wix < len2; wix++)
412 wb[wix] = 0;
413 rix = len;
414
415 if (wilc_spi_tx_rx(wilc, wb, rb, len2)) {
416 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
417 return N_FAIL;
418 }
419
420 /*
421 * Command/Control response
422 */
423 if (cmd == CMD_RESET || cmd == CMD_TERMINATE || cmd == CMD_REPEAT)
424 rix++; /* skip 1 byte */
425
426 rsp = rb[rix++];
427
428 if (rsp != cmd) {
429 dev_err(&spi->dev,
430 "Failed cmd response, cmd (%02x), resp (%02x)\n",
431 cmd, rsp);
432 return N_FAIL;
433 }
434
435 /*
436 * State response
437 */
438 rsp = rb[rix++];
439 if (rsp != 0x00) {
440 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
441 rsp);
442 return N_FAIL;
443 }
444
445 if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ ||
446 cmd == CMD_DMA_READ || cmd == CMD_DMA_EXT_READ) {
447 /*
448 * Data Respnose header
449 */
450 retry = 100;
451 do {
452 /*
453 * ensure there is room in buffer later
454 * to read data and crc
455 */
456 if (rix < len2) {
457 rsp = rb[rix++];
458 } else {
459 retry = 0;
460 break;
461 }
462 if (((rsp >> 4) & 0xf) == 0xf)
463 break;
464 } while (retry--);
465
466 if (retry <= 0) {
467 dev_err(&spi->dev,
468 "Error, data read response (%02x)\n", rsp);
469 return N_RESET;
470 }
471 }
472
473 if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) {
474 /*
475 * Read bytes
476 */
477 if ((rix + 3) < len2) {
478 b[0] = rb[rix++];
479 b[1] = rb[rix++];
480 b[2] = rb[rix++];
481 b[3] = rb[rix++];
482 } else {
483 dev_err(&spi->dev,
484 "buffer overrun when reading data.\n");
485 return N_FAIL;
486 }
487
488 if (!g_spi.crc_off) {
489 /*
490 * Read Crc
491 */
492 if ((rix + 1) < len2) {
493 crc[0] = rb[rix++];
494 crc[1] = rb[rix++];
495 } else {
496 dev_err(&spi->dev,
497 "buffer overrun when reading crc.\n");
498 return N_FAIL;
499 }
500 }
501 } else if ((cmd == CMD_DMA_READ) || (cmd == CMD_DMA_EXT_READ)) {
502 int ix;
503
504 /* some data may be read in response to dummy bytes. */
505 for (ix = 0; (rix < len2) && (ix < sz); )
506 b[ix++] = rb[rix++];
507
508 sz -= ix;
509
510 if (sz > 0) {
511 int nbytes;
512
513 if (sz <= (DATA_PKT_SZ - ix))
514 nbytes = sz;
515 else
516 nbytes = DATA_PKT_SZ - ix;
517
518 /*
519 * Read bytes
520 */
521 if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
522 dev_err(&spi->dev,
523 "Failed block read, bus err\n");
524 return N_FAIL;
525 }
526
527 /*
528 * Read Crc
529 */
530 if (!g_spi.crc_off && wilc_spi_rx(wilc, crc, 2)) {
531 dev_err(&spi->dev,
532 "Failed block crc read, bus err\n");
533 return N_FAIL;
534 }
535
536 ix += nbytes;
537 sz -= nbytes;
538 }
539
540 /*
541 * if any data in left unread,
542 * then read the rest using normal DMA code.
543 */
544 while (sz > 0) {
545 int nbytes;
546
547 if (sz <= DATA_PKT_SZ)
548 nbytes = sz;
549 else
550 nbytes = DATA_PKT_SZ;
551
552 /*
553 * read data response only on the next DMA cycles not
554 * the first DMA since data response header is already
555 * handled above for the first DMA.
556 */
557 /*
558 * Data Respnose header
559 */
560 retry = 10;
561 do {
562 if (wilc_spi_rx(wilc, &rsp, 1)) {
563 dev_err(&spi->dev,
564 "Failed resp read, bus err\n");
565 result = N_FAIL;
566 break;
567 }
568 if (((rsp >> 4) & 0xf) == 0xf)
569 break;
570 } while (retry--);
571
572 if (result == N_FAIL)
573 break;
574
575 /*
576 * Read bytes
577 */
578 if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
579 dev_err(&spi->dev,
580 "Failed block read, bus err\n");
581 result = N_FAIL;
582 break;
583 }
584
585 /*
586 * Read Crc
587 */
588 if (!g_spi.crc_off && wilc_spi_rx(wilc, crc, 2)) {
589 dev_err(&spi->dev,
590 "Failed block crc read, bus err\n");
591 result = N_FAIL;
592 break;
593 }
594
595 ix += nbytes;
596 sz -= nbytes;
597 }
598 }
599 return result;
600 }
601
spi_data_write(struct wilc * wilc,u8 * b,u32 sz)602 static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
603 {
604 struct spi_device *spi = to_spi_device(wilc->dev);
605 int ix, nbytes;
606 int result = 1;
607 u8 cmd, order, crc[2] = {0};
608
609 /*
610 * Data
611 */
612 ix = 0;
613 do {
614 if (sz <= DATA_PKT_SZ) {
615 nbytes = sz;
616 order = 0x3;
617 } else {
618 nbytes = DATA_PKT_SZ;
619 if (ix == 0)
620 order = 0x1;
621 else
622 order = 0x02;
623 }
624
625 /*
626 * Write command
627 */
628 cmd = 0xf0;
629 cmd |= order;
630
631 if (wilc_spi_tx(wilc, &cmd, 1)) {
632 dev_err(&spi->dev,
633 "Failed data block cmd write, bus error...\n");
634 result = N_FAIL;
635 break;
636 }
637
638 /*
639 * Write data
640 */
641 if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
642 dev_err(&spi->dev,
643 "Failed data block write, bus error...\n");
644 result = N_FAIL;
645 break;
646 }
647
648 /*
649 * Write Crc
650 */
651 if (!g_spi.crc_off) {
652 if (wilc_spi_tx(wilc, crc, 2)) {
653 dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
654 result = N_FAIL;
655 break;
656 }
657 }
658
659 /*
660 * No need to wait for response
661 */
662 ix += nbytes;
663 sz -= nbytes;
664 } while (sz);
665
666 return result;
667 }
668
669 /********************************************
670 *
671 * Spi Internal Read/Write Function
672 *
673 ********************************************/
674
spi_internal_write(struct wilc * wilc,u32 adr,u32 dat)675 static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
676 {
677 struct spi_device *spi = to_spi_device(wilc->dev);
678 int result;
679
680 cpu_to_le32s(&dat);
681 result = spi_cmd_complete(wilc, CMD_INTERNAL_WRITE, adr, (u8 *)&dat, 4,
682 0);
683 if (result != N_OK)
684 dev_err(&spi->dev, "Failed internal write cmd...\n");
685
686 return result;
687 }
688
spi_internal_read(struct wilc * wilc,u32 adr,u32 * data)689 static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
690 {
691 struct spi_device *spi = to_spi_device(wilc->dev);
692 int result;
693
694 result = spi_cmd_complete(wilc, CMD_INTERNAL_READ, adr, (u8 *)data, 4,
695 0);
696 if (result != N_OK) {
697 dev_err(&spi->dev, "Failed internal read cmd...\n");
698 return 0;
699 }
700
701 le32_to_cpus(data);
702
703 return 1;
704 }
705
706 /********************************************
707 *
708 * Spi interfaces
709 *
710 ********************************************/
711
wilc_spi_write_reg(struct wilc * wilc,u32 addr,u32 data)712 static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
713 {
714 struct spi_device *spi = to_spi_device(wilc->dev);
715 int result = N_OK;
716 u8 cmd = CMD_SINGLE_WRITE;
717 u8 clockless = 0;
718
719 cpu_to_le32s(&data);
720 if (addr < 0x30) {
721 /* Clockless register */
722 cmd = CMD_INTERNAL_WRITE;
723 clockless = 1;
724 }
725
726 result = spi_cmd_complete(wilc, cmd, addr, (u8 *)&data, 4, clockless);
727 if (result != N_OK)
728 dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
729
730 return result;
731 }
732
wilc_spi_write(struct wilc * wilc,u32 addr,u8 * buf,u32 size)733 static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
734 {
735 struct spi_device *spi = to_spi_device(wilc->dev);
736 int result;
737
738 /*
739 * has to be greated than 4
740 */
741 if (size <= 4)
742 return 0;
743
744 result = spi_cmd_complete(wilc, CMD_DMA_EXT_WRITE, addr, NULL, size, 0);
745 if (result != N_OK) {
746 dev_err(&spi->dev,
747 "Failed cmd, write block (%08x)...\n", addr);
748 return 0;
749 }
750
751 /*
752 * Data
753 */
754 result = spi_data_write(wilc, buf, size);
755 if (result != N_OK)
756 dev_err(&spi->dev, "Failed block data write...\n");
757
758 return 1;
759 }
760
wilc_spi_read_reg(struct wilc * wilc,u32 addr,u32 * data)761 static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
762 {
763 struct spi_device *spi = to_spi_device(wilc->dev);
764 int result = N_OK;
765 u8 cmd = CMD_SINGLE_READ;
766 u8 clockless = 0;
767
768 if (addr < 0x30) {
769 /* Clockless register */
770 cmd = CMD_INTERNAL_READ;
771 clockless = 1;
772 }
773
774 result = spi_cmd_complete(wilc, cmd, addr, (u8 *)data, 4, clockless);
775 if (result != N_OK) {
776 dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
777 return 0;
778 }
779
780 le32_to_cpus(data);
781
782 return 1;
783 }
784
wilc_spi_read(struct wilc * wilc,u32 addr,u8 * buf,u32 size)785 static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
786 {
787 struct spi_device *spi = to_spi_device(wilc->dev);
788 int result;
789
790 if (size <= 4)
791 return 0;
792
793 result = spi_cmd_complete(wilc, CMD_DMA_EXT_READ, addr, buf, size, 0);
794 if (result != N_OK) {
795 dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
796 return 0;
797 }
798
799 return 1;
800 }
801
802 /********************************************
803 *
804 * Bus interfaces
805 *
806 ********************************************/
807
_wilc_spi_deinit(struct wilc * wilc)808 static int _wilc_spi_deinit(struct wilc *wilc)
809 {
810 /*
811 * TODO:
812 */
813 return 1;
814 }
815
wilc_spi_init(struct wilc * wilc,bool resume)816 static int wilc_spi_init(struct wilc *wilc, bool resume)
817 {
818 struct spi_device *spi = to_spi_device(wilc->dev);
819 u32 reg;
820 u32 chipid;
821 static int isinit;
822
823 if (isinit) {
824 if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) {
825 dev_err(&spi->dev, "Fail cmd read chip id...\n");
826 return 0;
827 }
828 return 1;
829 }
830
831 memset(&g_spi, 0, sizeof(struct wilc_spi));
832
833 /*
834 * configure protocol
835 */
836 g_spi.crc_off = 0;
837
838 /*
839 * TODO: We can remove the CRC trials if there is a definite
840 * way to reset
841 */
842 /* the SPI to it's initial value. */
843 if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®)) {
844 /*
845 * Read failed. Try with CRC off. This might happen when module
846 * is removed but chip isn't reset
847 */
848 g_spi.crc_off = 1;
849 dev_err(&spi->dev,
850 "Failed read with CRC on, retrying with CRC off\n");
851 if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®)) {
852 /*
853 * Read failed with both CRC on and off,
854 * something went bad
855 */
856 dev_err(&spi->dev, "Failed internal read protocol\n");
857 return 0;
858 }
859 }
860 if (g_spi.crc_off == 0) {
861 reg &= ~0xc; /* disable crc checking */
862 reg &= ~0x70;
863 reg |= (0x5 << 4);
864 if (!spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg)) {
865 dev_err(&spi->dev,
866 "[wilc spi %d]: Failed internal write reg\n",
867 __LINE__);
868 return 0;
869 }
870 g_spi.crc_off = 1;
871 }
872
873 /*
874 * make sure can read back chip id correctly
875 */
876 if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) {
877 dev_err(&spi->dev, "Fail cmd read chip id...\n");
878 return 0;
879 }
880
881 g_spi.has_thrpt_enh = 1;
882
883 isinit = 1;
884
885 return 1;
886 }
887
wilc_spi_read_size(struct wilc * wilc,u32 * size)888 static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
889 {
890 struct spi_device *spi = to_spi_device(wilc->dev);
891 int ret;
892
893 if (g_spi.has_thrpt_enh) {
894 ret = spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE,
895 size);
896 *size = *size & IRQ_DMA_WD_CNT_MASK;
897 } else {
898 u32 tmp;
899 u32 byte_cnt;
900
901 ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE,
902 &byte_cnt);
903 if (!ret) {
904 dev_err(&spi->dev,
905 "Failed read WILC_VMM_TO_HOST_SIZE ...\n");
906 return ret;
907 }
908 tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK;
909 *size = tmp;
910 }
911
912 return ret;
913 }
914
wilc_spi_read_int(struct wilc * wilc,u32 * int_status)915 static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
916 {
917 struct spi_device *spi = to_spi_device(wilc->dev);
918 int ret;
919 u32 tmp;
920 u32 byte_cnt;
921 int happened, j;
922 u32 unknown_mask;
923 u32 irq_flags;
924 int k = IRG_FLAGS_OFFSET + 5;
925
926 if (g_spi.has_thrpt_enh) {
927 ret = spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE,
928 int_status);
929 return ret;
930 }
931 ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE, &byte_cnt);
932 if (!ret) {
933 dev_err(&spi->dev,
934 "Failed read WILC_VMM_TO_HOST_SIZE ...\n");
935 return ret;
936 }
937 tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK;
938
939 j = 0;
940 do {
941 happened = 0;
942
943 wilc_spi_read_reg(wilc, 0x1a90, &irq_flags);
944 tmp |= ((irq_flags >> 27) << IRG_FLAGS_OFFSET);
945
946 if (g_spi.nint > 5) {
947 wilc_spi_read_reg(wilc, 0x1a94, &irq_flags);
948 tmp |= (((irq_flags >> 0) & 0x7) << k);
949 }
950
951 unknown_mask = ~((1ul << g_spi.nint) - 1);
952
953 if ((tmp >> IRG_FLAGS_OFFSET) & unknown_mask) {
954 dev_err(&spi->dev,
955 "Unexpected interrupt(2):j=%d,tmp=%x,mask=%x\n",
956 j, tmp, unknown_mask);
957 happened = 1;
958 }
959
960 j++;
961 } while (happened);
962
963 *int_status = tmp;
964
965 return ret;
966 }
967
wilc_spi_clear_int_ext(struct wilc * wilc,u32 val)968 static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
969 {
970 struct spi_device *spi = to_spi_device(wilc->dev);
971 int ret;
972 u32 flags;
973 u32 tbl_ctl;
974
975 if (g_spi.has_thrpt_enh) {
976 ret = spi_internal_write(wilc, 0xe844 - WILC_SPI_REG_BASE,
977 val);
978 return ret;
979 }
980
981 flags = val & (BIT(MAX_NUM_INT) - 1);
982 if (flags) {
983 int i;
984
985 ret = 1;
986 for (i = 0; i < g_spi.nint; i++) {
987 /*
988 * No matter what you write 1 or 0,
989 * it will clear interrupt.
990 */
991 if (flags & 1)
992 ret = wilc_spi_write_reg(wilc,
993 0x10c8 + i * 4, 1);
994 if (!ret)
995 break;
996 flags >>= 1;
997 }
998 if (!ret) {
999 dev_err(&spi->dev,
1000 "Failed wilc_spi_write_reg, set reg %x ...\n",
1001 0x10c8 + i * 4);
1002 return ret;
1003 }
1004 for (i = g_spi.nint; i < MAX_NUM_INT; i++) {
1005 if (flags & 1)
1006 dev_err(&spi->dev,
1007 "Unexpected interrupt cleared %d...\n",
1008 i);
1009 flags >>= 1;
1010 }
1011 }
1012
1013 tbl_ctl = 0;
1014 /* select VMM table 0 */
1015 if (val & SEL_VMM_TBL0)
1016 tbl_ctl |= BIT(0);
1017 /* select VMM table 1 */
1018 if (val & SEL_VMM_TBL1)
1019 tbl_ctl |= BIT(1);
1020
1021 ret = wilc_spi_write_reg(wilc, WILC_VMM_TBL_CTL, tbl_ctl);
1022 if (!ret) {
1023 dev_err(&spi->dev, "fail write reg vmm_tbl_ctl...\n");
1024 return ret;
1025 }
1026
1027 if (val & EN_VMM) {
1028 /*
1029 * enable vmm transfer.
1030 */
1031 ret = wilc_spi_write_reg(wilc, WILC_VMM_CORE_CTL, 1);
1032 if (!ret) {
1033 dev_err(&spi->dev, "fail write reg vmm_core_ctl...\n");
1034 return ret;
1035 }
1036 }
1037
1038 return ret;
1039 }
1040
wilc_spi_sync_ext(struct wilc * wilc,int nint)1041 static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
1042 {
1043 struct spi_device *spi = to_spi_device(wilc->dev);
1044 u32 reg;
1045 int ret, i;
1046
1047 if (nint > MAX_NUM_INT) {
1048 dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
1049 return 0;
1050 }
1051
1052 g_spi.nint = nint;
1053
1054 /*
1055 * interrupt pin mux select
1056 */
1057 ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, ®);
1058 if (!ret) {
1059 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1060 WILC_PIN_MUX_0);
1061 return 0;
1062 }
1063 reg |= BIT(8);
1064 ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
1065 if (!ret) {
1066 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1067 WILC_PIN_MUX_0);
1068 return 0;
1069 }
1070
1071 /*
1072 * interrupt enable
1073 */
1074 ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, ®);
1075 if (!ret) {
1076 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1077 WILC_INTR_ENABLE);
1078 return 0;
1079 }
1080
1081 for (i = 0; (i < 5) && (nint > 0); i++, nint--)
1082 reg |= (BIT((27 + i)));
1083
1084 ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
1085 if (!ret) {
1086 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1087 WILC_INTR_ENABLE);
1088 return 0;
1089 }
1090 if (nint) {
1091 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, ®);
1092 if (!ret) {
1093 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1094 WILC_INTR2_ENABLE);
1095 return 0;
1096 }
1097
1098 for (i = 0; (i < 3) && (nint > 0); i++, nint--)
1099 reg |= BIT(i);
1100
1101 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, ®);
1102 if (!ret) {
1103 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1104 WILC_INTR2_ENABLE);
1105 return 0;
1106 }
1107 }
1108
1109 return 1;
1110 }
1111
1112 /* Global spi HIF function table */
1113 static const struct wilc_hif_func wilc_hif_spi = {
1114 .hif_init = wilc_spi_init,
1115 .hif_deinit = _wilc_spi_deinit,
1116 .hif_read_reg = wilc_spi_read_reg,
1117 .hif_write_reg = wilc_spi_write_reg,
1118 .hif_block_rx = wilc_spi_read,
1119 .hif_block_tx = wilc_spi_write,
1120 .hif_read_int = wilc_spi_read_int,
1121 .hif_clear_int_ext = wilc_spi_clear_int_ext,
1122 .hif_read_size = wilc_spi_read_size,
1123 .hif_block_tx_ext = wilc_spi_write,
1124 .hif_block_rx_ext = wilc_spi_read,
1125 .hif_sync_ext = wilc_spi_sync_ext,
1126 };
1127