1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33
34 #include "nvme.h"
35
36 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
38
39 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40
41 /*
42 * These can be higher, but we need to ensure that any command doesn't
43 * require an sg allocation that needs more than a page of data.
44 */
45 #define NVME_MAX_KB_SZ 4096
46 #define NVME_MAX_SEGS 127
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
67 static const struct kernel_param_ops io_queue_depth_ops = {
68 .set = io_queue_depth_set,
69 .get = param_get_int,
70 };
71
72 static int io_queue_depth = 1024;
73 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
74 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
75
76 struct nvme_dev;
77 struct nvme_queue;
78
79 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
80
81 /*
82 * Represents an NVM Express device. Each nvme_dev is a PCI function.
83 */
84 struct nvme_dev {
85 struct nvme_queue *queues;
86 struct blk_mq_tag_set tagset;
87 struct blk_mq_tag_set admin_tagset;
88 u32 __iomem *dbs;
89 struct device *dev;
90 struct dma_pool *prp_page_pool;
91 struct dma_pool *prp_small_pool;
92 unsigned online_queues;
93 unsigned max_qid;
94 unsigned int num_vecs;
95 int q_depth;
96 u32 db_stride;
97 void __iomem *bar;
98 unsigned long bar_mapped_size;
99 struct work_struct remove_work;
100 struct mutex shutdown_lock;
101 bool subsystem;
102 void __iomem *cmb;
103 pci_bus_addr_t cmb_bus_addr;
104 u64 cmb_size;
105 u32 cmbsz;
106 u32 cmbloc;
107 struct nvme_ctrl ctrl;
108 struct completion ioq_wait;
109
110 mempool_t *iod_mempool;
111
112 /* shadow doorbell buffer support: */
113 u32 *dbbuf_dbs;
114 dma_addr_t dbbuf_dbs_dma_addr;
115 u32 *dbbuf_eis;
116 dma_addr_t dbbuf_eis_dma_addr;
117
118 /* host memory buffer support: */
119 u64 host_mem_size;
120 u32 nr_host_mem_descs;
121 dma_addr_t host_mem_descs_dma;
122 struct nvme_host_mem_buf_desc *host_mem_descs;
123 void **host_mem_desc_bufs;
124 };
125
io_queue_depth_set(const char * val,const struct kernel_param * kp)126 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
127 {
128 int n = 0, ret;
129
130 ret = kstrtoint(val, 10, &n);
131 if (ret != 0 || n < 2)
132 return -EINVAL;
133
134 return param_set_int(val, kp);
135 }
136
sq_idx(unsigned int qid,u32 stride)137 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
138 {
139 return qid * 2 * stride;
140 }
141
cq_idx(unsigned int qid,u32 stride)142 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
143 {
144 return (qid * 2 + 1) * stride;
145 }
146
to_nvme_dev(struct nvme_ctrl * ctrl)147 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
148 {
149 return container_of(ctrl, struct nvme_dev, ctrl);
150 }
151
152 /*
153 * An NVM Express queue. Each device has at least two (one for admin
154 * commands and one for I/O commands).
155 */
156 struct nvme_queue {
157 struct device *q_dmadev;
158 struct nvme_dev *dev;
159 spinlock_t sq_lock;
160 struct nvme_command *sq_cmds;
161 struct nvme_command __iomem *sq_cmds_io;
162 spinlock_t cq_lock ____cacheline_aligned_in_smp;
163 volatile struct nvme_completion *cqes;
164 struct blk_mq_tags **tags;
165 dma_addr_t sq_dma_addr;
166 dma_addr_t cq_dma_addr;
167 u32 __iomem *q_db;
168 u16 q_depth;
169 s16 cq_vector;
170 u16 sq_tail;
171 u16 cq_head;
172 u16 last_cq_head;
173 u16 qid;
174 u8 cq_phase;
175 u32 *dbbuf_sq_db;
176 u32 *dbbuf_cq_db;
177 u32 *dbbuf_sq_ei;
178 u32 *dbbuf_cq_ei;
179 };
180
181 /*
182 * The nvme_iod describes the data in an I/O, including the list of PRP
183 * entries. You can't see it in this data structure because C doesn't let
184 * me express that. Use nvme_init_iod to ensure there's enough space
185 * allocated to store the PRP list.
186 */
187 struct nvme_iod {
188 struct nvme_request req;
189 struct nvme_queue *nvmeq;
190 bool use_sgl;
191 int aborted;
192 int npages; /* In the PRP list. 0 means small pool in use */
193 int nents; /* Used in scatterlist */
194 int length; /* Of data, in bytes */
195 dma_addr_t first_dma;
196 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
197 struct scatterlist *sg;
198 struct scatterlist inline_sg[0];
199 };
200
201 /*
202 * Check we didin't inadvertently grow the command struct
203 */
_nvme_check_size(void)204 static inline void _nvme_check_size(void)
205 {
206 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
208 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
209 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
210 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
211 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
212 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
213 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
214 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
215 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
216 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
217 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
218 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
219 }
220
nvme_dbbuf_size(u32 stride)221 static inline unsigned int nvme_dbbuf_size(u32 stride)
222 {
223 return ((num_possible_cpus() + 1) * 8 * stride);
224 }
225
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)226 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
227 {
228 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229
230 if (dev->dbbuf_dbs)
231 return 0;
232
233 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
234 &dev->dbbuf_dbs_dma_addr,
235 GFP_KERNEL);
236 if (!dev->dbbuf_dbs)
237 return -ENOMEM;
238 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
239 &dev->dbbuf_eis_dma_addr,
240 GFP_KERNEL);
241 if (!dev->dbbuf_eis) {
242 dma_free_coherent(dev->dev, mem_size,
243 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244 dev->dbbuf_dbs = NULL;
245 return -ENOMEM;
246 }
247
248 return 0;
249 }
250
nvme_dbbuf_dma_free(struct nvme_dev * dev)251 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
252 {
253 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
254
255 if (dev->dbbuf_dbs) {
256 dma_free_coherent(dev->dev, mem_size,
257 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
258 dev->dbbuf_dbs = NULL;
259 }
260 if (dev->dbbuf_eis) {
261 dma_free_coherent(dev->dev, mem_size,
262 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
263 dev->dbbuf_eis = NULL;
264 }
265 }
266
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)267 static void nvme_dbbuf_init(struct nvme_dev *dev,
268 struct nvme_queue *nvmeq, int qid)
269 {
270 if (!dev->dbbuf_dbs || !qid)
271 return;
272
273 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
274 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
275 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
277 }
278
nvme_dbbuf_set(struct nvme_dev * dev)279 static void nvme_dbbuf_set(struct nvme_dev *dev)
280 {
281 struct nvme_command c;
282
283 if (!dev->dbbuf_dbs)
284 return;
285
286 memset(&c, 0, sizeof(c));
287 c.dbbuf.opcode = nvme_admin_dbbuf;
288 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
289 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
290
291 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
292 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
293 /* Free memory and continue on */
294 nvme_dbbuf_dma_free(dev);
295 }
296 }
297
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)298 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
299 {
300 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
301 }
302
303 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,u32 * dbbuf_db,volatile u32 * dbbuf_ei)304 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
305 volatile u32 *dbbuf_ei)
306 {
307 if (dbbuf_db) {
308 u16 old_value;
309
310 /*
311 * Ensure that the queue is written before updating
312 * the doorbell in memory
313 */
314 wmb();
315
316 old_value = *dbbuf_db;
317 *dbbuf_db = value;
318
319 /*
320 * Ensure that the doorbell is updated before reading the event
321 * index from memory. The controller needs to provide similar
322 * ordering to ensure the envent index is updated before reading
323 * the doorbell.
324 */
325 mb();
326
327 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
328 return false;
329 }
330
331 return true;
332 }
333
334 /*
335 * Max size of iod being embedded in the request payload
336 */
337 #define NVME_INT_PAGES 2
338 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
339
340 /*
341 * Will slightly overestimate the number of pages needed. This is OK
342 * as it only leads to a small amount of wasted memory for the lifetime of
343 * the I/O.
344 */
nvme_npages(unsigned size,struct nvme_dev * dev)345 static int nvme_npages(unsigned size, struct nvme_dev *dev)
346 {
347 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
348 dev->ctrl.page_size);
349 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
350 }
351
352 /*
353 * Calculates the number of pages needed for the SGL segments. For example a 4k
354 * page can accommodate 256 SGL descriptors.
355 */
nvme_pci_npages_sgl(unsigned int num_seg)356 static int nvme_pci_npages_sgl(unsigned int num_seg)
357 {
358 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
359 }
360
nvme_pci_iod_alloc_size(struct nvme_dev * dev,unsigned int size,unsigned int nseg,bool use_sgl)361 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
362 unsigned int size, unsigned int nseg, bool use_sgl)
363 {
364 size_t alloc_size;
365
366 if (use_sgl)
367 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
368 else
369 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
370
371 return alloc_size + sizeof(struct scatterlist) * nseg;
372 }
373
nvme_pci_cmd_size(struct nvme_dev * dev,bool use_sgl)374 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
375 {
376 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
377 NVME_INT_BYTES(dev), NVME_INT_PAGES,
378 use_sgl);
379
380 return sizeof(struct nvme_iod) + alloc_size;
381 }
382
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)383 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384 unsigned int hctx_idx)
385 {
386 struct nvme_dev *dev = data;
387 struct nvme_queue *nvmeq = &dev->queues[0];
388
389 WARN_ON(hctx_idx != 0);
390 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
391 WARN_ON(nvmeq->tags);
392
393 hctx->driver_data = nvmeq;
394 nvmeq->tags = &dev->admin_tagset.tags[0];
395 return 0;
396 }
397
nvme_admin_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)398 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
399 {
400 struct nvme_queue *nvmeq = hctx->driver_data;
401
402 nvmeq->tags = NULL;
403 }
404
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)405 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
406 unsigned int hctx_idx)
407 {
408 struct nvme_dev *dev = data;
409 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
410
411 if (!nvmeq->tags)
412 nvmeq->tags = &dev->tagset.tags[hctx_idx];
413
414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 hctx->driver_data = nvmeq;
416 return 0;
417 }
418
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)419 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
420 unsigned int hctx_idx, unsigned int numa_node)
421 {
422 struct nvme_dev *dev = set->driver_data;
423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
425 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
426
427 BUG_ON(!nvmeq);
428 iod->nvmeq = nvmeq;
429
430 nvme_req(req)->ctrl = &dev->ctrl;
431 return 0;
432 }
433
nvme_pci_map_queues(struct blk_mq_tag_set * set)434 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
435 {
436 struct nvme_dev *dev = set->driver_data;
437
438 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
439 dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
440 }
441
442 /**
443 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
444 * @nvmeq: The queue to use
445 * @cmd: The command to send
446 */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)447 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
448 {
449 spin_lock(&nvmeq->sq_lock);
450 if (nvmeq->sq_cmds_io)
451 memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd,
452 sizeof(*cmd));
453 else
454 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
455
456 if (++nvmeq->sq_tail == nvmeq->q_depth)
457 nvmeq->sq_tail = 0;
458 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
459 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
460 writel(nvmeq->sq_tail, nvmeq->q_db);
461 spin_unlock(&nvmeq->sq_lock);
462 }
463
nvme_pci_iod_list(struct request * req)464 static void **nvme_pci_iod_list(struct request *req)
465 {
466 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
467 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
468 }
469
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)470 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
471 {
472 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
473 int nseg = blk_rq_nr_phys_segments(req);
474 unsigned int avg_seg_size;
475
476 if (nseg == 0)
477 return false;
478
479 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
480
481 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
482 return false;
483 if (!iod->nvmeq->qid)
484 return false;
485 if (!sgl_threshold || avg_seg_size < sgl_threshold)
486 return false;
487 return true;
488 }
489
nvme_init_iod(struct request * rq,struct nvme_dev * dev)490 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
491 {
492 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
493 int nseg = blk_rq_nr_phys_segments(rq);
494 unsigned int size = blk_rq_payload_bytes(rq);
495
496 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
497
498 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
499 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
500 if (!iod->sg)
501 return BLK_STS_RESOURCE;
502 } else {
503 iod->sg = iod->inline_sg;
504 }
505
506 iod->aborted = 0;
507 iod->npages = -1;
508 iod->nents = 0;
509 iod->length = size;
510
511 return BLK_STS_OK;
512 }
513
nvme_free_iod(struct nvme_dev * dev,struct request * req)514 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
515 {
516 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
517 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
518 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
519
520 int i;
521
522 if (iod->npages == 0)
523 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
524 dma_addr);
525
526 for (i = 0; i < iod->npages; i++) {
527 void *addr = nvme_pci_iod_list(req)[i];
528
529 if (iod->use_sgl) {
530 struct nvme_sgl_desc *sg_list = addr;
531
532 next_dma_addr =
533 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
534 } else {
535 __le64 *prp_list = addr;
536
537 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
538 }
539
540 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
541 dma_addr = next_dma_addr;
542 }
543
544 if (iod->sg != iod->inline_sg)
545 mempool_free(iod->sg, dev->iod_mempool);
546 }
547
nvme_print_sgl(struct scatterlist * sgl,int nents)548 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
549 {
550 int i;
551 struct scatterlist *sg;
552
553 for_each_sg(sgl, sg, nents, i) {
554 dma_addr_t phys = sg_phys(sg);
555 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
556 "dma_address:%pad dma_length:%d\n",
557 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
558 sg_dma_len(sg));
559 }
560 }
561
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)562 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
563 struct request *req, struct nvme_rw_command *cmnd)
564 {
565 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
566 struct dma_pool *pool;
567 int length = blk_rq_payload_bytes(req);
568 struct scatterlist *sg = iod->sg;
569 int dma_len = sg_dma_len(sg);
570 u64 dma_addr = sg_dma_address(sg);
571 u32 page_size = dev->ctrl.page_size;
572 int offset = dma_addr & (page_size - 1);
573 __le64 *prp_list;
574 void **list = nvme_pci_iod_list(req);
575 dma_addr_t prp_dma;
576 int nprps, i;
577
578 length -= (page_size - offset);
579 if (length <= 0) {
580 iod->first_dma = 0;
581 goto done;
582 }
583
584 dma_len -= (page_size - offset);
585 if (dma_len) {
586 dma_addr += (page_size - offset);
587 } else {
588 sg = sg_next(sg);
589 dma_addr = sg_dma_address(sg);
590 dma_len = sg_dma_len(sg);
591 }
592
593 if (length <= page_size) {
594 iod->first_dma = dma_addr;
595 goto done;
596 }
597
598 nprps = DIV_ROUND_UP(length, page_size);
599 if (nprps <= (256 / 8)) {
600 pool = dev->prp_small_pool;
601 iod->npages = 0;
602 } else {
603 pool = dev->prp_page_pool;
604 iod->npages = 1;
605 }
606
607 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
608 if (!prp_list) {
609 iod->first_dma = dma_addr;
610 iod->npages = -1;
611 return BLK_STS_RESOURCE;
612 }
613 list[0] = prp_list;
614 iod->first_dma = prp_dma;
615 i = 0;
616 for (;;) {
617 if (i == page_size >> 3) {
618 __le64 *old_prp_list = prp_list;
619 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
620 if (!prp_list)
621 return BLK_STS_RESOURCE;
622 list[iod->npages++] = prp_list;
623 prp_list[0] = old_prp_list[i - 1];
624 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
625 i = 1;
626 }
627 prp_list[i++] = cpu_to_le64(dma_addr);
628 dma_len -= page_size;
629 dma_addr += page_size;
630 length -= page_size;
631 if (length <= 0)
632 break;
633 if (dma_len > 0)
634 continue;
635 if (unlikely(dma_len < 0))
636 goto bad_sgl;
637 sg = sg_next(sg);
638 dma_addr = sg_dma_address(sg);
639 dma_len = sg_dma_len(sg);
640 }
641
642 done:
643 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
644 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
645
646 return BLK_STS_OK;
647
648 bad_sgl:
649 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
650 "Invalid SGL for payload:%d nents:%d\n",
651 blk_rq_payload_bytes(req), iod->nents);
652 return BLK_STS_IOERR;
653 }
654
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)655 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
656 struct scatterlist *sg)
657 {
658 sge->addr = cpu_to_le64(sg_dma_address(sg));
659 sge->length = cpu_to_le32(sg_dma_len(sg));
660 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
661 }
662
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)663 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
664 dma_addr_t dma_addr, int entries)
665 {
666 sge->addr = cpu_to_le64(dma_addr);
667 if (entries < SGES_PER_PAGE) {
668 sge->length = cpu_to_le32(entries * sizeof(*sge));
669 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
670 } else {
671 sge->length = cpu_to_le32(PAGE_SIZE);
672 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
673 }
674 }
675
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)676 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
677 struct request *req, struct nvme_rw_command *cmd, int entries)
678 {
679 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
680 struct dma_pool *pool;
681 struct nvme_sgl_desc *sg_list;
682 struct scatterlist *sg = iod->sg;
683 dma_addr_t sgl_dma;
684 int i = 0;
685
686 /* setting the transfer type as SGL */
687 cmd->flags = NVME_CMD_SGL_METABUF;
688
689 if (entries == 1) {
690 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
691 return BLK_STS_OK;
692 }
693
694 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
695 pool = dev->prp_small_pool;
696 iod->npages = 0;
697 } else {
698 pool = dev->prp_page_pool;
699 iod->npages = 1;
700 }
701
702 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
703 if (!sg_list) {
704 iod->npages = -1;
705 return BLK_STS_RESOURCE;
706 }
707
708 nvme_pci_iod_list(req)[0] = sg_list;
709 iod->first_dma = sgl_dma;
710
711 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
712
713 do {
714 if (i == SGES_PER_PAGE) {
715 struct nvme_sgl_desc *old_sg_desc = sg_list;
716 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
717
718 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
719 if (!sg_list)
720 return BLK_STS_RESOURCE;
721
722 i = 0;
723 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
724 sg_list[i++] = *link;
725 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
726 }
727
728 nvme_pci_sgl_set_data(&sg_list[i++], sg);
729 sg = sg_next(sg);
730 } while (--entries > 0);
731
732 return BLK_STS_OK;
733 }
734
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)735 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
736 struct nvme_command *cmnd)
737 {
738 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
739 struct request_queue *q = req->q;
740 enum dma_data_direction dma_dir = rq_data_dir(req) ?
741 DMA_TO_DEVICE : DMA_FROM_DEVICE;
742 blk_status_t ret = BLK_STS_IOERR;
743 int nr_mapped;
744
745 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
746 iod->nents = blk_rq_map_sg(q, req, iod->sg);
747 if (!iod->nents)
748 goto out;
749
750 ret = BLK_STS_RESOURCE;
751 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
752 DMA_ATTR_NO_WARN);
753 if (!nr_mapped)
754 goto out;
755
756 if (iod->use_sgl)
757 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
758 else
759 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
760
761 if (ret != BLK_STS_OK)
762 goto out_unmap;
763
764 ret = BLK_STS_IOERR;
765 if (blk_integrity_rq(req)) {
766 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
767 goto out_unmap;
768
769 sg_init_table(&iod->meta_sg, 1);
770 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
771 goto out_unmap;
772
773 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
774 goto out_unmap;
775 }
776
777 if (blk_integrity_rq(req))
778 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
779 return BLK_STS_OK;
780
781 out_unmap:
782 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
783 out:
784 return ret;
785 }
786
nvme_unmap_data(struct nvme_dev * dev,struct request * req)787 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
788 {
789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790 enum dma_data_direction dma_dir = rq_data_dir(req) ?
791 DMA_TO_DEVICE : DMA_FROM_DEVICE;
792
793 if (iod->nents) {
794 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
795 if (blk_integrity_rq(req))
796 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
797 }
798
799 nvme_cleanup_cmd(req);
800 nvme_free_iod(dev, req);
801 }
802
803 /*
804 * NOTE: ns is NULL when called on the admin queue.
805 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)806 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
807 const struct blk_mq_queue_data *bd)
808 {
809 struct nvme_ns *ns = hctx->queue->queuedata;
810 struct nvme_queue *nvmeq = hctx->driver_data;
811 struct nvme_dev *dev = nvmeq->dev;
812 struct request *req = bd->rq;
813 struct nvme_command cmnd;
814 blk_status_t ret;
815
816 /*
817 * We should not need to do this, but we're still using this to
818 * ensure we can drain requests on a dying queue.
819 */
820 if (unlikely(nvmeq->cq_vector < 0))
821 return BLK_STS_IOERR;
822
823 ret = nvme_setup_cmd(ns, req, &cmnd);
824 if (ret)
825 return ret;
826
827 ret = nvme_init_iod(req, dev);
828 if (ret)
829 goto out_free_cmd;
830
831 if (blk_rq_nr_phys_segments(req)) {
832 ret = nvme_map_data(dev, req, &cmnd);
833 if (ret)
834 goto out_cleanup_iod;
835 }
836
837 blk_mq_start_request(req);
838 nvme_submit_cmd(nvmeq, &cmnd);
839 return BLK_STS_OK;
840 out_cleanup_iod:
841 nvme_free_iod(dev, req);
842 out_free_cmd:
843 nvme_cleanup_cmd(req);
844 return ret;
845 }
846
nvme_pci_complete_rq(struct request * req)847 static void nvme_pci_complete_rq(struct request *req)
848 {
849 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
850
851 nvme_unmap_data(iod->nvmeq->dev, req);
852 nvme_complete_rq(req);
853 }
854
855 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)856 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
857 {
858 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
859 nvmeq->cq_phase;
860 }
861
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)862 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
863 {
864 u16 head = nvmeq->cq_head;
865
866 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
867 nvmeq->dbbuf_cq_ei))
868 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
869 }
870
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)871 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
872 {
873 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
874 struct request *req;
875
876 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
877 dev_warn(nvmeq->dev->ctrl.device,
878 "invalid id %d completed on queue %d\n",
879 cqe->command_id, le16_to_cpu(cqe->sq_id));
880 return;
881 }
882
883 /*
884 * AEN requests are special as they don't time out and can
885 * survive any kind of queue freeze and often don't respond to
886 * aborts. We don't even bother to allocate a struct request
887 * for them but rather special case them here.
888 */
889 if (unlikely(nvmeq->qid == 0 &&
890 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
891 nvme_complete_async_event(&nvmeq->dev->ctrl,
892 cqe->status, &cqe->result);
893 return;
894 }
895
896 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
897 nvme_end_request(req, cqe->status, cqe->result);
898 }
899
nvme_complete_cqes(struct nvme_queue * nvmeq,u16 start,u16 end)900 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
901 {
902 while (start != end) {
903 nvme_handle_cqe(nvmeq, start);
904 if (++start == nvmeq->q_depth)
905 start = 0;
906 }
907 }
908
nvme_update_cq_head(struct nvme_queue * nvmeq)909 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
910 {
911 if (++nvmeq->cq_head == nvmeq->q_depth) {
912 nvmeq->cq_head = 0;
913 nvmeq->cq_phase = !nvmeq->cq_phase;
914 }
915 }
916
nvme_process_cq(struct nvme_queue * nvmeq,u16 * start,u16 * end,int tag)917 static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
918 u16 *end, int tag)
919 {
920 bool found = false;
921
922 *start = nvmeq->cq_head;
923 while (!found && nvme_cqe_pending(nvmeq)) {
924 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
925 found = true;
926 nvme_update_cq_head(nvmeq);
927 }
928 *end = nvmeq->cq_head;
929
930 if (*start != *end)
931 nvme_ring_cq_doorbell(nvmeq);
932 return found;
933 }
934
nvme_irq(int irq,void * data)935 static irqreturn_t nvme_irq(int irq, void *data)
936 {
937 struct nvme_queue *nvmeq = data;
938 irqreturn_t ret = IRQ_NONE;
939 u16 start, end;
940
941 spin_lock(&nvmeq->cq_lock);
942 if (nvmeq->cq_head != nvmeq->last_cq_head)
943 ret = IRQ_HANDLED;
944 nvme_process_cq(nvmeq, &start, &end, -1);
945 nvmeq->last_cq_head = nvmeq->cq_head;
946 spin_unlock(&nvmeq->cq_lock);
947
948 if (start != end) {
949 nvme_complete_cqes(nvmeq, start, end);
950 return IRQ_HANDLED;
951 }
952
953 return ret;
954 }
955
nvme_irq_check(int irq,void * data)956 static irqreturn_t nvme_irq_check(int irq, void *data)
957 {
958 struct nvme_queue *nvmeq = data;
959 if (nvme_cqe_pending(nvmeq))
960 return IRQ_WAKE_THREAD;
961 return IRQ_NONE;
962 }
963
__nvme_poll(struct nvme_queue * nvmeq,unsigned int tag)964 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
965 {
966 u16 start, end;
967 bool found;
968
969 if (!nvme_cqe_pending(nvmeq))
970 return 0;
971
972 spin_lock_irq(&nvmeq->cq_lock);
973 found = nvme_process_cq(nvmeq, &start, &end, tag);
974 spin_unlock_irq(&nvmeq->cq_lock);
975
976 nvme_complete_cqes(nvmeq, start, end);
977 return found;
978 }
979
nvme_poll(struct blk_mq_hw_ctx * hctx,unsigned int tag)980 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
981 {
982 struct nvme_queue *nvmeq = hctx->driver_data;
983
984 return __nvme_poll(nvmeq, tag);
985 }
986
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)987 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
988 {
989 struct nvme_dev *dev = to_nvme_dev(ctrl);
990 struct nvme_queue *nvmeq = &dev->queues[0];
991 struct nvme_command c;
992
993 memset(&c, 0, sizeof(c));
994 c.common.opcode = nvme_admin_async_event;
995 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
996 nvme_submit_cmd(nvmeq, &c);
997 }
998
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)999 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1000 {
1001 struct nvme_command c;
1002
1003 memset(&c, 0, sizeof(c));
1004 c.delete_queue.opcode = opcode;
1005 c.delete_queue.qid = cpu_to_le16(id);
1006
1007 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1008 }
1009
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1010 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1011 struct nvme_queue *nvmeq, s16 vector)
1012 {
1013 struct nvme_command c;
1014 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1015
1016 /*
1017 * Note: we (ab)use the fact that the prp fields survive if no data
1018 * is attached to the request.
1019 */
1020 memset(&c, 0, sizeof(c));
1021 c.create_cq.opcode = nvme_admin_create_cq;
1022 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1023 c.create_cq.cqid = cpu_to_le16(qid);
1024 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1025 c.create_cq.cq_flags = cpu_to_le16(flags);
1026 c.create_cq.irq_vector = cpu_to_le16(vector);
1027
1028 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1029 }
1030
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1031 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1032 struct nvme_queue *nvmeq)
1033 {
1034 struct nvme_ctrl *ctrl = &dev->ctrl;
1035 struct nvme_command c;
1036 int flags = NVME_QUEUE_PHYS_CONTIG;
1037
1038 /*
1039 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1040 * set. Since URGENT priority is zeroes, it makes all queues
1041 * URGENT.
1042 */
1043 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1044 flags |= NVME_SQ_PRIO_MEDIUM;
1045
1046 /*
1047 * Note: we (ab)use the fact that the prp fields survive if no data
1048 * is attached to the request.
1049 */
1050 memset(&c, 0, sizeof(c));
1051 c.create_sq.opcode = nvme_admin_create_sq;
1052 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1053 c.create_sq.sqid = cpu_to_le16(qid);
1054 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1055 c.create_sq.sq_flags = cpu_to_le16(flags);
1056 c.create_sq.cqid = cpu_to_le16(qid);
1057
1058 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1059 }
1060
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1061 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1062 {
1063 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1064 }
1065
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1066 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1067 {
1068 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1069 }
1070
abort_endio(struct request * req,blk_status_t error)1071 static void abort_endio(struct request *req, blk_status_t error)
1072 {
1073 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1074 struct nvme_queue *nvmeq = iod->nvmeq;
1075
1076 dev_warn(nvmeq->dev->ctrl.device,
1077 "Abort status: 0x%x", nvme_req(req)->status);
1078 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1079 blk_mq_free_request(req);
1080 }
1081
nvme_should_reset(struct nvme_dev * dev,u32 csts)1082 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1083 {
1084
1085 /* If true, indicates loss of adapter communication, possibly by a
1086 * NVMe Subsystem reset.
1087 */
1088 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1089
1090 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1091 switch (dev->ctrl.state) {
1092 case NVME_CTRL_RESETTING:
1093 case NVME_CTRL_CONNECTING:
1094 return false;
1095 default:
1096 break;
1097 }
1098
1099 /* We shouldn't reset unless the controller is on fatal error state
1100 * _or_ if we lost the communication with it.
1101 */
1102 if (!(csts & NVME_CSTS_CFS) && !nssro)
1103 return false;
1104
1105 return true;
1106 }
1107
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1108 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1109 {
1110 /* Read a config register to help see what died. */
1111 u16 pci_status;
1112 int result;
1113
1114 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1115 &pci_status);
1116 if (result == PCIBIOS_SUCCESSFUL)
1117 dev_warn(dev->ctrl.device,
1118 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1119 csts, pci_status);
1120 else
1121 dev_warn(dev->ctrl.device,
1122 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1123 csts, result);
1124 }
1125
nvme_timeout(struct request * req,bool reserved)1126 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1127 {
1128 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1129 struct nvme_queue *nvmeq = iod->nvmeq;
1130 struct nvme_dev *dev = nvmeq->dev;
1131 struct request *abort_req;
1132 struct nvme_command cmd;
1133 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1134
1135 /* If PCI error recovery process is happening, we cannot reset or
1136 * the recovery mechanism will surely fail.
1137 */
1138 mb();
1139 if (pci_channel_offline(to_pci_dev(dev->dev)))
1140 return BLK_EH_RESET_TIMER;
1141
1142 /*
1143 * Reset immediately if the controller is failed
1144 */
1145 if (nvme_should_reset(dev, csts)) {
1146 nvme_warn_reset(dev, csts);
1147 nvme_dev_disable(dev, false);
1148 nvme_reset_ctrl(&dev->ctrl);
1149 return BLK_EH_DONE;
1150 }
1151
1152 /*
1153 * Did we miss an interrupt?
1154 */
1155 if (__nvme_poll(nvmeq, req->tag)) {
1156 dev_warn(dev->ctrl.device,
1157 "I/O %d QID %d timeout, completion polled\n",
1158 req->tag, nvmeq->qid);
1159 return BLK_EH_DONE;
1160 }
1161
1162 /*
1163 * Shutdown immediately if controller times out while starting. The
1164 * reset work will see the pci device disabled when it gets the forced
1165 * cancellation error. All outstanding requests are completed on
1166 * shutdown, so we return BLK_EH_DONE.
1167 */
1168 switch (dev->ctrl.state) {
1169 case NVME_CTRL_CONNECTING:
1170 case NVME_CTRL_RESETTING:
1171 dev_warn_ratelimited(dev->ctrl.device,
1172 "I/O %d QID %d timeout, disable controller\n",
1173 req->tag, nvmeq->qid);
1174 nvme_dev_disable(dev, false);
1175 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1176 return BLK_EH_DONE;
1177 default:
1178 break;
1179 }
1180
1181 /*
1182 * Shutdown the controller immediately and schedule a reset if the
1183 * command was already aborted once before and still hasn't been
1184 * returned to the driver, or if this is the admin queue.
1185 */
1186 if (!nvmeq->qid || iod->aborted) {
1187 dev_warn(dev->ctrl.device,
1188 "I/O %d QID %d timeout, reset controller\n",
1189 req->tag, nvmeq->qid);
1190 nvme_dev_disable(dev, false);
1191 nvme_reset_ctrl(&dev->ctrl);
1192
1193 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1194 return BLK_EH_DONE;
1195 }
1196
1197 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1198 atomic_inc(&dev->ctrl.abort_limit);
1199 return BLK_EH_RESET_TIMER;
1200 }
1201 iod->aborted = 1;
1202
1203 memset(&cmd, 0, sizeof(cmd));
1204 cmd.abort.opcode = nvme_admin_abort_cmd;
1205 cmd.abort.cid = req->tag;
1206 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1207
1208 dev_warn(nvmeq->dev->ctrl.device,
1209 "I/O %d QID %d timeout, aborting\n",
1210 req->tag, nvmeq->qid);
1211
1212 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1213 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1214 if (IS_ERR(abort_req)) {
1215 atomic_inc(&dev->ctrl.abort_limit);
1216 return BLK_EH_RESET_TIMER;
1217 }
1218
1219 abort_req->timeout = ADMIN_TIMEOUT;
1220 abort_req->end_io_data = NULL;
1221 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1222
1223 /*
1224 * The aborted req will be completed on receiving the abort req.
1225 * We enable the timer again. If hit twice, it'll cause a device reset,
1226 * as the device then is in a faulty state.
1227 */
1228 return BLK_EH_RESET_TIMER;
1229 }
1230
nvme_free_queue(struct nvme_queue * nvmeq)1231 static void nvme_free_queue(struct nvme_queue *nvmeq)
1232 {
1233 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1234 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1235 if (nvmeq->sq_cmds)
1236 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1237 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1238 }
1239
nvme_free_queues(struct nvme_dev * dev,int lowest)1240 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1241 {
1242 int i;
1243
1244 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1245 dev->ctrl.queue_count--;
1246 nvme_free_queue(&dev->queues[i]);
1247 }
1248 }
1249
1250 /**
1251 * nvme_suspend_queue - put queue into suspended state
1252 * @nvmeq - queue to suspend
1253 */
nvme_suspend_queue(struct nvme_queue * nvmeq)1254 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1255 {
1256 int vector;
1257
1258 spin_lock_irq(&nvmeq->cq_lock);
1259 if (nvmeq->cq_vector == -1) {
1260 spin_unlock_irq(&nvmeq->cq_lock);
1261 return 1;
1262 }
1263 vector = nvmeq->cq_vector;
1264 nvmeq->dev->online_queues--;
1265 nvmeq->cq_vector = -1;
1266 spin_unlock_irq(&nvmeq->cq_lock);
1267
1268 /*
1269 * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1270 * having to grab the lock.
1271 */
1272 mb();
1273
1274 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1275 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1276
1277 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1278
1279 return 0;
1280 }
1281
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1282 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1283 {
1284 struct nvme_queue *nvmeq = &dev->queues[0];
1285 u16 start, end;
1286
1287 if (shutdown)
1288 nvme_shutdown_ctrl(&dev->ctrl);
1289 else
1290 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1291
1292 spin_lock_irq(&nvmeq->cq_lock);
1293 nvme_process_cq(nvmeq, &start, &end, -1);
1294 spin_unlock_irq(&nvmeq->cq_lock);
1295
1296 nvme_complete_cqes(nvmeq, start, end);
1297 }
1298
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1299 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1300 int entry_size)
1301 {
1302 int q_depth = dev->q_depth;
1303 unsigned q_size_aligned = roundup(q_depth * entry_size,
1304 dev->ctrl.page_size);
1305
1306 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1307 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1308 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1309 q_depth = div_u64(mem_per_q, entry_size);
1310
1311 /*
1312 * Ensure the reduced q_depth is above some threshold where it
1313 * would be better to map queues in system memory with the
1314 * original depth
1315 */
1316 if (q_depth < 64)
1317 return -ENOMEM;
1318 }
1319
1320 return q_depth;
1321 }
1322
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid,int depth)1323 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1324 int qid, int depth)
1325 {
1326 /* CMB SQEs will be mapped before creation */
1327 if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1328 return 0;
1329
1330 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1331 &nvmeq->sq_dma_addr, GFP_KERNEL);
1332 if (!nvmeq->sq_cmds)
1333 return -ENOMEM;
1334 return 0;
1335 }
1336
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1337 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1338 {
1339 struct nvme_queue *nvmeq = &dev->queues[qid];
1340
1341 if (dev->ctrl.queue_count > qid)
1342 return 0;
1343
1344 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1345 &nvmeq->cq_dma_addr, GFP_KERNEL);
1346 if (!nvmeq->cqes)
1347 goto free_nvmeq;
1348
1349 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1350 goto free_cqdma;
1351
1352 nvmeq->q_dmadev = dev->dev;
1353 nvmeq->dev = dev;
1354 spin_lock_init(&nvmeq->sq_lock);
1355 spin_lock_init(&nvmeq->cq_lock);
1356 nvmeq->cq_head = 0;
1357 nvmeq->cq_phase = 1;
1358 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1359 nvmeq->q_depth = depth;
1360 nvmeq->qid = qid;
1361 nvmeq->cq_vector = -1;
1362 dev->ctrl.queue_count++;
1363
1364 return 0;
1365
1366 free_cqdma:
1367 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1368 nvmeq->cq_dma_addr);
1369 free_nvmeq:
1370 return -ENOMEM;
1371 }
1372
queue_request_irq(struct nvme_queue * nvmeq)1373 static int queue_request_irq(struct nvme_queue *nvmeq)
1374 {
1375 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1376 int nr = nvmeq->dev->ctrl.instance;
1377
1378 if (use_threaded_interrupts) {
1379 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1380 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1381 } else {
1382 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1383 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1384 }
1385 }
1386
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1387 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1388 {
1389 struct nvme_dev *dev = nvmeq->dev;
1390
1391 spin_lock_irq(&nvmeq->cq_lock);
1392 nvmeq->sq_tail = 0;
1393 nvmeq->cq_head = 0;
1394 nvmeq->cq_phase = 1;
1395 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1396 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1397 nvme_dbbuf_init(dev, nvmeq, qid);
1398 dev->online_queues++;
1399 spin_unlock_irq(&nvmeq->cq_lock);
1400 }
1401
nvme_create_queue(struct nvme_queue * nvmeq,int qid)1402 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1403 {
1404 struct nvme_dev *dev = nvmeq->dev;
1405 int result;
1406 s16 vector;
1407
1408 if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1409 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1410 dev->ctrl.page_size);
1411 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1412 nvmeq->sq_cmds_io = dev->cmb + offset;
1413 }
1414
1415 /*
1416 * A queue's vector matches the queue identifier unless the controller
1417 * has only one vector available.
1418 */
1419 vector = dev->num_vecs == 1 ? 0 : qid;
1420 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1421 if (result)
1422 return result;
1423
1424 result = adapter_alloc_sq(dev, qid, nvmeq);
1425 if (result < 0)
1426 return result;
1427 else if (result)
1428 goto release_cq;
1429
1430 /*
1431 * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1432 * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1433 * xxx' warning if the create CQ/SQ command times out.
1434 */
1435 nvmeq->cq_vector = vector;
1436 nvme_init_queue(nvmeq, qid);
1437 result = queue_request_irq(nvmeq);
1438 if (result < 0)
1439 goto release_sq;
1440
1441 return result;
1442
1443 release_sq:
1444 nvmeq->cq_vector = -1;
1445 dev->online_queues--;
1446 adapter_delete_sq(dev, qid);
1447 release_cq:
1448 adapter_delete_cq(dev, qid);
1449 return result;
1450 }
1451
1452 static const struct blk_mq_ops nvme_mq_admin_ops = {
1453 .queue_rq = nvme_queue_rq,
1454 .complete = nvme_pci_complete_rq,
1455 .init_hctx = nvme_admin_init_hctx,
1456 .exit_hctx = nvme_admin_exit_hctx,
1457 .init_request = nvme_init_request,
1458 .timeout = nvme_timeout,
1459 };
1460
1461 static const struct blk_mq_ops nvme_mq_ops = {
1462 .queue_rq = nvme_queue_rq,
1463 .complete = nvme_pci_complete_rq,
1464 .init_hctx = nvme_init_hctx,
1465 .init_request = nvme_init_request,
1466 .map_queues = nvme_pci_map_queues,
1467 .timeout = nvme_timeout,
1468 .poll = nvme_poll,
1469 };
1470
nvme_dev_remove_admin(struct nvme_dev * dev)1471 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1472 {
1473 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1474 /*
1475 * If the controller was reset during removal, it's possible
1476 * user requests may be waiting on a stopped queue. Start the
1477 * queue to flush these to completion.
1478 */
1479 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1480 blk_cleanup_queue(dev->ctrl.admin_q);
1481 blk_mq_free_tag_set(&dev->admin_tagset);
1482 }
1483 }
1484
nvme_alloc_admin_tags(struct nvme_dev * dev)1485 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1486 {
1487 if (!dev->ctrl.admin_q) {
1488 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1489 dev->admin_tagset.nr_hw_queues = 1;
1490
1491 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1492 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1493 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1494 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1495 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1496 dev->admin_tagset.driver_data = dev;
1497
1498 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1499 return -ENOMEM;
1500 dev->ctrl.admin_tagset = &dev->admin_tagset;
1501
1502 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1503 if (IS_ERR(dev->ctrl.admin_q)) {
1504 blk_mq_free_tag_set(&dev->admin_tagset);
1505 return -ENOMEM;
1506 }
1507 if (!blk_get_queue(dev->ctrl.admin_q)) {
1508 nvme_dev_remove_admin(dev);
1509 dev->ctrl.admin_q = NULL;
1510 return -ENODEV;
1511 }
1512 } else
1513 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1514
1515 return 0;
1516 }
1517
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1518 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1519 {
1520 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1521 }
1522
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1523 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1524 {
1525 struct pci_dev *pdev = to_pci_dev(dev->dev);
1526
1527 if (size <= dev->bar_mapped_size)
1528 return 0;
1529 if (size > pci_resource_len(pdev, 0))
1530 return -ENOMEM;
1531 if (dev->bar)
1532 iounmap(dev->bar);
1533 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1534 if (!dev->bar) {
1535 dev->bar_mapped_size = 0;
1536 return -ENOMEM;
1537 }
1538 dev->bar_mapped_size = size;
1539 dev->dbs = dev->bar + NVME_REG_DBS;
1540
1541 return 0;
1542 }
1543
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1544 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1545 {
1546 int result;
1547 u32 aqa;
1548 struct nvme_queue *nvmeq;
1549
1550 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1551 if (result < 0)
1552 return result;
1553
1554 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1555 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1556
1557 if (dev->subsystem &&
1558 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1559 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1560
1561 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1562 if (result < 0)
1563 return result;
1564
1565 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1566 if (result)
1567 return result;
1568
1569 nvmeq = &dev->queues[0];
1570 aqa = nvmeq->q_depth - 1;
1571 aqa |= aqa << 16;
1572
1573 writel(aqa, dev->bar + NVME_REG_AQA);
1574 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1575 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1576
1577 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1578 if (result)
1579 return result;
1580
1581 nvmeq->cq_vector = 0;
1582 nvme_init_queue(nvmeq, 0);
1583 result = queue_request_irq(nvmeq);
1584 if (result) {
1585 nvmeq->cq_vector = -1;
1586 return result;
1587 }
1588
1589 return result;
1590 }
1591
nvme_create_io_queues(struct nvme_dev * dev)1592 static int nvme_create_io_queues(struct nvme_dev *dev)
1593 {
1594 unsigned i, max;
1595 int ret = 0;
1596
1597 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1598 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1599 ret = -ENOMEM;
1600 break;
1601 }
1602 }
1603
1604 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1605 for (i = dev->online_queues; i <= max; i++) {
1606 ret = nvme_create_queue(&dev->queues[i], i);
1607 if (ret)
1608 break;
1609 }
1610
1611 /*
1612 * Ignore failing Create SQ/CQ commands, we can continue with less
1613 * than the desired amount of queues, and even a controller without
1614 * I/O queues can still be used to issue admin commands. This might
1615 * be useful to upgrade a buggy firmware for example.
1616 */
1617 return ret >= 0 ? 0 : ret;
1618 }
1619
nvme_cmb_show(struct device * dev,struct device_attribute * attr,char * buf)1620 static ssize_t nvme_cmb_show(struct device *dev,
1621 struct device_attribute *attr,
1622 char *buf)
1623 {
1624 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1625
1626 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1627 ndev->cmbloc, ndev->cmbsz);
1628 }
1629 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1630
nvme_cmb_size_unit(struct nvme_dev * dev)1631 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1632 {
1633 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1634
1635 return 1ULL << (12 + 4 * szu);
1636 }
1637
nvme_cmb_size(struct nvme_dev * dev)1638 static u32 nvme_cmb_size(struct nvme_dev *dev)
1639 {
1640 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1641 }
1642
nvme_map_cmb(struct nvme_dev * dev)1643 static void nvme_map_cmb(struct nvme_dev *dev)
1644 {
1645 u64 size, offset;
1646 resource_size_t bar_size;
1647 struct pci_dev *pdev = to_pci_dev(dev->dev);
1648 int bar;
1649
1650 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1651 if (!dev->cmbsz)
1652 return;
1653 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1654
1655 if (!use_cmb_sqes)
1656 return;
1657
1658 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1659 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1660 bar = NVME_CMB_BIR(dev->cmbloc);
1661 bar_size = pci_resource_len(pdev, bar);
1662
1663 if (offset > bar_size)
1664 return;
1665
1666 /*
1667 * Controllers may support a CMB size larger than their BAR,
1668 * for example, due to being behind a bridge. Reduce the CMB to
1669 * the reported size of the BAR
1670 */
1671 if (size > bar_size - offset)
1672 size = bar_size - offset;
1673
1674 dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1675 if (!dev->cmb)
1676 return;
1677 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1678 dev->cmb_size = size;
1679
1680 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1681 &dev_attr_cmb.attr, NULL))
1682 dev_warn(dev->ctrl.device,
1683 "failed to add sysfs attribute for CMB\n");
1684 }
1685
nvme_release_cmb(struct nvme_dev * dev)1686 static inline void nvme_release_cmb(struct nvme_dev *dev)
1687 {
1688 if (dev->cmb) {
1689 iounmap(dev->cmb);
1690 dev->cmb = NULL;
1691 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1692 &dev_attr_cmb.attr, NULL);
1693 dev->cmbsz = 0;
1694 }
1695 }
1696
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1697 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1698 {
1699 u64 dma_addr = dev->host_mem_descs_dma;
1700 struct nvme_command c;
1701 int ret;
1702
1703 memset(&c, 0, sizeof(c));
1704 c.features.opcode = nvme_admin_set_features;
1705 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1706 c.features.dword11 = cpu_to_le32(bits);
1707 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1708 ilog2(dev->ctrl.page_size));
1709 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1710 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1711 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1712
1713 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1714 if (ret) {
1715 dev_warn(dev->ctrl.device,
1716 "failed to set host mem (err %d, flags %#x).\n",
1717 ret, bits);
1718 }
1719 return ret;
1720 }
1721
nvme_free_host_mem(struct nvme_dev * dev)1722 static void nvme_free_host_mem(struct nvme_dev *dev)
1723 {
1724 int i;
1725
1726 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1727 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1728 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1729
1730 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1731 le64_to_cpu(desc->addr));
1732 }
1733
1734 kfree(dev->host_mem_desc_bufs);
1735 dev->host_mem_desc_bufs = NULL;
1736 dma_free_coherent(dev->dev,
1737 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1738 dev->host_mem_descs, dev->host_mem_descs_dma);
1739 dev->host_mem_descs = NULL;
1740 dev->nr_host_mem_descs = 0;
1741 }
1742
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1743 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1744 u32 chunk_size)
1745 {
1746 struct nvme_host_mem_buf_desc *descs;
1747 u32 max_entries, len;
1748 dma_addr_t descs_dma;
1749 int i = 0;
1750 void **bufs;
1751 u64 size, tmp;
1752
1753 tmp = (preferred + chunk_size - 1);
1754 do_div(tmp, chunk_size);
1755 max_entries = tmp;
1756
1757 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1758 max_entries = dev->ctrl.hmmaxd;
1759
1760 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1761 &descs_dma, GFP_KERNEL);
1762 if (!descs)
1763 goto out;
1764
1765 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1766 if (!bufs)
1767 goto out_free_descs;
1768
1769 for (size = 0; size < preferred && i < max_entries; size += len) {
1770 dma_addr_t dma_addr;
1771
1772 len = min_t(u64, chunk_size, preferred - size);
1773 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1774 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1775 if (!bufs[i])
1776 break;
1777
1778 descs[i].addr = cpu_to_le64(dma_addr);
1779 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1780 i++;
1781 }
1782
1783 if (!size)
1784 goto out_free_bufs;
1785
1786 dev->nr_host_mem_descs = i;
1787 dev->host_mem_size = size;
1788 dev->host_mem_descs = descs;
1789 dev->host_mem_descs_dma = descs_dma;
1790 dev->host_mem_desc_bufs = bufs;
1791 return 0;
1792
1793 out_free_bufs:
1794 while (--i >= 0) {
1795 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1796
1797 dma_free_coherent(dev->dev, size, bufs[i],
1798 le64_to_cpu(descs[i].addr));
1799 }
1800
1801 kfree(bufs);
1802 out_free_descs:
1803 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1804 descs_dma);
1805 out:
1806 dev->host_mem_descs = NULL;
1807 return -ENOMEM;
1808 }
1809
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)1810 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1811 {
1812 u32 chunk_size;
1813
1814 /* start big and work our way down */
1815 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1816 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1817 chunk_size /= 2) {
1818 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1819 if (!min || dev->host_mem_size >= min)
1820 return 0;
1821 nvme_free_host_mem(dev);
1822 }
1823 }
1824
1825 return -ENOMEM;
1826 }
1827
nvme_setup_host_mem(struct nvme_dev * dev)1828 static int nvme_setup_host_mem(struct nvme_dev *dev)
1829 {
1830 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1831 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1832 u64 min = (u64)dev->ctrl.hmmin * 4096;
1833 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1834 int ret;
1835
1836 preferred = min(preferred, max);
1837 if (min > max) {
1838 dev_warn(dev->ctrl.device,
1839 "min host memory (%lld MiB) above limit (%d MiB).\n",
1840 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1841 nvme_free_host_mem(dev);
1842 return 0;
1843 }
1844
1845 /*
1846 * If we already have a buffer allocated check if we can reuse it.
1847 */
1848 if (dev->host_mem_descs) {
1849 if (dev->host_mem_size >= min)
1850 enable_bits |= NVME_HOST_MEM_RETURN;
1851 else
1852 nvme_free_host_mem(dev);
1853 }
1854
1855 if (!dev->host_mem_descs) {
1856 if (nvme_alloc_host_mem(dev, min, preferred)) {
1857 dev_warn(dev->ctrl.device,
1858 "failed to allocate host memory buffer.\n");
1859 return 0; /* controller must work without HMB */
1860 }
1861
1862 dev_info(dev->ctrl.device,
1863 "allocated %lld MiB host memory buffer.\n",
1864 dev->host_mem_size >> ilog2(SZ_1M));
1865 }
1866
1867 ret = nvme_set_host_mem(dev, enable_bits);
1868 if (ret)
1869 nvme_free_host_mem(dev);
1870 return ret;
1871 }
1872
nvme_setup_io_queues(struct nvme_dev * dev)1873 static int nvme_setup_io_queues(struct nvme_dev *dev)
1874 {
1875 struct nvme_queue *adminq = &dev->queues[0];
1876 struct pci_dev *pdev = to_pci_dev(dev->dev);
1877 int result, nr_io_queues;
1878 unsigned long size;
1879
1880 struct irq_affinity affd = {
1881 .pre_vectors = 1
1882 };
1883
1884 nr_io_queues = num_possible_cpus();
1885 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1886 if (result < 0)
1887 return result;
1888
1889 if (nr_io_queues == 0)
1890 return 0;
1891
1892 if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1893 result = nvme_cmb_qdepth(dev, nr_io_queues,
1894 sizeof(struct nvme_command));
1895 if (result > 0)
1896 dev->q_depth = result;
1897 else
1898 nvme_release_cmb(dev);
1899 }
1900
1901 do {
1902 size = db_bar_size(dev, nr_io_queues);
1903 result = nvme_remap_bar(dev, size);
1904 if (!result)
1905 break;
1906 if (!--nr_io_queues)
1907 return -ENOMEM;
1908 } while (1);
1909 adminq->q_db = dev->dbs;
1910
1911 /* Deregister the admin queue's interrupt */
1912 pci_free_irq(pdev, 0, adminq);
1913
1914 /*
1915 * If we enable msix early due to not intx, disable it again before
1916 * setting up the full range we need.
1917 */
1918 pci_free_irq_vectors(pdev);
1919 result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1920 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1921 if (result <= 0)
1922 return -EIO;
1923 dev->num_vecs = result;
1924 dev->max_qid = max(result - 1, 1);
1925
1926 /*
1927 * Should investigate if there's a performance win from allocating
1928 * more queues than interrupt vectors; it might allow the submission
1929 * path to scale better, even if the receive path is limited by the
1930 * number of interrupts.
1931 */
1932
1933 result = queue_request_irq(adminq);
1934 if (result) {
1935 adminq->cq_vector = -1;
1936 return result;
1937 }
1938 return nvme_create_io_queues(dev);
1939 }
1940
nvme_del_queue_end(struct request * req,blk_status_t error)1941 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1942 {
1943 struct nvme_queue *nvmeq = req->end_io_data;
1944
1945 blk_mq_free_request(req);
1946 complete(&nvmeq->dev->ioq_wait);
1947 }
1948
nvme_del_cq_end(struct request * req,blk_status_t error)1949 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1950 {
1951 struct nvme_queue *nvmeq = req->end_io_data;
1952 u16 start, end;
1953
1954 if (!error) {
1955 unsigned long flags;
1956
1957 spin_lock_irqsave(&nvmeq->cq_lock, flags);
1958 nvme_process_cq(nvmeq, &start, &end, -1);
1959 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
1960
1961 nvme_complete_cqes(nvmeq, start, end);
1962 }
1963
1964 nvme_del_queue_end(req, error);
1965 }
1966
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)1967 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1968 {
1969 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1970 struct request *req;
1971 struct nvme_command cmd;
1972
1973 memset(&cmd, 0, sizeof(cmd));
1974 cmd.delete_queue.opcode = opcode;
1975 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1976
1977 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1978 if (IS_ERR(req))
1979 return PTR_ERR(req);
1980
1981 req->timeout = ADMIN_TIMEOUT;
1982 req->end_io_data = nvmeq;
1983
1984 blk_execute_rq_nowait(q, NULL, req, false,
1985 opcode == nvme_admin_delete_cq ?
1986 nvme_del_cq_end : nvme_del_queue_end);
1987 return 0;
1988 }
1989
nvme_disable_io_queues(struct nvme_dev * dev)1990 static void nvme_disable_io_queues(struct nvme_dev *dev)
1991 {
1992 int pass, queues = dev->online_queues - 1;
1993 unsigned long timeout;
1994 u8 opcode = nvme_admin_delete_sq;
1995
1996 for (pass = 0; pass < 2; pass++) {
1997 int sent = 0, i = queues;
1998
1999 reinit_completion(&dev->ioq_wait);
2000 retry:
2001 timeout = ADMIN_TIMEOUT;
2002 for (; i > 0; i--, sent++)
2003 if (nvme_delete_queue(&dev->queues[i], opcode))
2004 break;
2005
2006 while (sent--) {
2007 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2008 if (timeout == 0)
2009 return;
2010 if (i)
2011 goto retry;
2012 }
2013 opcode = nvme_admin_delete_cq;
2014 }
2015 }
2016
2017 /*
2018 * return error value only when tagset allocation failed
2019 */
nvme_dev_add(struct nvme_dev * dev)2020 static int nvme_dev_add(struct nvme_dev *dev)
2021 {
2022 int ret;
2023
2024 if (!dev->ctrl.tagset) {
2025 dev->tagset.ops = &nvme_mq_ops;
2026 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2027 dev->tagset.timeout = NVME_IO_TIMEOUT;
2028 dev->tagset.numa_node = dev_to_node(dev->dev);
2029 dev->tagset.queue_depth =
2030 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2031 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2032 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2033 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2034 nvme_pci_cmd_size(dev, true));
2035 }
2036 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2037 dev->tagset.driver_data = dev;
2038
2039 ret = blk_mq_alloc_tag_set(&dev->tagset);
2040 if (ret) {
2041 dev_warn(dev->ctrl.device,
2042 "IO queues tagset allocation failed %d\n", ret);
2043 return ret;
2044 }
2045 dev->ctrl.tagset = &dev->tagset;
2046
2047 nvme_dbbuf_set(dev);
2048 } else {
2049 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2050
2051 /* Free previously allocated queues that are no longer usable */
2052 nvme_free_queues(dev, dev->online_queues);
2053 }
2054
2055 return 0;
2056 }
2057
nvme_pci_enable(struct nvme_dev * dev)2058 static int nvme_pci_enable(struct nvme_dev *dev)
2059 {
2060 int result = -ENOMEM;
2061 struct pci_dev *pdev = to_pci_dev(dev->dev);
2062
2063 if (pci_enable_device_mem(pdev))
2064 return result;
2065
2066 pci_set_master(pdev);
2067
2068 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2069 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2070 goto disable;
2071
2072 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2073 result = -ENODEV;
2074 goto disable;
2075 }
2076
2077 /*
2078 * Some devices and/or platforms don't advertise or work with INTx
2079 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2080 * adjust this later.
2081 */
2082 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2083 if (result < 0)
2084 return result;
2085
2086 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2087
2088 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2089 io_queue_depth);
2090 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2091 dev->dbs = dev->bar + 4096;
2092
2093 /*
2094 * Temporary fix for the Apple controller found in the MacBook8,1 and
2095 * some MacBook7,1 to avoid controller resets and data loss.
2096 */
2097 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2098 dev->q_depth = 2;
2099 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2100 "set queue depth=%u to work around controller resets\n",
2101 dev->q_depth);
2102 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2103 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2104 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2105 dev->q_depth = 64;
2106 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2107 "set queue depth=%u\n", dev->q_depth);
2108 }
2109
2110 nvme_map_cmb(dev);
2111
2112 pci_enable_pcie_error_reporting(pdev);
2113 pci_save_state(pdev);
2114 return 0;
2115
2116 disable:
2117 pci_disable_device(pdev);
2118 return result;
2119 }
2120
nvme_dev_unmap(struct nvme_dev * dev)2121 static void nvme_dev_unmap(struct nvme_dev *dev)
2122 {
2123 if (dev->bar)
2124 iounmap(dev->bar);
2125 pci_release_mem_regions(to_pci_dev(dev->dev));
2126 }
2127
nvme_pci_disable(struct nvme_dev * dev)2128 static void nvme_pci_disable(struct nvme_dev *dev)
2129 {
2130 struct pci_dev *pdev = to_pci_dev(dev->dev);
2131
2132 nvme_release_cmb(dev);
2133 pci_free_irq_vectors(pdev);
2134
2135 if (pci_is_enabled(pdev)) {
2136 pci_disable_pcie_error_reporting(pdev);
2137 pci_disable_device(pdev);
2138 }
2139 }
2140
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2141 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2142 {
2143 int i;
2144 bool dead = true;
2145 struct pci_dev *pdev = to_pci_dev(dev->dev);
2146
2147 mutex_lock(&dev->shutdown_lock);
2148 if (pci_is_enabled(pdev)) {
2149 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2150
2151 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2152 dev->ctrl.state == NVME_CTRL_RESETTING)
2153 nvme_start_freeze(&dev->ctrl);
2154 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2155 pdev->error_state != pci_channel_io_normal);
2156 }
2157
2158 /*
2159 * Give the controller a chance to complete all entered requests if
2160 * doing a safe shutdown.
2161 */
2162 if (!dead) {
2163 if (shutdown)
2164 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2165 }
2166
2167 nvme_stop_queues(&dev->ctrl);
2168
2169 if (!dead && dev->ctrl.queue_count > 0) {
2170 nvme_disable_io_queues(dev);
2171 nvme_disable_admin_queue(dev, shutdown);
2172 }
2173 for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2174 nvme_suspend_queue(&dev->queues[i]);
2175
2176 nvme_pci_disable(dev);
2177
2178 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2179 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2180
2181 /*
2182 * The driver will not be starting up queues again if shutting down so
2183 * must flush all entered requests to their failed completion to avoid
2184 * deadlocking blk-mq hot-cpu notifier.
2185 */
2186 if (shutdown)
2187 nvme_start_queues(&dev->ctrl);
2188 mutex_unlock(&dev->shutdown_lock);
2189 }
2190
nvme_setup_prp_pools(struct nvme_dev * dev)2191 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2192 {
2193 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2194 PAGE_SIZE, PAGE_SIZE, 0);
2195 if (!dev->prp_page_pool)
2196 return -ENOMEM;
2197
2198 /* Optimisation for I/Os between 4k and 128k */
2199 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2200 256, 256, 0);
2201 if (!dev->prp_small_pool) {
2202 dma_pool_destroy(dev->prp_page_pool);
2203 return -ENOMEM;
2204 }
2205 return 0;
2206 }
2207
nvme_release_prp_pools(struct nvme_dev * dev)2208 static void nvme_release_prp_pools(struct nvme_dev *dev)
2209 {
2210 dma_pool_destroy(dev->prp_page_pool);
2211 dma_pool_destroy(dev->prp_small_pool);
2212 }
2213
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2214 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2215 {
2216 struct nvme_dev *dev = to_nvme_dev(ctrl);
2217
2218 nvme_dbbuf_dma_free(dev);
2219 put_device(dev->dev);
2220 if (dev->tagset.tags)
2221 blk_mq_free_tag_set(&dev->tagset);
2222 if (dev->ctrl.admin_q)
2223 blk_put_queue(dev->ctrl.admin_q);
2224 kfree(dev->queues);
2225 free_opal_dev(dev->ctrl.opal_dev);
2226 mempool_destroy(dev->iod_mempool);
2227 kfree(dev);
2228 }
2229
nvme_remove_dead_ctrl(struct nvme_dev * dev,int status)2230 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2231 {
2232 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2233
2234 nvme_get_ctrl(&dev->ctrl);
2235 nvme_dev_disable(dev, false);
2236 nvme_kill_queues(&dev->ctrl);
2237 if (!queue_work(nvme_wq, &dev->remove_work))
2238 nvme_put_ctrl(&dev->ctrl);
2239 }
2240
nvme_reset_work(struct work_struct * work)2241 static void nvme_reset_work(struct work_struct *work)
2242 {
2243 struct nvme_dev *dev =
2244 container_of(work, struct nvme_dev, ctrl.reset_work);
2245 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2246 int result = -ENODEV;
2247 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2248
2249 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2250 goto out;
2251
2252 /*
2253 * If we're called to reset a live controller first shut it down before
2254 * moving on.
2255 */
2256 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2257 nvme_dev_disable(dev, false);
2258
2259 /*
2260 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2261 * initializing procedure here.
2262 */
2263 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2264 dev_warn(dev->ctrl.device,
2265 "failed to mark controller CONNECTING\n");
2266 goto out;
2267 }
2268
2269 result = nvme_pci_enable(dev);
2270 if (result)
2271 goto out;
2272
2273 result = nvme_pci_configure_admin_queue(dev);
2274 if (result)
2275 goto out;
2276
2277 result = nvme_alloc_admin_tags(dev);
2278 if (result)
2279 goto out;
2280
2281 /*
2282 * Limit the max command size to prevent iod->sg allocations going
2283 * over a single page.
2284 */
2285 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2286 dev->ctrl.max_segments = NVME_MAX_SEGS;
2287
2288 result = nvme_init_identify(&dev->ctrl);
2289 if (result)
2290 goto out;
2291
2292 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2293 if (!dev->ctrl.opal_dev)
2294 dev->ctrl.opal_dev =
2295 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2296 else if (was_suspend)
2297 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2298 } else {
2299 free_opal_dev(dev->ctrl.opal_dev);
2300 dev->ctrl.opal_dev = NULL;
2301 }
2302
2303 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2304 result = nvme_dbbuf_dma_alloc(dev);
2305 if (result)
2306 dev_warn(dev->dev,
2307 "unable to allocate dma for dbbuf\n");
2308 }
2309
2310 if (dev->ctrl.hmpre) {
2311 result = nvme_setup_host_mem(dev);
2312 if (result < 0)
2313 goto out;
2314 }
2315
2316 result = nvme_setup_io_queues(dev);
2317 if (result)
2318 goto out;
2319
2320 /*
2321 * Keep the controller around but remove all namespaces if we don't have
2322 * any working I/O queue.
2323 */
2324 if (dev->online_queues < 2) {
2325 dev_warn(dev->ctrl.device, "IO queues not created\n");
2326 nvme_kill_queues(&dev->ctrl);
2327 nvme_remove_namespaces(&dev->ctrl);
2328 new_state = NVME_CTRL_ADMIN_ONLY;
2329 } else {
2330 nvme_start_queues(&dev->ctrl);
2331 nvme_wait_freeze(&dev->ctrl);
2332 /* hit this only when allocate tagset fails */
2333 if (nvme_dev_add(dev))
2334 new_state = NVME_CTRL_ADMIN_ONLY;
2335 nvme_unfreeze(&dev->ctrl);
2336 }
2337
2338 /*
2339 * If only admin queue live, keep it to do further investigation or
2340 * recovery.
2341 */
2342 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2343 dev_warn(dev->ctrl.device,
2344 "failed to mark controller state %d\n", new_state);
2345 goto out;
2346 }
2347
2348 nvme_start_ctrl(&dev->ctrl);
2349 return;
2350
2351 out:
2352 nvme_remove_dead_ctrl(dev, result);
2353 }
2354
nvme_remove_dead_ctrl_work(struct work_struct * work)2355 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2356 {
2357 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2358 struct pci_dev *pdev = to_pci_dev(dev->dev);
2359
2360 if (pci_get_drvdata(pdev))
2361 device_release_driver(&pdev->dev);
2362 nvme_put_ctrl(&dev->ctrl);
2363 }
2364
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2365 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2366 {
2367 *val = readl(to_nvme_dev(ctrl)->bar + off);
2368 return 0;
2369 }
2370
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2371 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2372 {
2373 writel(val, to_nvme_dev(ctrl)->bar + off);
2374 return 0;
2375 }
2376
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2377 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2378 {
2379 *val = readq(to_nvme_dev(ctrl)->bar + off);
2380 return 0;
2381 }
2382
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2383 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2384 {
2385 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2386
2387 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2388 }
2389
2390 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2391 .name = "pcie",
2392 .module = THIS_MODULE,
2393 .flags = NVME_F_METADATA_SUPPORTED,
2394 .reg_read32 = nvme_pci_reg_read32,
2395 .reg_write32 = nvme_pci_reg_write32,
2396 .reg_read64 = nvme_pci_reg_read64,
2397 .free_ctrl = nvme_pci_free_ctrl,
2398 .submit_async_event = nvme_pci_submit_async_event,
2399 .get_address = nvme_pci_get_address,
2400 };
2401
nvme_dev_map(struct nvme_dev * dev)2402 static int nvme_dev_map(struct nvme_dev *dev)
2403 {
2404 struct pci_dev *pdev = to_pci_dev(dev->dev);
2405
2406 if (pci_request_mem_regions(pdev, "nvme"))
2407 return -ENODEV;
2408
2409 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2410 goto release;
2411
2412 return 0;
2413 release:
2414 pci_release_mem_regions(pdev);
2415 return -ENODEV;
2416 }
2417
check_vendor_combination_bug(struct pci_dev * pdev)2418 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2419 {
2420 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2421 /*
2422 * Several Samsung devices seem to drop off the PCIe bus
2423 * randomly when APST is on and uses the deepest sleep state.
2424 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2425 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2426 * 950 PRO 256GB", but it seems to be restricted to two Dell
2427 * laptops.
2428 */
2429 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2430 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2431 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2432 return NVME_QUIRK_NO_DEEPEST_PS;
2433 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2434 /*
2435 * Samsung SSD 960 EVO drops off the PCIe bus after system
2436 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2437 * within few minutes after bootup on a Coffee Lake board -
2438 * ASUS PRIME Z370-A
2439 */
2440 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2441 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2442 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2443 return NVME_QUIRK_NO_APST;
2444 }
2445
2446 return 0;
2447 }
2448
nvme_async_probe(void * data,async_cookie_t cookie)2449 static void nvme_async_probe(void *data, async_cookie_t cookie)
2450 {
2451 struct nvme_dev *dev = data;
2452
2453 nvme_reset_ctrl_sync(&dev->ctrl);
2454 flush_work(&dev->ctrl.scan_work);
2455 nvme_put_ctrl(&dev->ctrl);
2456 }
2457
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2458 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2459 {
2460 int node, result = -ENOMEM;
2461 struct nvme_dev *dev;
2462 unsigned long quirks = id->driver_data;
2463 size_t alloc_size;
2464
2465 node = dev_to_node(&pdev->dev);
2466 if (node == NUMA_NO_NODE)
2467 set_dev_node(&pdev->dev, first_memory_node);
2468
2469 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2470 if (!dev)
2471 return -ENOMEM;
2472
2473 dev->queues = kcalloc_node(num_possible_cpus() + 1,
2474 sizeof(struct nvme_queue), GFP_KERNEL, node);
2475 if (!dev->queues)
2476 goto free;
2477
2478 dev->dev = get_device(&pdev->dev);
2479 pci_set_drvdata(pdev, dev);
2480
2481 result = nvme_dev_map(dev);
2482 if (result)
2483 goto put_pci;
2484
2485 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2486 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2487 mutex_init(&dev->shutdown_lock);
2488 init_completion(&dev->ioq_wait);
2489
2490 result = nvme_setup_prp_pools(dev);
2491 if (result)
2492 goto unmap;
2493
2494 quirks |= check_vendor_combination_bug(pdev);
2495
2496 /*
2497 * Double check that our mempool alloc size will cover the biggest
2498 * command we support.
2499 */
2500 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2501 NVME_MAX_SEGS, true);
2502 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2503
2504 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2505 mempool_kfree,
2506 (void *) alloc_size,
2507 GFP_KERNEL, node);
2508 if (!dev->iod_mempool) {
2509 result = -ENOMEM;
2510 goto release_pools;
2511 }
2512
2513 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2514 quirks);
2515 if (result)
2516 goto release_mempool;
2517
2518 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2519
2520 nvme_get_ctrl(&dev->ctrl);
2521 async_schedule(nvme_async_probe, dev);
2522
2523 return 0;
2524
2525 release_mempool:
2526 mempool_destroy(dev->iod_mempool);
2527 release_pools:
2528 nvme_release_prp_pools(dev);
2529 unmap:
2530 nvme_dev_unmap(dev);
2531 put_pci:
2532 put_device(dev->dev);
2533 free:
2534 kfree(dev->queues);
2535 kfree(dev);
2536 return result;
2537 }
2538
nvme_reset_prepare(struct pci_dev * pdev)2539 static void nvme_reset_prepare(struct pci_dev *pdev)
2540 {
2541 struct nvme_dev *dev = pci_get_drvdata(pdev);
2542 nvme_dev_disable(dev, false);
2543 }
2544
nvme_reset_done(struct pci_dev * pdev)2545 static void nvme_reset_done(struct pci_dev *pdev)
2546 {
2547 struct nvme_dev *dev = pci_get_drvdata(pdev);
2548 nvme_reset_ctrl_sync(&dev->ctrl);
2549 }
2550
nvme_shutdown(struct pci_dev * pdev)2551 static void nvme_shutdown(struct pci_dev *pdev)
2552 {
2553 struct nvme_dev *dev = pci_get_drvdata(pdev);
2554 nvme_dev_disable(dev, true);
2555 }
2556
2557 /*
2558 * The driver's remove may be called on a device in a partially initialized
2559 * state. This function must not have any dependencies on the device state in
2560 * order to proceed.
2561 */
nvme_remove(struct pci_dev * pdev)2562 static void nvme_remove(struct pci_dev *pdev)
2563 {
2564 struct nvme_dev *dev = pci_get_drvdata(pdev);
2565
2566 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2567
2568 cancel_work_sync(&dev->ctrl.reset_work);
2569 pci_set_drvdata(pdev, NULL);
2570
2571 if (!pci_device_is_present(pdev)) {
2572 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2573 nvme_dev_disable(dev, true);
2574 }
2575
2576 flush_work(&dev->ctrl.reset_work);
2577 nvme_stop_ctrl(&dev->ctrl);
2578 nvme_remove_namespaces(&dev->ctrl);
2579 nvme_dev_disable(dev, true);
2580 nvme_free_host_mem(dev);
2581 nvme_dev_remove_admin(dev);
2582 nvme_free_queues(dev, 0);
2583 nvme_uninit_ctrl(&dev->ctrl);
2584 nvme_release_prp_pools(dev);
2585 nvme_dev_unmap(dev);
2586 nvme_put_ctrl(&dev->ctrl);
2587 }
2588
2589 #ifdef CONFIG_PM_SLEEP
nvme_suspend(struct device * dev)2590 static int nvme_suspend(struct device *dev)
2591 {
2592 struct pci_dev *pdev = to_pci_dev(dev);
2593 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2594
2595 nvme_dev_disable(ndev, true);
2596 return 0;
2597 }
2598
nvme_resume(struct device * dev)2599 static int nvme_resume(struct device *dev)
2600 {
2601 struct pci_dev *pdev = to_pci_dev(dev);
2602 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2603
2604 nvme_reset_ctrl(&ndev->ctrl);
2605 return 0;
2606 }
2607 #endif
2608
2609 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2610
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2611 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2612 pci_channel_state_t state)
2613 {
2614 struct nvme_dev *dev = pci_get_drvdata(pdev);
2615
2616 /*
2617 * A frozen channel requires a reset. When detected, this method will
2618 * shutdown the controller to quiesce. The controller will be restarted
2619 * after the slot reset through driver's slot_reset callback.
2620 */
2621 switch (state) {
2622 case pci_channel_io_normal:
2623 return PCI_ERS_RESULT_CAN_RECOVER;
2624 case pci_channel_io_frozen:
2625 dev_warn(dev->ctrl.device,
2626 "frozen state error detected, reset controller\n");
2627 nvme_dev_disable(dev, false);
2628 return PCI_ERS_RESULT_NEED_RESET;
2629 case pci_channel_io_perm_failure:
2630 dev_warn(dev->ctrl.device,
2631 "failure state error detected, request disconnect\n");
2632 return PCI_ERS_RESULT_DISCONNECT;
2633 }
2634 return PCI_ERS_RESULT_NEED_RESET;
2635 }
2636
nvme_slot_reset(struct pci_dev * pdev)2637 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2638 {
2639 struct nvme_dev *dev = pci_get_drvdata(pdev);
2640
2641 dev_info(dev->ctrl.device, "restart after slot reset\n");
2642 pci_restore_state(pdev);
2643 nvme_reset_ctrl(&dev->ctrl);
2644 return PCI_ERS_RESULT_RECOVERED;
2645 }
2646
nvme_error_resume(struct pci_dev * pdev)2647 static void nvme_error_resume(struct pci_dev *pdev)
2648 {
2649 struct nvme_dev *dev = pci_get_drvdata(pdev);
2650
2651 flush_work(&dev->ctrl.reset_work);
2652 pci_cleanup_aer_uncorrect_error_status(pdev);
2653 }
2654
2655 static const struct pci_error_handlers nvme_err_handler = {
2656 .error_detected = nvme_error_detected,
2657 .slot_reset = nvme_slot_reset,
2658 .resume = nvme_error_resume,
2659 .reset_prepare = nvme_reset_prepare,
2660 .reset_done = nvme_reset_done,
2661 };
2662
2663 static const struct pci_device_id nvme_id_table[] = {
2664 { PCI_VDEVICE(INTEL, 0x0953),
2665 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2666 NVME_QUIRK_DEALLOCATE_ZEROES, },
2667 { PCI_VDEVICE(INTEL, 0x0a53),
2668 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2669 NVME_QUIRK_DEALLOCATE_ZEROES, },
2670 { PCI_VDEVICE(INTEL, 0x0a54),
2671 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2672 NVME_QUIRK_DEALLOCATE_ZEROES, },
2673 { PCI_VDEVICE(INTEL, 0x0a55),
2674 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2675 NVME_QUIRK_DEALLOCATE_ZEROES, },
2676 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2677 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2678 NVME_QUIRK_MEDIUM_PRIO_SQ },
2679 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2680 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2681 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2682 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2683 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2684 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2685 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2686 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2687 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2688 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2689 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2690 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2691 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2692 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2693 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2694 .driver_data = NVME_QUIRK_LIGHTNVM, },
2695 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2696 .driver_data = NVME_QUIRK_LIGHTNVM, },
2697 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2698 .driver_data = NVME_QUIRK_LIGHTNVM, },
2699 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2700 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2701 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2702 { 0, }
2703 };
2704 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2705
2706 static struct pci_driver nvme_driver = {
2707 .name = "nvme",
2708 .id_table = nvme_id_table,
2709 .probe = nvme_probe,
2710 .remove = nvme_remove,
2711 .shutdown = nvme_shutdown,
2712 .driver = {
2713 .pm = &nvme_dev_pm_ops,
2714 },
2715 .sriov_configure = pci_sriov_configure_simple,
2716 .err_handler = &nvme_err_handler,
2717 };
2718
nvme_init(void)2719 static int __init nvme_init(void)
2720 {
2721 return pci_register_driver(&nvme_driver);
2722 }
2723
nvme_exit(void)2724 static void __exit nvme_exit(void)
2725 {
2726 pci_unregister_driver(&nvme_driver);
2727 flush_workqueue(nvme_wq);
2728 _nvme_check_size();
2729 }
2730
2731 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2732 MODULE_LICENSE("GPL");
2733 MODULE_VERSION("1.0");
2734 module_init(nvme_init);
2735 module_exit(nvme_exit);
2736