1 /*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc.
4 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com>
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19 #include <linux/module.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/sdio_func.h>
24 #include <linux/mmc/sdio_ids.h>
25 #include <linux/mmc/sdio.h>
26 #include <linux/mmc/sd.h>
27 #include <linux/bitfield.h>
28 #include "core.h"
29 #include "bmi.h"
30 #include "debug.h"
31 #include "hif.h"
32 #include "htc.h"
33 #include "mac.h"
34 #include "targaddrs.h"
35 #include "trace.h"
36 #include "sdio.h"
37
38 /* inlined helper functions */
39
ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio * ar_sdio,size_t len)40 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio,
41 size_t len)
42 {
43 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask);
44 }
45
pipe_id_to_eid(u8 pipe_id)46 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id)
47 {
48 return (enum ath10k_htc_ep_id)pipe_id;
49 }
50
ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data * pkt)51 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt)
52 {
53 dev_kfree_skb(pkt->skb);
54 pkt->skb = NULL;
55 pkt->alloc_len = 0;
56 pkt->act_len = 0;
57 pkt->trailer_only = false;
58 }
59
ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data * pkt,size_t act_len,size_t full_len,bool part_of_bundle,bool last_in_bundle)60 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt,
61 size_t act_len, size_t full_len,
62 bool part_of_bundle,
63 bool last_in_bundle)
64 {
65 pkt->skb = dev_alloc_skb(full_len);
66 if (!pkt->skb)
67 return -ENOMEM;
68
69 pkt->act_len = act_len;
70 pkt->alloc_len = full_len;
71 pkt->part_of_bundle = part_of_bundle;
72 pkt->last_in_bundle = last_in_bundle;
73 pkt->trailer_only = false;
74
75 return 0;
76 }
77
is_trailer_only_msg(struct ath10k_sdio_rx_data * pkt)78 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt)
79 {
80 bool trailer_only = false;
81 struct ath10k_htc_hdr *htc_hdr =
82 (struct ath10k_htc_hdr *)pkt->skb->data;
83 u16 len = __le16_to_cpu(htc_hdr->len);
84
85 if (len == htc_hdr->trailer_len)
86 trailer_only = true;
87
88 return trailer_only;
89 }
90
91 /* sdio/mmc functions */
92
ath10k_sdio_set_cmd52_arg(u32 * arg,u8 write,u8 raw,unsigned int address,unsigned char val)93 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
94 unsigned int address,
95 unsigned char val)
96 {
97 *arg = FIELD_PREP(BIT(31), write) |
98 FIELD_PREP(BIT(27), raw) |
99 FIELD_PREP(BIT(26), 1) |
100 FIELD_PREP(GENMASK(25, 9), address) |
101 FIELD_PREP(BIT(8), 1) |
102 FIELD_PREP(GENMASK(7, 0), val);
103 }
104
ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card * card,unsigned int address,unsigned char byte)105 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
106 unsigned int address,
107 unsigned char byte)
108 {
109 struct mmc_command io_cmd;
110
111 memset(&io_cmd, 0, sizeof(io_cmd));
112 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
113 io_cmd.opcode = SD_IO_RW_DIRECT;
114 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
115
116 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
117 }
118
ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card * card,unsigned int address,unsigned char * byte)119 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card,
120 unsigned int address,
121 unsigned char *byte)
122 {
123 struct mmc_command io_cmd;
124 int ret;
125
126 memset(&io_cmd, 0, sizeof(io_cmd));
127 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0);
128 io_cmd.opcode = SD_IO_RW_DIRECT;
129 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
130
131 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0);
132 if (!ret)
133 *byte = io_cmd.resp[0];
134
135 return ret;
136 }
137
ath10k_sdio_config(struct ath10k * ar)138 static int ath10k_sdio_config(struct ath10k *ar)
139 {
140 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
141 struct sdio_func *func = ar_sdio->func;
142 unsigned char byte, asyncintdelay = 2;
143 int ret;
144
145 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n");
146
147 sdio_claim_host(func);
148
149 byte = 0;
150 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
151 SDIO_CCCR_DRIVE_STRENGTH,
152 &byte);
153
154 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK;
155 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK,
156 ATH10K_SDIO_DRIVE_DTSX_TYPE_D);
157
158 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
159 SDIO_CCCR_DRIVE_STRENGTH,
160 byte);
161
162 byte = 0;
163 ret = ath10k_sdio_func0_cmd52_rd_byte(
164 func->card,
165 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
166 &byte);
167
168 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A |
169 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C |
170 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D);
171
172 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
173 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
174 byte);
175 if (ret) {
176 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret);
177 goto out;
178 }
179
180 byte = 0;
181 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
182 CCCR_SDIO_IRQ_MODE_REG_SDIO3,
183 &byte);
184
185 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3;
186
187 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
188 CCCR_SDIO_IRQ_MODE_REG_SDIO3,
189 byte);
190 if (ret) {
191 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n",
192 ret);
193 goto out;
194 }
195
196 byte = 0;
197 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
198 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
199 &byte);
200
201 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK;
202 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay);
203
204 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
205 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
206 byte);
207
208 /* give us some time to enable, in ms */
209 func->enable_timeout = 100;
210
211 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size);
212 if (ret) {
213 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n",
214 ar_sdio->mbox_info.block_size, ret);
215 goto out;
216 }
217
218 out:
219 sdio_release_host(func);
220 return ret;
221 }
222
ath10k_sdio_write32(struct ath10k * ar,u32 addr,u32 val)223 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val)
224 {
225 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
226 struct sdio_func *func = ar_sdio->func;
227 int ret;
228
229 sdio_claim_host(func);
230
231 sdio_writel(func, val, addr, &ret);
232 if (ret) {
233 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n",
234 val, addr, ret);
235 goto out;
236 }
237
238 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n",
239 addr, val);
240
241 out:
242 sdio_release_host(func);
243
244 return ret;
245 }
246
ath10k_sdio_writesb32(struct ath10k * ar,u32 addr,u32 val)247 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val)
248 {
249 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
250 struct sdio_func *func = ar_sdio->func;
251 __le32 *buf;
252 int ret;
253
254 buf = kzalloc(sizeof(*buf), GFP_KERNEL);
255 if (!buf)
256 return -ENOMEM;
257
258 *buf = cpu_to_le32(val);
259
260 sdio_claim_host(func);
261
262 ret = sdio_writesb(func, addr, buf, sizeof(*buf));
263 if (ret) {
264 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n",
265 val, addr, ret);
266 goto out;
267 }
268
269 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n",
270 addr, val);
271
272 out:
273 sdio_release_host(func);
274
275 kfree(buf);
276
277 return ret;
278 }
279
ath10k_sdio_read32(struct ath10k * ar,u32 addr,u32 * val)280 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val)
281 {
282 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
283 struct sdio_func *func = ar_sdio->func;
284 int ret;
285
286 sdio_claim_host(func);
287 *val = sdio_readl(func, addr, &ret);
288 if (ret) {
289 ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
290 addr, ret);
291 goto out;
292 }
293
294 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n",
295 addr, *val);
296
297 out:
298 sdio_release_host(func);
299
300 return ret;
301 }
302
ath10k_sdio_read(struct ath10k * ar,u32 addr,void * buf,size_t len)303 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len)
304 {
305 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
306 struct sdio_func *func = ar_sdio->func;
307 int ret;
308
309 sdio_claim_host(func);
310
311 ret = sdio_memcpy_fromio(func, buf, addr, len);
312 if (ret) {
313 ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
314 addr, ret);
315 goto out;
316 }
317
318 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n",
319 addr, buf, len);
320 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len);
321
322 out:
323 sdio_release_host(func);
324
325 return ret;
326 }
327
ath10k_sdio_write(struct ath10k * ar,u32 addr,const void * buf,size_t len)328 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len)
329 {
330 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
331 struct sdio_func *func = ar_sdio->func;
332 int ret;
333
334 sdio_claim_host(func);
335
336 /* For some reason toio() doesn't have const for the buffer, need
337 * an ugly hack to workaround that.
338 */
339 ret = sdio_memcpy_toio(func, addr, (void *)buf, len);
340 if (ret) {
341 ath10k_warn(ar, "failed to write to address 0x%x: %d\n",
342 addr, ret);
343 goto out;
344 }
345
346 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n",
347 addr, buf, len);
348 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len);
349
350 out:
351 sdio_release_host(func);
352
353 return ret;
354 }
355
ath10k_sdio_readsb(struct ath10k * ar,u32 addr,void * buf,size_t len)356 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len)
357 {
358 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
359 struct sdio_func *func = ar_sdio->func;
360 int ret;
361
362 sdio_claim_host(func);
363
364 len = round_down(len, ar_sdio->mbox_info.block_size);
365
366 ret = sdio_readsb(func, buf, addr, len);
367 if (ret) {
368 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n",
369 addr, ret);
370 goto out;
371 }
372
373 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n",
374 addr, buf, len);
375 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len);
376
377 out:
378 sdio_release_host(func);
379
380 return ret;
381 }
382
383 /* HIF mbox functions */
384
ath10k_sdio_mbox_rx_process_packet(struct ath10k * ar,struct ath10k_sdio_rx_data * pkt,u32 * lookaheads,int * n_lookaheads)385 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar,
386 struct ath10k_sdio_rx_data *pkt,
387 u32 *lookaheads,
388 int *n_lookaheads)
389 {
390 struct ath10k_htc *htc = &ar->htc;
391 struct sk_buff *skb = pkt->skb;
392 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data;
393 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT;
394 enum ath10k_htc_ep_id eid;
395 u16 payload_len;
396 u8 *trailer;
397 int ret;
398
399 payload_len = le16_to_cpu(htc_hdr->len);
400 skb->len = payload_len + sizeof(struct ath10k_htc_hdr);
401
402 if (trailer_present) {
403 trailer = skb->data + sizeof(*htc_hdr) +
404 payload_len - htc_hdr->trailer_len;
405
406 eid = pipe_id_to_eid(htc_hdr->eid);
407
408 ret = ath10k_htc_process_trailer(htc,
409 trailer,
410 htc_hdr->trailer_len,
411 eid,
412 lookaheads,
413 n_lookaheads);
414 if (ret)
415 return ret;
416
417 if (is_trailer_only_msg(pkt))
418 pkt->trailer_only = true;
419
420 skb_trim(skb, skb->len - htc_hdr->trailer_len);
421 }
422
423 skb_pull(skb, sizeof(*htc_hdr));
424
425 return 0;
426 }
427
ath10k_sdio_mbox_rx_process_packets(struct ath10k * ar,u32 lookaheads[],int * n_lookahead)428 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar,
429 u32 lookaheads[],
430 int *n_lookahead)
431 {
432 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
433 struct ath10k_htc *htc = &ar->htc;
434 struct ath10k_sdio_rx_data *pkt;
435 struct ath10k_htc_ep *ep;
436 enum ath10k_htc_ep_id id;
437 int ret, i, *n_lookahead_local;
438 u32 *lookaheads_local;
439 int lookahead_idx = 0;
440
441 for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
442 lookaheads_local = lookaheads;
443 n_lookahead_local = n_lookahead;
444
445 id = ((struct ath10k_htc_hdr *)
446 &lookaheads[lookahead_idx++])->eid;
447
448 if (id >= ATH10K_HTC_EP_COUNT) {
449 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n",
450 id);
451 ret = -ENOMEM;
452 goto out;
453 }
454
455 ep = &htc->endpoint[id];
456
457 if (ep->service_id == 0) {
458 ath10k_warn(ar, "ep %d is not connected\n", id);
459 ret = -ENOMEM;
460 goto out;
461 }
462
463 pkt = &ar_sdio->rx_pkts[i];
464
465 if (pkt->part_of_bundle && !pkt->last_in_bundle) {
466 /* Only read lookahead's from RX trailers
467 * for the last packet in a bundle.
468 */
469 lookahead_idx--;
470 lookaheads_local = NULL;
471 n_lookahead_local = NULL;
472 }
473
474 ret = ath10k_sdio_mbox_rx_process_packet(ar,
475 pkt,
476 lookaheads_local,
477 n_lookahead_local);
478 if (ret)
479 goto out;
480
481 if (!pkt->trailer_only)
482 ep->ep_ops.ep_rx_complete(ar_sdio->ar, pkt->skb);
483 else
484 kfree_skb(pkt->skb);
485
486 /* The RX complete handler now owns the skb...*/
487 pkt->skb = NULL;
488 pkt->alloc_len = 0;
489 }
490
491 ret = 0;
492
493 out:
494 /* Free all packets that was not passed on to the RX completion
495 * handler...
496 */
497 for (; i < ar_sdio->n_rx_pkts; i++)
498 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
499
500 return ret;
501 }
502
ath10k_sdio_mbox_alloc_pkt_bundle(struct ath10k * ar,struct ath10k_sdio_rx_data * rx_pkts,struct ath10k_htc_hdr * htc_hdr,size_t full_len,size_t act_len,size_t * bndl_cnt)503 static int ath10k_sdio_mbox_alloc_pkt_bundle(struct ath10k *ar,
504 struct ath10k_sdio_rx_data *rx_pkts,
505 struct ath10k_htc_hdr *htc_hdr,
506 size_t full_len, size_t act_len,
507 size_t *bndl_cnt)
508 {
509 int ret, i;
510
511 *bndl_cnt = FIELD_GET(ATH10K_HTC_FLAG_BUNDLE_MASK, htc_hdr->flags);
512
513 if (*bndl_cnt > HTC_HOST_MAX_MSG_PER_RX_BUNDLE) {
514 ath10k_warn(ar,
515 "HTC bundle length %u exceeds maximum %u\n",
516 le16_to_cpu(htc_hdr->len),
517 HTC_HOST_MAX_MSG_PER_RX_BUNDLE);
518 return -ENOMEM;
519 }
520
521 /* Allocate bndl_cnt extra skb's for the bundle.
522 * The package containing the
523 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included
524 * in bndl_cnt. The skb for that packet will be
525 * allocated separately.
526 */
527 for (i = 0; i < *bndl_cnt; i++) {
528 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i],
529 act_len,
530 full_len,
531 true,
532 false);
533 if (ret)
534 return ret;
535 }
536
537 return 0;
538 }
539
ath10k_sdio_mbox_rx_alloc(struct ath10k * ar,u32 lookaheads[],int n_lookaheads)540 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar,
541 u32 lookaheads[], int n_lookaheads)
542 {
543 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
544 struct ath10k_htc_hdr *htc_hdr;
545 size_t full_len, act_len;
546 bool last_in_bundle;
547 int ret, i;
548
549 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) {
550 ath10k_warn(ar,
551 "the total number of pkgs to be fetched (%u) exceeds maximum %u\n",
552 n_lookaheads,
553 ATH10K_SDIO_MAX_RX_MSGS);
554 ret = -ENOMEM;
555 goto err;
556 }
557
558 for (i = 0; i < n_lookaheads; i++) {
559 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i];
560 last_in_bundle = false;
561
562 if (le16_to_cpu(htc_hdr->len) >
563 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) {
564 ath10k_warn(ar,
565 "payload length %d exceeds max htc length: %zu\n",
566 le16_to_cpu(htc_hdr->len),
567 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH);
568 ret = -ENOMEM;
569 goto err;
570 }
571
572 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
573 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len);
574
575 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) {
576 ath10k_warn(ar,
577 "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n",
578 htc_hdr->eid, htc_hdr->flags,
579 le16_to_cpu(htc_hdr->len));
580 ret = -EINVAL;
581 goto err;
582 }
583
584 if (htc_hdr->flags & ATH10K_HTC_FLAG_BUNDLE_MASK) {
585 /* HTC header indicates that every packet to follow
586 * has the same padded length so that it can be
587 * optimally fetched as a full bundle.
588 */
589 size_t bndl_cnt;
590
591 ret = ath10k_sdio_mbox_alloc_pkt_bundle(ar,
592 &ar_sdio->rx_pkts[i],
593 htc_hdr,
594 full_len,
595 act_len,
596 &bndl_cnt);
597
598 n_lookaheads += bndl_cnt;
599 i += bndl_cnt;
600 /*Next buffer will be the last in the bundle */
601 last_in_bundle = true;
602 }
603
604 /* Allocate skb for packet. If the packet had the
605 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled
606 * packet skb's have been allocated in the previous step.
607 */
608 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK)
609 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE;
610
611 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[i],
612 act_len,
613 full_len,
614 last_in_bundle,
615 last_in_bundle);
616 }
617
618 ar_sdio->n_rx_pkts = i;
619
620 return 0;
621
622 err:
623 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) {
624 if (!ar_sdio->rx_pkts[i].alloc_len)
625 break;
626 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
627 }
628
629 return ret;
630 }
631
ath10k_sdio_mbox_rx_packet(struct ath10k * ar,struct ath10k_sdio_rx_data * pkt)632 static int ath10k_sdio_mbox_rx_packet(struct ath10k *ar,
633 struct ath10k_sdio_rx_data *pkt)
634 {
635 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
636 struct sk_buff *skb = pkt->skb;
637 int ret;
638
639 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr,
640 skb->data, pkt->alloc_len);
641 pkt->status = ret;
642 if (!ret)
643 skb_put(skb, pkt->act_len);
644
645 return ret;
646 }
647
ath10k_sdio_mbox_rx_fetch(struct ath10k * ar)648 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar)
649 {
650 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
651 int ret, i;
652
653 for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
654 ret = ath10k_sdio_mbox_rx_packet(ar,
655 &ar_sdio->rx_pkts[i]);
656 if (ret)
657 goto err;
658 }
659
660 return 0;
661
662 err:
663 /* Free all packets that was not successfully fetched. */
664 for (; i < ar_sdio->n_rx_pkts; i++)
665 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
666
667 return ret;
668 }
669
670 /* This is the timeout for mailbox processing done in the sdio irq
671 * handler. The timeout is deliberately set quite high since SDIO dump logs
672 * over serial port can/will add a substantial overhead to the processing
673 * (if enabled).
674 */
675 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ)
676
ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k * ar,u32 msg_lookahead,bool * done)677 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar,
678 u32 msg_lookahead, bool *done)
679 {
680 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
681 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS];
682 int n_lookaheads = 1;
683 unsigned long timeout;
684 int ret;
685
686 *done = true;
687
688 /* Copy the lookahead obtained from the HTC register table into our
689 * temp array as a start value.
690 */
691 lookaheads[0] = msg_lookahead;
692
693 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ;
694 do {
695 /* Try to allocate as many HTC RX packets indicated by
696 * n_lookaheads.
697 */
698 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads,
699 n_lookaheads);
700 if (ret)
701 break;
702
703 if (ar_sdio->n_rx_pkts >= 2)
704 /* A recv bundle was detected, force IRQ status
705 * re-check again.
706 */
707 *done = false;
708
709 ret = ath10k_sdio_mbox_rx_fetch(ar);
710
711 /* Process fetched packets. This will potentially update
712 * n_lookaheads depending on if the packets contain lookahead
713 * reports.
714 */
715 n_lookaheads = 0;
716 ret = ath10k_sdio_mbox_rx_process_packets(ar,
717 lookaheads,
718 &n_lookaheads);
719
720 if (!n_lookaheads || ret)
721 break;
722
723 /* For SYNCH processing, if we get here, we are running
724 * through the loop again due to updated lookaheads. Set
725 * flag that we should re-check IRQ status registers again
726 * before leaving IRQ processing, this can net better
727 * performance in high throughput situations.
728 */
729 *done = false;
730 } while (time_before(jiffies, timeout));
731
732 if (ret && (ret != -ECANCELED))
733 ath10k_warn(ar, "failed to get pending recv messages: %d\n",
734 ret);
735
736 return ret;
737 }
738
ath10k_sdio_mbox_proc_dbg_intr(struct ath10k * ar)739 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar)
740 {
741 u32 val;
742 int ret;
743
744 /* TODO: Add firmware crash handling */
745 ath10k_warn(ar, "firmware crashed\n");
746
747 /* read counter to clear the interrupt, the debug error interrupt is
748 * counter 0.
749 */
750 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val);
751 if (ret)
752 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret);
753
754 return ret;
755 }
756
ath10k_sdio_mbox_proc_counter_intr(struct ath10k * ar)757 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar)
758 {
759 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
760 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
761 u8 counter_int_status;
762 int ret;
763
764 mutex_lock(&irq_data->mtx);
765 counter_int_status = irq_data->irq_proc_reg->counter_int_status &
766 irq_data->irq_en_reg->cntr_int_status_en;
767
768 /* NOTE: other modules like GMBOX may use the counter interrupt for
769 * credit flow control on other counters, we only need to check for
770 * the debug assertion counter interrupt.
771 */
772 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK)
773 ret = ath10k_sdio_mbox_proc_dbg_intr(ar);
774 else
775 ret = 0;
776
777 mutex_unlock(&irq_data->mtx);
778
779 return ret;
780 }
781
ath10k_sdio_mbox_proc_err_intr(struct ath10k * ar)782 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar)
783 {
784 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
785 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
786 u8 error_int_status;
787 int ret;
788
789 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n");
790
791 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F;
792 if (!error_int_status) {
793 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n",
794 error_int_status);
795 return -EIO;
796 }
797
798 ath10k_dbg(ar, ATH10K_DBG_SDIO,
799 "sdio error_int_status 0x%x\n", error_int_status);
800
801 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK,
802 error_int_status))
803 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n");
804
805 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK,
806 error_int_status))
807 ath10k_warn(ar, "rx underflow interrupt error\n");
808
809 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK,
810 error_int_status))
811 ath10k_warn(ar, "tx overflow interrupt error\n");
812
813 /* Clear the interrupt */
814 irq_data->irq_proc_reg->error_int_status &= ~error_int_status;
815
816 /* set W1C value to clear the interrupt, this hits the register first */
817 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS,
818 error_int_status);
819 if (ret) {
820 ath10k_warn(ar, "unable to write to error int status address: %d\n",
821 ret);
822 return ret;
823 }
824
825 return 0;
826 }
827
ath10k_sdio_mbox_proc_cpu_intr(struct ath10k * ar)828 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar)
829 {
830 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
831 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
832 u8 cpu_int_status;
833 int ret;
834
835 mutex_lock(&irq_data->mtx);
836 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status &
837 irq_data->irq_en_reg->cpu_int_status_en;
838 if (!cpu_int_status) {
839 ath10k_warn(ar, "CPU interrupt status is zero\n");
840 ret = -EIO;
841 goto out;
842 }
843
844 /* Clear the interrupt */
845 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status;
846
847 /* Set up the register transfer buffer to hit the register 4 times,
848 * this is done to make the access 4-byte aligned to mitigate issues
849 * with host bus interconnects that restrict bus transfer lengths to
850 * be a multiple of 4-bytes.
851 *
852 * Set W1C value to clear the interrupt, this hits the register first.
853 */
854 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS,
855 cpu_int_status);
856 if (ret) {
857 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n",
858 ret);
859 goto out;
860 }
861
862 out:
863 mutex_unlock(&irq_data->mtx);
864 return ret;
865 }
866
ath10k_sdio_mbox_read_int_status(struct ath10k * ar,u8 * host_int_status,u32 * lookahead)867 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar,
868 u8 *host_int_status,
869 u32 *lookahead)
870 {
871 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
872 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
873 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg;
874 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg;
875 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1);
876 int ret;
877
878 mutex_lock(&irq_data->mtx);
879
880 *lookahead = 0;
881 *host_int_status = 0;
882
883 /* int_status_en is supposed to be non zero, otherwise interrupts
884 * shouldn't be enabled. There is however a short time frame during
885 * initialization between the irq register and int_status_en init
886 * where this can happen.
887 * We silently ignore this condition.
888 */
889 if (!irq_en_reg->int_status_en) {
890 ret = 0;
891 goto out;
892 }
893
894 /* Read the first sizeof(struct ath10k_irq_proc_registers)
895 * bytes of the HTC register table. This
896 * will yield us the value of different int status
897 * registers and the lookahead registers.
898 */
899 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS,
900 irq_proc_reg, sizeof(*irq_proc_reg));
901 if (ret)
902 goto out;
903
904 /* Update only those registers that are enabled */
905 *host_int_status = irq_proc_reg->host_int_status &
906 irq_en_reg->int_status_en;
907
908 /* Look at mbox status */
909 if (!(*host_int_status & htc_mbox)) {
910 *lookahead = 0;
911 ret = 0;
912 goto out;
913 }
914
915 /* Mask out pending mbox value, we use look ahead as
916 * the real flag for mbox processing.
917 */
918 *host_int_status &= ~htc_mbox;
919 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) {
920 *lookahead = le32_to_cpu(
921 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]);
922 if (!*lookahead)
923 ath10k_warn(ar, "sdio mbox lookahead is zero\n");
924 }
925
926 out:
927 mutex_unlock(&irq_data->mtx);
928 return ret;
929 }
930
ath10k_sdio_mbox_proc_pending_irqs(struct ath10k * ar,bool * done)931 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar,
932 bool *done)
933 {
934 u8 host_int_status;
935 u32 lookahead;
936 int ret;
937
938 /* NOTE: HIF implementation guarantees that the context of this
939 * call allows us to perform SYNCHRONOUS I/O, that is we can block,
940 * sleep or call any API that can block or switch thread/task
941 * contexts. This is a fully schedulable context.
942 */
943
944 ret = ath10k_sdio_mbox_read_int_status(ar,
945 &host_int_status,
946 &lookahead);
947 if (ret) {
948 *done = true;
949 goto out;
950 }
951
952 if (!host_int_status && !lookahead) {
953 ret = 0;
954 *done = true;
955 goto out;
956 }
957
958 if (lookahead) {
959 ath10k_dbg(ar, ATH10K_DBG_SDIO,
960 "sdio pending mailbox msg lookahead 0x%08x\n",
961 lookahead);
962
963 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar,
964 lookahead,
965 done);
966 if (ret)
967 goto out;
968 }
969
970 /* now, handle the rest of the interrupts */
971 ath10k_dbg(ar, ATH10K_DBG_SDIO,
972 "sdio host_int_status 0x%x\n", host_int_status);
973
974 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) {
975 /* CPU Interrupt */
976 ret = ath10k_sdio_mbox_proc_cpu_intr(ar);
977 if (ret)
978 goto out;
979 }
980
981 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) {
982 /* Error Interrupt */
983 ret = ath10k_sdio_mbox_proc_err_intr(ar);
984 if (ret)
985 goto out;
986 }
987
988 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status))
989 /* Counter Interrupt */
990 ret = ath10k_sdio_mbox_proc_counter_intr(ar);
991
992 ret = 0;
993
994 out:
995 /* An optimization to bypass reading the IRQ status registers
996 * unecessarily which can re-wake the target, if upper layers
997 * determine that we are in a low-throughput mode, we can rely on
998 * taking another interrupt rather than re-checking the status
999 * registers which can re-wake the target.
1000 *
1001 * NOTE : for host interfaces that makes use of detecting pending
1002 * mbox messages at hif can not use this optimization due to
1003 * possible side effects, SPI requires the host to drain all
1004 * messages from the mailbox before exiting the ISR routine.
1005 */
1006
1007 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1008 "sdio pending irqs done %d status %d",
1009 *done, ret);
1010
1011 return ret;
1012 }
1013
ath10k_sdio_set_mbox_info(struct ath10k * ar)1014 static void ath10k_sdio_set_mbox_info(struct ath10k *ar)
1015 {
1016 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1017 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info;
1018 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev;
1019
1020 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR;
1021 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE;
1022 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1;
1023 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR;
1024 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH;
1025
1026 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR;
1027
1028 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device);
1029 dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device);
1030 switch (dev_id_base) {
1031 case QCA_MANUFACTURER_ID_AR6005_BASE:
1032 if (dev_id_chiprev < 4)
1033 mbox_info->ext_info[0].htc_ext_sz =
1034 ATH10K_HIF_MBOX0_EXT_WIDTH;
1035 else
1036 /* from QCA6174 2.0(0x504), the width has been extended
1037 * to 56K
1038 */
1039 mbox_info->ext_info[0].htc_ext_sz =
1040 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
1041 break;
1042 case QCA_MANUFACTURER_ID_QCA9377_BASE:
1043 mbox_info->ext_info[0].htc_ext_sz =
1044 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
1045 break;
1046 default:
1047 mbox_info->ext_info[0].htc_ext_sz =
1048 ATH10K_HIF_MBOX0_EXT_WIDTH;
1049 }
1050
1051 mbox_info->ext_info[1].htc_ext_addr =
1052 mbox_info->ext_info[0].htc_ext_addr +
1053 mbox_info->ext_info[0].htc_ext_sz +
1054 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE;
1055 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH;
1056 }
1057
1058 /* BMI functions */
1059
ath10k_sdio_bmi_credits(struct ath10k * ar)1060 static int ath10k_sdio_bmi_credits(struct ath10k *ar)
1061 {
1062 u32 addr, cmd_credits;
1063 unsigned long timeout;
1064 int ret;
1065
1066 /* Read the counter register to get the command credits */
1067 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4;
1068 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1069 cmd_credits = 0;
1070
1071 while (time_before(jiffies, timeout) && !cmd_credits) {
1072 /* Hit the credit counter with a 4-byte access, the first byte
1073 * read will hit the counter and cause a decrement, while the
1074 * remaining 3 bytes has no effect. The rationale behind this
1075 * is to make all HIF accesses 4-byte aligned.
1076 */
1077 ret = ath10k_sdio_read32(ar, addr, &cmd_credits);
1078 if (ret) {
1079 ath10k_warn(ar,
1080 "unable to decrement the command credit count register: %d\n",
1081 ret);
1082 return ret;
1083 }
1084
1085 /* The counter is only 8 bits.
1086 * Ignore anything in the upper 3 bytes
1087 */
1088 cmd_credits &= 0xFF;
1089 }
1090
1091 if (!cmd_credits) {
1092 ath10k_warn(ar, "bmi communication timeout\n");
1093 return -ETIMEDOUT;
1094 }
1095
1096 return 0;
1097 }
1098
ath10k_sdio_bmi_get_rx_lookahead(struct ath10k * ar)1099 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar)
1100 {
1101 unsigned long timeout;
1102 u32 rx_word;
1103 int ret;
1104
1105 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1106 rx_word = 0;
1107
1108 while ((time_before(jiffies, timeout)) && !rx_word) {
1109 ret = ath10k_sdio_read32(ar,
1110 MBOX_HOST_INT_STATUS_ADDRESS,
1111 &rx_word);
1112 if (ret) {
1113 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret);
1114 return ret;
1115 }
1116
1117 /* all we really want is one bit */
1118 rx_word &= 1;
1119 }
1120
1121 if (!rx_word) {
1122 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n");
1123 return -EINVAL;
1124 }
1125
1126 return ret;
1127 }
1128
ath10k_sdio_bmi_exchange_msg(struct ath10k * ar,void * req,u32 req_len,void * resp,u32 * resp_len)1129 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar,
1130 void *req, u32 req_len,
1131 void *resp, u32 *resp_len)
1132 {
1133 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1134 u32 addr;
1135 int ret;
1136
1137 if (req) {
1138 ret = ath10k_sdio_bmi_credits(ar);
1139 if (ret)
1140 return ret;
1141
1142 addr = ar_sdio->mbox_info.htc_addr;
1143
1144 memcpy(ar_sdio->bmi_buf, req, req_len);
1145 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len);
1146 if (ret) {
1147 ath10k_warn(ar,
1148 "unable to send the bmi data to the device: %d\n",
1149 ret);
1150 return ret;
1151 }
1152 }
1153
1154 if (!resp || !resp_len)
1155 /* No response expected */
1156 return 0;
1157
1158 /* During normal bootup, small reads may be required.
1159 * Rather than issue an HIF Read and then wait as the Target
1160 * adds successive bytes to the FIFO, we wait here until
1161 * we know that response data is available.
1162 *
1163 * This allows us to cleanly timeout on an unexpected
1164 * Target failure rather than risk problems at the HIF level.
1165 * In particular, this avoids SDIO timeouts and possibly garbage
1166 * data on some host controllers. And on an interconnect
1167 * such as Compact Flash (as well as some SDIO masters) which
1168 * does not provide any indication on data timeout, it avoids
1169 * a potential hang or garbage response.
1170 *
1171 * Synchronization is more difficult for reads larger than the
1172 * size of the MBOX FIFO (128B), because the Target is unable
1173 * to push the 129th byte of data until AFTER the Host posts an
1174 * HIF Read and removes some FIFO data. So for large reads the
1175 * Host proceeds to post an HIF Read BEFORE all the data is
1176 * actually available to read. Fortunately, large BMI reads do
1177 * not occur in practice -- they're supported for debug/development.
1178 *
1179 * So Host/Target BMI synchronization is divided into these cases:
1180 * CASE 1: length < 4
1181 * Should not happen
1182 *
1183 * CASE 2: 4 <= length <= 128
1184 * Wait for first 4 bytes to be in FIFO
1185 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1186 * a BMI command credit, which indicates that the ENTIRE
1187 * response is available in the the FIFO
1188 *
1189 * CASE 3: length > 128
1190 * Wait for the first 4 bytes to be in FIFO
1191 *
1192 * For most uses, a small timeout should be sufficient and we will
1193 * usually see a response quickly; but there may be some unusual
1194 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1195 * For now, we use an unbounded busy loop while waiting for
1196 * BMI_EXECUTE.
1197 *
1198 * If BMI_EXECUTE ever needs to support longer-latency execution,
1199 * especially in production, this code needs to be enhanced to sleep
1200 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1201 * a function of Host processor speed.
1202 */
1203 ret = ath10k_sdio_bmi_get_rx_lookahead(ar);
1204 if (ret)
1205 return ret;
1206
1207 /* We always read from the start of the mbox address */
1208 addr = ar_sdio->mbox_info.htc_addr;
1209 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len);
1210 if (ret) {
1211 ath10k_warn(ar,
1212 "unable to read the bmi data from the device: %d\n",
1213 ret);
1214 return ret;
1215 }
1216
1217 memcpy(resp, ar_sdio->bmi_buf, *resp_len);
1218
1219 return 0;
1220 }
1221
1222 /* sdio async handling functions */
1223
1224 static struct ath10k_sdio_bus_request
ath10k_sdio_alloc_busreq(struct ath10k * ar)1225 *ath10k_sdio_alloc_busreq(struct ath10k *ar)
1226 {
1227 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1228 struct ath10k_sdio_bus_request *bus_req;
1229
1230 spin_lock_bh(&ar_sdio->lock);
1231
1232 if (list_empty(&ar_sdio->bus_req_freeq)) {
1233 bus_req = NULL;
1234 goto out;
1235 }
1236
1237 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
1238 struct ath10k_sdio_bus_request, list);
1239 list_del(&bus_req->list);
1240
1241 out:
1242 spin_unlock_bh(&ar_sdio->lock);
1243 return bus_req;
1244 }
1245
ath10k_sdio_free_bus_req(struct ath10k * ar,struct ath10k_sdio_bus_request * bus_req)1246 static void ath10k_sdio_free_bus_req(struct ath10k *ar,
1247 struct ath10k_sdio_bus_request *bus_req)
1248 {
1249 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1250
1251 memset(bus_req, 0, sizeof(*bus_req));
1252
1253 spin_lock_bh(&ar_sdio->lock);
1254 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
1255 spin_unlock_bh(&ar_sdio->lock);
1256 }
1257
__ath10k_sdio_write_async(struct ath10k * ar,struct ath10k_sdio_bus_request * req)1258 static void __ath10k_sdio_write_async(struct ath10k *ar,
1259 struct ath10k_sdio_bus_request *req)
1260 {
1261 struct ath10k_htc_ep *ep;
1262 struct sk_buff *skb;
1263 int ret;
1264
1265 skb = req->skb;
1266 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len);
1267 if (ret)
1268 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d",
1269 req->address, ret);
1270
1271 if (req->htc_msg) {
1272 ep = &ar->htc.endpoint[req->eid];
1273 ath10k_htc_notify_tx_completion(ep, skb);
1274 } else if (req->comp) {
1275 complete(req->comp);
1276 }
1277
1278 ath10k_sdio_free_bus_req(ar, req);
1279 }
1280
ath10k_sdio_write_async_work(struct work_struct * work)1281 static void ath10k_sdio_write_async_work(struct work_struct *work)
1282 {
1283 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio,
1284 wr_async_work);
1285 struct ath10k *ar = ar_sdio->ar;
1286 struct ath10k_sdio_bus_request *req, *tmp_req;
1287
1288 spin_lock_bh(&ar_sdio->wr_async_lock);
1289
1290 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1291 list_del(&req->list);
1292 spin_unlock_bh(&ar_sdio->wr_async_lock);
1293 __ath10k_sdio_write_async(ar, req);
1294 spin_lock_bh(&ar_sdio->wr_async_lock);
1295 }
1296
1297 spin_unlock_bh(&ar_sdio->wr_async_lock);
1298 }
1299
ath10k_sdio_prep_async_req(struct ath10k * ar,u32 addr,struct sk_buff * skb,struct completion * comp,bool htc_msg,enum ath10k_htc_ep_id eid)1300 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr,
1301 struct sk_buff *skb,
1302 struct completion *comp,
1303 bool htc_msg, enum ath10k_htc_ep_id eid)
1304 {
1305 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1306 struct ath10k_sdio_bus_request *bus_req;
1307
1308 /* Allocate a bus request for the message and queue it on the
1309 * SDIO workqueue.
1310 */
1311 bus_req = ath10k_sdio_alloc_busreq(ar);
1312 if (!bus_req) {
1313 ath10k_warn(ar,
1314 "unable to allocate bus request for async request\n");
1315 return -ENOMEM;
1316 }
1317
1318 bus_req->skb = skb;
1319 bus_req->eid = eid;
1320 bus_req->address = addr;
1321 bus_req->htc_msg = htc_msg;
1322 bus_req->comp = comp;
1323
1324 spin_lock_bh(&ar_sdio->wr_async_lock);
1325 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
1326 spin_unlock_bh(&ar_sdio->wr_async_lock);
1327
1328 return 0;
1329 }
1330
1331 /* IRQ handler */
1332
ath10k_sdio_irq_handler(struct sdio_func * func)1333 static void ath10k_sdio_irq_handler(struct sdio_func *func)
1334 {
1335 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
1336 struct ath10k *ar = ar_sdio->ar;
1337 unsigned long timeout;
1338 bool done = false;
1339 int ret;
1340
1341 /* Release the host during interrupts so we can pick it back up when
1342 * we process commands.
1343 */
1344 sdio_release_host(ar_sdio->func);
1345
1346 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ;
1347 do {
1348 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done);
1349 if (ret)
1350 break;
1351 } while (time_before(jiffies, timeout) && !done);
1352
1353 ath10k_mac_tx_push_pending(ar);
1354
1355 sdio_claim_host(ar_sdio->func);
1356
1357 if (ret && ret != -ECANCELED)
1358 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n",
1359 ret);
1360 }
1361
1362 /* sdio HIF functions */
1363
ath10k_sdio_hif_disable_intrs(struct ath10k * ar)1364 static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar)
1365 {
1366 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1367 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1368 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1369 int ret;
1370
1371 mutex_lock(&irq_data->mtx);
1372
1373 memset(regs, 0, sizeof(*regs));
1374 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1375 ®s->int_status_en, sizeof(*regs));
1376 if (ret)
1377 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret);
1378
1379 mutex_unlock(&irq_data->mtx);
1380
1381 return ret;
1382 }
1383
ath10k_sdio_hif_power_up(struct ath10k * ar)1384 static int ath10k_sdio_hif_power_up(struct ath10k *ar)
1385 {
1386 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1387 struct sdio_func *func = ar_sdio->func;
1388 int ret;
1389
1390 if (!ar_sdio->is_disabled)
1391 return 0;
1392
1393 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n");
1394
1395 sdio_claim_host(func);
1396
1397 ret = sdio_enable_func(func);
1398 if (ret) {
1399 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret);
1400 sdio_release_host(func);
1401 return ret;
1402 }
1403
1404 sdio_release_host(func);
1405
1406 /* Wait for hardware to initialise. It should take a lot less than
1407 * 20 ms but let's be conservative here.
1408 */
1409 msleep(20);
1410
1411 ar_sdio->is_disabled = false;
1412
1413 ret = ath10k_sdio_hif_disable_intrs(ar);
1414 if (ret)
1415 return ret;
1416
1417 return 0;
1418 }
1419
ath10k_sdio_hif_power_down(struct ath10k * ar)1420 static void ath10k_sdio_hif_power_down(struct ath10k *ar)
1421 {
1422 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1423 int ret;
1424
1425 if (ar_sdio->is_disabled)
1426 return;
1427
1428 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n");
1429
1430 /* Disable the card */
1431 sdio_claim_host(ar_sdio->func);
1432 ret = sdio_disable_func(ar_sdio->func);
1433 sdio_release_host(ar_sdio->func);
1434
1435 if (ret)
1436 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret);
1437
1438 ar_sdio->is_disabled = true;
1439 }
1440
ath10k_sdio_hif_tx_sg(struct ath10k * ar,u8 pipe_id,struct ath10k_hif_sg_item * items,int n_items)1441 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1442 struct ath10k_hif_sg_item *items, int n_items)
1443 {
1444 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1445 enum ath10k_htc_ep_id eid;
1446 struct sk_buff *skb;
1447 int ret, i;
1448
1449 eid = pipe_id_to_eid(pipe_id);
1450
1451 for (i = 0; i < n_items; i++) {
1452 size_t padded_len;
1453 u32 address;
1454
1455 skb = items[i].transfer_context;
1456 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio,
1457 skb->len);
1458 skb_trim(skb, padded_len);
1459
1460 /* Write TX data to the end of the mbox address space */
1461 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] -
1462 skb->len;
1463 ret = ath10k_sdio_prep_async_req(ar, address, skb,
1464 NULL, true, eid);
1465 if (ret)
1466 return ret;
1467 }
1468
1469 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1470
1471 return 0;
1472 }
1473
ath10k_sdio_hif_enable_intrs(struct ath10k * ar)1474 static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar)
1475 {
1476 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1477 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1478 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1479 int ret;
1480
1481 mutex_lock(&irq_data->mtx);
1482
1483 /* Enable all but CPU interrupts */
1484 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) |
1485 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) |
1486 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1);
1487
1488 /* NOTE: There are some cases where HIF can do detection of
1489 * pending mbox messages which is disabled now.
1490 */
1491 regs->int_status_en |=
1492 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1);
1493
1494 /* Set up the CPU Interrupt status Register */
1495 regs->cpu_int_status_en = 0;
1496
1497 /* Set up the Error Interrupt status Register */
1498 regs->err_int_status_en =
1499 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) |
1500 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1);
1501
1502 /* Enable Counter interrupt status register to get fatal errors for
1503 * debugging.
1504 */
1505 regs->cntr_int_status_en =
1506 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK,
1507 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK);
1508
1509 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1510 ®s->int_status_en, sizeof(*regs));
1511 if (ret)
1512 ath10k_warn(ar,
1513 "failed to update mbox interrupt status register : %d\n",
1514 ret);
1515
1516 mutex_unlock(&irq_data->mtx);
1517 return ret;
1518 }
1519
ath10k_sdio_hif_set_mbox_sleep(struct ath10k * ar,bool enable_sleep)1520 static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep)
1521 {
1522 u32 val;
1523 int ret;
1524
1525 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val);
1526 if (ret) {
1527 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n",
1528 ret);
1529 return ret;
1530 }
1531
1532 if (enable_sleep)
1533 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF;
1534 else
1535 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON;
1536
1537 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val);
1538 if (ret) {
1539 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d",
1540 ret);
1541 return ret;
1542 }
1543
1544 return 0;
1545 }
1546
1547 /* HIF diagnostics */
1548
ath10k_sdio_hif_diag_read(struct ath10k * ar,u32 address,void * buf,size_t buf_len)1549 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1550 size_t buf_len)
1551 {
1552 int ret;
1553
1554 /* set window register to start read cycle */
1555 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address);
1556 if (ret) {
1557 ath10k_warn(ar, "failed to set mbox window read address: %d", ret);
1558 return ret;
1559 }
1560
1561 /* read the data */
1562 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, buf, buf_len);
1563 if (ret) {
1564 ath10k_warn(ar, "failed to read from mbox window data address: %d\n",
1565 ret);
1566 return ret;
1567 }
1568
1569 return 0;
1570 }
1571
ath10k_sdio_hif_diag_read32(struct ath10k * ar,u32 address,u32 * value)1572 static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address,
1573 u32 *value)
1574 {
1575 __le32 *val;
1576 int ret;
1577
1578 val = kzalloc(sizeof(*val), GFP_KERNEL);
1579 if (!val)
1580 return -ENOMEM;
1581
1582 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val));
1583 if (ret)
1584 goto out;
1585
1586 *value = __le32_to_cpu(*val);
1587
1588 out:
1589 kfree(val);
1590
1591 return ret;
1592 }
1593
ath10k_sdio_hif_diag_write_mem(struct ath10k * ar,u32 address,const void * data,int nbytes)1594 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address,
1595 const void *data, int nbytes)
1596 {
1597 int ret;
1598
1599 /* set write data */
1600 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes);
1601 if (ret) {
1602 ath10k_warn(ar,
1603 "failed to write 0x%p to mbox window data address: %d\n",
1604 data, ret);
1605 return ret;
1606 }
1607
1608 /* set window register, which starts the write cycle */
1609 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address);
1610 if (ret) {
1611 ath10k_warn(ar, "failed to set mbox window write address: %d", ret);
1612 return ret;
1613 }
1614
1615 return 0;
1616 }
1617
1618 /* HIF start/stop */
1619
ath10k_sdio_hif_start(struct ath10k * ar)1620 static int ath10k_sdio_hif_start(struct ath10k *ar)
1621 {
1622 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1623 u32 addr, val;
1624 int ret;
1625
1626 /* Sleep 20 ms before HIF interrupts are disabled.
1627 * This will give target plenty of time to process the BMI done
1628 * request before interrupts are disabled.
1629 */
1630 msleep(20);
1631 ret = ath10k_sdio_hif_disable_intrs(ar);
1632 if (ret)
1633 return ret;
1634
1635 /* eid 0 always uses the lower part of the extended mailbox address
1636 * space (ext_info[0].htc_ext_addr).
1637 */
1638 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1639 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1640
1641 sdio_claim_host(ar_sdio->func);
1642
1643 /* Register the isr */
1644 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler);
1645 if (ret) {
1646 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret);
1647 sdio_release_host(ar_sdio->func);
1648 return ret;
1649 }
1650
1651 sdio_release_host(ar_sdio->func);
1652
1653 ret = ath10k_sdio_hif_enable_intrs(ar);
1654 if (ret)
1655 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret);
1656
1657 addr = host_interest_item_address(HI_ITEM(hi_acs_flags));
1658
1659 ret = ath10k_sdio_hif_diag_read32(ar, addr, &val);
1660 if (ret) {
1661 ath10k_warn(ar, "unable to read hi_acs_flags address: %d\n", ret);
1662 return ret;
1663 }
1664
1665 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) {
1666 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1667 "sdio mailbox swap service enabled\n");
1668 ar_sdio->swap_mbox = true;
1669 }
1670
1671 /* Enable sleep and then disable it again */
1672 ret = ath10k_sdio_hif_set_mbox_sleep(ar, true);
1673 if (ret)
1674 return ret;
1675
1676 /* Wait for 20ms for the written value to take effect */
1677 msleep(20);
1678
1679 ret = ath10k_sdio_hif_set_mbox_sleep(ar, false);
1680 if (ret)
1681 return ret;
1682
1683 return 0;
1684 }
1685
1686 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ)
1687
ath10k_sdio_irq_disable(struct ath10k * ar)1688 static void ath10k_sdio_irq_disable(struct ath10k *ar)
1689 {
1690 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1691 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
1692 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
1693 struct sk_buff *skb;
1694 struct completion irqs_disabled_comp;
1695 int ret;
1696
1697 skb = dev_alloc_skb(sizeof(*regs));
1698 if (!skb)
1699 return;
1700
1701 mutex_lock(&irq_data->mtx);
1702
1703 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */
1704 memcpy(skb->data, regs, sizeof(*regs));
1705 skb_put(skb, sizeof(*regs));
1706
1707 mutex_unlock(&irq_data->mtx);
1708
1709 init_completion(&irqs_disabled_comp);
1710 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
1711 skb, &irqs_disabled_comp, false, 0);
1712 if (ret)
1713 goto out;
1714
1715 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
1716
1717 /* Wait for the completion of the IRQ disable request.
1718 * If there is a timeout we will try to disable irq's anyway.
1719 */
1720 ret = wait_for_completion_timeout(&irqs_disabled_comp,
1721 SDIO_IRQ_DISABLE_TIMEOUT_HZ);
1722 if (!ret)
1723 ath10k_warn(ar, "sdio irq disable request timed out\n");
1724
1725 sdio_claim_host(ar_sdio->func);
1726
1727 ret = sdio_release_irq(ar_sdio->func);
1728 if (ret)
1729 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret);
1730
1731 sdio_release_host(ar_sdio->func);
1732
1733 out:
1734 kfree_skb(skb);
1735 }
1736
ath10k_sdio_hif_stop(struct ath10k * ar)1737 static void ath10k_sdio_hif_stop(struct ath10k *ar)
1738 {
1739 struct ath10k_sdio_bus_request *req, *tmp_req;
1740 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1741
1742 ath10k_sdio_irq_disable(ar);
1743
1744 cancel_work_sync(&ar_sdio->wr_async_work);
1745
1746 spin_lock_bh(&ar_sdio->wr_async_lock);
1747
1748 /* Free all bus requests that have not been handled */
1749 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1750 struct ath10k_htc_ep *ep;
1751
1752 list_del(&req->list);
1753
1754 if (req->htc_msg) {
1755 ep = &ar->htc.endpoint[req->eid];
1756 ath10k_htc_notify_tx_completion(ep, req->skb);
1757 } else if (req->skb) {
1758 kfree_skb(req->skb);
1759 }
1760 ath10k_sdio_free_bus_req(ar, req);
1761 }
1762
1763 spin_unlock_bh(&ar_sdio->wr_async_lock);
1764 }
1765
1766 #ifdef CONFIG_PM
1767
ath10k_sdio_hif_suspend(struct ath10k * ar)1768 static int ath10k_sdio_hif_suspend(struct ath10k *ar)
1769 {
1770 return -EOPNOTSUPP;
1771 }
1772
ath10k_sdio_hif_resume(struct ath10k * ar)1773 static int ath10k_sdio_hif_resume(struct ath10k *ar)
1774 {
1775 switch (ar->state) {
1776 case ATH10K_STATE_OFF:
1777 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1778 "sdio resume configuring sdio\n");
1779
1780 /* need to set sdio settings after power is cut from sdio */
1781 ath10k_sdio_config(ar);
1782 break;
1783
1784 case ATH10K_STATE_ON:
1785 default:
1786 break;
1787 }
1788
1789 return 0;
1790 }
1791 #endif
1792
ath10k_sdio_hif_map_service_to_pipe(struct ath10k * ar,u16 service_id,u8 * ul_pipe,u8 * dl_pipe)1793 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar,
1794 u16 service_id,
1795 u8 *ul_pipe, u8 *dl_pipe)
1796 {
1797 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
1798 struct ath10k_htc *htc = &ar->htc;
1799 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size;
1800 enum ath10k_htc_ep_id eid;
1801 bool ep_found = false;
1802 int i;
1803
1804 /* For sdio, we are interested in the mapping between eid
1805 * and pipeid rather than service_id to pipe_id.
1806 * First we find out which eid has been allocated to the
1807 * service...
1808 */
1809 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) {
1810 if (htc->endpoint[i].service_id == service_id) {
1811 eid = htc->endpoint[i].eid;
1812 ep_found = true;
1813 break;
1814 }
1815 }
1816
1817 if (!ep_found)
1818 return -EINVAL;
1819
1820 /* Then we create the simplest mapping possible between pipeid
1821 * and eid
1822 */
1823 *ul_pipe = *dl_pipe = (u8)eid;
1824
1825 /* Normally, HTT will use the upper part of the extended
1826 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl
1827 * the lower part (ext_info[0].htc_ext_addr).
1828 * If fw wants swapping of mailbox addresses, the opposite is true.
1829 */
1830 if (ar_sdio->swap_mbox) {
1831 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1832 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
1833 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1834 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
1835 } else {
1836 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
1837 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
1838 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
1839 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
1840 }
1841
1842 switch (service_id) {
1843 case ATH10K_HTC_SVC_ID_RSVD_CTRL:
1844 /* HTC ctrl ep mbox address has already been setup in
1845 * ath10k_sdio_hif_start
1846 */
1847 break;
1848 case ATH10K_HTC_SVC_ID_WMI_CONTROL:
1849 ar_sdio->mbox_addr[eid] = wmi_addr;
1850 ar_sdio->mbox_size[eid] = wmi_mbox_size;
1851 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1852 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n",
1853 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
1854 break;
1855 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
1856 ar_sdio->mbox_addr[eid] = htt_addr;
1857 ar_sdio->mbox_size[eid] = htt_mbox_size;
1858 ath10k_dbg(ar, ATH10K_DBG_SDIO,
1859 "sdio htt data mbox_addr 0x%x mbox_size %d\n",
1860 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
1861 break;
1862 default:
1863 ath10k_warn(ar, "unsupported HTC service id: %d\n",
1864 service_id);
1865 return -EINVAL;
1866 }
1867
1868 return 0;
1869 }
1870
ath10k_sdio_hif_get_default_pipe(struct ath10k * ar,u8 * ul_pipe,u8 * dl_pipe)1871 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar,
1872 u8 *ul_pipe, u8 *dl_pipe)
1873 {
1874 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n");
1875
1876 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our
1877 * case) == 0
1878 */
1879 *ul_pipe = 0;
1880 *dl_pipe = 0;
1881 }
1882
1883 /* This op is currently only used by htc_wait_target if the HTC ready
1884 * message times out. It is not applicable for SDIO since there is nothing
1885 * we can do if the HTC ready message does not arrive in time.
1886 * TODO: Make this op non mandatory by introducing a NULL check in the
1887 * hif op wrapper.
1888 */
ath10k_sdio_hif_send_complete_check(struct ath10k * ar,u8 pipe,int force)1889 static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar,
1890 u8 pipe, int force)
1891 {
1892 }
1893
1894 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = {
1895 .tx_sg = ath10k_sdio_hif_tx_sg,
1896 .diag_read = ath10k_sdio_hif_diag_read,
1897 .diag_write = ath10k_sdio_hif_diag_write_mem,
1898 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg,
1899 .start = ath10k_sdio_hif_start,
1900 .stop = ath10k_sdio_hif_stop,
1901 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe,
1902 .get_default_pipe = ath10k_sdio_hif_get_default_pipe,
1903 .send_complete_check = ath10k_sdio_hif_send_complete_check,
1904 .power_up = ath10k_sdio_hif_power_up,
1905 .power_down = ath10k_sdio_hif_power_down,
1906 #ifdef CONFIG_PM
1907 .suspend = ath10k_sdio_hif_suspend,
1908 .resume = ath10k_sdio_hif_resume,
1909 #endif
1910 };
1911
1912 #ifdef CONFIG_PM_SLEEP
1913
1914 /* Empty handlers so that mmc subsystem doesn't remove us entirely during
1915 * suspend. We instead follow cfg80211 suspend/resume handlers.
1916 */
ath10k_sdio_pm_suspend(struct device * device)1917 static int ath10k_sdio_pm_suspend(struct device *device)
1918 {
1919 return 0;
1920 }
1921
ath10k_sdio_pm_resume(struct device * device)1922 static int ath10k_sdio_pm_resume(struct device *device)
1923 {
1924 return 0;
1925 }
1926
1927 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend,
1928 ath10k_sdio_pm_resume);
1929
1930 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops)
1931
1932 #else
1933
1934 #define ATH10K_SDIO_PM_OPS NULL
1935
1936 #endif /* CONFIG_PM_SLEEP */
1937
ath10k_sdio_probe(struct sdio_func * func,const struct sdio_device_id * id)1938 static int ath10k_sdio_probe(struct sdio_func *func,
1939 const struct sdio_device_id *id)
1940 {
1941 struct ath10k_sdio *ar_sdio;
1942 struct ath10k *ar;
1943 enum ath10k_hw_rev hw_rev;
1944 u32 chip_id, dev_id_base;
1945 int ret, i;
1946
1947 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based.
1948 * If there will be newer chipsets that does not use the hw reg
1949 * setup as defined in qca6174_regs and qca6174_values, this
1950 * assumption is no longer valid and hw_rev must be setup differently
1951 * depending on chipset.
1952 */
1953 hw_rev = ATH10K_HW_QCA6174;
1954
1955 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO,
1956 hw_rev, &ath10k_sdio_hif_ops);
1957 if (!ar) {
1958 dev_err(&func->dev, "failed to allocate core\n");
1959 return -ENOMEM;
1960 }
1961
1962 ath10k_dbg(ar, ATH10K_DBG_BOOT,
1963 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1964 func->num, func->vendor, func->device,
1965 func->max_blksize, func->cur_blksize);
1966
1967 ar_sdio = ath10k_sdio_priv(ar);
1968
1969 ar_sdio->irq_data.irq_proc_reg =
1970 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs),
1971 GFP_KERNEL);
1972 if (!ar_sdio->irq_data.irq_proc_reg) {
1973 ret = -ENOMEM;
1974 goto err_core_destroy;
1975 }
1976
1977 ar_sdio->irq_data.irq_en_reg =
1978 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs),
1979 GFP_KERNEL);
1980 if (!ar_sdio->irq_data.irq_en_reg) {
1981 ret = -ENOMEM;
1982 goto err_core_destroy;
1983 }
1984
1985 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_CMDBUF_SIZE, GFP_KERNEL);
1986 if (!ar_sdio->bmi_buf) {
1987 ret = -ENOMEM;
1988 goto err_core_destroy;
1989 }
1990
1991 ar_sdio->func = func;
1992 sdio_set_drvdata(func, ar_sdio);
1993
1994 ar_sdio->is_disabled = true;
1995 ar_sdio->ar = ar;
1996
1997 spin_lock_init(&ar_sdio->lock);
1998 spin_lock_init(&ar_sdio->wr_async_lock);
1999 mutex_init(&ar_sdio->irq_data.mtx);
2000
2001 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
2002 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
2003
2004 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work);
2005 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq");
2006 if (!ar_sdio->workqueue) {
2007 ret = -ENOMEM;
2008 goto err_core_destroy;
2009 }
2010
2011 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++)
2012 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]);
2013
2014 dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device);
2015 switch (dev_id_base) {
2016 case QCA_MANUFACTURER_ID_AR6005_BASE:
2017 case QCA_MANUFACTURER_ID_QCA9377_BASE:
2018 ar->dev_id = QCA9377_1_0_DEVICE_ID;
2019 break;
2020 default:
2021 ret = -ENODEV;
2022 ath10k_err(ar, "unsupported device id %u (0x%x)\n",
2023 dev_id_base, id->device);
2024 goto err_free_wq;
2025 }
2026
2027 ar->id.vendor = id->vendor;
2028 ar->id.device = id->device;
2029
2030 ath10k_sdio_set_mbox_info(ar);
2031
2032 ret = ath10k_sdio_config(ar);
2033 if (ret) {
2034 ath10k_err(ar, "failed to config sdio: %d\n", ret);
2035 goto err_free_wq;
2036 }
2037
2038 /* TODO: don't know yet how to get chip_id with SDIO */
2039 chip_id = 0;
2040 ret = ath10k_core_register(ar, chip_id);
2041 if (ret) {
2042 ath10k_err(ar, "failed to register driver core: %d\n", ret);
2043 goto err_free_wq;
2044 }
2045
2046 /* TODO: remove this once SDIO support is fully implemented */
2047 ath10k_warn(ar, "WARNING: ath10k SDIO support is incomplete, don't expect anything to work!\n");
2048
2049 return 0;
2050
2051 err_free_wq:
2052 destroy_workqueue(ar_sdio->workqueue);
2053 err_core_destroy:
2054 ath10k_core_destroy(ar);
2055
2056 return ret;
2057 }
2058
ath10k_sdio_remove(struct sdio_func * func)2059 static void ath10k_sdio_remove(struct sdio_func *func)
2060 {
2061 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
2062 struct ath10k *ar = ar_sdio->ar;
2063
2064 ath10k_dbg(ar, ATH10K_DBG_BOOT,
2065 "sdio removed func %d vendor 0x%x device 0x%x\n",
2066 func->num, func->vendor, func->device);
2067
2068 (void)ath10k_sdio_hif_disable_intrs(ar);
2069 cancel_work_sync(&ar_sdio->wr_async_work);
2070 ath10k_core_unregister(ar);
2071 ath10k_core_destroy(ar);
2072 }
2073
2074 static const struct sdio_device_id ath10k_sdio_devices[] = {
2075 {SDIO_DEVICE(QCA_MANUFACTURER_CODE,
2076 (QCA_SDIO_ID_AR6005_BASE | 0xA))},
2077 {SDIO_DEVICE(QCA_MANUFACTURER_CODE,
2078 (QCA_SDIO_ID_QCA9377_BASE | 0x1))},
2079 {},
2080 };
2081
2082 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices);
2083
2084 static struct sdio_driver ath10k_sdio_driver = {
2085 .name = "ath10k_sdio",
2086 .id_table = ath10k_sdio_devices,
2087 .probe = ath10k_sdio_probe,
2088 .remove = ath10k_sdio_remove,
2089 .drv.pm = ATH10K_SDIO_PM_OPS,
2090 };
2091
ath10k_sdio_init(void)2092 static int __init ath10k_sdio_init(void)
2093 {
2094 int ret;
2095
2096 ret = sdio_register_driver(&ath10k_sdio_driver);
2097 if (ret)
2098 pr_err("sdio driver registration failed: %d\n", ret);
2099
2100 return ret;
2101 }
2102
ath10k_sdio_exit(void)2103 static void __exit ath10k_sdio_exit(void)
2104 {
2105 sdio_unregister_driver(&ath10k_sdio_driver);
2106 }
2107
2108 module_init(ath10k_sdio_init);
2109 module_exit(ath10k_sdio_exit);
2110
2111 MODULE_AUTHOR("Qualcomm Atheros");
2112 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices");
2113 MODULE_LICENSE("Dual BSD/GPL");
2114