1 /*
2 * TI QSPI driver
3 *
4 * Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
5 * Author: Sourav Poddar <sourav.poddar@ti.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GPLv2.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR /PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/omap-dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/err.h>
27 #include <linux/clk.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/of.h>
32 #include <linux/of_device.h>
33 #include <linux/pinctrl/consumer.h>
34 #include <linux/mfd/syscon.h>
35 #include <linux/regmap.h>
36 #include <linux/sizes.h>
37
38 #include <linux/spi/spi.h>
39 #include <linux/spi/spi-mem.h>
40
41 struct ti_qspi_regs {
42 u32 clkctrl;
43 };
44
45 struct ti_qspi {
46 struct completion transfer_complete;
47
48 /* list synchronization */
49 struct mutex list_lock;
50
51 struct spi_master *master;
52 void __iomem *base;
53 void __iomem *mmap_base;
54 size_t mmap_size;
55 struct regmap *ctrl_base;
56 unsigned int ctrl_reg;
57 struct clk *fclk;
58 struct device *dev;
59
60 struct ti_qspi_regs ctx_reg;
61
62 dma_addr_t mmap_phys_base;
63 dma_addr_t rx_bb_dma_addr;
64 void *rx_bb_addr;
65 struct dma_chan *rx_chan;
66
67 u32 spi_max_frequency;
68 u32 cmd;
69 u32 dc;
70
71 bool mmap_enabled;
72 };
73
74 #define QSPI_PID (0x0)
75 #define QSPI_SYSCONFIG (0x10)
76 #define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
77 #define QSPI_SPI_DC_REG (0x44)
78 #define QSPI_SPI_CMD_REG (0x48)
79 #define QSPI_SPI_STATUS_REG (0x4c)
80 #define QSPI_SPI_DATA_REG (0x50)
81 #define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n))
82 #define QSPI_SPI_SWITCH_REG (0x64)
83 #define QSPI_SPI_DATA_REG_1 (0x68)
84 #define QSPI_SPI_DATA_REG_2 (0x6c)
85 #define QSPI_SPI_DATA_REG_3 (0x70)
86
87 #define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
88
89 #define QSPI_FCLK 192000000
90
91 /* Clock Control */
92 #define QSPI_CLK_EN (1 << 31)
93 #define QSPI_CLK_DIV_MAX 0xffff
94
95 /* Command */
96 #define QSPI_EN_CS(n) (n << 28)
97 #define QSPI_WLEN(n) ((n - 1) << 19)
98 #define QSPI_3_PIN (1 << 18)
99 #define QSPI_RD_SNGL (1 << 16)
100 #define QSPI_WR_SNGL (2 << 16)
101 #define QSPI_RD_DUAL (3 << 16)
102 #define QSPI_RD_QUAD (7 << 16)
103 #define QSPI_INVAL (4 << 16)
104 #define QSPI_FLEN(n) ((n - 1) << 0)
105 #define QSPI_WLEN_MAX_BITS 128
106 #define QSPI_WLEN_MAX_BYTES 16
107 #define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
108
109 /* STATUS REGISTER */
110 #define BUSY 0x01
111 #define WC 0x02
112
113 /* Device Control */
114 #define QSPI_DD(m, n) (m << (3 + n * 8))
115 #define QSPI_CKPHA(n) (1 << (2 + n * 8))
116 #define QSPI_CSPOL(n) (1 << (1 + n * 8))
117 #define QSPI_CKPOL(n) (1 << (n * 8))
118
119 #define QSPI_FRAME 4096
120
121 #define QSPI_AUTOSUSPEND_TIMEOUT 2000
122
123 #define MEM_CS_EN(n) ((n + 1) << 8)
124 #define MEM_CS_MASK (7 << 8)
125
126 #define MM_SWITCH 0x1
127
128 #define QSPI_SETUP_RD_NORMAL (0x0 << 12)
129 #define QSPI_SETUP_RD_DUAL (0x1 << 12)
130 #define QSPI_SETUP_RD_QUAD (0x3 << 12)
131 #define QSPI_SETUP_ADDR_SHIFT 8
132 #define QSPI_SETUP_DUMMY_SHIFT 10
133
134 #define QSPI_DMA_BUFFER_SIZE SZ_64K
135
ti_qspi_read(struct ti_qspi * qspi,unsigned long reg)136 static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
137 unsigned long reg)
138 {
139 return readl(qspi->base + reg);
140 }
141
ti_qspi_write(struct ti_qspi * qspi,unsigned long val,unsigned long reg)142 static inline void ti_qspi_write(struct ti_qspi *qspi,
143 unsigned long val, unsigned long reg)
144 {
145 writel(val, qspi->base + reg);
146 }
147
ti_qspi_setup(struct spi_device * spi)148 static int ti_qspi_setup(struct spi_device *spi)
149 {
150 struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
151 struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
152 int clk_div = 0, ret;
153 u32 clk_ctrl_reg, clk_rate, clk_mask;
154
155 if (spi->master->busy) {
156 dev_dbg(qspi->dev, "master busy doing other transfers\n");
157 return -EBUSY;
158 }
159
160 if (!qspi->spi_max_frequency) {
161 dev_err(qspi->dev, "spi max frequency not defined\n");
162 return -EINVAL;
163 }
164
165 clk_rate = clk_get_rate(qspi->fclk);
166
167 clk_div = DIV_ROUND_UP(clk_rate, qspi->spi_max_frequency) - 1;
168
169 if (clk_div < 0) {
170 dev_dbg(qspi->dev, "clock divider < 0, using /1 divider\n");
171 return -EINVAL;
172 }
173
174 if (clk_div > QSPI_CLK_DIV_MAX) {
175 dev_dbg(qspi->dev, "clock divider >%d , using /%d divider\n",
176 QSPI_CLK_DIV_MAX, QSPI_CLK_DIV_MAX + 1);
177 return -EINVAL;
178 }
179
180 dev_dbg(qspi->dev, "hz: %d, clock divider %d\n",
181 qspi->spi_max_frequency, clk_div);
182
183 ret = pm_runtime_get_sync(qspi->dev);
184 if (ret < 0) {
185 dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
186 return ret;
187 }
188
189 clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
190
191 clk_ctrl_reg &= ~QSPI_CLK_EN;
192
193 /* disable SCLK */
194 ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
195
196 /* enable SCLK */
197 clk_mask = QSPI_CLK_EN | clk_div;
198 ti_qspi_write(qspi, clk_mask, QSPI_SPI_CLOCK_CNTRL_REG);
199 ctx_reg->clkctrl = clk_mask;
200
201 pm_runtime_mark_last_busy(qspi->dev);
202 ret = pm_runtime_put_autosuspend(qspi->dev);
203 if (ret < 0) {
204 dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
205 return ret;
206 }
207
208 return 0;
209 }
210
ti_qspi_restore_ctx(struct ti_qspi * qspi)211 static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
212 {
213 struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
214
215 ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
216 }
217
qspi_is_busy(struct ti_qspi * qspi)218 static inline u32 qspi_is_busy(struct ti_qspi *qspi)
219 {
220 u32 stat;
221 unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
222
223 stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
224 while ((stat & BUSY) && time_after(timeout, jiffies)) {
225 cpu_relax();
226 stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
227 }
228
229 WARN(stat & BUSY, "qspi busy\n");
230 return stat & BUSY;
231 }
232
ti_qspi_poll_wc(struct ti_qspi * qspi)233 static inline int ti_qspi_poll_wc(struct ti_qspi *qspi)
234 {
235 u32 stat;
236 unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
237
238 do {
239 stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
240 if (stat & WC)
241 return 0;
242 cpu_relax();
243 } while (time_after(timeout, jiffies));
244
245 stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
246 if (stat & WC)
247 return 0;
248 return -ETIMEDOUT;
249 }
250
qspi_write_msg(struct ti_qspi * qspi,struct spi_transfer * t,int count)251 static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t,
252 int count)
253 {
254 int wlen, xfer_len;
255 unsigned int cmd;
256 const u8 *txbuf;
257 u32 data;
258
259 txbuf = t->tx_buf;
260 cmd = qspi->cmd | QSPI_WR_SNGL;
261 wlen = t->bits_per_word >> 3; /* in bytes */
262 xfer_len = wlen;
263
264 while (count) {
265 if (qspi_is_busy(qspi))
266 return -EBUSY;
267
268 switch (wlen) {
269 case 1:
270 dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
271 cmd, qspi->dc, *txbuf);
272 if (count >= QSPI_WLEN_MAX_BYTES) {
273 u32 *txp = (u32 *)txbuf;
274
275 data = cpu_to_be32(*txp++);
276 writel(data, qspi->base +
277 QSPI_SPI_DATA_REG_3);
278 data = cpu_to_be32(*txp++);
279 writel(data, qspi->base +
280 QSPI_SPI_DATA_REG_2);
281 data = cpu_to_be32(*txp++);
282 writel(data, qspi->base +
283 QSPI_SPI_DATA_REG_1);
284 data = cpu_to_be32(*txp++);
285 writel(data, qspi->base +
286 QSPI_SPI_DATA_REG);
287 xfer_len = QSPI_WLEN_MAX_BYTES;
288 cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
289 } else {
290 writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
291 cmd = qspi->cmd | QSPI_WR_SNGL;
292 xfer_len = wlen;
293 cmd |= QSPI_WLEN(wlen);
294 }
295 break;
296 case 2:
297 dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
298 cmd, qspi->dc, *txbuf);
299 writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
300 break;
301 case 4:
302 dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
303 cmd, qspi->dc, *txbuf);
304 writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
305 break;
306 }
307
308 ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
309 if (ti_qspi_poll_wc(qspi)) {
310 dev_err(qspi->dev, "write timed out\n");
311 return -ETIMEDOUT;
312 }
313 txbuf += xfer_len;
314 count -= xfer_len;
315 }
316
317 return 0;
318 }
319
qspi_read_msg(struct ti_qspi * qspi,struct spi_transfer * t,int count)320 static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t,
321 int count)
322 {
323 int wlen;
324 unsigned int cmd;
325 u8 *rxbuf;
326
327 rxbuf = t->rx_buf;
328 cmd = qspi->cmd;
329 switch (t->rx_nbits) {
330 case SPI_NBITS_DUAL:
331 cmd |= QSPI_RD_DUAL;
332 break;
333 case SPI_NBITS_QUAD:
334 cmd |= QSPI_RD_QUAD;
335 break;
336 default:
337 cmd |= QSPI_RD_SNGL;
338 break;
339 }
340 wlen = t->bits_per_word >> 3; /* in bytes */
341
342 while (count) {
343 dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
344 if (qspi_is_busy(qspi))
345 return -EBUSY;
346
347 ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
348 if (ti_qspi_poll_wc(qspi)) {
349 dev_err(qspi->dev, "read timed out\n");
350 return -ETIMEDOUT;
351 }
352 switch (wlen) {
353 case 1:
354 *rxbuf = readb(qspi->base + QSPI_SPI_DATA_REG);
355 break;
356 case 2:
357 *((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
358 break;
359 case 4:
360 *((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
361 break;
362 }
363 rxbuf += wlen;
364 count -= wlen;
365 }
366
367 return 0;
368 }
369
qspi_transfer_msg(struct ti_qspi * qspi,struct spi_transfer * t,int count)370 static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t,
371 int count)
372 {
373 int ret;
374
375 if (t->tx_buf) {
376 ret = qspi_write_msg(qspi, t, count);
377 if (ret) {
378 dev_dbg(qspi->dev, "Error while writing\n");
379 return ret;
380 }
381 }
382
383 if (t->rx_buf) {
384 ret = qspi_read_msg(qspi, t, count);
385 if (ret) {
386 dev_dbg(qspi->dev, "Error while reading\n");
387 return ret;
388 }
389 }
390
391 return 0;
392 }
393
ti_qspi_dma_callback(void * param)394 static void ti_qspi_dma_callback(void *param)
395 {
396 struct ti_qspi *qspi = param;
397
398 complete(&qspi->transfer_complete);
399 }
400
ti_qspi_dma_xfer(struct ti_qspi * qspi,dma_addr_t dma_dst,dma_addr_t dma_src,size_t len)401 static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst,
402 dma_addr_t dma_src, size_t len)
403 {
404 struct dma_chan *chan = qspi->rx_chan;
405 dma_cookie_t cookie;
406 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
407 struct dma_async_tx_descriptor *tx;
408 int ret;
409
410 tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags);
411 if (!tx) {
412 dev_err(qspi->dev, "device_prep_dma_memcpy error\n");
413 return -EIO;
414 }
415
416 tx->callback = ti_qspi_dma_callback;
417 tx->callback_param = qspi;
418 cookie = tx->tx_submit(tx);
419 reinit_completion(&qspi->transfer_complete);
420
421 ret = dma_submit_error(cookie);
422 if (ret) {
423 dev_err(qspi->dev, "dma_submit_error %d\n", cookie);
424 return -EIO;
425 }
426
427 dma_async_issue_pending(chan);
428 ret = wait_for_completion_timeout(&qspi->transfer_complete,
429 msecs_to_jiffies(len));
430 if (ret <= 0) {
431 dmaengine_terminate_sync(chan);
432 dev_err(qspi->dev, "DMA wait_for_completion_timeout\n");
433 return -ETIMEDOUT;
434 }
435
436 return 0;
437 }
438
ti_qspi_dma_bounce_buffer(struct ti_qspi * qspi,loff_t offs,void * to,size_t readsize)439 static int ti_qspi_dma_bounce_buffer(struct ti_qspi *qspi, loff_t offs,
440 void *to, size_t readsize)
441 {
442 dma_addr_t dma_src = qspi->mmap_phys_base + offs;
443 int ret = 0;
444
445 /*
446 * Use bounce buffer as FS like jffs2, ubifs may pass
447 * buffers that does not belong to kernel lowmem region.
448 */
449 while (readsize != 0) {
450 size_t xfer_len = min_t(size_t, QSPI_DMA_BUFFER_SIZE,
451 readsize);
452
453 ret = ti_qspi_dma_xfer(qspi, qspi->rx_bb_dma_addr,
454 dma_src, xfer_len);
455 if (ret != 0)
456 return ret;
457 memcpy(to, qspi->rx_bb_addr, xfer_len);
458 readsize -= xfer_len;
459 dma_src += xfer_len;
460 to += xfer_len;
461 }
462
463 return ret;
464 }
465
ti_qspi_dma_xfer_sg(struct ti_qspi * qspi,struct sg_table rx_sg,loff_t from)466 static int ti_qspi_dma_xfer_sg(struct ti_qspi *qspi, struct sg_table rx_sg,
467 loff_t from)
468 {
469 struct scatterlist *sg;
470 dma_addr_t dma_src = qspi->mmap_phys_base + from;
471 dma_addr_t dma_dst;
472 int i, len, ret;
473
474 for_each_sg(rx_sg.sgl, sg, rx_sg.nents, i) {
475 dma_dst = sg_dma_address(sg);
476 len = sg_dma_len(sg);
477 ret = ti_qspi_dma_xfer(qspi, dma_dst, dma_src, len);
478 if (ret)
479 return ret;
480 dma_src += len;
481 }
482
483 return 0;
484 }
485
ti_qspi_enable_memory_map(struct spi_device * spi)486 static void ti_qspi_enable_memory_map(struct spi_device *spi)
487 {
488 struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
489
490 ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG);
491 if (qspi->ctrl_base) {
492 regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
493 MEM_CS_EN(spi->chip_select),
494 MEM_CS_MASK);
495 }
496 qspi->mmap_enabled = true;
497 }
498
ti_qspi_disable_memory_map(struct spi_device * spi)499 static void ti_qspi_disable_memory_map(struct spi_device *spi)
500 {
501 struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
502
503 ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG);
504 if (qspi->ctrl_base)
505 regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
506 0, MEM_CS_MASK);
507 qspi->mmap_enabled = false;
508 }
509
ti_qspi_setup_mmap_read(struct spi_device * spi,u8 opcode,u8 data_nbits,u8 addr_width,u8 dummy_bytes)510 static void ti_qspi_setup_mmap_read(struct spi_device *spi, u8 opcode,
511 u8 data_nbits, u8 addr_width,
512 u8 dummy_bytes)
513 {
514 struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
515 u32 memval = opcode;
516
517 switch (data_nbits) {
518 case SPI_NBITS_QUAD:
519 memval |= QSPI_SETUP_RD_QUAD;
520 break;
521 case SPI_NBITS_DUAL:
522 memval |= QSPI_SETUP_RD_DUAL;
523 break;
524 default:
525 memval |= QSPI_SETUP_RD_NORMAL;
526 break;
527 }
528 memval |= ((addr_width - 1) << QSPI_SETUP_ADDR_SHIFT |
529 dummy_bytes << QSPI_SETUP_DUMMY_SHIFT);
530 ti_qspi_write(qspi, memval,
531 QSPI_SPI_SETUP_REG(spi->chip_select));
532 }
533
ti_qspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)534 static int ti_qspi_exec_mem_op(struct spi_mem *mem,
535 const struct spi_mem_op *op)
536 {
537 struct ti_qspi *qspi = spi_master_get_devdata(mem->spi->master);
538 u32 from = 0;
539 int ret = 0;
540
541 /* Only optimize read path. */
542 if (!op->data.nbytes || op->data.dir != SPI_MEM_DATA_IN ||
543 !op->addr.nbytes || op->addr.nbytes > 4)
544 return -ENOTSUPP;
545
546 /* Address exceeds MMIO window size, fall back to regular mode. */
547 from = op->addr.val;
548 if (from + op->data.nbytes > qspi->mmap_size)
549 return -ENOTSUPP;
550
551 mutex_lock(&qspi->list_lock);
552
553 if (!qspi->mmap_enabled)
554 ti_qspi_enable_memory_map(mem->spi);
555 ti_qspi_setup_mmap_read(mem->spi, op->cmd.opcode, op->data.buswidth,
556 op->addr.nbytes, op->dummy.nbytes);
557
558 if (qspi->rx_chan) {
559 struct sg_table sgt;
560
561 if (virt_addr_valid(op->data.buf.in) &&
562 !spi_controller_dma_map_mem_op_data(mem->spi->master, op,
563 &sgt)) {
564 ret = ti_qspi_dma_xfer_sg(qspi, sgt, from);
565 spi_controller_dma_unmap_mem_op_data(mem->spi->master,
566 op, &sgt);
567 } else {
568 ret = ti_qspi_dma_bounce_buffer(qspi, from,
569 op->data.buf.in,
570 op->data.nbytes);
571 }
572 } else {
573 memcpy_fromio(op->data.buf.in, qspi->mmap_base + from,
574 op->data.nbytes);
575 }
576
577 mutex_unlock(&qspi->list_lock);
578
579 return ret;
580 }
581
582 static const struct spi_controller_mem_ops ti_qspi_mem_ops = {
583 .exec_op = ti_qspi_exec_mem_op,
584 };
585
ti_qspi_start_transfer_one(struct spi_master * master,struct spi_message * m)586 static int ti_qspi_start_transfer_one(struct spi_master *master,
587 struct spi_message *m)
588 {
589 struct ti_qspi *qspi = spi_master_get_devdata(master);
590 struct spi_device *spi = m->spi;
591 struct spi_transfer *t;
592 int status = 0, ret;
593 unsigned int frame_len_words, transfer_len_words;
594 int wlen;
595
596 /* setup device control reg */
597 qspi->dc = 0;
598
599 if (spi->mode & SPI_CPHA)
600 qspi->dc |= QSPI_CKPHA(spi->chip_select);
601 if (spi->mode & SPI_CPOL)
602 qspi->dc |= QSPI_CKPOL(spi->chip_select);
603 if (spi->mode & SPI_CS_HIGH)
604 qspi->dc |= QSPI_CSPOL(spi->chip_select);
605
606 frame_len_words = 0;
607 list_for_each_entry(t, &m->transfers, transfer_list)
608 frame_len_words += t->len / (t->bits_per_word >> 3);
609 frame_len_words = min_t(unsigned int, frame_len_words, QSPI_FRAME);
610
611 /* setup command reg */
612 qspi->cmd = 0;
613 qspi->cmd |= QSPI_EN_CS(spi->chip_select);
614 qspi->cmd |= QSPI_FLEN(frame_len_words);
615
616 ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
617
618 mutex_lock(&qspi->list_lock);
619
620 if (qspi->mmap_enabled)
621 ti_qspi_disable_memory_map(spi);
622
623 list_for_each_entry(t, &m->transfers, transfer_list) {
624 qspi->cmd = ((qspi->cmd & ~QSPI_WLEN_MASK) |
625 QSPI_WLEN(t->bits_per_word));
626
627 wlen = t->bits_per_word >> 3;
628 transfer_len_words = min(t->len / wlen, frame_len_words);
629
630 ret = qspi_transfer_msg(qspi, t, transfer_len_words * wlen);
631 if (ret) {
632 dev_dbg(qspi->dev, "transfer message failed\n");
633 mutex_unlock(&qspi->list_lock);
634 return -EINVAL;
635 }
636
637 m->actual_length += transfer_len_words * wlen;
638 frame_len_words -= transfer_len_words;
639 if (frame_len_words == 0)
640 break;
641 }
642
643 mutex_unlock(&qspi->list_lock);
644
645 ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
646 m->status = status;
647 spi_finalize_current_message(master);
648
649 return status;
650 }
651
ti_qspi_runtime_resume(struct device * dev)652 static int ti_qspi_runtime_resume(struct device *dev)
653 {
654 struct ti_qspi *qspi;
655
656 qspi = dev_get_drvdata(dev);
657 ti_qspi_restore_ctx(qspi);
658
659 return 0;
660 }
661
662 static const struct of_device_id ti_qspi_match[] = {
663 {.compatible = "ti,dra7xxx-qspi" },
664 {.compatible = "ti,am4372-qspi" },
665 {},
666 };
667 MODULE_DEVICE_TABLE(of, ti_qspi_match);
668
ti_qspi_probe(struct platform_device * pdev)669 static int ti_qspi_probe(struct platform_device *pdev)
670 {
671 struct ti_qspi *qspi;
672 struct spi_master *master;
673 struct resource *r, *res_mmap;
674 struct device_node *np = pdev->dev.of_node;
675 u32 max_freq;
676 int ret = 0, num_cs, irq;
677 dma_cap_mask_t mask;
678
679 master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
680 if (!master)
681 return -ENOMEM;
682
683 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD;
684
685 master->flags = SPI_MASTER_HALF_DUPLEX;
686 master->setup = ti_qspi_setup;
687 master->auto_runtime_pm = true;
688 master->transfer_one_message = ti_qspi_start_transfer_one;
689 master->dev.of_node = pdev->dev.of_node;
690 master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
691 SPI_BPW_MASK(8);
692 master->mem_ops = &ti_qspi_mem_ops;
693
694 if (!of_property_read_u32(np, "num-cs", &num_cs))
695 master->num_chipselect = num_cs;
696
697 qspi = spi_master_get_devdata(master);
698 qspi->master = master;
699 qspi->dev = &pdev->dev;
700 platform_set_drvdata(pdev, qspi);
701
702 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
703 if (r == NULL) {
704 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
705 if (r == NULL) {
706 dev_err(&pdev->dev, "missing platform data\n");
707 ret = -ENODEV;
708 goto free_master;
709 }
710 }
711
712 res_mmap = platform_get_resource_byname(pdev,
713 IORESOURCE_MEM, "qspi_mmap");
714 if (res_mmap == NULL) {
715 res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1);
716 if (res_mmap == NULL) {
717 dev_err(&pdev->dev,
718 "memory mapped resource not required\n");
719 }
720 }
721
722 if (res_mmap)
723 qspi->mmap_size = resource_size(res_mmap);
724
725 irq = platform_get_irq(pdev, 0);
726 if (irq < 0) {
727 dev_err(&pdev->dev, "no irq resource?\n");
728 ret = irq;
729 goto free_master;
730 }
731
732 mutex_init(&qspi->list_lock);
733
734 qspi->base = devm_ioremap_resource(&pdev->dev, r);
735 if (IS_ERR(qspi->base)) {
736 ret = PTR_ERR(qspi->base);
737 goto free_master;
738 }
739
740
741 if (of_property_read_bool(np, "syscon-chipselects")) {
742 qspi->ctrl_base =
743 syscon_regmap_lookup_by_phandle(np,
744 "syscon-chipselects");
745 if (IS_ERR(qspi->ctrl_base)) {
746 ret = PTR_ERR(qspi->ctrl_base);
747 goto free_master;
748 }
749 ret = of_property_read_u32_index(np,
750 "syscon-chipselects",
751 1, &qspi->ctrl_reg);
752 if (ret) {
753 dev_err(&pdev->dev,
754 "couldn't get ctrl_mod reg index\n");
755 goto free_master;
756 }
757 }
758
759 qspi->fclk = devm_clk_get(&pdev->dev, "fck");
760 if (IS_ERR(qspi->fclk)) {
761 ret = PTR_ERR(qspi->fclk);
762 dev_err(&pdev->dev, "could not get clk: %d\n", ret);
763 }
764
765 pm_runtime_use_autosuspend(&pdev->dev);
766 pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
767 pm_runtime_enable(&pdev->dev);
768
769 if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
770 qspi->spi_max_frequency = max_freq;
771
772 dma_cap_zero(mask);
773 dma_cap_set(DMA_MEMCPY, mask);
774
775 qspi->rx_chan = dma_request_chan_by_mask(&mask);
776 if (IS_ERR(qspi->rx_chan)) {
777 dev_err(qspi->dev,
778 "No Rx DMA available, trying mmap mode\n");
779 qspi->rx_chan = NULL;
780 ret = 0;
781 goto no_dma;
782 }
783 qspi->rx_bb_addr = dma_alloc_coherent(qspi->dev,
784 QSPI_DMA_BUFFER_SIZE,
785 &qspi->rx_bb_dma_addr,
786 GFP_KERNEL | GFP_DMA);
787 if (!qspi->rx_bb_addr) {
788 dev_err(qspi->dev,
789 "dma_alloc_coherent failed, using PIO mode\n");
790 dma_release_channel(qspi->rx_chan);
791 goto no_dma;
792 }
793 master->dma_rx = qspi->rx_chan;
794 init_completion(&qspi->transfer_complete);
795 if (res_mmap)
796 qspi->mmap_phys_base = (dma_addr_t)res_mmap->start;
797
798 no_dma:
799 if (!qspi->rx_chan && res_mmap) {
800 qspi->mmap_base = devm_ioremap_resource(&pdev->dev, res_mmap);
801 if (IS_ERR(qspi->mmap_base)) {
802 dev_info(&pdev->dev,
803 "mmap failed with error %ld using PIO mode\n",
804 PTR_ERR(qspi->mmap_base));
805 qspi->mmap_base = NULL;
806 master->mem_ops = NULL;
807 }
808 }
809 qspi->mmap_enabled = false;
810
811 ret = devm_spi_register_master(&pdev->dev, master);
812 if (!ret)
813 return 0;
814
815 pm_runtime_disable(&pdev->dev);
816 free_master:
817 spi_master_put(master);
818 return ret;
819 }
820
ti_qspi_remove(struct platform_device * pdev)821 static int ti_qspi_remove(struct platform_device *pdev)
822 {
823 struct ti_qspi *qspi = platform_get_drvdata(pdev);
824 int rc;
825
826 rc = spi_master_suspend(qspi->master);
827 if (rc)
828 return rc;
829
830 pm_runtime_put_sync(&pdev->dev);
831 pm_runtime_disable(&pdev->dev);
832
833 if (qspi->rx_bb_addr)
834 dma_free_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE,
835 qspi->rx_bb_addr,
836 qspi->rx_bb_dma_addr);
837 if (qspi->rx_chan)
838 dma_release_channel(qspi->rx_chan);
839
840 return 0;
841 }
842
843 static const struct dev_pm_ops ti_qspi_pm_ops = {
844 .runtime_resume = ti_qspi_runtime_resume,
845 };
846
847 static struct platform_driver ti_qspi_driver = {
848 .probe = ti_qspi_probe,
849 .remove = ti_qspi_remove,
850 .driver = {
851 .name = "ti-qspi",
852 .pm = &ti_qspi_pm_ops,
853 .of_match_table = ti_qspi_match,
854 }
855 };
856
857 module_platform_driver(ti_qspi_driver);
858
859 MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>");
860 MODULE_LICENSE("GPL v2");
861 MODULE_DESCRIPTION("TI QSPI controller driver");
862 MODULE_ALIAS("platform:ti-qspi");
863