1 /*
2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3 *
4 * (C) Copyright 2008-2010,2015 Intel Corporation
5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * SCU running in ARC processor communicates with other entity running in IA
13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17 * along with other APIs.
18 */
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/pm.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/sfi.h>
27 #include <asm/intel-mid.h>
28 #include <asm/intel_scu_ipc.h>
29
30 /* IPC defines the following message types */
31 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
32 #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */
33 #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */
34 #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */
35 #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */
36
37 /* Command id associated with message IPCMSG_PCNTRL */
38 #define IPC_CMD_PCNTRL_W 0 /* Register write */
39 #define IPC_CMD_PCNTRL_R 1 /* Register read */
40 #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
41
42 /*
43 * IPC register summary
44 *
45 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
46 * To read or write information to the SCU, driver writes to IPC-1 memory
47 * mapped registers. The following is the IPC mechanism
48 *
49 * 1. IA core cDMI interface claims this transaction and converts it to a
50 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
51 *
52 * 2. South Complex cDMI block receives this message and writes it to
53 * the IPC-1 register block, causing an interrupt to the SCU
54 *
55 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
56 * message handler is called within firmware.
57 */
58
59 #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
60 #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
61 #define IPC_IOC 0x100 /* IPC command register IOC bit */
62
63 #define PCI_DEVICE_ID_LINCROFT 0x082a
64 #define PCI_DEVICE_ID_PENWELL 0x080e
65 #define PCI_DEVICE_ID_CLOVERVIEW 0x08ea
66 #define PCI_DEVICE_ID_TANGIER 0x11a0
67
68 /* intel scu ipc driver data */
69 struct intel_scu_ipc_pdata_t {
70 u32 i2c_base;
71 u32 i2c_len;
72 u8 irq_mode;
73 };
74
75 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
76 .i2c_base = 0xff12b000,
77 .i2c_len = 0x10,
78 .irq_mode = 0,
79 };
80
81 /* Penwell and Cloverview */
82 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
83 .i2c_base = 0xff12b000,
84 .i2c_len = 0x10,
85 .irq_mode = 1,
86 };
87
88 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
89 .i2c_base = 0xff00d000,
90 .i2c_len = 0x10,
91 .irq_mode = 0,
92 };
93
94 struct intel_scu_ipc_dev {
95 struct device *dev;
96 void __iomem *ipc_base;
97 void __iomem *i2c_base;
98 struct completion cmd_complete;
99 u8 irq_mode;
100 };
101
102 static struct intel_scu_ipc_dev ipcdev; /* Only one for now */
103
104 /*
105 * IPC Read Buffer (Read Only):
106 * 16 byte buffer for receiving data from SCU, if IPC command
107 * processing results in response data
108 */
109 #define IPC_READ_BUFFER 0x90
110
111 #define IPC_I2C_CNTRL_ADDR 0
112 #define I2C_DATA_ADDR 0x04
113
114 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
115
116 /*
117 * Send ipc command
118 * Command Register (Write Only):
119 * A write to this register results in an interrupt to the SCU core processor
120 * Format:
121 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
122 */
ipc_command(struct intel_scu_ipc_dev * scu,u32 cmd)123 static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
124 {
125 if (scu->irq_mode) {
126 reinit_completion(&scu->cmd_complete);
127 writel(cmd | IPC_IOC, scu->ipc_base);
128 }
129 writel(cmd, scu->ipc_base);
130 }
131
132 /*
133 * Write ipc data
134 * IPC Write Buffer (Write Only):
135 * 16-byte buffer for sending data associated with IPC command to
136 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
137 */
ipc_data_writel(struct intel_scu_ipc_dev * scu,u32 data,u32 offset)138 static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
139 {
140 writel(data, scu->ipc_base + 0x80 + offset);
141 }
142
143 /*
144 * Status Register (Read Only):
145 * Driver will read this register to get the ready/busy status of the IPC
146 * block and error status of the IPC command that was just processed by SCU
147 * Format:
148 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
149 */
ipc_read_status(struct intel_scu_ipc_dev * scu)150 static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
151 {
152 return __raw_readl(scu->ipc_base + 0x04);
153 }
154
155 /* Read ipc byte data */
ipc_data_readb(struct intel_scu_ipc_dev * scu,u32 offset)156 static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
157 {
158 return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
159 }
160
161 /* Read ipc u32 data */
ipc_data_readl(struct intel_scu_ipc_dev * scu,u32 offset)162 static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
163 {
164 return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
165 }
166
167 /* Wait till scu status is busy */
busy_loop(struct intel_scu_ipc_dev * scu)168 static inline int busy_loop(struct intel_scu_ipc_dev *scu)
169 {
170 u32 status = ipc_read_status(scu);
171 u32 loop_count = 100000;
172
173 /* break if scu doesn't reset busy bit after huge retry */
174 while ((status & BIT(0)) && --loop_count) {
175 udelay(1); /* scu processing time is in few u secods */
176 status = ipc_read_status(scu);
177 }
178
179 if (status & BIT(0)) {
180 dev_err(scu->dev, "IPC timed out");
181 return -ETIMEDOUT;
182 }
183
184 if (status & BIT(1))
185 return -EIO;
186
187 return 0;
188 }
189
190 /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
ipc_wait_for_interrupt(struct intel_scu_ipc_dev * scu)191 static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
192 {
193 int status;
194
195 if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) {
196 dev_err(scu->dev, "IPC timed out\n");
197 return -ETIMEDOUT;
198 }
199
200 status = ipc_read_status(scu);
201 if (status & BIT(1))
202 return -EIO;
203
204 return 0;
205 }
206
intel_scu_ipc_check_status(struct intel_scu_ipc_dev * scu)207 static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
208 {
209 return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
210 }
211
212 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
pwr_reg_rdwr(u16 * addr,u8 * data,u32 count,u32 op,u32 id)213 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
214 {
215 struct intel_scu_ipc_dev *scu = &ipcdev;
216 int nc;
217 u32 offset = 0;
218 int err;
219 u8 cbuf[IPC_WWBUF_SIZE];
220 u32 *wbuf = (u32 *)&cbuf;
221
222 memset(cbuf, 0, sizeof(cbuf));
223
224 mutex_lock(&ipclock);
225
226 if (scu->dev == NULL) {
227 mutex_unlock(&ipclock);
228 return -ENODEV;
229 }
230
231 for (nc = 0; nc < count; nc++, offset += 2) {
232 cbuf[offset] = addr[nc];
233 cbuf[offset + 1] = addr[nc] >> 8;
234 }
235
236 if (id == IPC_CMD_PCNTRL_R) {
237 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
238 ipc_data_writel(scu, wbuf[nc], offset);
239 ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
240 } else if (id == IPC_CMD_PCNTRL_W) {
241 for (nc = 0; nc < count; nc++, offset += 1)
242 cbuf[offset] = data[nc];
243 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
244 ipc_data_writel(scu, wbuf[nc], offset);
245 ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
246 } else if (id == IPC_CMD_PCNTRL_M) {
247 cbuf[offset] = data[0];
248 cbuf[offset + 1] = data[1];
249 ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
250 ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
251 }
252
253 err = intel_scu_ipc_check_status(scu);
254 if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
255 /* Workaround: values are read as 0 without memcpy_fromio */
256 memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
257 for (nc = 0; nc < count; nc++)
258 data[nc] = ipc_data_readb(scu, nc);
259 }
260 mutex_unlock(&ipclock);
261 return err;
262 }
263
264 /**
265 * intel_scu_ipc_ioread8 - read a word via the SCU
266 * @addr: register on SCU
267 * @data: return pointer for read byte
268 *
269 * Read a single register. Returns 0 on success or an error code. All
270 * locking between SCU accesses is handled for the caller.
271 *
272 * This function may sleep.
273 */
intel_scu_ipc_ioread8(u16 addr,u8 * data)274 int intel_scu_ipc_ioread8(u16 addr, u8 *data)
275 {
276 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
277 }
278 EXPORT_SYMBOL(intel_scu_ipc_ioread8);
279
280 /**
281 * intel_scu_ipc_ioread16 - read a word via the SCU
282 * @addr: register on SCU
283 * @data: return pointer for read word
284 *
285 * Read a register pair. Returns 0 on success or an error code. All
286 * locking between SCU accesses is handled for the caller.
287 *
288 * This function may sleep.
289 */
intel_scu_ipc_ioread16(u16 addr,u16 * data)290 int intel_scu_ipc_ioread16(u16 addr, u16 *data)
291 {
292 u16 x[2] = {addr, addr + 1};
293 return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
294 }
295 EXPORT_SYMBOL(intel_scu_ipc_ioread16);
296
297 /**
298 * intel_scu_ipc_ioread32 - read a dword via the SCU
299 * @addr: register on SCU
300 * @data: return pointer for read dword
301 *
302 * Read four registers. Returns 0 on success or an error code. All
303 * locking between SCU accesses is handled for the caller.
304 *
305 * This function may sleep.
306 */
intel_scu_ipc_ioread32(u16 addr,u32 * data)307 int intel_scu_ipc_ioread32(u16 addr, u32 *data)
308 {
309 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
310 return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
311 }
312 EXPORT_SYMBOL(intel_scu_ipc_ioread32);
313
314 /**
315 * intel_scu_ipc_iowrite8 - write a byte via the SCU
316 * @addr: register on SCU
317 * @data: byte to write
318 *
319 * Write a single register. Returns 0 on success or an error code. All
320 * locking between SCU accesses is handled for the caller.
321 *
322 * This function may sleep.
323 */
intel_scu_ipc_iowrite8(u16 addr,u8 data)324 int intel_scu_ipc_iowrite8(u16 addr, u8 data)
325 {
326 return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
327 }
328 EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
329
330 /**
331 * intel_scu_ipc_iowrite16 - write a word via the SCU
332 * @addr: register on SCU
333 * @data: word to write
334 *
335 * Write two registers. Returns 0 on success or an error code. All
336 * locking between SCU accesses is handled for the caller.
337 *
338 * This function may sleep.
339 */
intel_scu_ipc_iowrite16(u16 addr,u16 data)340 int intel_scu_ipc_iowrite16(u16 addr, u16 data)
341 {
342 u16 x[2] = {addr, addr + 1};
343 return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
344 }
345 EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
346
347 /**
348 * intel_scu_ipc_iowrite32 - write a dword via the SCU
349 * @addr: register on SCU
350 * @data: dword to write
351 *
352 * Write four registers. Returns 0 on success or an error code. All
353 * locking between SCU accesses is handled for the caller.
354 *
355 * This function may sleep.
356 */
intel_scu_ipc_iowrite32(u16 addr,u32 data)357 int intel_scu_ipc_iowrite32(u16 addr, u32 data)
358 {
359 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
360 return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
361 }
362 EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
363
364 /**
365 * intel_scu_ipc_readvv - read a set of registers
366 * @addr: register list
367 * @data: bytes to return
368 * @len: length of array
369 *
370 * Read registers. Returns 0 on success or an error code. All
371 * locking between SCU accesses is handled for the caller.
372 *
373 * The largest array length permitted by the hardware is 5 items.
374 *
375 * This function may sleep.
376 */
intel_scu_ipc_readv(u16 * addr,u8 * data,int len)377 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
378 {
379 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
380 }
381 EXPORT_SYMBOL(intel_scu_ipc_readv);
382
383 /**
384 * intel_scu_ipc_writev - write a set of registers
385 * @addr: register list
386 * @data: bytes to write
387 * @len: length of array
388 *
389 * Write registers. Returns 0 on success or an error code. All
390 * locking between SCU accesses is handled for the caller.
391 *
392 * The largest array length permitted by the hardware is 5 items.
393 *
394 * This function may sleep.
395 *
396 */
intel_scu_ipc_writev(u16 * addr,u8 * data,int len)397 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
398 {
399 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
400 }
401 EXPORT_SYMBOL(intel_scu_ipc_writev);
402
403 /**
404 * intel_scu_ipc_update_register - r/m/w a register
405 * @addr: register address
406 * @bits: bits to update
407 * @mask: mask of bits to update
408 *
409 * Read-modify-write power control unit register. The first data argument
410 * must be register value and second is mask value
411 * mask is a bitmap that indicates which bits to update.
412 * 0 = masked. Don't modify this bit, 1 = modify this bit.
413 * returns 0 on success or an error code.
414 *
415 * This function may sleep. Locking between SCU accesses is handled
416 * for the caller.
417 */
intel_scu_ipc_update_register(u16 addr,u8 bits,u8 mask)418 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
419 {
420 u8 data[2] = { bits, mask };
421 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
422 }
423 EXPORT_SYMBOL(intel_scu_ipc_update_register);
424
425 /**
426 * intel_scu_ipc_simple_command - send a simple command
427 * @cmd: command
428 * @sub: sub type
429 *
430 * Issue a simple command to the SCU. Do not use this interface if
431 * you must then access data as any data values may be overwritten
432 * by another SCU access by the time this function returns.
433 *
434 * This function may sleep. Locking for SCU accesses is handled for
435 * the caller.
436 */
intel_scu_ipc_simple_command(int cmd,int sub)437 int intel_scu_ipc_simple_command(int cmd, int sub)
438 {
439 struct intel_scu_ipc_dev *scu = &ipcdev;
440 int err;
441
442 mutex_lock(&ipclock);
443 if (scu->dev == NULL) {
444 mutex_unlock(&ipclock);
445 return -ENODEV;
446 }
447 ipc_command(scu, sub << 12 | cmd);
448 err = intel_scu_ipc_check_status(scu);
449 mutex_unlock(&ipclock);
450 return err;
451 }
452 EXPORT_SYMBOL(intel_scu_ipc_simple_command);
453
454 /**
455 * intel_scu_ipc_command - command with data
456 * @cmd: command
457 * @sub: sub type
458 * @in: input data
459 * @inlen: input length in dwords
460 * @out: output data
461 * @outlein: output length in dwords
462 *
463 * Issue a command to the SCU which involves data transfers. Do the
464 * data copies under the lock but leave it for the caller to interpret
465 */
intel_scu_ipc_command(int cmd,int sub,u32 * in,int inlen,u32 * out,int outlen)466 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
467 u32 *out, int outlen)
468 {
469 struct intel_scu_ipc_dev *scu = &ipcdev;
470 int i, err;
471
472 mutex_lock(&ipclock);
473 if (scu->dev == NULL) {
474 mutex_unlock(&ipclock);
475 return -ENODEV;
476 }
477
478 for (i = 0; i < inlen; i++)
479 ipc_data_writel(scu, *in++, 4 * i);
480
481 ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
482 err = intel_scu_ipc_check_status(scu);
483
484 if (!err) {
485 for (i = 0; i < outlen; i++)
486 *out++ = ipc_data_readl(scu, 4 * i);
487 }
488
489 mutex_unlock(&ipclock);
490 return err;
491 }
492 EXPORT_SYMBOL(intel_scu_ipc_command);
493
494 #define IPC_SPTR 0x08
495 #define IPC_DPTR 0x0C
496
497 /**
498 * intel_scu_ipc_raw_command() - IPC command with data and pointers
499 * @cmd: IPC command code.
500 * @sub: IPC command sub type.
501 * @in: input data of this IPC command.
502 * @inlen: input data length in dwords.
503 * @out: output data of this IPC command.
504 * @outlen: output data length in dwords.
505 * @sptr: data writing to SPTR register.
506 * @dptr: data writing to DPTR register.
507 *
508 * Send an IPC command to SCU with input/output data and source/dest pointers.
509 *
510 * Return: an IPC error code or 0 on success.
511 */
intel_scu_ipc_raw_command(int cmd,int sub,u8 * in,int inlen,u32 * out,int outlen,u32 dptr,u32 sptr)512 int intel_scu_ipc_raw_command(int cmd, int sub, u8 *in, int inlen,
513 u32 *out, int outlen, u32 dptr, u32 sptr)
514 {
515 struct intel_scu_ipc_dev *scu = &ipcdev;
516 int inbuflen = DIV_ROUND_UP(inlen, 4);
517 u32 inbuf[4];
518 int i, err;
519
520 /* Up to 16 bytes */
521 if (inbuflen > 4)
522 return -EINVAL;
523
524 mutex_lock(&ipclock);
525 if (scu->dev == NULL) {
526 mutex_unlock(&ipclock);
527 return -ENODEV;
528 }
529
530 writel(dptr, scu->ipc_base + IPC_DPTR);
531 writel(sptr, scu->ipc_base + IPC_SPTR);
532
533 /*
534 * SRAM controller doesn't support 8-bit writes, it only
535 * supports 32-bit writes, so we have to copy input data into
536 * the temporary buffer, and SCU FW will use the inlen to
537 * determine the actual input data length in the temporary
538 * buffer.
539 */
540 memcpy(inbuf, in, inlen);
541
542 for (i = 0; i < inbuflen; i++)
543 ipc_data_writel(scu, inbuf[i], 4 * i);
544
545 ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
546 err = intel_scu_ipc_check_status(scu);
547 if (!err) {
548 for (i = 0; i < outlen; i++)
549 *out++ = ipc_data_readl(scu, 4 * i);
550 }
551
552 mutex_unlock(&ipclock);
553 return err;
554 }
555 EXPORT_SYMBOL_GPL(intel_scu_ipc_raw_command);
556
557 /* I2C commands */
558 #define IPC_I2C_WRITE 1 /* I2C Write command */
559 #define IPC_I2C_READ 2 /* I2C Read command */
560
561 /**
562 * intel_scu_ipc_i2c_cntrl - I2C read/write operations
563 * @addr: I2C address + command bits
564 * @data: data to read/write
565 *
566 * Perform an an I2C read/write operation via the SCU. All locking is
567 * handled for the caller. This function may sleep.
568 *
569 * Returns an error code or 0 on success.
570 *
571 * This has to be in the IPC driver for the locking.
572 */
intel_scu_ipc_i2c_cntrl(u32 addr,u32 * data)573 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
574 {
575 struct intel_scu_ipc_dev *scu = &ipcdev;
576 u32 cmd = 0;
577
578 mutex_lock(&ipclock);
579 if (scu->dev == NULL) {
580 mutex_unlock(&ipclock);
581 return -ENODEV;
582 }
583 cmd = (addr >> 24) & 0xFF;
584 if (cmd == IPC_I2C_READ) {
585 writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
586 /* Write not getting updated without delay */
587 usleep_range(1000, 2000);
588 *data = readl(scu->i2c_base + I2C_DATA_ADDR);
589 } else if (cmd == IPC_I2C_WRITE) {
590 writel(*data, scu->i2c_base + I2C_DATA_ADDR);
591 usleep_range(1000, 2000);
592 writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
593 } else {
594 dev_err(scu->dev,
595 "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
596
597 mutex_unlock(&ipclock);
598 return -EIO;
599 }
600 mutex_unlock(&ipclock);
601 return 0;
602 }
603 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
604
605 /*
606 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
607 * When ioc bit is set to 1, caller api must wait for interrupt handler called
608 * which in turn unlocks the caller api. Currently this is not used
609 *
610 * This is edge triggered so we need take no action to clear anything
611 */
ioc(int irq,void * dev_id)612 static irqreturn_t ioc(int irq, void *dev_id)
613 {
614 struct intel_scu_ipc_dev *scu = dev_id;
615
616 if (scu->irq_mode)
617 complete(&scu->cmd_complete);
618
619 return IRQ_HANDLED;
620 }
621
622 /**
623 * ipc_probe - probe an Intel SCU IPC
624 * @pdev: the PCI device matching
625 * @id: entry in the match table
626 *
627 * Enable and install an intel SCU IPC. This appears in the PCI space
628 * but uses some hard coded addresses as well.
629 */
ipc_probe(struct pci_dev * pdev,const struct pci_device_id * id)630 static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id)
631 {
632 int err;
633 struct intel_scu_ipc_dev *scu = &ipcdev;
634 struct intel_scu_ipc_pdata_t *pdata;
635
636 if (scu->dev) /* We support only one SCU */
637 return -EBUSY;
638
639 pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
640 if (!pdata)
641 return -ENODEV;
642
643 scu->irq_mode = pdata->irq_mode;
644
645 err = pcim_enable_device(pdev);
646 if (err)
647 return err;
648
649 err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
650 if (err)
651 return err;
652
653 init_completion(&scu->cmd_complete);
654
655 scu->ipc_base = pcim_iomap_table(pdev)[0];
656
657 scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
658 if (!scu->i2c_base)
659 return -ENOMEM;
660
661 err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc",
662 scu);
663 if (err)
664 return err;
665
666 /* Assign device at last */
667 scu->dev = &pdev->dev;
668
669 intel_scu_devices_create();
670
671 pci_set_drvdata(pdev, scu);
672 return 0;
673 }
674
675 #define SCU_DEVICE(id, pdata) {PCI_VDEVICE(INTEL, id), (kernel_ulong_t)&pdata}
676
677 static const struct pci_device_id pci_ids[] = {
678 SCU_DEVICE(PCI_DEVICE_ID_LINCROFT, intel_scu_ipc_lincroft_pdata),
679 SCU_DEVICE(PCI_DEVICE_ID_PENWELL, intel_scu_ipc_penwell_pdata),
680 SCU_DEVICE(PCI_DEVICE_ID_CLOVERVIEW, intel_scu_ipc_penwell_pdata),
681 SCU_DEVICE(PCI_DEVICE_ID_TANGIER, intel_scu_ipc_tangier_pdata),
682 {}
683 };
684
685 static struct pci_driver ipc_driver = {
686 .driver = {
687 .suppress_bind_attrs = true,
688 },
689 .name = "intel_scu_ipc",
690 .id_table = pci_ids,
691 .probe = ipc_probe,
692 };
693 builtin_pci_driver(ipc_driver);
694