1 /*
2  * SuperH MSIOF SPI Master Interface
3  *
4  * Copyright (c) 2009 Magnus Damm
5  * Copyright (C) 2014 Renesas Electronics Corporation
6  * Copyright (C) 2014-2017 Glider bvba
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  */
13 
14 #include <linux/bitmap.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_dma.h>
32 
33 #include <linux/spi/sh_msiof.h>
34 #include <linux/spi/spi.h>
35 
36 #include <asm/unaligned.h>
37 
38 struct sh_msiof_chipdata {
39 	u16 tx_fifo_size;
40 	u16 rx_fifo_size;
41 	u16 master_flags;
42 	u16 min_div_pow;
43 };
44 
45 struct sh_msiof_spi_priv {
46 	struct spi_master *master;
47 	void __iomem *mapbase;
48 	struct clk *clk;
49 	struct platform_device *pdev;
50 	struct sh_msiof_spi_info *info;
51 	struct completion done;
52 	struct completion done_txdma;
53 	unsigned int tx_fifo_size;
54 	unsigned int rx_fifo_size;
55 	unsigned int min_div_pow;
56 	void *tx_dma_page;
57 	void *rx_dma_page;
58 	dma_addr_t tx_dma_addr;
59 	dma_addr_t rx_dma_addr;
60 	unsigned short unused_ss;
61 	bool native_cs_inited;
62 	bool native_cs_high;
63 	bool slave_aborted;
64 };
65 
66 #define MAX_SS	3	/* Maximum number of native chip selects */
67 
68 #define TMDR1	0x00	/* Transmit Mode Register 1 */
69 #define TMDR2	0x04	/* Transmit Mode Register 2 */
70 #define TMDR3	0x08	/* Transmit Mode Register 3 */
71 #define RMDR1	0x10	/* Receive Mode Register 1 */
72 #define RMDR2	0x14	/* Receive Mode Register 2 */
73 #define RMDR3	0x18	/* Receive Mode Register 3 */
74 #define TSCR	0x20	/* Transmit Clock Select Register */
75 #define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
76 #define CTR	0x28	/* Control Register */
77 #define FCTR	0x30	/* FIFO Control Register */
78 #define STR	0x40	/* Status Register */
79 #define IER	0x44	/* Interrupt Enable Register */
80 #define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
81 #define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
82 #define TFDR	0x50	/* Transmit FIFO Data Register */
83 #define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
84 #define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
85 #define RFDR	0x60	/* Receive FIFO Data Register */
86 
87 /* TMDR1 and RMDR1 */
88 #define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
89 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
90 #define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
91 #define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
92 #define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
93 #define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
94 #define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
95 #define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
96 #define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
97 #define MDR1_FLD_SHIFT		  2
98 #define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
99 /* TMDR1 */
100 #define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
101 #define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
102 #define TMDR1_SYNCCH_SHIFT	 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
103 
104 /* TMDR2 and RMDR2 */
105 #define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
106 #define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
107 #define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
108 
109 /* TSCR and RSCR */
110 #define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
111 #define SCR_BRPS(i)	(((i) - 1) << 8)
112 #define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
113 #define SCR_BRDV_DIV_2	    0x0000
114 #define SCR_BRDV_DIV_4	    0x0001
115 #define SCR_BRDV_DIV_8	    0x0002
116 #define SCR_BRDV_DIV_16	    0x0003
117 #define SCR_BRDV_DIV_32	    0x0004
118 #define SCR_BRDV_DIV_1	    0x0007
119 
120 /* CTR */
121 #define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
122 #define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
123 #define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
124 #define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
125 #define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
126 #define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
127 #define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
128 #define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
129 #define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
130 #define CTR_TXDIZ_LOW	0x00000000 /*   0 */
131 #define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
132 #define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
133 #define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
134 #define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
135 #define CTR_TXE		0x00000200 /* Transmit Enable */
136 #define CTR_RXE		0x00000100 /* Receive Enable */
137 
138 /* FCTR */
139 #define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
140 #define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
141 #define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
142 #define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
143 #define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
144 #define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
145 #define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
146 #define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
147 #define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
148 #define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
149 #define FCTR_TFUA_SHIFT		20
150 #define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
151 #define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
152 #define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
153 #define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
154 #define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
155 #define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
156 #define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
157 #define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
158 #define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
159 #define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
160 #define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
161 #define FCTR_RFUA_SHIFT		 4
162 #define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
163 
164 /* STR */
165 #define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
166 #define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
167 #define STR_TEOF	0x00800000 /* Frame Transmission End */
168 #define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
169 #define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
170 #define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
171 #define STR_RFFUL	0x00002000 /* Receive FIFO Full */
172 #define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
173 #define STR_REOF	0x00000080 /* Frame Reception End */
174 #define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
175 #define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
176 #define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
177 
178 /* IER */
179 #define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
180 #define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
181 #define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
182 #define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
183 #define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
184 #define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
185 #define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
186 #define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
187 #define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
188 #define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
189 #define IER_REOFE	0x00000080 /* Frame Reception End Enable */
190 #define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
191 #define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
192 #define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
193 
194 
sh_msiof_read(struct sh_msiof_spi_priv * p,int reg_offs)195 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
196 {
197 	switch (reg_offs) {
198 	case TSCR:
199 	case RSCR:
200 		return ioread16(p->mapbase + reg_offs);
201 	default:
202 		return ioread32(p->mapbase + reg_offs);
203 	}
204 }
205 
sh_msiof_write(struct sh_msiof_spi_priv * p,int reg_offs,u32 value)206 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
207 			   u32 value)
208 {
209 	switch (reg_offs) {
210 	case TSCR:
211 	case RSCR:
212 		iowrite16(value, p->mapbase + reg_offs);
213 		break;
214 	default:
215 		iowrite32(value, p->mapbase + reg_offs);
216 		break;
217 	}
218 }
219 
sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv * p,u32 clr,u32 set)220 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
221 				    u32 clr, u32 set)
222 {
223 	u32 mask = clr | set;
224 	u32 data;
225 	int k;
226 
227 	data = sh_msiof_read(p, CTR);
228 	data &= ~clr;
229 	data |= set;
230 	sh_msiof_write(p, CTR, data);
231 
232 	for (k = 100; k > 0; k--) {
233 		if ((sh_msiof_read(p, CTR) & mask) == set)
234 			break;
235 
236 		udelay(10);
237 	}
238 
239 	return k > 0 ? 0 : -ETIMEDOUT;
240 }
241 
sh_msiof_spi_irq(int irq,void * data)242 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
243 {
244 	struct sh_msiof_spi_priv *p = data;
245 
246 	/* just disable the interrupt and wake up */
247 	sh_msiof_write(p, IER, 0);
248 	complete(&p->done);
249 
250 	return IRQ_HANDLED;
251 }
252 
253 static const u32 sh_msiof_spi_div_array[] = {
254 	SCR_BRDV_DIV_1, SCR_BRDV_DIV_2,	 SCR_BRDV_DIV_4,
255 	SCR_BRDV_DIV_8,	SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
256 };
257 
sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv * p,unsigned long parent_rate,u32 spi_hz)258 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
259 				      unsigned long parent_rate, u32 spi_hz)
260 {
261 	unsigned long div;
262 	u32 brps, scr;
263 	unsigned int div_pow = p->min_div_pow;
264 
265 	if (!spi_hz || !parent_rate) {
266 		WARN(1, "Invalid clock rate parameters %lu and %u\n",
267 		     parent_rate, spi_hz);
268 		return;
269 	}
270 
271 	div = DIV_ROUND_UP(parent_rate, spi_hz);
272 	if (div <= 1024) {
273 		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
274 		if (!div_pow && div <= 32 && div > 2)
275 			div_pow = 1;
276 
277 		if (div_pow)
278 			brps = (div + 1) >> div_pow;
279 		else
280 			brps = div;
281 
282 		for (; brps > 32; div_pow++)
283 			brps = (brps + 1) >> 1;
284 	} else {
285 		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
286 		dev_err(&p->pdev->dev,
287 			"Requested SPI transfer rate %d is too low\n", spi_hz);
288 		div_pow = 5;
289 		brps = 32;
290 	}
291 
292 	scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
293 	sh_msiof_write(p, TSCR, scr);
294 	if (!(p->master->flags & SPI_MASTER_MUST_TX))
295 		sh_msiof_write(p, RSCR, scr);
296 }
297 
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)298 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
299 {
300 	/*
301 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
302 	 * b'000		: 0
303 	 * b'001		: 100
304 	 * b'010		: 200
305 	 * b'011 (SYNCDL only)	: 300
306 	 * b'101		: 50
307 	 * b'110		: 150
308 	 */
309 	if (dtdl_or_syncdl % 100)
310 		return dtdl_or_syncdl / 100 + 5;
311 	else
312 		return dtdl_or_syncdl / 100;
313 }
314 
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv * p)315 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
316 {
317 	u32 val;
318 
319 	if (!p->info)
320 		return 0;
321 
322 	/* check if DTDL and SYNCDL is allowed value */
323 	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
324 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
325 		return 0;
326 	}
327 
328 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
329 	if ((p->info->dtdl + p->info->syncdl) % 100) {
330 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
331 		return 0;
332 	}
333 
334 	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
335 	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
336 
337 	return val;
338 }
339 
sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv * p,u32 ss,u32 cpol,u32 cpha,u32 tx_hi_z,u32 lsb_first,u32 cs_high)340 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
341 				      u32 cpol, u32 cpha,
342 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
343 {
344 	u32 tmp;
345 	int edge;
346 
347 	/*
348 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
349 	 *    0    0         10     10    1    1
350 	 *    0    1         10     10    0    0
351 	 *    1    0         11     11    0    0
352 	 *    1    1         11     11    1    1
353 	 */
354 	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
355 	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
356 	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
357 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
358 	if (spi_controller_is_slave(p->master)) {
359 		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
360 	} else {
361 		sh_msiof_write(p, TMDR1,
362 			       tmp | MDR1_TRMD | TMDR1_PCON |
363 			       (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
364 	}
365 	if (p->master->flags & SPI_MASTER_MUST_TX) {
366 		/* These bits are reserved if RX needs TX */
367 		tmp &= ~0x0000ffff;
368 	}
369 	sh_msiof_write(p, RMDR1, tmp);
370 
371 	tmp = 0;
372 	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
373 	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
374 
375 	edge = cpol ^ !cpha;
376 
377 	tmp |= edge << CTR_TEDG_SHIFT;
378 	tmp |= edge << CTR_REDG_SHIFT;
379 	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
380 	sh_msiof_write(p, CTR, tmp);
381 }
382 
sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv * p,const void * tx_buf,void * rx_buf,u32 bits,u32 words)383 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
384 				       const void *tx_buf, void *rx_buf,
385 				       u32 bits, u32 words)
386 {
387 	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
388 
389 	if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
390 		sh_msiof_write(p, TMDR2, dr2);
391 	else
392 		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
393 
394 	if (rx_buf)
395 		sh_msiof_write(p, RMDR2, dr2);
396 }
397 
sh_msiof_reset_str(struct sh_msiof_spi_priv * p)398 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
399 {
400 	sh_msiof_write(p, STR,
401 		       sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
402 }
403 
sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)404 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
405 				      const void *tx_buf, int words, int fs)
406 {
407 	const u8 *buf_8 = tx_buf;
408 	int k;
409 
410 	for (k = 0; k < words; k++)
411 		sh_msiof_write(p, TFDR, buf_8[k] << fs);
412 }
413 
sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)414 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
415 				       const void *tx_buf, int words, int fs)
416 {
417 	const u16 *buf_16 = tx_buf;
418 	int k;
419 
420 	for (k = 0; k < words; k++)
421 		sh_msiof_write(p, TFDR, buf_16[k] << fs);
422 }
423 
sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)424 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
425 					const void *tx_buf, int words, int fs)
426 {
427 	const u16 *buf_16 = tx_buf;
428 	int k;
429 
430 	for (k = 0; k < words; k++)
431 		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
432 }
433 
sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)434 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
435 				       const void *tx_buf, int words, int fs)
436 {
437 	const u32 *buf_32 = tx_buf;
438 	int k;
439 
440 	for (k = 0; k < words; k++)
441 		sh_msiof_write(p, TFDR, buf_32[k] << fs);
442 }
443 
sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)444 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
445 					const void *tx_buf, int words, int fs)
446 {
447 	const u32 *buf_32 = tx_buf;
448 	int k;
449 
450 	for (k = 0; k < words; k++)
451 		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
452 }
453 
sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)454 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
455 					const void *tx_buf, int words, int fs)
456 {
457 	const u32 *buf_32 = tx_buf;
458 	int k;
459 
460 	for (k = 0; k < words; k++)
461 		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
462 }
463 
sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)464 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
465 					 const void *tx_buf, int words, int fs)
466 {
467 	const u32 *buf_32 = tx_buf;
468 	int k;
469 
470 	for (k = 0; k < words; k++)
471 		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
472 }
473 
sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)474 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
475 				     void *rx_buf, int words, int fs)
476 {
477 	u8 *buf_8 = rx_buf;
478 	int k;
479 
480 	for (k = 0; k < words; k++)
481 		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
482 }
483 
sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)484 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
485 				      void *rx_buf, int words, int fs)
486 {
487 	u16 *buf_16 = rx_buf;
488 	int k;
489 
490 	for (k = 0; k < words; k++)
491 		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
492 }
493 
sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)494 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
495 				       void *rx_buf, int words, int fs)
496 {
497 	u16 *buf_16 = rx_buf;
498 	int k;
499 
500 	for (k = 0; k < words; k++)
501 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
502 }
503 
sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)504 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
505 				      void *rx_buf, int words, int fs)
506 {
507 	u32 *buf_32 = rx_buf;
508 	int k;
509 
510 	for (k = 0; k < words; k++)
511 		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
512 }
513 
sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)514 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
515 				       void *rx_buf, int words, int fs)
516 {
517 	u32 *buf_32 = rx_buf;
518 	int k;
519 
520 	for (k = 0; k < words; k++)
521 		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
522 }
523 
sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)524 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
525 				       void *rx_buf, int words, int fs)
526 {
527 	u32 *buf_32 = rx_buf;
528 	int k;
529 
530 	for (k = 0; k < words; k++)
531 		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
532 }
533 
sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)534 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
535 				       void *rx_buf, int words, int fs)
536 {
537 	u32 *buf_32 = rx_buf;
538 	int k;
539 
540 	for (k = 0; k < words; k++)
541 		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
542 }
543 
sh_msiof_spi_setup(struct spi_device * spi)544 static int sh_msiof_spi_setup(struct spi_device *spi)
545 {
546 	struct device_node	*np = spi->master->dev.of_node;
547 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
548 	u32 clr, set, tmp;
549 
550 	if (!np) {
551 		/*
552 		 * Use spi->controller_data for CS (same strategy as spi_gpio),
553 		 * if any. otherwise let HW control CS
554 		 */
555 		spi->cs_gpio = (uintptr_t)spi->controller_data;
556 	}
557 
558 	if (gpio_is_valid(spi->cs_gpio)) {
559 		gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
560 		return 0;
561 	}
562 
563 	if (spi_controller_is_slave(p->master))
564 		return 0;
565 
566 	if (p->native_cs_inited &&
567 	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
568 		return 0;
569 
570 	/* Configure native chip select mode/polarity early */
571 	clr = MDR1_SYNCMD_MASK;
572 	set = MDR1_SYNCMD_SPI;
573 	if (spi->mode & SPI_CS_HIGH)
574 		clr |= BIT(MDR1_SYNCAC_SHIFT);
575 	else
576 		set |= BIT(MDR1_SYNCAC_SHIFT);
577 	pm_runtime_get_sync(&p->pdev->dev);
578 	tmp = sh_msiof_read(p, TMDR1) & ~clr;
579 	sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
580 	tmp = sh_msiof_read(p, RMDR1) & ~clr;
581 	sh_msiof_write(p, RMDR1, tmp | set);
582 	pm_runtime_put(&p->pdev->dev);
583 	p->native_cs_high = spi->mode & SPI_CS_HIGH;
584 	p->native_cs_inited = true;
585 	return 0;
586 }
587 
sh_msiof_prepare_message(struct spi_master * master,struct spi_message * msg)588 static int sh_msiof_prepare_message(struct spi_master *master,
589 				    struct spi_message *msg)
590 {
591 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
592 	const struct spi_device *spi = msg->spi;
593 	u32 ss, cs_high;
594 
595 	/* Configure pins before asserting CS */
596 	if (gpio_is_valid(spi->cs_gpio)) {
597 		ss = p->unused_ss;
598 		cs_high = p->native_cs_high;
599 	} else {
600 		ss = spi->chip_select;
601 		cs_high = !!(spi->mode & SPI_CS_HIGH);
602 	}
603 	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
604 				  !!(spi->mode & SPI_CPHA),
605 				  !!(spi->mode & SPI_3WIRE),
606 				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
607 	return 0;
608 }
609 
sh_msiof_spi_start(struct sh_msiof_spi_priv * p,void * rx_buf)610 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
611 {
612 	bool slave = spi_controller_is_slave(p->master);
613 	int ret = 0;
614 
615 	/* setup clock and rx/tx signals */
616 	if (!slave)
617 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
618 	if (rx_buf && !ret)
619 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
620 	if (!ret)
621 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
622 
623 	/* start by setting frame bit */
624 	if (!ret && !slave)
625 		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
626 
627 	return ret;
628 }
629 
sh_msiof_spi_stop(struct sh_msiof_spi_priv * p,void * rx_buf)630 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
631 {
632 	bool slave = spi_controller_is_slave(p->master);
633 	int ret = 0;
634 
635 	/* shut down frame, rx/tx and clock signals */
636 	if (!slave)
637 		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
638 	if (!ret)
639 		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
640 	if (rx_buf && !ret)
641 		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
642 	if (!ret && !slave)
643 		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
644 
645 	return ret;
646 }
647 
sh_msiof_slave_abort(struct spi_master * master)648 static int sh_msiof_slave_abort(struct spi_master *master)
649 {
650 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
651 
652 	p->slave_aborted = true;
653 	complete(&p->done);
654 	complete(&p->done_txdma);
655 	return 0;
656 }
657 
sh_msiof_wait_for_completion(struct sh_msiof_spi_priv * p,struct completion * x)658 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
659 					struct completion *x)
660 {
661 	if (spi_controller_is_slave(p->master)) {
662 		if (wait_for_completion_interruptible(x) ||
663 		    p->slave_aborted) {
664 			dev_dbg(&p->pdev->dev, "interrupted\n");
665 			return -EINTR;
666 		}
667 	} else {
668 		if (!wait_for_completion_timeout(x, HZ)) {
669 			dev_err(&p->pdev->dev, "timeout\n");
670 			return -ETIMEDOUT;
671 		}
672 	}
673 
674 	return 0;
675 }
676 
sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv * p,void (* tx_fifo)(struct sh_msiof_spi_priv *,const void *,int,int),void (* rx_fifo)(struct sh_msiof_spi_priv *,void *,int,int),const void * tx_buf,void * rx_buf,int words,int bits)677 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
678 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
679 						  const void *, int, int),
680 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
681 						  void *, int, int),
682 				  const void *tx_buf, void *rx_buf,
683 				  int words, int bits)
684 {
685 	int fifo_shift;
686 	int ret;
687 
688 	/* limit maximum word transfer to rx/tx fifo size */
689 	if (tx_buf)
690 		words = min_t(int, words, p->tx_fifo_size);
691 	if (rx_buf)
692 		words = min_t(int, words, p->rx_fifo_size);
693 
694 	/* the fifo contents need shifting */
695 	fifo_shift = 32 - bits;
696 
697 	/* default FIFO watermarks for PIO */
698 	sh_msiof_write(p, FCTR, 0);
699 
700 	/* setup msiof transfer mode registers */
701 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
702 	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
703 
704 	/* write tx fifo */
705 	if (tx_buf)
706 		tx_fifo(p, tx_buf, words, fifo_shift);
707 
708 	reinit_completion(&p->done);
709 	p->slave_aborted = false;
710 
711 	ret = sh_msiof_spi_start(p, rx_buf);
712 	if (ret) {
713 		dev_err(&p->pdev->dev, "failed to start hardware\n");
714 		goto stop_ier;
715 	}
716 
717 	/* wait for tx fifo to be emptied / rx fifo to be filled */
718 	ret = sh_msiof_wait_for_completion(p, &p->done);
719 	if (ret)
720 		goto stop_reset;
721 
722 	/* read rx fifo */
723 	if (rx_buf)
724 		rx_fifo(p, rx_buf, words, fifo_shift);
725 
726 	/* clear status bits */
727 	sh_msiof_reset_str(p);
728 
729 	ret = sh_msiof_spi_stop(p, rx_buf);
730 	if (ret) {
731 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
732 		return ret;
733 	}
734 
735 	return words;
736 
737 stop_reset:
738 	sh_msiof_reset_str(p);
739 	sh_msiof_spi_stop(p, rx_buf);
740 stop_ier:
741 	sh_msiof_write(p, IER, 0);
742 	return ret;
743 }
744 
sh_msiof_dma_complete(void * arg)745 static void sh_msiof_dma_complete(void *arg)
746 {
747 	complete(arg);
748 }
749 
sh_msiof_dma_once(struct sh_msiof_spi_priv * p,const void * tx,void * rx,unsigned int len)750 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
751 			     void *rx, unsigned int len)
752 {
753 	u32 ier_bits = 0;
754 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
755 	dma_cookie_t cookie;
756 	int ret;
757 
758 	/* First prepare and submit the DMA request(s), as this may fail */
759 	if (rx) {
760 		ier_bits |= IER_RDREQE | IER_RDMAE;
761 		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
762 					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
763 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
764 		if (!desc_rx)
765 			return -EAGAIN;
766 
767 		desc_rx->callback = sh_msiof_dma_complete;
768 		desc_rx->callback_param = &p->done;
769 		cookie = dmaengine_submit(desc_rx);
770 		if (dma_submit_error(cookie))
771 			return cookie;
772 	}
773 
774 	if (tx) {
775 		ier_bits |= IER_TDREQE | IER_TDMAE;
776 		dma_sync_single_for_device(p->master->dma_tx->device->dev,
777 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
778 		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
779 					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
780 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
781 		if (!desc_tx) {
782 			ret = -EAGAIN;
783 			goto no_dma_tx;
784 		}
785 
786 		desc_tx->callback = sh_msiof_dma_complete;
787 		desc_tx->callback_param = &p->done_txdma;
788 		cookie = dmaengine_submit(desc_tx);
789 		if (dma_submit_error(cookie)) {
790 			ret = cookie;
791 			goto no_dma_tx;
792 		}
793 	}
794 
795 	/* 1 stage FIFO watermarks for DMA */
796 	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
797 
798 	/* setup msiof transfer mode registers (32-bit words) */
799 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
800 
801 	sh_msiof_write(p, IER, ier_bits);
802 
803 	reinit_completion(&p->done);
804 	if (tx)
805 		reinit_completion(&p->done_txdma);
806 	p->slave_aborted = false;
807 
808 	/* Now start DMA */
809 	if (rx)
810 		dma_async_issue_pending(p->master->dma_rx);
811 	if (tx)
812 		dma_async_issue_pending(p->master->dma_tx);
813 
814 	ret = sh_msiof_spi_start(p, rx);
815 	if (ret) {
816 		dev_err(&p->pdev->dev, "failed to start hardware\n");
817 		goto stop_dma;
818 	}
819 
820 	if (tx) {
821 		/* wait for tx DMA completion */
822 		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
823 		if (ret)
824 			goto stop_reset;
825 	}
826 
827 	if (rx) {
828 		/* wait for rx DMA completion */
829 		ret = sh_msiof_wait_for_completion(p, &p->done);
830 		if (ret)
831 			goto stop_reset;
832 
833 		sh_msiof_write(p, IER, 0);
834 	} else {
835 		/* wait for tx fifo to be emptied */
836 		sh_msiof_write(p, IER, IER_TEOFE);
837 		ret = sh_msiof_wait_for_completion(p, &p->done);
838 		if (ret)
839 			goto stop_reset;
840 	}
841 
842 	/* clear status bits */
843 	sh_msiof_reset_str(p);
844 
845 	ret = sh_msiof_spi_stop(p, rx);
846 	if (ret) {
847 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
848 		return ret;
849 	}
850 
851 	if (rx)
852 		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
853 					p->rx_dma_addr, len,
854 					DMA_FROM_DEVICE);
855 
856 	return 0;
857 
858 stop_reset:
859 	sh_msiof_reset_str(p);
860 	sh_msiof_spi_stop(p, rx);
861 stop_dma:
862 	if (tx)
863 		dmaengine_terminate_all(p->master->dma_tx);
864 no_dma_tx:
865 	if (rx)
866 		dmaengine_terminate_all(p->master->dma_rx);
867 	sh_msiof_write(p, IER, 0);
868 	return ret;
869 }
870 
copy_bswap32(u32 * dst,const u32 * src,unsigned int words)871 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
872 {
873 	/* src or dst can be unaligned, but not both */
874 	if ((unsigned long)src & 3) {
875 		while (words--) {
876 			*dst++ = swab32(get_unaligned(src));
877 			src++;
878 		}
879 	} else if ((unsigned long)dst & 3) {
880 		while (words--) {
881 			put_unaligned(swab32(*src++), dst);
882 			dst++;
883 		}
884 	} else {
885 		while (words--)
886 			*dst++ = swab32(*src++);
887 	}
888 }
889 
copy_wswap32(u32 * dst,const u32 * src,unsigned int words)890 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
891 {
892 	/* src or dst can be unaligned, but not both */
893 	if ((unsigned long)src & 3) {
894 		while (words--) {
895 			*dst++ = swahw32(get_unaligned(src));
896 			src++;
897 		}
898 	} else if ((unsigned long)dst & 3) {
899 		while (words--) {
900 			put_unaligned(swahw32(*src++), dst);
901 			dst++;
902 		}
903 	} else {
904 		while (words--)
905 			*dst++ = swahw32(*src++);
906 	}
907 }
908 
copy_plain32(u32 * dst,const u32 * src,unsigned int words)909 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
910 {
911 	memcpy(dst, src, words * 4);
912 }
913 
sh_msiof_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * t)914 static int sh_msiof_transfer_one(struct spi_master *master,
915 				 struct spi_device *spi,
916 				 struct spi_transfer *t)
917 {
918 	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
919 	void (*copy32)(u32 *, const u32 *, unsigned int);
920 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
921 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
922 	const void *tx_buf = t->tx_buf;
923 	void *rx_buf = t->rx_buf;
924 	unsigned int len = t->len;
925 	unsigned int bits = t->bits_per_word;
926 	unsigned int bytes_per_word;
927 	unsigned int words;
928 	int n;
929 	bool swab;
930 	int ret;
931 
932 	/* setup clocks (clock already enabled in chipselect()) */
933 	if (!spi_controller_is_slave(p->master))
934 		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
935 
936 	while (master->dma_tx && len > 15) {
937 		/*
938 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
939 		 *  words, with byte resp. word swapping.
940 		 */
941 		unsigned int l = 0;
942 
943 		if (tx_buf)
944 			l = min(len, p->tx_fifo_size * 4);
945 		if (rx_buf)
946 			l = min(len, p->rx_fifo_size * 4);
947 
948 		if (bits <= 8) {
949 			if (l & 3)
950 				break;
951 			copy32 = copy_bswap32;
952 		} else if (bits <= 16) {
953 			if (l & 3)
954 				break;
955 			copy32 = copy_wswap32;
956 		} else {
957 			copy32 = copy_plain32;
958 		}
959 
960 		if (tx_buf)
961 			copy32(p->tx_dma_page, tx_buf, l / 4);
962 
963 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
964 		if (ret == -EAGAIN) {
965 			dev_warn_once(&p->pdev->dev,
966 				"DMA not available, falling back to PIO\n");
967 			break;
968 		}
969 		if (ret)
970 			return ret;
971 
972 		if (rx_buf) {
973 			copy32(rx_buf, p->rx_dma_page, l / 4);
974 			rx_buf += l;
975 		}
976 		if (tx_buf)
977 			tx_buf += l;
978 
979 		len -= l;
980 		if (!len)
981 			return 0;
982 	}
983 
984 	if (bits <= 8 && len > 15 && !(len & 3)) {
985 		bits = 32;
986 		swab = true;
987 	} else {
988 		swab = false;
989 	}
990 
991 	/* setup bytes per word and fifo read/write functions */
992 	if (bits <= 8) {
993 		bytes_per_word = 1;
994 		tx_fifo = sh_msiof_spi_write_fifo_8;
995 		rx_fifo = sh_msiof_spi_read_fifo_8;
996 	} else if (bits <= 16) {
997 		bytes_per_word = 2;
998 		if ((unsigned long)tx_buf & 0x01)
999 			tx_fifo = sh_msiof_spi_write_fifo_16u;
1000 		else
1001 			tx_fifo = sh_msiof_spi_write_fifo_16;
1002 
1003 		if ((unsigned long)rx_buf & 0x01)
1004 			rx_fifo = sh_msiof_spi_read_fifo_16u;
1005 		else
1006 			rx_fifo = sh_msiof_spi_read_fifo_16;
1007 	} else if (swab) {
1008 		bytes_per_word = 4;
1009 		if ((unsigned long)tx_buf & 0x03)
1010 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1011 		else
1012 			tx_fifo = sh_msiof_spi_write_fifo_s32;
1013 
1014 		if ((unsigned long)rx_buf & 0x03)
1015 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1016 		else
1017 			rx_fifo = sh_msiof_spi_read_fifo_s32;
1018 	} else {
1019 		bytes_per_word = 4;
1020 		if ((unsigned long)tx_buf & 0x03)
1021 			tx_fifo = sh_msiof_spi_write_fifo_32u;
1022 		else
1023 			tx_fifo = sh_msiof_spi_write_fifo_32;
1024 
1025 		if ((unsigned long)rx_buf & 0x03)
1026 			rx_fifo = sh_msiof_spi_read_fifo_32u;
1027 		else
1028 			rx_fifo = sh_msiof_spi_read_fifo_32;
1029 	}
1030 
1031 	/* transfer in fifo sized chunks */
1032 	words = len / bytes_per_word;
1033 
1034 	while (words > 0) {
1035 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1036 					   words, bits);
1037 		if (n < 0)
1038 			return n;
1039 
1040 		if (tx_buf)
1041 			tx_buf += n * bytes_per_word;
1042 		if (rx_buf)
1043 			rx_buf += n * bytes_per_word;
1044 		words -= n;
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 static const struct sh_msiof_chipdata sh_data = {
1051 	.tx_fifo_size = 64,
1052 	.rx_fifo_size = 64,
1053 	.master_flags = 0,
1054 	.min_div_pow = 0,
1055 };
1056 
1057 static const struct sh_msiof_chipdata rcar_gen2_data = {
1058 	.tx_fifo_size = 64,
1059 	.rx_fifo_size = 64,
1060 	.master_flags = SPI_MASTER_MUST_TX,
1061 	.min_div_pow = 0,
1062 };
1063 
1064 static const struct sh_msiof_chipdata rcar_gen3_data = {
1065 	.tx_fifo_size = 64,
1066 	.rx_fifo_size = 64,
1067 	.master_flags = SPI_MASTER_MUST_TX,
1068 	.min_div_pow = 1,
1069 };
1070 
1071 static const struct of_device_id sh_msiof_match[] = {
1072 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1073 	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1074 	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1075 	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1076 	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1077 	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1078 	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1079 	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1080 	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1081 	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1082 	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1083 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1084 	{},
1085 };
1086 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1087 
1088 #ifdef CONFIG_OF
sh_msiof_spi_parse_dt(struct device * dev)1089 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1090 {
1091 	struct sh_msiof_spi_info *info;
1092 	struct device_node *np = dev->of_node;
1093 	u32 num_cs = 1;
1094 
1095 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1096 	if (!info)
1097 		return NULL;
1098 
1099 	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1100 							    : MSIOF_SPI_MASTER;
1101 
1102 	/* Parse the MSIOF properties */
1103 	if (info->mode == MSIOF_SPI_MASTER)
1104 		of_property_read_u32(np, "num-cs", &num_cs);
1105 	of_property_read_u32(np, "renesas,tx-fifo-size",
1106 					&info->tx_fifo_override);
1107 	of_property_read_u32(np, "renesas,rx-fifo-size",
1108 					&info->rx_fifo_override);
1109 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1110 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1111 
1112 	info->num_chipselect = num_cs;
1113 
1114 	return info;
1115 }
1116 #else
sh_msiof_spi_parse_dt(struct device * dev)1117 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1118 {
1119 	return NULL;
1120 }
1121 #endif
1122 
sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv * p)1123 static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1124 {
1125 	struct device *dev = &p->pdev->dev;
1126 	unsigned int used_ss_mask = 0;
1127 	unsigned int cs_gpios = 0;
1128 	unsigned int num_cs, i;
1129 	int ret;
1130 
1131 	ret = gpiod_count(dev, "cs");
1132 	if (ret <= 0)
1133 		return 0;
1134 
1135 	num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
1136 	for (i = 0; i < num_cs; i++) {
1137 		struct gpio_desc *gpiod;
1138 
1139 		gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1140 		if (!IS_ERR(gpiod)) {
1141 			cs_gpios++;
1142 			continue;
1143 		}
1144 
1145 		if (PTR_ERR(gpiod) != -ENOENT)
1146 			return PTR_ERR(gpiod);
1147 
1148 		if (i >= MAX_SS) {
1149 			dev_err(dev, "Invalid native chip select %d\n", i);
1150 			return -EINVAL;
1151 		}
1152 		used_ss_mask |= BIT(i);
1153 	}
1154 	p->unused_ss = ffz(used_ss_mask);
1155 	if (cs_gpios && p->unused_ss >= MAX_SS) {
1156 		dev_err(dev, "No unused native chip select available\n");
1157 		return -EINVAL;
1158 	}
1159 	return 0;
1160 }
1161 
sh_msiof_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1162 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1163 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1164 {
1165 	dma_cap_mask_t mask;
1166 	struct dma_chan *chan;
1167 	struct dma_slave_config cfg;
1168 	int ret;
1169 
1170 	dma_cap_zero(mask);
1171 	dma_cap_set(DMA_SLAVE, mask);
1172 
1173 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1174 				(void *)(unsigned long)id, dev,
1175 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1176 	if (!chan) {
1177 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1178 		return NULL;
1179 	}
1180 
1181 	memset(&cfg, 0, sizeof(cfg));
1182 	cfg.direction = dir;
1183 	if (dir == DMA_MEM_TO_DEV) {
1184 		cfg.dst_addr = port_addr;
1185 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1186 	} else {
1187 		cfg.src_addr = port_addr;
1188 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1189 	}
1190 
1191 	ret = dmaengine_slave_config(chan, &cfg);
1192 	if (ret) {
1193 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1194 		dma_release_channel(chan);
1195 		return NULL;
1196 	}
1197 
1198 	return chan;
1199 }
1200 
sh_msiof_request_dma(struct sh_msiof_spi_priv * p)1201 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1202 {
1203 	struct platform_device *pdev = p->pdev;
1204 	struct device *dev = &pdev->dev;
1205 	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1206 	unsigned int dma_tx_id, dma_rx_id;
1207 	const struct resource *res;
1208 	struct spi_master *master;
1209 	struct device *tx_dev, *rx_dev;
1210 
1211 	if (dev->of_node) {
1212 		/* In the OF case we will get the slave IDs from the DT */
1213 		dma_tx_id = 0;
1214 		dma_rx_id = 0;
1215 	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1216 		dma_tx_id = info->dma_tx_id;
1217 		dma_rx_id = info->dma_rx_id;
1218 	} else {
1219 		/* The driver assumes no error */
1220 		return 0;
1221 	}
1222 
1223 	/* The DMA engine uses the second register set, if present */
1224 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1225 	if (!res)
1226 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1227 
1228 	master = p->master;
1229 	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1230 						   dma_tx_id,
1231 						   res->start + TFDR);
1232 	if (!master->dma_tx)
1233 		return -ENODEV;
1234 
1235 	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1236 						   dma_rx_id,
1237 						   res->start + RFDR);
1238 	if (!master->dma_rx)
1239 		goto free_tx_chan;
1240 
1241 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1242 	if (!p->tx_dma_page)
1243 		goto free_rx_chan;
1244 
1245 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1246 	if (!p->rx_dma_page)
1247 		goto free_tx_page;
1248 
1249 	tx_dev = master->dma_tx->device->dev;
1250 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1251 					DMA_TO_DEVICE);
1252 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1253 		goto free_rx_page;
1254 
1255 	rx_dev = master->dma_rx->device->dev;
1256 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1257 					DMA_FROM_DEVICE);
1258 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1259 		goto unmap_tx_page;
1260 
1261 	dev_info(dev, "DMA available");
1262 	return 0;
1263 
1264 unmap_tx_page:
1265 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1266 free_rx_page:
1267 	free_page((unsigned long)p->rx_dma_page);
1268 free_tx_page:
1269 	free_page((unsigned long)p->tx_dma_page);
1270 free_rx_chan:
1271 	dma_release_channel(master->dma_rx);
1272 free_tx_chan:
1273 	dma_release_channel(master->dma_tx);
1274 	master->dma_tx = NULL;
1275 	return -ENODEV;
1276 }
1277 
sh_msiof_release_dma(struct sh_msiof_spi_priv * p)1278 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1279 {
1280 	struct spi_master *master = p->master;
1281 
1282 	if (!master->dma_tx)
1283 		return;
1284 
1285 	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1286 			 PAGE_SIZE, DMA_FROM_DEVICE);
1287 	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1288 			 PAGE_SIZE, DMA_TO_DEVICE);
1289 	free_page((unsigned long)p->rx_dma_page);
1290 	free_page((unsigned long)p->tx_dma_page);
1291 	dma_release_channel(master->dma_rx);
1292 	dma_release_channel(master->dma_tx);
1293 }
1294 
sh_msiof_spi_probe(struct platform_device * pdev)1295 static int sh_msiof_spi_probe(struct platform_device *pdev)
1296 {
1297 	struct resource	*r;
1298 	struct spi_master *master;
1299 	const struct sh_msiof_chipdata *chipdata;
1300 	struct sh_msiof_spi_info *info;
1301 	struct sh_msiof_spi_priv *p;
1302 	int i;
1303 	int ret;
1304 
1305 	chipdata = of_device_get_match_data(&pdev->dev);
1306 	if (chipdata) {
1307 		info = sh_msiof_spi_parse_dt(&pdev->dev);
1308 	} else {
1309 		chipdata = (const void *)pdev->id_entry->driver_data;
1310 		info = dev_get_platdata(&pdev->dev);
1311 	}
1312 
1313 	if (!info) {
1314 		dev_err(&pdev->dev, "failed to obtain device info\n");
1315 		return -ENXIO;
1316 	}
1317 
1318 	if (info->mode == MSIOF_SPI_SLAVE)
1319 		master = spi_alloc_slave(&pdev->dev,
1320 					 sizeof(struct sh_msiof_spi_priv));
1321 	else
1322 		master = spi_alloc_master(&pdev->dev,
1323 					  sizeof(struct sh_msiof_spi_priv));
1324 	if (master == NULL)
1325 		return -ENOMEM;
1326 
1327 	p = spi_master_get_devdata(master);
1328 
1329 	platform_set_drvdata(pdev, p);
1330 	p->master = master;
1331 	p->info = info;
1332 	p->min_div_pow = chipdata->min_div_pow;
1333 
1334 	init_completion(&p->done);
1335 	init_completion(&p->done_txdma);
1336 
1337 	p->clk = devm_clk_get(&pdev->dev, NULL);
1338 	if (IS_ERR(p->clk)) {
1339 		dev_err(&pdev->dev, "cannot get clock\n");
1340 		ret = PTR_ERR(p->clk);
1341 		goto err1;
1342 	}
1343 
1344 	i = platform_get_irq(pdev, 0);
1345 	if (i < 0) {
1346 		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1347 		ret = -ENOENT;
1348 		goto err1;
1349 	}
1350 
1351 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1352 	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1353 	if (IS_ERR(p->mapbase)) {
1354 		ret = PTR_ERR(p->mapbase);
1355 		goto err1;
1356 	}
1357 
1358 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1359 			       dev_name(&pdev->dev), p);
1360 	if (ret) {
1361 		dev_err(&pdev->dev, "unable to request irq\n");
1362 		goto err1;
1363 	}
1364 
1365 	p->pdev = pdev;
1366 	pm_runtime_enable(&pdev->dev);
1367 
1368 	/* Platform data may override FIFO sizes */
1369 	p->tx_fifo_size = chipdata->tx_fifo_size;
1370 	p->rx_fifo_size = chipdata->rx_fifo_size;
1371 	if (p->info->tx_fifo_override)
1372 		p->tx_fifo_size = p->info->tx_fifo_override;
1373 	if (p->info->rx_fifo_override)
1374 		p->rx_fifo_size = p->info->rx_fifo_override;
1375 
1376 	/* Setup GPIO chip selects */
1377 	master->num_chipselect = p->info->num_chipselect;
1378 	ret = sh_msiof_get_cs_gpios(p);
1379 	if (ret)
1380 		goto err1;
1381 
1382 	/* init master code */
1383 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1384 	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1385 	master->flags = chipdata->master_flags;
1386 	master->bus_num = pdev->id;
1387 	master->dev.of_node = pdev->dev.of_node;
1388 	master->setup = sh_msiof_spi_setup;
1389 	master->prepare_message = sh_msiof_prepare_message;
1390 	master->slave_abort = sh_msiof_slave_abort;
1391 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1392 	master->auto_runtime_pm = true;
1393 	master->transfer_one = sh_msiof_transfer_one;
1394 
1395 	ret = sh_msiof_request_dma(p);
1396 	if (ret < 0)
1397 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1398 
1399 	ret = devm_spi_register_master(&pdev->dev, master);
1400 	if (ret < 0) {
1401 		dev_err(&pdev->dev, "spi_register_master error.\n");
1402 		goto err2;
1403 	}
1404 
1405 	return 0;
1406 
1407  err2:
1408 	sh_msiof_release_dma(p);
1409 	pm_runtime_disable(&pdev->dev);
1410  err1:
1411 	spi_master_put(master);
1412 	return ret;
1413 }
1414 
sh_msiof_spi_remove(struct platform_device * pdev)1415 static int sh_msiof_spi_remove(struct platform_device *pdev)
1416 {
1417 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1418 
1419 	sh_msiof_release_dma(p);
1420 	pm_runtime_disable(&pdev->dev);
1421 	return 0;
1422 }
1423 
1424 static const struct platform_device_id spi_driver_ids[] = {
1425 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1426 	{},
1427 };
1428 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1429 
1430 #ifdef CONFIG_PM_SLEEP
sh_msiof_spi_suspend(struct device * dev)1431 static int sh_msiof_spi_suspend(struct device *dev)
1432 {
1433 	struct platform_device *pdev = to_platform_device(dev);
1434 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1435 
1436 	return spi_master_suspend(p->master);
1437 }
1438 
sh_msiof_spi_resume(struct device * dev)1439 static int sh_msiof_spi_resume(struct device *dev)
1440 {
1441 	struct platform_device *pdev = to_platform_device(dev);
1442 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1443 
1444 	return spi_master_resume(p->master);
1445 }
1446 
1447 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1448 			 sh_msiof_spi_resume);
1449 #define DEV_PM_OPS	&sh_msiof_spi_pm_ops
1450 #else
1451 #define DEV_PM_OPS	NULL
1452 #endif /* CONFIG_PM_SLEEP */
1453 
1454 static struct platform_driver sh_msiof_spi_drv = {
1455 	.probe		= sh_msiof_spi_probe,
1456 	.remove		= sh_msiof_spi_remove,
1457 	.id_table	= spi_driver_ids,
1458 	.driver		= {
1459 		.name		= "spi_sh_msiof",
1460 		.pm		= DEV_PM_OPS,
1461 		.of_match_table = of_match_ptr(sh_msiof_match),
1462 	},
1463 };
1464 module_platform_driver(sh_msiof_spi_drv);
1465 
1466 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1467 MODULE_AUTHOR("Magnus Damm");
1468 MODULE_LICENSE("GPL v2");
1469 MODULE_ALIAS("platform:spi_sh_msiof");
1470