1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
7 *
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
10 *
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 *
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
18 *
19 * Other major contributions:
20 *
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *
24 *-----------------------------------------------------------------------------
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40 #include <linux/ctype.h>
41 #include <linux/init.h>
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/spinlock.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_tcq.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_transport.h>
49
50 #include "sym_glue.h"
51 #include "sym_nvram.h"
52
53 #define NAME53C "sym53c"
54 #define NAME53C8XX "sym53c8xx"
55
56 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
57 unsigned int sym_debug_flags = 0;
58
59 static char *excl_string;
60 static char *safe_string;
61 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
62 module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
63 module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
64 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
65 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
66 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
67 module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
68 module_param_named(verb, sym_driver_setup.verbose, byte, 0);
69 module_param_named(debug, sym_debug_flags, uint, 0);
70 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
71 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
72 module_param_named(excl, excl_string, charp, 0);
73 module_param_named(safe, safe_string, charp, 0);
74
75 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
76 MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers");
77 MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
78 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
79 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
80 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
81 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
82 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
83 MODULE_PARM_DESC(debug, "Set bits to enable debugging");
84 MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3");
85 MODULE_PARM_DESC(nvram, "Option currently not used");
86 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
87 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
88
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(SYM_VERSION);
91 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
92 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
93
sym2_setup_params(void)94 static void sym2_setup_params(void)
95 {
96 char *p = excl_string;
97 int xi = 0;
98
99 while (p && (xi < 8)) {
100 char *next_p;
101 int val = (int) simple_strtoul(p, &next_p, 0);
102 sym_driver_setup.excludes[xi++] = val;
103 p = next_p;
104 }
105
106 if (safe_string) {
107 if (*safe_string == 'y') {
108 sym_driver_setup.max_tag = 0;
109 sym_driver_setup.burst_order = 0;
110 sym_driver_setup.scsi_led = 0;
111 sym_driver_setup.scsi_diff = 1;
112 sym_driver_setup.irq_mode = 0;
113 sym_driver_setup.scsi_bus_check = 2;
114 sym_driver_setup.host_id = 7;
115 sym_driver_setup.verbose = 2;
116 sym_driver_setup.settle_delay = 10;
117 sym_driver_setup.use_nvram = 1;
118 } else if (*safe_string != 'n') {
119 printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
120 " passed to safe option", safe_string);
121 }
122 }
123 }
124
125 static struct scsi_transport_template *sym2_transport_template = NULL;
126
127 /*
128 * Driver private area in the SCSI command structure.
129 */
130 struct sym_ucmd { /* Override the SCSI pointer structure */
131 struct completion *eh_done; /* SCSI error handling */
132 };
133
134 #define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp))
135 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
136
137 /*
138 * Complete a pending CAM CCB.
139 */
sym_xpt_done(struct sym_hcb * np,struct scsi_cmnd * cmd)140 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
141 {
142 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
143 BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd));
144
145 if (ucmd->eh_done)
146 complete(ucmd->eh_done);
147
148 scsi_dma_unmap(cmd);
149 cmd->scsi_done(cmd);
150 }
151
152 /*
153 * Tell the SCSI layer about a BUS RESET.
154 */
sym_xpt_async_bus_reset(struct sym_hcb * np)155 void sym_xpt_async_bus_reset(struct sym_hcb *np)
156 {
157 printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
158 np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
159 np->s.settle_time_valid = 1;
160 if (sym_verbose >= 2)
161 printf_info("%s: command processing suspended for %d seconds\n",
162 sym_name(np), sym_driver_setup.settle_delay);
163 }
164
165 /*
166 * Choose the more appropriate CAM status if
167 * the IO encountered an extended error.
168 */
sym_xerr_cam_status(int cam_status,int x_status)169 static int sym_xerr_cam_status(int cam_status, int x_status)
170 {
171 if (x_status) {
172 if (x_status & XE_PARITY_ERR)
173 cam_status = DID_PARITY;
174 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
175 cam_status = DID_ERROR;
176 else if (x_status & XE_BAD_PHASE)
177 cam_status = DID_ERROR;
178 else
179 cam_status = DID_ERROR;
180 }
181 return cam_status;
182 }
183
184 /*
185 * Build CAM result for a failed or auto-sensed IO.
186 */
sym_set_cam_result_error(struct sym_hcb * np,struct sym_ccb * cp,int resid)187 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
188 {
189 struct scsi_cmnd *cmd = cp->cmd;
190 u_int cam_status, scsi_status, drv_status;
191
192 drv_status = 0;
193 cam_status = DID_OK;
194 scsi_status = cp->ssss_status;
195
196 if (cp->host_flags & HF_SENSE) {
197 scsi_status = cp->sv_scsi_status;
198 resid = cp->sv_resid;
199 if (sym_verbose && cp->sv_xerr_status)
200 sym_print_xerr(cmd, cp->sv_xerr_status);
201 if (cp->host_status == HS_COMPLETE &&
202 cp->ssss_status == S_GOOD &&
203 cp->xerr_status == 0) {
204 cam_status = sym_xerr_cam_status(DID_OK,
205 cp->sv_xerr_status);
206 drv_status = DRIVER_SENSE;
207 /*
208 * Bounce back the sense data to user.
209 */
210 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
211 memcpy(cmd->sense_buffer, cp->sns_bbuf,
212 min(SCSI_SENSE_BUFFERSIZE, SYM_SNS_BBUF_LEN));
213 #if 0
214 /*
215 * If the device reports a UNIT ATTENTION condition
216 * due to a RESET condition, we should consider all
217 * disconnect CCBs for this unit as aborted.
218 */
219 if (1) {
220 u_char *p;
221 p = (u_char *) cmd->sense_data;
222 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
223 sym_clear_tasks(np, DID_ABORT,
224 cp->target,cp->lun, -1);
225 }
226 #endif
227 } else {
228 /*
229 * Error return from our internal request sense. This
230 * is bad: we must clear the contingent allegiance
231 * condition otherwise the device will always return
232 * BUSY. Use a big stick.
233 */
234 sym_reset_scsi_target(np, cmd->device->id);
235 cam_status = DID_ERROR;
236 }
237 } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */
238 cam_status = DID_OK;
239 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
240 cam_status = DID_NO_CONNECT;
241 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
242 cam_status = DID_ERROR;
243 else { /* Extended error */
244 if (sym_verbose) {
245 sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
246 cp->host_status, cp->ssss_status,
247 cp->xerr_status);
248 }
249 /*
250 * Set the most appropriate value for CAM status.
251 */
252 cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
253 }
254 scsi_set_resid(cmd, resid);
255 cmd->result = (drv_status << 24) | (cam_status << 16) | scsi_status;
256 }
257
sym_scatter(struct sym_hcb * np,struct sym_ccb * cp,struct scsi_cmnd * cmd)258 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
259 {
260 int segment;
261 int use_sg;
262
263 cp->data_len = 0;
264
265 use_sg = scsi_dma_map(cmd);
266 if (use_sg > 0) {
267 struct scatterlist *sg;
268 struct sym_tcb *tp = &np->target[cp->target];
269 struct sym_tblmove *data;
270
271 if (use_sg > SYM_CONF_MAX_SG) {
272 scsi_dma_unmap(cmd);
273 return -1;
274 }
275
276 data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
277
278 scsi_for_each_sg(cmd, sg, use_sg, segment) {
279 dma_addr_t baddr = sg_dma_address(sg);
280 unsigned int len = sg_dma_len(sg);
281
282 if ((len & 1) && (tp->head.wval & EWS)) {
283 len++;
284 cp->odd_byte_adjustment++;
285 }
286
287 sym_build_sge(np, &data[segment], baddr, len);
288 cp->data_len += len;
289 }
290 } else {
291 segment = -2;
292 }
293
294 return segment;
295 }
296
297 /*
298 * Queue a SCSI command.
299 */
sym_queue_command(struct sym_hcb * np,struct scsi_cmnd * cmd)300 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
301 {
302 struct scsi_device *sdev = cmd->device;
303 struct sym_tcb *tp;
304 struct sym_lcb *lp;
305 struct sym_ccb *cp;
306 int order;
307
308 /*
309 * Retrieve the target descriptor.
310 */
311 tp = &np->target[sdev->id];
312
313 /*
314 * Select tagged/untagged.
315 */
316 lp = sym_lp(tp, sdev->lun);
317 order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
318
319 /*
320 * Queue the SCSI IO.
321 */
322 cp = sym_get_ccb(np, cmd, order);
323 if (!cp)
324 return 1; /* Means resource shortage */
325 sym_queue_scsiio(np, cmd, cp);
326 return 0;
327 }
328
329 /*
330 * Setup buffers and pointers that address the CDB.
331 */
sym_setup_cdb(struct sym_hcb * np,struct scsi_cmnd * cmd,struct sym_ccb * cp)332 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
333 {
334 memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
335
336 cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
337 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
338
339 return 0;
340 }
341
342 /*
343 * Setup pointers that address the data and start the I/O.
344 */
sym_setup_data_and_start(struct sym_hcb * np,struct scsi_cmnd * cmd,struct sym_ccb * cp)345 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
346 {
347 u32 lastp, goalp;
348 int dir;
349
350 /*
351 * Build the CDB.
352 */
353 if (sym_setup_cdb(np, cmd, cp))
354 goto out_abort;
355
356 /*
357 * No direction means no data.
358 */
359 dir = cmd->sc_data_direction;
360 if (dir != DMA_NONE) {
361 cp->segments = sym_scatter(np, cp, cmd);
362 if (cp->segments < 0) {
363 sym_set_cam_status(cmd, DID_ERROR);
364 goto out_abort;
365 }
366
367 /*
368 * No segments means no data.
369 */
370 if (!cp->segments)
371 dir = DMA_NONE;
372 } else {
373 cp->data_len = 0;
374 cp->segments = 0;
375 }
376
377 /*
378 * Set the data pointer.
379 */
380 switch (dir) {
381 case DMA_BIDIRECTIONAL:
382 scmd_printk(KERN_INFO, cmd, "got DMA_BIDIRECTIONAL command");
383 sym_set_cam_status(cmd, DID_ERROR);
384 goto out_abort;
385 case DMA_TO_DEVICE:
386 goalp = SCRIPTA_BA(np, data_out2) + 8;
387 lastp = goalp - 8 - (cp->segments * (2*4));
388 break;
389 case DMA_FROM_DEVICE:
390 cp->host_flags |= HF_DATA_IN;
391 goalp = SCRIPTA_BA(np, data_in2) + 8;
392 lastp = goalp - 8 - (cp->segments * (2*4));
393 break;
394 case DMA_NONE:
395 default:
396 lastp = goalp = SCRIPTB_BA(np, no_data);
397 break;
398 }
399
400 /*
401 * Set all pointers values needed by SCRIPTS.
402 */
403 cp->phys.head.lastp = cpu_to_scr(lastp);
404 cp->phys.head.savep = cpu_to_scr(lastp);
405 cp->startp = cp->phys.head.savep;
406 cp->goalp = cpu_to_scr(goalp);
407
408 /*
409 * When `#ifed 1', the code below makes the driver
410 * panic on the first attempt to write to a SCSI device.
411 * It is the first test we want to do after a driver
412 * change that does not seem obviously safe. :)
413 */
414 #if 0
415 switch (cp->cdb_buf[0]) {
416 case 0x0A: case 0x2A: case 0xAA:
417 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
418 break;
419 default:
420 break;
421 }
422 #endif
423
424 /*
425 * activate this job.
426 */
427 sym_put_start_queue(np, cp);
428 return 0;
429
430 out_abort:
431 sym_free_ccb(np, cp);
432 sym_xpt_done(np, cmd);
433 return 0;
434 }
435
436
437 /*
438 * timer daemon.
439 *
440 * Misused to keep the driver running when
441 * interrupts are not configured correctly.
442 */
sym_timer(struct sym_hcb * np)443 static void sym_timer(struct sym_hcb *np)
444 {
445 unsigned long thistime = jiffies;
446
447 /*
448 * Restart the timer.
449 */
450 np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
451 add_timer(&np->s.timer);
452
453 /*
454 * If we are resetting the ncr, wait for settle_time before
455 * clearing it. Then command processing will be resumed.
456 */
457 if (np->s.settle_time_valid) {
458 if (time_before_eq(np->s.settle_time, thistime)) {
459 if (sym_verbose >= 2 )
460 printk("%s: command processing resumed\n",
461 sym_name(np));
462 np->s.settle_time_valid = 0;
463 }
464 return;
465 }
466
467 /*
468 * Nothing to do for now, but that may come.
469 */
470 if (np->s.lasttime + 4*HZ < thistime) {
471 np->s.lasttime = thistime;
472 }
473
474 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
475 /*
476 * Some way-broken PCI bridges may lead to
477 * completions being lost when the clearing
478 * of the INTFLY flag by the CPU occurs
479 * concurrently with the chip raising this flag.
480 * If this ever happen, lost completions will
481 * be reaped here.
482 */
483 sym_wakeup_done(np);
484 #endif
485 }
486
487
488 /*
489 * PCI BUS error handler.
490 */
sym_log_bus_error(struct Scsi_Host * shost)491 void sym_log_bus_error(struct Scsi_Host *shost)
492 {
493 struct sym_data *sym_data = shost_priv(shost);
494 struct pci_dev *pdev = sym_data->pdev;
495 unsigned short pci_sts;
496 pci_read_config_word(pdev, PCI_STATUS, &pci_sts);
497 if (pci_sts & 0xf900) {
498 pci_write_config_word(pdev, PCI_STATUS, pci_sts);
499 shost_printk(KERN_WARNING, shost,
500 "PCI bus error: status = 0x%04x\n", pci_sts & 0xf900);
501 }
502 }
503
504 /*
505 * queuecommand method. Entered with the host adapter lock held and
506 * interrupts disabled.
507 */
sym53c8xx_queue_command_lck(struct scsi_cmnd * cmd,void (* done)(struct scsi_cmnd *))508 static int sym53c8xx_queue_command_lck(struct scsi_cmnd *cmd,
509 void (*done)(struct scsi_cmnd *))
510 {
511 struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
512 struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
513 int sts = 0;
514
515 cmd->scsi_done = done;
516 memset(ucp, 0, sizeof(*ucp));
517
518 /*
519 * Shorten our settle_time if needed for
520 * this command not to time out.
521 */
522 if (np->s.settle_time_valid && cmd->request->timeout) {
523 unsigned long tlimit = jiffies + cmd->request->timeout;
524 tlimit -= SYM_CONF_TIMER_INTERVAL*2;
525 if (time_after(np->s.settle_time, tlimit)) {
526 np->s.settle_time = tlimit;
527 }
528 }
529
530 if (np->s.settle_time_valid)
531 return SCSI_MLQUEUE_HOST_BUSY;
532
533 sts = sym_queue_command(np, cmd);
534 if (sts)
535 return SCSI_MLQUEUE_HOST_BUSY;
536 return 0;
537 }
538
DEF_SCSI_QCMD(sym53c8xx_queue_command)539 static DEF_SCSI_QCMD(sym53c8xx_queue_command)
540
541 /*
542 * Linux entry point of the interrupt handler.
543 */
544 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id)
545 {
546 struct Scsi_Host *shost = dev_id;
547 struct sym_data *sym_data = shost_priv(shost);
548 irqreturn_t result;
549
550 /* Avoid spinloop trying to handle interrupts on frozen device */
551 if (pci_channel_offline(sym_data->pdev))
552 return IRQ_NONE;
553
554 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
555
556 spin_lock(shost->host_lock);
557 result = sym_interrupt(shost);
558 spin_unlock(shost->host_lock);
559
560 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
561
562 return result;
563 }
564
565 /*
566 * Linux entry point of the timer handler
567 */
sym53c8xx_timer(struct timer_list * t)568 static void sym53c8xx_timer(struct timer_list *t)
569 {
570 struct sym_hcb *np = from_timer(np, t, s.timer);
571 unsigned long flags;
572
573 spin_lock_irqsave(np->s.host->host_lock, flags);
574 sym_timer(np);
575 spin_unlock_irqrestore(np->s.host->host_lock, flags);
576 }
577
578
579 /*
580 * What the eh thread wants us to perform.
581 */
582 #define SYM_EH_ABORT 0
583 #define SYM_EH_DEVICE_RESET 1
584 #define SYM_EH_BUS_RESET 2
585 #define SYM_EH_HOST_RESET 3
586
587 /*
588 * Generic method for our eh processing.
589 * The 'op' argument tells what we have to do.
590 */
sym_eh_handler(int op,char * opname,struct scsi_cmnd * cmd)591 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
592 {
593 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
594 struct Scsi_Host *shost = cmd->device->host;
595 struct sym_data *sym_data = shost_priv(shost);
596 struct pci_dev *pdev = sym_data->pdev;
597 struct sym_hcb *np = sym_data->ncb;
598 SYM_QUEHEAD *qp;
599 int cmd_queued = 0;
600 int sts = -1;
601 struct completion eh_done;
602
603 scmd_printk(KERN_WARNING, cmd, "%s operation started\n", opname);
604
605 /* We may be in an error condition because the PCI bus
606 * went down. In this case, we need to wait until the
607 * PCI bus is reset, the card is reset, and only then
608 * proceed with the scsi error recovery. There's no
609 * point in hurrying; take a leisurely wait.
610 */
611 #define WAIT_FOR_PCI_RECOVERY 35
612 if (pci_channel_offline(pdev)) {
613 int finished_reset = 0;
614 init_completion(&eh_done);
615 spin_lock_irq(shost->host_lock);
616 /* Make sure we didn't race */
617 if (pci_channel_offline(pdev)) {
618 BUG_ON(sym_data->io_reset);
619 sym_data->io_reset = &eh_done;
620 } else {
621 finished_reset = 1;
622 }
623 spin_unlock_irq(shost->host_lock);
624 if (!finished_reset)
625 finished_reset = wait_for_completion_timeout
626 (sym_data->io_reset,
627 WAIT_FOR_PCI_RECOVERY*HZ);
628 spin_lock_irq(shost->host_lock);
629 sym_data->io_reset = NULL;
630 spin_unlock_irq(shost->host_lock);
631 if (!finished_reset)
632 return SCSI_FAILED;
633 }
634
635 spin_lock_irq(shost->host_lock);
636 /* This one is queued in some place -> to wait for completion */
637 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
638 struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
639 if (cp->cmd == cmd) {
640 cmd_queued = 1;
641 break;
642 }
643 }
644
645 /* Try to proceed the operation we have been asked for */
646 sts = -1;
647 switch(op) {
648 case SYM_EH_ABORT:
649 sts = sym_abort_scsiio(np, cmd, 1);
650 break;
651 case SYM_EH_DEVICE_RESET:
652 sts = sym_reset_scsi_target(np, cmd->device->id);
653 break;
654 case SYM_EH_BUS_RESET:
655 sym_reset_scsi_bus(np, 1);
656 sts = 0;
657 break;
658 case SYM_EH_HOST_RESET:
659 sym_reset_scsi_bus(np, 0);
660 sym_start_up(shost, 1);
661 sts = 0;
662 break;
663 default:
664 break;
665 }
666
667 /* On error, restore everything and cross fingers :) */
668 if (sts)
669 cmd_queued = 0;
670
671 if (cmd_queued) {
672 init_completion(&eh_done);
673 ucmd->eh_done = &eh_done;
674 spin_unlock_irq(shost->host_lock);
675 if (!wait_for_completion_timeout(&eh_done, 5*HZ)) {
676 ucmd->eh_done = NULL;
677 sts = -2;
678 }
679 } else {
680 spin_unlock_irq(shost->host_lock);
681 }
682
683 dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
684 sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
685 return sts ? SCSI_FAILED : SCSI_SUCCESS;
686 }
687
688
689 /*
690 * Error handlers called from the eh thread (one thread per HBA).
691 */
sym53c8xx_eh_abort_handler(struct scsi_cmnd * cmd)692 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
693 {
694 return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
695 }
696
sym53c8xx_eh_device_reset_handler(struct scsi_cmnd * cmd)697 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
698 {
699 return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
700 }
701
sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd * cmd)702 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
703 {
704 return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
705 }
706
sym53c8xx_eh_host_reset_handler(struct scsi_cmnd * cmd)707 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
708 {
709 return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
710 }
711
712 /*
713 * Tune device queuing depth, according to various limits.
714 */
sym_tune_dev_queuing(struct sym_tcb * tp,int lun,u_short reqtags)715 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
716 {
717 struct sym_lcb *lp = sym_lp(tp, lun);
718 u_short oldtags;
719
720 if (!lp)
721 return;
722
723 oldtags = lp->s.reqtags;
724
725 if (reqtags > lp->s.scdev_depth)
726 reqtags = lp->s.scdev_depth;
727
728 lp->s.reqtags = reqtags;
729
730 if (reqtags != oldtags) {
731 dev_info(&tp->starget->dev,
732 "tagged command queuing %s, command queue depth %d.\n",
733 lp->s.reqtags ? "enabled" : "disabled", reqtags);
734 }
735 }
736
sym53c8xx_slave_alloc(struct scsi_device * sdev)737 static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
738 {
739 struct sym_hcb *np = sym_get_hcb(sdev->host);
740 struct sym_tcb *tp = &np->target[sdev->id];
741 struct sym_lcb *lp;
742 unsigned long flags;
743 int error;
744
745 if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
746 return -ENXIO;
747
748 spin_lock_irqsave(np->s.host->host_lock, flags);
749
750 /*
751 * Fail the device init if the device is flagged NOSCAN at BOOT in
752 * the NVRAM. This may speed up boot and maintain coherency with
753 * BIOS device numbering. Clearing the flag allows the user to
754 * rescan skipped devices later. We also return an error for
755 * devices not flagged for SCAN LUNS in the NVRAM since some single
756 * lun devices behave badly when asked for a non zero LUN.
757 */
758
759 if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) {
760 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
761 starget_printk(KERN_INFO, sdev->sdev_target,
762 "Scan at boot disabled in NVRAM\n");
763 error = -ENXIO;
764 goto out;
765 }
766
767 if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) {
768 if (sdev->lun != 0) {
769 error = -ENXIO;
770 goto out;
771 }
772 starget_printk(KERN_INFO, sdev->sdev_target,
773 "Multiple LUNs disabled in NVRAM\n");
774 }
775
776 lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
777 if (!lp) {
778 error = -ENOMEM;
779 goto out;
780 }
781 if (tp->nlcb == 1)
782 tp->starget = sdev->sdev_target;
783
784 spi_min_period(tp->starget) = tp->usr_period;
785 spi_max_width(tp->starget) = tp->usr_width;
786
787 error = 0;
788 out:
789 spin_unlock_irqrestore(np->s.host->host_lock, flags);
790
791 return error;
792 }
793
794 /*
795 * Linux entry point for device queue sizing.
796 */
sym53c8xx_slave_configure(struct scsi_device * sdev)797 static int sym53c8xx_slave_configure(struct scsi_device *sdev)
798 {
799 struct sym_hcb *np = sym_get_hcb(sdev->host);
800 struct sym_tcb *tp = &np->target[sdev->id];
801 struct sym_lcb *lp = sym_lp(tp, sdev->lun);
802 int reqtags, depth_to_use;
803
804 /*
805 * Get user flags.
806 */
807 lp->curr_flags = lp->user_flags;
808
809 /*
810 * Select queue depth from driver setup.
811 * Do not use more than configured by user.
812 * Use at least 1.
813 * Do not use more than our maximum.
814 */
815 reqtags = sym_driver_setup.max_tag;
816 if (reqtags > tp->usrtags)
817 reqtags = tp->usrtags;
818 if (!sdev->tagged_supported)
819 reqtags = 0;
820 if (reqtags > SYM_CONF_MAX_TAG)
821 reqtags = SYM_CONF_MAX_TAG;
822 depth_to_use = reqtags ? reqtags : 1;
823 scsi_change_queue_depth(sdev, depth_to_use);
824 lp->s.scdev_depth = depth_to_use;
825 sym_tune_dev_queuing(tp, sdev->lun, reqtags);
826
827 if (!spi_initial_dv(sdev->sdev_target))
828 spi_dv_device(sdev);
829
830 return 0;
831 }
832
sym53c8xx_slave_destroy(struct scsi_device * sdev)833 static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
834 {
835 struct sym_hcb *np = sym_get_hcb(sdev->host);
836 struct sym_tcb *tp = &np->target[sdev->id];
837 struct sym_lcb *lp = sym_lp(tp, sdev->lun);
838 unsigned long flags;
839
840 /* if slave_alloc returned before allocating a sym_lcb, return */
841 if (!lp)
842 return;
843
844 spin_lock_irqsave(np->s.host->host_lock, flags);
845
846 if (lp->busy_itlq || lp->busy_itl) {
847 /*
848 * This really shouldn't happen, but we can't return an error
849 * so let's try to stop all on-going I/O.
850 */
851 starget_printk(KERN_WARNING, tp->starget,
852 "Removing busy LCB (%d)\n", (u8)sdev->lun);
853 sym_reset_scsi_bus(np, 1);
854 }
855
856 if (sym_free_lcb(np, sdev->id, sdev->lun) == 0) {
857 /*
858 * It was the last unit for this target.
859 */
860 tp->head.sval = 0;
861 tp->head.wval = np->rv_scntl3;
862 tp->head.uval = 0;
863 tp->tgoal.check_nego = 1;
864 tp->starget = NULL;
865 }
866
867 spin_unlock_irqrestore(np->s.host->host_lock, flags);
868 }
869
870 /*
871 * Linux entry point for info() function
872 */
sym53c8xx_info(struct Scsi_Host * host)873 static const char *sym53c8xx_info (struct Scsi_Host *host)
874 {
875 return SYM_DRIVER_NAME;
876 }
877
878
879 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
880 /*
881 * Proc file system stuff
882 *
883 * A read operation returns adapter information.
884 * A write operation is a control command.
885 * The string is parsed in the driver code and the command is passed
886 * to the sym_usercmd() function.
887 */
888
889 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
890
891 struct sym_usrcmd {
892 u_long target;
893 u_long lun;
894 u_long data;
895 u_long cmd;
896 };
897
898 #define UC_SETSYNC 10
899 #define UC_SETTAGS 11
900 #define UC_SETDEBUG 12
901 #define UC_SETWIDE 14
902 #define UC_SETFLAG 15
903 #define UC_SETVERBOSE 17
904 #define UC_RESETDEV 18
905 #define UC_CLEARDEV 19
906
sym_exec_user_command(struct sym_hcb * np,struct sym_usrcmd * uc)907 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
908 {
909 struct sym_tcb *tp;
910 int t, l;
911
912 switch (uc->cmd) {
913 case 0: return;
914
915 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
916 case UC_SETDEBUG:
917 sym_debug_flags = uc->data;
918 break;
919 #endif
920 case UC_SETVERBOSE:
921 np->verbose = uc->data;
922 break;
923 default:
924 /*
925 * We assume that other commands apply to targets.
926 * This should always be the case and avoid the below
927 * 4 lines to be repeated 6 times.
928 */
929 for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
930 if (!((uc->target >> t) & 1))
931 continue;
932 tp = &np->target[t];
933 if (!tp->nlcb)
934 continue;
935
936 switch (uc->cmd) {
937
938 case UC_SETSYNC:
939 if (!uc->data || uc->data >= 255) {
940 tp->tgoal.iu = tp->tgoal.dt =
941 tp->tgoal.qas = 0;
942 tp->tgoal.offset = 0;
943 } else if (uc->data <= 9 && np->minsync_dt) {
944 if (uc->data < np->minsync_dt)
945 uc->data = np->minsync_dt;
946 tp->tgoal.iu = tp->tgoal.dt =
947 tp->tgoal.qas = 1;
948 tp->tgoal.width = 1;
949 tp->tgoal.period = uc->data;
950 tp->tgoal.offset = np->maxoffs_dt;
951 } else {
952 if (uc->data < np->minsync)
953 uc->data = np->minsync;
954 tp->tgoal.iu = tp->tgoal.dt =
955 tp->tgoal.qas = 0;
956 tp->tgoal.period = uc->data;
957 tp->tgoal.offset = np->maxoffs;
958 }
959 tp->tgoal.check_nego = 1;
960 break;
961 case UC_SETWIDE:
962 tp->tgoal.width = uc->data ? 1 : 0;
963 tp->tgoal.check_nego = 1;
964 break;
965 case UC_SETTAGS:
966 for (l = 0; l < SYM_CONF_MAX_LUN; l++)
967 sym_tune_dev_queuing(tp, l, uc->data);
968 break;
969 case UC_RESETDEV:
970 tp->to_reset = 1;
971 np->istat_sem = SEM;
972 OUTB(np, nc_istat, SIGP|SEM);
973 break;
974 case UC_CLEARDEV:
975 for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
976 struct sym_lcb *lp = sym_lp(tp, l);
977 if (lp) lp->to_clear = 1;
978 }
979 np->istat_sem = SEM;
980 OUTB(np, nc_istat, SIGP|SEM);
981 break;
982 case UC_SETFLAG:
983 tp->usrflags = uc->data;
984 break;
985 }
986 }
987 break;
988 }
989 }
990
sym_skip_spaces(char * ptr,int len)991 static int sym_skip_spaces(char *ptr, int len)
992 {
993 int cnt, c;
994
995 for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
996
997 return (len - cnt);
998 }
999
get_int_arg(char * ptr,int len,u_long * pv)1000 static int get_int_arg(char *ptr, int len, u_long *pv)
1001 {
1002 char *end;
1003
1004 *pv = simple_strtoul(ptr, &end, 10);
1005 return (end - ptr);
1006 }
1007
is_keyword(char * ptr,int len,char * verb)1008 static int is_keyword(char *ptr, int len, char *verb)
1009 {
1010 int verb_len = strlen(verb);
1011
1012 if (len >= verb_len && !memcmp(verb, ptr, verb_len))
1013 return verb_len;
1014 else
1015 return 0;
1016 }
1017
1018 #define SKIP_SPACES(ptr, len) \
1019 if ((arg_len = sym_skip_spaces(ptr, len)) < 1) \
1020 return -EINVAL; \
1021 ptr += arg_len; len -= arg_len;
1022
1023 #define GET_INT_ARG(ptr, len, v) \
1024 if (!(arg_len = get_int_arg(ptr, len, &(v)))) \
1025 return -EINVAL; \
1026 ptr += arg_len; len -= arg_len;
1027
1028
1029 /*
1030 * Parse a control command
1031 */
1032
sym_user_command(struct Scsi_Host * shost,char * buffer,int length)1033 static int sym_user_command(struct Scsi_Host *shost, char *buffer, int length)
1034 {
1035 struct sym_hcb *np = sym_get_hcb(shost);
1036 char *ptr = buffer;
1037 int len = length;
1038 struct sym_usrcmd cmd, *uc = &cmd;
1039 int arg_len;
1040 u_long target;
1041
1042 memset(uc, 0, sizeof(*uc));
1043
1044 if (len > 0 && ptr[len-1] == '\n')
1045 --len;
1046
1047 if ((arg_len = is_keyword(ptr, len, "setsync")) != 0)
1048 uc->cmd = UC_SETSYNC;
1049 else if ((arg_len = is_keyword(ptr, len, "settags")) != 0)
1050 uc->cmd = UC_SETTAGS;
1051 else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
1052 uc->cmd = UC_SETVERBOSE;
1053 else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0)
1054 uc->cmd = UC_SETWIDE;
1055 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1056 else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
1057 uc->cmd = UC_SETDEBUG;
1058 #endif
1059 else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0)
1060 uc->cmd = UC_SETFLAG;
1061 else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
1062 uc->cmd = UC_RESETDEV;
1063 else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
1064 uc->cmd = UC_CLEARDEV;
1065 else
1066 arg_len = 0;
1067
1068 #ifdef DEBUG_PROC_INFO
1069 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
1070 #endif
1071
1072 if (!arg_len)
1073 return -EINVAL;
1074 ptr += arg_len; len -= arg_len;
1075
1076 switch(uc->cmd) {
1077 case UC_SETSYNC:
1078 case UC_SETTAGS:
1079 case UC_SETWIDE:
1080 case UC_SETFLAG:
1081 case UC_RESETDEV:
1082 case UC_CLEARDEV:
1083 SKIP_SPACES(ptr, len);
1084 if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
1085 ptr += arg_len; len -= arg_len;
1086 uc->target = ~0;
1087 } else {
1088 GET_INT_ARG(ptr, len, target);
1089 uc->target = (1<<target);
1090 #ifdef DEBUG_PROC_INFO
1091 printk("sym_user_command: target=%ld\n", target);
1092 #endif
1093 }
1094 break;
1095 }
1096
1097 switch(uc->cmd) {
1098 case UC_SETVERBOSE:
1099 case UC_SETSYNC:
1100 case UC_SETTAGS:
1101 case UC_SETWIDE:
1102 SKIP_SPACES(ptr, len);
1103 GET_INT_ARG(ptr, len, uc->data);
1104 #ifdef DEBUG_PROC_INFO
1105 printk("sym_user_command: data=%ld\n", uc->data);
1106 #endif
1107 break;
1108 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1109 case UC_SETDEBUG:
1110 while (len > 0) {
1111 SKIP_SPACES(ptr, len);
1112 if ((arg_len = is_keyword(ptr, len, "alloc")))
1113 uc->data |= DEBUG_ALLOC;
1114 else if ((arg_len = is_keyword(ptr, len, "phase")))
1115 uc->data |= DEBUG_PHASE;
1116 else if ((arg_len = is_keyword(ptr, len, "queue")))
1117 uc->data |= DEBUG_QUEUE;
1118 else if ((arg_len = is_keyword(ptr, len, "result")))
1119 uc->data |= DEBUG_RESULT;
1120 else if ((arg_len = is_keyword(ptr, len, "scatter")))
1121 uc->data |= DEBUG_SCATTER;
1122 else if ((arg_len = is_keyword(ptr, len, "script")))
1123 uc->data |= DEBUG_SCRIPT;
1124 else if ((arg_len = is_keyword(ptr, len, "tiny")))
1125 uc->data |= DEBUG_TINY;
1126 else if ((arg_len = is_keyword(ptr, len, "timing")))
1127 uc->data |= DEBUG_TIMING;
1128 else if ((arg_len = is_keyword(ptr, len, "nego")))
1129 uc->data |= DEBUG_NEGO;
1130 else if ((arg_len = is_keyword(ptr, len, "tags")))
1131 uc->data |= DEBUG_TAGS;
1132 else if ((arg_len = is_keyword(ptr, len, "pointer")))
1133 uc->data |= DEBUG_POINTER;
1134 else
1135 return -EINVAL;
1136 ptr += arg_len; len -= arg_len;
1137 }
1138 #ifdef DEBUG_PROC_INFO
1139 printk("sym_user_command: data=%ld\n", uc->data);
1140 #endif
1141 break;
1142 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
1143 case UC_SETFLAG:
1144 while (len > 0) {
1145 SKIP_SPACES(ptr, len);
1146 if ((arg_len = is_keyword(ptr, len, "no_disc")))
1147 uc->data &= ~SYM_DISC_ENABLED;
1148 else
1149 return -EINVAL;
1150 ptr += arg_len; len -= arg_len;
1151 }
1152 break;
1153 default:
1154 break;
1155 }
1156
1157 if (len)
1158 return -EINVAL;
1159 else {
1160 unsigned long flags;
1161
1162 spin_lock_irqsave(shost->host_lock, flags);
1163 sym_exec_user_command(np, uc);
1164 spin_unlock_irqrestore(shost->host_lock, flags);
1165 }
1166 return length;
1167 }
1168
1169 #endif /* SYM_LINUX_USER_COMMAND_SUPPORT */
1170
1171
1172 /*
1173 * Copy formatted information into the input buffer.
1174 */
sym_show_info(struct seq_file * m,struct Scsi_Host * shost)1175 static int sym_show_info(struct seq_file *m, struct Scsi_Host *shost)
1176 {
1177 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1178 struct sym_data *sym_data = shost_priv(shost);
1179 struct pci_dev *pdev = sym_data->pdev;
1180 struct sym_hcb *np = sym_data->ncb;
1181
1182 seq_printf(m, "Chip " NAME53C "%s, device id 0x%x, "
1183 "revision id 0x%x\n", np->s.chip_name,
1184 pdev->device, pdev->revision);
1185 seq_printf(m, "At PCI address %s, IRQ %u\n",
1186 pci_name(pdev), pdev->irq);
1187 seq_printf(m, "Min. period factor %d, %s SCSI BUS%s\n",
1188 (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
1189 np->maxwide ? "Wide" : "Narrow",
1190 np->minsync_dt ? ", DT capable" : "");
1191
1192 seq_printf(m, "Max. started commands %d, "
1193 "max. commands per LUN %d\n",
1194 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
1195
1196 return 0;
1197 #else
1198 return -EINVAL;
1199 #endif /* SYM_LINUX_USER_INFO_SUPPORT */
1200 }
1201
1202 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */
1203
1204 /*
1205 * Free resources claimed by sym_iomap_device(). Note that
1206 * sym_free_resources() should be used instead of this function after calling
1207 * sym_attach().
1208 */
sym_iounmap_device(struct sym_device * device)1209 static void sym_iounmap_device(struct sym_device *device)
1210 {
1211 if (device->s.ioaddr)
1212 pci_iounmap(device->pdev, device->s.ioaddr);
1213 if (device->s.ramaddr)
1214 pci_iounmap(device->pdev, device->s.ramaddr);
1215 }
1216
1217 /*
1218 * Free controller resources.
1219 */
sym_free_resources(struct sym_hcb * np,struct pci_dev * pdev,int do_free_irq)1220 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev,
1221 int do_free_irq)
1222 {
1223 /*
1224 * Free O/S specific resources.
1225 */
1226 if (do_free_irq)
1227 free_irq(pdev->irq, np->s.host);
1228 if (np->s.ioaddr)
1229 pci_iounmap(pdev, np->s.ioaddr);
1230 if (np->s.ramaddr)
1231 pci_iounmap(pdev, np->s.ramaddr);
1232 /*
1233 * Free O/S independent resources.
1234 */
1235 sym_hcb_free(np);
1236
1237 sym_mfree_dma(np, sizeof(*np), "HCB");
1238 }
1239
1240 /*
1241 * Host attach and initialisations.
1242 *
1243 * Allocate host data and ncb structure.
1244 * Remap MMIO region.
1245 * Do chip initialization.
1246 * If all is OK, install interrupt handling and
1247 * start the timer daemon.
1248 */
sym_attach(struct scsi_host_template * tpnt,int unit,struct sym_device * dev)1249 static struct Scsi_Host *sym_attach(struct scsi_host_template *tpnt, int unit,
1250 struct sym_device *dev)
1251 {
1252 struct sym_data *sym_data;
1253 struct sym_hcb *np = NULL;
1254 struct Scsi_Host *shost = NULL;
1255 struct pci_dev *pdev = dev->pdev;
1256 unsigned long flags;
1257 struct sym_fw *fw;
1258 int do_free_irq = 0;
1259
1260 printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s irq %u\n",
1261 unit, dev->chip.name, pdev->revision, pci_name(pdev),
1262 pdev->irq);
1263
1264 /*
1265 * Get the firmware for this chip.
1266 */
1267 fw = sym_find_firmware(&dev->chip);
1268 if (!fw)
1269 goto attach_failed;
1270
1271 shost = scsi_host_alloc(tpnt, sizeof(*sym_data));
1272 if (!shost)
1273 goto attach_failed;
1274 sym_data = shost_priv(shost);
1275
1276 /*
1277 * Allocate immediately the host control block,
1278 * since we are only expecting to succeed. :)
1279 * We keep track in the HCB of all the resources that
1280 * are to be released on error.
1281 */
1282 np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
1283 if (!np)
1284 goto attach_failed;
1285 np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
1286 sym_data->ncb = np;
1287 sym_data->pdev = pdev;
1288 np->s.host = shost;
1289
1290 pci_set_drvdata(pdev, shost);
1291
1292 /*
1293 * Copy some useful infos to the HCB.
1294 */
1295 np->hcb_ba = vtobus(np);
1296 np->verbose = sym_driver_setup.verbose;
1297 np->s.unit = unit;
1298 np->features = dev->chip.features;
1299 np->clock_divn = dev->chip.nr_divisor;
1300 np->maxoffs = dev->chip.offset_max;
1301 np->maxburst = dev->chip.burst_max;
1302 np->myaddr = dev->host_id;
1303 np->mmio_ba = (u32)dev->mmio_base;
1304 np->ram_ba = (u32)dev->ram_base;
1305 np->s.ioaddr = dev->s.ioaddr;
1306 np->s.ramaddr = dev->s.ramaddr;
1307
1308 /*
1309 * Edit its name.
1310 */
1311 strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
1312 sprintf(np->s.inst_name, "sym%d", np->s.unit);
1313
1314 if ((SYM_CONF_DMA_ADDRESSING_MODE > 0) && (np->features & FE_DAC) &&
1315 !pci_set_dma_mask(pdev, DMA_DAC_MASK)) {
1316 set_dac(np);
1317 } else if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1318 printf_warning("%s: No suitable DMA available\n", sym_name(np));
1319 goto attach_failed;
1320 }
1321
1322 if (sym_hcb_attach(shost, fw, dev->nvram))
1323 goto attach_failed;
1324
1325 /*
1326 * Install the interrupt handler.
1327 * If we synchonize the C code with SCRIPTS on interrupt,
1328 * we do not want to share the INTR line at all.
1329 */
1330 if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX,
1331 shost)) {
1332 printf_err("%s: request irq %u failure\n",
1333 sym_name(np), pdev->irq);
1334 goto attach_failed;
1335 }
1336 do_free_irq = 1;
1337
1338 /*
1339 * After SCSI devices have been opened, we cannot
1340 * reset the bus safely, so we do it here.
1341 */
1342 spin_lock_irqsave(shost->host_lock, flags);
1343 if (sym_reset_scsi_bus(np, 0))
1344 goto reset_failed;
1345
1346 /*
1347 * Start the SCRIPTS.
1348 */
1349 sym_start_up(shost, 1);
1350
1351 /*
1352 * Start the timer daemon
1353 */
1354 timer_setup(&np->s.timer, sym53c8xx_timer, 0);
1355 np->s.lasttime=0;
1356 sym_timer (np);
1357
1358 /*
1359 * Fill Linux host instance structure
1360 * and return success.
1361 */
1362 shost->max_channel = 0;
1363 shost->this_id = np->myaddr;
1364 shost->max_id = np->maxwide ? 16 : 8;
1365 shost->max_lun = SYM_CONF_MAX_LUN;
1366 shost->unique_id = pci_resource_start(pdev, 0);
1367 shost->cmd_per_lun = SYM_CONF_MAX_TAG;
1368 shost->can_queue = (SYM_CONF_MAX_START-2);
1369 shost->sg_tablesize = SYM_CONF_MAX_SG;
1370 shost->max_cmd_len = 16;
1371 BUG_ON(sym2_transport_template == NULL);
1372 shost->transportt = sym2_transport_template;
1373
1374 /* 53c896 rev 1 errata: DMA may not cross 16MB boundary */
1375 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 2)
1376 shost->dma_boundary = 0xFFFFFF;
1377
1378 spin_unlock_irqrestore(shost->host_lock, flags);
1379
1380 return shost;
1381
1382 reset_failed:
1383 printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
1384 "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
1385 spin_unlock_irqrestore(shost->host_lock, flags);
1386 attach_failed:
1387 printf_info("sym%d: giving up ...\n", unit);
1388 if (np)
1389 sym_free_resources(np, pdev, do_free_irq);
1390 else
1391 sym_iounmap_device(dev);
1392 if (shost)
1393 scsi_host_put(shost);
1394
1395 return NULL;
1396 }
1397
1398
1399 /*
1400 * Detect and try to read SYMBIOS and TEKRAM NVRAM.
1401 */
1402 #if SYM_CONF_NVRAM_SUPPORT
sym_get_nvram(struct sym_device * devp,struct sym_nvram * nvp)1403 static void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1404 {
1405 devp->nvram = nvp;
1406 nvp->type = 0;
1407
1408 sym_read_nvram(devp, nvp);
1409 }
1410 #else
sym_get_nvram(struct sym_device * devp,struct sym_nvram * nvp)1411 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1412 {
1413 }
1414 #endif /* SYM_CONF_NVRAM_SUPPORT */
1415
sym_check_supported(struct sym_device * device)1416 static int sym_check_supported(struct sym_device *device)
1417 {
1418 struct sym_chip *chip;
1419 struct pci_dev *pdev = device->pdev;
1420 unsigned long io_port = pci_resource_start(pdev, 0);
1421 int i;
1422
1423 /*
1424 * If user excluded this chip, do not initialize it.
1425 * I hate this code so much. Must kill it.
1426 */
1427 if (io_port) {
1428 for (i = 0 ; i < 8 ; i++) {
1429 if (sym_driver_setup.excludes[i] == io_port)
1430 return -ENODEV;
1431 }
1432 }
1433
1434 /*
1435 * Check if the chip is supported. Then copy the chip description
1436 * to our device structure so we can make it match the actual device
1437 * and options.
1438 */
1439 chip = sym_lookup_chip_table(pdev->device, pdev->revision);
1440 if (!chip) {
1441 dev_info(&pdev->dev, "device not supported\n");
1442 return -ENODEV;
1443 }
1444 memcpy(&device->chip, chip, sizeof(device->chip));
1445
1446 return 0;
1447 }
1448
1449 /*
1450 * Ignore Symbios chips controlled by various RAID controllers.
1451 * These controllers set value 0x52414944 at RAM end - 16.
1452 */
sym_check_raid(struct sym_device * device)1453 static int sym_check_raid(struct sym_device *device)
1454 {
1455 unsigned int ram_size, ram_val;
1456
1457 if (!device->s.ramaddr)
1458 return 0;
1459
1460 if (device->chip.features & FE_RAM8K)
1461 ram_size = 8192;
1462 else
1463 ram_size = 4096;
1464
1465 ram_val = readl(device->s.ramaddr + ram_size - 16);
1466 if (ram_val != 0x52414944)
1467 return 0;
1468
1469 dev_info(&device->pdev->dev,
1470 "not initializing, driven by RAID controller.\n");
1471 return -ENODEV;
1472 }
1473
sym_set_workarounds(struct sym_device * device)1474 static int sym_set_workarounds(struct sym_device *device)
1475 {
1476 struct sym_chip *chip = &device->chip;
1477 struct pci_dev *pdev = device->pdev;
1478 u_short status_reg;
1479
1480 /*
1481 * (ITEM 12 of a DEL about the 896 I haven't yet).
1482 * We must ensure the chip will use WRITE AND INVALIDATE.
1483 * The revision number limit is for now arbitrary.
1484 */
1485 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 0x4) {
1486 chip->features |= (FE_WRIE | FE_CLSE);
1487 }
1488
1489 /* If the chip can do Memory Write Invalidate, enable it */
1490 if (chip->features & FE_WRIE) {
1491 if (pci_set_mwi(pdev))
1492 return -ENODEV;
1493 }
1494
1495 /*
1496 * Work around for errant bit in 895A. The 66Mhz
1497 * capable bit is set erroneously. Clear this bit.
1498 * (Item 1 DEL 533)
1499 *
1500 * Make sure Config space and Features agree.
1501 *
1502 * Recall: writes are not normal to status register -
1503 * write a 1 to clear and a 0 to leave unchanged.
1504 * Can only reset bits.
1505 */
1506 pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1507 if (chip->features & FE_66MHZ) {
1508 if (!(status_reg & PCI_STATUS_66MHZ))
1509 chip->features &= ~FE_66MHZ;
1510 } else {
1511 if (status_reg & PCI_STATUS_66MHZ) {
1512 status_reg = PCI_STATUS_66MHZ;
1513 pci_write_config_word(pdev, PCI_STATUS, status_reg);
1514 pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1515 }
1516 }
1517
1518 return 0;
1519 }
1520
1521 /*
1522 * Map HBA registers and on-chip SRAM (if present).
1523 */
sym_iomap_device(struct sym_device * device)1524 static int sym_iomap_device(struct sym_device *device)
1525 {
1526 struct pci_dev *pdev = device->pdev;
1527 struct pci_bus_region bus_addr;
1528 int i = 2;
1529
1530 pcibios_resource_to_bus(pdev->bus, &bus_addr, &pdev->resource[1]);
1531 device->mmio_base = bus_addr.start;
1532
1533 if (device->chip.features & FE_RAM) {
1534 /*
1535 * If the BAR is 64-bit, resource 2 will be occupied by the
1536 * upper 32 bits
1537 */
1538 if (!pdev->resource[i].flags)
1539 i++;
1540 pcibios_resource_to_bus(pdev->bus, &bus_addr,
1541 &pdev->resource[i]);
1542 device->ram_base = bus_addr.start;
1543 }
1544
1545 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
1546 if (device->mmio_base)
1547 device->s.ioaddr = pci_iomap(pdev, 1,
1548 pci_resource_len(pdev, 1));
1549 #endif
1550 if (!device->s.ioaddr)
1551 device->s.ioaddr = pci_iomap(pdev, 0,
1552 pci_resource_len(pdev, 0));
1553 if (!device->s.ioaddr) {
1554 dev_err(&pdev->dev, "could not map registers; giving up.\n");
1555 return -EIO;
1556 }
1557 if (device->ram_base) {
1558 device->s.ramaddr = pci_iomap(pdev, i,
1559 pci_resource_len(pdev, i));
1560 if (!device->s.ramaddr) {
1561 dev_warn(&pdev->dev,
1562 "could not map SRAM; continuing anyway.\n");
1563 device->ram_base = 0;
1564 }
1565 }
1566
1567 return 0;
1568 }
1569
1570 /*
1571 * The NCR PQS and PDS cards are constructed as a DEC bridge
1572 * behind which sits a proprietary NCR memory controller and
1573 * either four or two 53c875s as separate devices. We can tell
1574 * if an 875 is part of a PQS/PDS or not since if it is, it will
1575 * be on the same bus as the memory controller. In its usual
1576 * mode of operation, the 875s are slaved to the memory
1577 * controller for all transfers. To operate with the Linux
1578 * driver, the memory controller is disabled and the 875s
1579 * freed to function independently. The only wrinkle is that
1580 * the preset SCSI ID (which may be zero) must be read in from
1581 * a special configuration space register of the 875.
1582 */
sym_config_pqs(struct pci_dev * pdev,struct sym_device * sym_dev)1583 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
1584 {
1585 int slot;
1586 u8 tmp;
1587
1588 for (slot = 0; slot < 256; slot++) {
1589 struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
1590
1591 if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
1592 pci_dev_put(memc);
1593 continue;
1594 }
1595
1596 /* bit 1: allow individual 875 configuration */
1597 pci_read_config_byte(memc, 0x44, &tmp);
1598 if ((tmp & 0x2) == 0) {
1599 tmp |= 0x2;
1600 pci_write_config_byte(memc, 0x44, tmp);
1601 }
1602
1603 /* bit 2: drive individual 875 interrupts to the bus */
1604 pci_read_config_byte(memc, 0x45, &tmp);
1605 if ((tmp & 0x4) == 0) {
1606 tmp |= 0x4;
1607 pci_write_config_byte(memc, 0x45, tmp);
1608 }
1609
1610 pci_dev_put(memc);
1611 break;
1612 }
1613
1614 pci_read_config_byte(pdev, 0x84, &tmp);
1615 sym_dev->host_id = tmp;
1616 }
1617
1618 /*
1619 * Called before unloading the module.
1620 * Detach the host.
1621 * We have to free resources and halt the NCR chip.
1622 */
sym_detach(struct Scsi_Host * shost,struct pci_dev * pdev)1623 static int sym_detach(struct Scsi_Host *shost, struct pci_dev *pdev)
1624 {
1625 struct sym_hcb *np = sym_get_hcb(shost);
1626 printk("%s: detaching ...\n", sym_name(np));
1627
1628 del_timer_sync(&np->s.timer);
1629
1630 /*
1631 * Reset NCR chip.
1632 * We should use sym_soft_reset(), but we don't want to do
1633 * so, since we may not be safe if interrupts occur.
1634 */
1635 printk("%s: resetting chip\n", sym_name(np));
1636 OUTB(np, nc_istat, SRST);
1637 INB(np, nc_mbox1);
1638 udelay(10);
1639 OUTB(np, nc_istat, 0);
1640
1641 sym_free_resources(np, pdev, 1);
1642 scsi_host_put(shost);
1643
1644 return 1;
1645 }
1646
1647 /*
1648 * Driver host template.
1649 */
1650 static struct scsi_host_template sym2_template = {
1651 .module = THIS_MODULE,
1652 .name = "sym53c8xx",
1653 .info = sym53c8xx_info,
1654 .queuecommand = sym53c8xx_queue_command,
1655 .slave_alloc = sym53c8xx_slave_alloc,
1656 .slave_configure = sym53c8xx_slave_configure,
1657 .slave_destroy = sym53c8xx_slave_destroy,
1658 .eh_abort_handler = sym53c8xx_eh_abort_handler,
1659 .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
1660 .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler,
1661 .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler,
1662 .this_id = 7,
1663 .use_clustering = ENABLE_CLUSTERING,
1664 .max_sectors = 0xFFFF,
1665 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1666 .show_info = sym_show_info,
1667 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
1668 .write_info = sym_user_command,
1669 #endif
1670 .proc_name = NAME53C8XX,
1671 #endif
1672 };
1673
1674 static int attach_count;
1675
sym2_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1676 static int sym2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1677 {
1678 struct sym_device sym_dev;
1679 struct sym_nvram nvram;
1680 struct Scsi_Host *shost;
1681 int do_iounmap = 0;
1682 int do_disable_device = 1;
1683
1684 memset(&sym_dev, 0, sizeof(sym_dev));
1685 memset(&nvram, 0, sizeof(nvram));
1686 sym_dev.pdev = pdev;
1687 sym_dev.host_id = SYM_SETUP_HOST_ID;
1688
1689 if (pci_enable_device(pdev))
1690 goto leave;
1691
1692 pci_set_master(pdev);
1693
1694 if (pci_request_regions(pdev, NAME53C8XX))
1695 goto disable;
1696
1697 if (sym_check_supported(&sym_dev))
1698 goto free;
1699
1700 if (sym_iomap_device(&sym_dev))
1701 goto free;
1702 do_iounmap = 1;
1703
1704 if (sym_check_raid(&sym_dev)) {
1705 do_disable_device = 0; /* Don't disable the device */
1706 goto free;
1707 }
1708
1709 if (sym_set_workarounds(&sym_dev))
1710 goto free;
1711
1712 sym_config_pqs(pdev, &sym_dev);
1713
1714 sym_get_nvram(&sym_dev, &nvram);
1715
1716 do_iounmap = 0; /* Don't sym_iounmap_device() after sym_attach(). */
1717 shost = sym_attach(&sym2_template, attach_count, &sym_dev);
1718 if (!shost)
1719 goto free;
1720
1721 if (scsi_add_host(shost, &pdev->dev))
1722 goto detach;
1723 scsi_scan_host(shost);
1724
1725 attach_count++;
1726
1727 return 0;
1728
1729 detach:
1730 sym_detach(pci_get_drvdata(pdev), pdev);
1731 free:
1732 if (do_iounmap)
1733 sym_iounmap_device(&sym_dev);
1734 pci_release_regions(pdev);
1735 disable:
1736 if (do_disable_device)
1737 pci_disable_device(pdev);
1738 leave:
1739 return -ENODEV;
1740 }
1741
sym2_remove(struct pci_dev * pdev)1742 static void sym2_remove(struct pci_dev *pdev)
1743 {
1744 struct Scsi_Host *shost = pci_get_drvdata(pdev);
1745
1746 scsi_remove_host(shost);
1747 sym_detach(shost, pdev);
1748 pci_release_regions(pdev);
1749 pci_disable_device(pdev);
1750
1751 attach_count--;
1752 }
1753
1754 /**
1755 * sym2_io_error_detected() - called when PCI error is detected
1756 * @pdev: pointer to PCI device
1757 * @state: current state of the PCI slot
1758 */
sym2_io_error_detected(struct pci_dev * pdev,enum pci_channel_state state)1759 static pci_ers_result_t sym2_io_error_detected(struct pci_dev *pdev,
1760 enum pci_channel_state state)
1761 {
1762 /* If slot is permanently frozen, turn everything off */
1763 if (state == pci_channel_io_perm_failure) {
1764 sym2_remove(pdev);
1765 return PCI_ERS_RESULT_DISCONNECT;
1766 }
1767
1768 disable_irq(pdev->irq);
1769 pci_disable_device(pdev);
1770
1771 /* Request that MMIO be enabled, so register dump can be taken. */
1772 return PCI_ERS_RESULT_CAN_RECOVER;
1773 }
1774
1775 /**
1776 * sym2_io_slot_dump - Enable MMIO and dump debug registers
1777 * @pdev: pointer to PCI device
1778 */
sym2_io_slot_dump(struct pci_dev * pdev)1779 static pci_ers_result_t sym2_io_slot_dump(struct pci_dev *pdev)
1780 {
1781 struct Scsi_Host *shost = pci_get_drvdata(pdev);
1782
1783 sym_dump_registers(shost);
1784
1785 /* Request a slot reset. */
1786 return PCI_ERS_RESULT_NEED_RESET;
1787 }
1788
1789 /**
1790 * sym2_reset_workarounds - hardware-specific work-arounds
1791 *
1792 * This routine is similar to sym_set_workarounds(), except
1793 * that, at this point, we already know that the device was
1794 * successfully initialized at least once before, and so most
1795 * of the steps taken there are un-needed here.
1796 */
sym2_reset_workarounds(struct pci_dev * pdev)1797 static void sym2_reset_workarounds(struct pci_dev *pdev)
1798 {
1799 u_short status_reg;
1800 struct sym_chip *chip;
1801
1802 chip = sym_lookup_chip_table(pdev->device, pdev->revision);
1803
1804 /* Work around for errant bit in 895A, in a fashion
1805 * similar to what is done in sym_set_workarounds().
1806 */
1807 pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1808 if (!(chip->features & FE_66MHZ) && (status_reg & PCI_STATUS_66MHZ)) {
1809 status_reg = PCI_STATUS_66MHZ;
1810 pci_write_config_word(pdev, PCI_STATUS, status_reg);
1811 pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1812 }
1813 }
1814
1815 /**
1816 * sym2_io_slot_reset() - called when the pci bus has been reset.
1817 * @pdev: pointer to PCI device
1818 *
1819 * Restart the card from scratch.
1820 */
sym2_io_slot_reset(struct pci_dev * pdev)1821 static pci_ers_result_t sym2_io_slot_reset(struct pci_dev *pdev)
1822 {
1823 struct Scsi_Host *shost = pci_get_drvdata(pdev);
1824 struct sym_hcb *np = sym_get_hcb(shost);
1825
1826 printk(KERN_INFO "%s: recovering from a PCI slot reset\n",
1827 sym_name(np));
1828
1829 if (pci_enable_device(pdev)) {
1830 printk(KERN_ERR "%s: Unable to enable after PCI reset\n",
1831 sym_name(np));
1832 return PCI_ERS_RESULT_DISCONNECT;
1833 }
1834
1835 pci_set_master(pdev);
1836 enable_irq(pdev->irq);
1837
1838 /* If the chip can do Memory Write Invalidate, enable it */
1839 if (np->features & FE_WRIE) {
1840 if (pci_set_mwi(pdev))
1841 return PCI_ERS_RESULT_DISCONNECT;
1842 }
1843
1844 /* Perform work-arounds, analogous to sym_set_workarounds() */
1845 sym2_reset_workarounds(pdev);
1846
1847 /* Perform host reset only on one instance of the card */
1848 if (PCI_FUNC(pdev->devfn) == 0) {
1849 if (sym_reset_scsi_bus(np, 0)) {
1850 printk(KERN_ERR "%s: Unable to reset scsi host\n",
1851 sym_name(np));
1852 return PCI_ERS_RESULT_DISCONNECT;
1853 }
1854 sym_start_up(shost, 1);
1855 }
1856
1857 return PCI_ERS_RESULT_RECOVERED;
1858 }
1859
1860 /**
1861 * sym2_io_resume() - resume normal ops after PCI reset
1862 * @pdev: pointer to PCI device
1863 *
1864 * Called when the error recovery driver tells us that its
1865 * OK to resume normal operation. Use completion to allow
1866 * halted scsi ops to resume.
1867 */
sym2_io_resume(struct pci_dev * pdev)1868 static void sym2_io_resume(struct pci_dev *pdev)
1869 {
1870 struct Scsi_Host *shost = pci_get_drvdata(pdev);
1871 struct sym_data *sym_data = shost_priv(shost);
1872
1873 spin_lock_irq(shost->host_lock);
1874 if (sym_data->io_reset)
1875 complete(sym_data->io_reset);
1876 spin_unlock_irq(shost->host_lock);
1877 }
1878
sym2_get_signalling(struct Scsi_Host * shost)1879 static void sym2_get_signalling(struct Scsi_Host *shost)
1880 {
1881 struct sym_hcb *np = sym_get_hcb(shost);
1882 enum spi_signal_type type;
1883
1884 switch (np->scsi_mode) {
1885 case SMODE_SE:
1886 type = SPI_SIGNAL_SE;
1887 break;
1888 case SMODE_LVD:
1889 type = SPI_SIGNAL_LVD;
1890 break;
1891 case SMODE_HVD:
1892 type = SPI_SIGNAL_HVD;
1893 break;
1894 default:
1895 type = SPI_SIGNAL_UNKNOWN;
1896 break;
1897 }
1898 spi_signalling(shost) = type;
1899 }
1900
sym2_set_offset(struct scsi_target * starget,int offset)1901 static void sym2_set_offset(struct scsi_target *starget, int offset)
1902 {
1903 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1904 struct sym_hcb *np = sym_get_hcb(shost);
1905 struct sym_tcb *tp = &np->target[starget->id];
1906
1907 tp->tgoal.offset = offset;
1908 tp->tgoal.check_nego = 1;
1909 }
1910
sym2_set_period(struct scsi_target * starget,int period)1911 static void sym2_set_period(struct scsi_target *starget, int period)
1912 {
1913 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1914 struct sym_hcb *np = sym_get_hcb(shost);
1915 struct sym_tcb *tp = &np->target[starget->id];
1916
1917 /* have to have DT for these transfers, but DT will also
1918 * set width, so check that this is allowed */
1919 if (period <= np->minsync && spi_width(starget))
1920 tp->tgoal.dt = 1;
1921
1922 tp->tgoal.period = period;
1923 tp->tgoal.check_nego = 1;
1924 }
1925
sym2_set_width(struct scsi_target * starget,int width)1926 static void sym2_set_width(struct scsi_target *starget, int width)
1927 {
1928 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1929 struct sym_hcb *np = sym_get_hcb(shost);
1930 struct sym_tcb *tp = &np->target[starget->id];
1931
1932 /* It is illegal to have DT set on narrow transfers. If DT is
1933 * clear, we must also clear IU and QAS. */
1934 if (width == 0)
1935 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
1936
1937 tp->tgoal.width = width;
1938 tp->tgoal.check_nego = 1;
1939 }
1940
sym2_set_dt(struct scsi_target * starget,int dt)1941 static void sym2_set_dt(struct scsi_target *starget, int dt)
1942 {
1943 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1944 struct sym_hcb *np = sym_get_hcb(shost);
1945 struct sym_tcb *tp = &np->target[starget->id];
1946
1947 /* We must clear QAS and IU if DT is clear */
1948 if (dt)
1949 tp->tgoal.dt = 1;
1950 else
1951 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
1952 tp->tgoal.check_nego = 1;
1953 }
1954
1955 #if 0
1956 static void sym2_set_iu(struct scsi_target *starget, int iu)
1957 {
1958 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1959 struct sym_hcb *np = sym_get_hcb(shost);
1960 struct sym_tcb *tp = &np->target[starget->id];
1961
1962 if (iu)
1963 tp->tgoal.iu = tp->tgoal.dt = 1;
1964 else
1965 tp->tgoal.iu = 0;
1966 tp->tgoal.check_nego = 1;
1967 }
1968
1969 static void sym2_set_qas(struct scsi_target *starget, int qas)
1970 {
1971 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1972 struct sym_hcb *np = sym_get_hcb(shost);
1973 struct sym_tcb *tp = &np->target[starget->id];
1974
1975 if (qas)
1976 tp->tgoal.dt = tp->tgoal.qas = 1;
1977 else
1978 tp->tgoal.qas = 0;
1979 tp->tgoal.check_nego = 1;
1980 }
1981 #endif
1982
1983 static struct spi_function_template sym2_transport_functions = {
1984 .set_offset = sym2_set_offset,
1985 .show_offset = 1,
1986 .set_period = sym2_set_period,
1987 .show_period = 1,
1988 .set_width = sym2_set_width,
1989 .show_width = 1,
1990 .set_dt = sym2_set_dt,
1991 .show_dt = 1,
1992 #if 0
1993 .set_iu = sym2_set_iu,
1994 .show_iu = 1,
1995 .set_qas = sym2_set_qas,
1996 .show_qas = 1,
1997 #endif
1998 .get_signalling = sym2_get_signalling,
1999 };
2000
2001 static struct pci_device_id sym2_id_table[] = {
2002 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
2003 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2004 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
2005 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2006 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
2007 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2008 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
2009 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2010 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
2011 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2012 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
2013 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2014 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
2015 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL },
2016 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
2017 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2018 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
2019 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2020 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
2021 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2022 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
2023 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2024 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
2025 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, /* new */
2026 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
2027 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2028 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
2029 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2030 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
2031 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2032 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
2033 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2034 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
2035 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2036 { 0, }
2037 };
2038
2039 MODULE_DEVICE_TABLE(pci, sym2_id_table);
2040
2041 static const struct pci_error_handlers sym2_err_handler = {
2042 .error_detected = sym2_io_error_detected,
2043 .mmio_enabled = sym2_io_slot_dump,
2044 .slot_reset = sym2_io_slot_reset,
2045 .resume = sym2_io_resume,
2046 };
2047
2048 static struct pci_driver sym2_driver = {
2049 .name = NAME53C8XX,
2050 .id_table = sym2_id_table,
2051 .probe = sym2_probe,
2052 .remove = sym2_remove,
2053 .err_handler = &sym2_err_handler,
2054 };
2055
sym2_init(void)2056 static int __init sym2_init(void)
2057 {
2058 int error;
2059
2060 sym2_setup_params();
2061 sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
2062 if (!sym2_transport_template)
2063 return -ENODEV;
2064
2065 error = pci_register_driver(&sym2_driver);
2066 if (error)
2067 spi_release_transport(sym2_transport_template);
2068 return error;
2069 }
2070
sym2_exit(void)2071 static void __exit sym2_exit(void)
2072 {
2073 pci_unregister_driver(&sym2_driver);
2074 spi_release_transport(sym2_transport_template);
2075 }
2076
2077 module_init(sym2_init);
2078 module_exit(sym2_exit);
2079