1 /*
2 * AT86RF230/RF231 driver
3 *
4 * Copyright (C) 2009-2012 Siemens AG
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * Written by:
16 * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
17 * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
18 * Alexander Aring <aar@pengutronix.de>
19 */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/hrtimer.h>
23 #include <linux/jiffies.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/gpio.h>
27 #include <linux/delay.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/at86rf230.h>
30 #include <linux/regmap.h>
31 #include <linux/skbuff.h>
32 #include <linux/of_gpio.h>
33 #include <linux/ieee802154.h>
34 #include <linux/debugfs.h>
35
36 #include <net/mac802154.h>
37 #include <net/cfg802154.h>
38
39 #include "at86rf230.h"
40
41 struct at86rf230_local;
42 /* at86rf2xx chip depend data.
43 * All timings are in us.
44 */
45 struct at86rf2xx_chip_data {
46 u16 t_sleep_cycle;
47 u16 t_channel_switch;
48 u16 t_reset_to_off;
49 u16 t_off_to_aack;
50 u16 t_off_to_tx_on;
51 u16 t_off_to_sleep;
52 u16 t_sleep_to_off;
53 u16 t_frame;
54 u16 t_p_ack;
55 int rssi_base_val;
56
57 int (*set_channel)(struct at86rf230_local *, u8, u8);
58 int (*set_txpower)(struct at86rf230_local *, s32);
59 };
60
61 #define AT86RF2XX_MAX_BUF (127 + 3)
62 /* tx retries to access the TX_ON state
63 * if it's above then force change will be started.
64 *
65 * We assume the max_frame_retries (7) value of 802.15.4 here.
66 */
67 #define AT86RF2XX_MAX_TX_RETRIES 7
68 /* We use the recommended 5 minutes timeout to recalibrate */
69 #define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ)
70
71 struct at86rf230_state_change {
72 struct at86rf230_local *lp;
73 int irq;
74
75 struct hrtimer timer;
76 struct spi_message msg;
77 struct spi_transfer trx;
78 u8 buf[AT86RF2XX_MAX_BUF];
79
80 void (*complete)(void *context);
81 u8 from_state;
82 u8 to_state;
83
84 bool free;
85 };
86
87 struct at86rf230_trac {
88 u64 success;
89 u64 success_data_pending;
90 u64 success_wait_for_ack;
91 u64 channel_access_failure;
92 u64 no_ack;
93 u64 invalid;
94 };
95
96 struct at86rf230_local {
97 struct spi_device *spi;
98
99 struct ieee802154_hw *hw;
100 struct at86rf2xx_chip_data *data;
101 struct regmap *regmap;
102 int slp_tr;
103 bool sleep;
104
105 struct completion state_complete;
106 struct at86rf230_state_change state;
107
108 unsigned long cal_timeout;
109 bool is_tx;
110 bool is_tx_from_off;
111 u8 tx_retry;
112 struct sk_buff *tx_skb;
113 struct at86rf230_state_change tx;
114
115 struct at86rf230_trac trac;
116 };
117
118 #define AT86RF2XX_NUMREGS 0x3F
119
120 static void
121 at86rf230_async_state_change(struct at86rf230_local *lp,
122 struct at86rf230_state_change *ctx,
123 const u8 state, void (*complete)(void *context));
124
125 static inline void
at86rf230_sleep(struct at86rf230_local * lp)126 at86rf230_sleep(struct at86rf230_local *lp)
127 {
128 if (gpio_is_valid(lp->slp_tr)) {
129 gpio_set_value(lp->slp_tr, 1);
130 usleep_range(lp->data->t_off_to_sleep,
131 lp->data->t_off_to_sleep + 10);
132 lp->sleep = true;
133 }
134 }
135
136 static inline void
at86rf230_awake(struct at86rf230_local * lp)137 at86rf230_awake(struct at86rf230_local *lp)
138 {
139 if (gpio_is_valid(lp->slp_tr)) {
140 gpio_set_value(lp->slp_tr, 0);
141 usleep_range(lp->data->t_sleep_to_off,
142 lp->data->t_sleep_to_off + 100);
143 lp->sleep = false;
144 }
145 }
146
147 static inline int
__at86rf230_write(struct at86rf230_local * lp,unsigned int addr,unsigned int data)148 __at86rf230_write(struct at86rf230_local *lp,
149 unsigned int addr, unsigned int data)
150 {
151 bool sleep = lp->sleep;
152 int ret;
153
154 /* awake for register setting if sleep */
155 if (sleep)
156 at86rf230_awake(lp);
157
158 ret = regmap_write(lp->regmap, addr, data);
159
160 /* sleep again if was sleeping */
161 if (sleep)
162 at86rf230_sleep(lp);
163
164 return ret;
165 }
166
167 static inline int
__at86rf230_read(struct at86rf230_local * lp,unsigned int addr,unsigned int * data)168 __at86rf230_read(struct at86rf230_local *lp,
169 unsigned int addr, unsigned int *data)
170 {
171 bool sleep = lp->sleep;
172 int ret;
173
174 /* awake for register setting if sleep */
175 if (sleep)
176 at86rf230_awake(lp);
177
178 ret = regmap_read(lp->regmap, addr, data);
179
180 /* sleep again if was sleeping */
181 if (sleep)
182 at86rf230_sleep(lp);
183
184 return ret;
185 }
186
187 static inline int
at86rf230_read_subreg(struct at86rf230_local * lp,unsigned int addr,unsigned int mask,unsigned int shift,unsigned int * data)188 at86rf230_read_subreg(struct at86rf230_local *lp,
189 unsigned int addr, unsigned int mask,
190 unsigned int shift, unsigned int *data)
191 {
192 int rc;
193
194 rc = __at86rf230_read(lp, addr, data);
195 if (!rc)
196 *data = (*data & mask) >> shift;
197
198 return rc;
199 }
200
201 static inline int
at86rf230_write_subreg(struct at86rf230_local * lp,unsigned int addr,unsigned int mask,unsigned int shift,unsigned int data)202 at86rf230_write_subreg(struct at86rf230_local *lp,
203 unsigned int addr, unsigned int mask,
204 unsigned int shift, unsigned int data)
205 {
206 bool sleep = lp->sleep;
207 int ret;
208
209 /* awake for register setting if sleep */
210 if (sleep)
211 at86rf230_awake(lp);
212
213 ret = regmap_update_bits(lp->regmap, addr, mask, data << shift);
214
215 /* sleep again if was sleeping */
216 if (sleep)
217 at86rf230_sleep(lp);
218
219 return ret;
220 }
221
222 static inline void
at86rf230_slp_tr_rising_edge(struct at86rf230_local * lp)223 at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
224 {
225 gpio_set_value(lp->slp_tr, 1);
226 udelay(1);
227 gpio_set_value(lp->slp_tr, 0);
228 }
229
230 static bool
at86rf230_reg_writeable(struct device * dev,unsigned int reg)231 at86rf230_reg_writeable(struct device *dev, unsigned int reg)
232 {
233 switch (reg) {
234 case RG_TRX_STATE:
235 case RG_TRX_CTRL_0:
236 case RG_TRX_CTRL_1:
237 case RG_PHY_TX_PWR:
238 case RG_PHY_ED_LEVEL:
239 case RG_PHY_CC_CCA:
240 case RG_CCA_THRES:
241 case RG_RX_CTRL:
242 case RG_SFD_VALUE:
243 case RG_TRX_CTRL_2:
244 case RG_ANT_DIV:
245 case RG_IRQ_MASK:
246 case RG_VREG_CTRL:
247 case RG_BATMON:
248 case RG_XOSC_CTRL:
249 case RG_RX_SYN:
250 case RG_XAH_CTRL_1:
251 case RG_FTN_CTRL:
252 case RG_PLL_CF:
253 case RG_PLL_DCU:
254 case RG_SHORT_ADDR_0:
255 case RG_SHORT_ADDR_1:
256 case RG_PAN_ID_0:
257 case RG_PAN_ID_1:
258 case RG_IEEE_ADDR_0:
259 case RG_IEEE_ADDR_1:
260 case RG_IEEE_ADDR_2:
261 case RG_IEEE_ADDR_3:
262 case RG_IEEE_ADDR_4:
263 case RG_IEEE_ADDR_5:
264 case RG_IEEE_ADDR_6:
265 case RG_IEEE_ADDR_7:
266 case RG_XAH_CTRL_0:
267 case RG_CSMA_SEED_0:
268 case RG_CSMA_SEED_1:
269 case RG_CSMA_BE:
270 return true;
271 default:
272 return false;
273 }
274 }
275
276 static bool
at86rf230_reg_readable(struct device * dev,unsigned int reg)277 at86rf230_reg_readable(struct device *dev, unsigned int reg)
278 {
279 bool rc;
280
281 /* all writeable are also readable */
282 rc = at86rf230_reg_writeable(dev, reg);
283 if (rc)
284 return rc;
285
286 /* readonly regs */
287 switch (reg) {
288 case RG_TRX_STATUS:
289 case RG_PHY_RSSI:
290 case RG_IRQ_STATUS:
291 case RG_PART_NUM:
292 case RG_VERSION_NUM:
293 case RG_MAN_ID_1:
294 case RG_MAN_ID_0:
295 return true;
296 default:
297 return false;
298 }
299 }
300
301 static bool
at86rf230_reg_volatile(struct device * dev,unsigned int reg)302 at86rf230_reg_volatile(struct device *dev, unsigned int reg)
303 {
304 /* can be changed during runtime */
305 switch (reg) {
306 case RG_TRX_STATUS:
307 case RG_TRX_STATE:
308 case RG_PHY_RSSI:
309 case RG_PHY_ED_LEVEL:
310 case RG_IRQ_STATUS:
311 case RG_VREG_CTRL:
312 case RG_PLL_CF:
313 case RG_PLL_DCU:
314 return true;
315 default:
316 return false;
317 }
318 }
319
320 static bool
at86rf230_reg_precious(struct device * dev,unsigned int reg)321 at86rf230_reg_precious(struct device *dev, unsigned int reg)
322 {
323 /* don't clear irq line on read */
324 switch (reg) {
325 case RG_IRQ_STATUS:
326 return true;
327 default:
328 return false;
329 }
330 }
331
332 static const struct regmap_config at86rf230_regmap_spi_config = {
333 .reg_bits = 8,
334 .val_bits = 8,
335 .write_flag_mask = CMD_REG | CMD_WRITE,
336 .read_flag_mask = CMD_REG,
337 .cache_type = REGCACHE_RBTREE,
338 .max_register = AT86RF2XX_NUMREGS,
339 .writeable_reg = at86rf230_reg_writeable,
340 .readable_reg = at86rf230_reg_readable,
341 .volatile_reg = at86rf230_reg_volatile,
342 .precious_reg = at86rf230_reg_precious,
343 };
344
345 static void
at86rf230_async_error_recover_complete(void * context)346 at86rf230_async_error_recover_complete(void *context)
347 {
348 struct at86rf230_state_change *ctx = context;
349 struct at86rf230_local *lp = ctx->lp;
350
351 if (ctx->free)
352 kfree(ctx);
353
354 ieee802154_wake_queue(lp->hw);
355 }
356
357 static void
at86rf230_async_error_recover(void * context)358 at86rf230_async_error_recover(void *context)
359 {
360 struct at86rf230_state_change *ctx = context;
361 struct at86rf230_local *lp = ctx->lp;
362
363 lp->is_tx = 0;
364 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
365 at86rf230_async_error_recover_complete);
366 }
367
368 static inline void
at86rf230_async_error(struct at86rf230_local * lp,struct at86rf230_state_change * ctx,int rc)369 at86rf230_async_error(struct at86rf230_local *lp,
370 struct at86rf230_state_change *ctx, int rc)
371 {
372 dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
373
374 at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
375 at86rf230_async_error_recover);
376 }
377
378 /* Generic function to get some register value in async mode */
379 static void
at86rf230_async_read_reg(struct at86rf230_local * lp,u8 reg,struct at86rf230_state_change * ctx,void (* complete)(void * context))380 at86rf230_async_read_reg(struct at86rf230_local *lp, u8 reg,
381 struct at86rf230_state_change *ctx,
382 void (*complete)(void *context))
383 {
384 int rc;
385
386 u8 *tx_buf = ctx->buf;
387
388 tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
389 ctx->msg.complete = complete;
390 rc = spi_async(lp->spi, &ctx->msg);
391 if (rc)
392 at86rf230_async_error(lp, ctx, rc);
393 }
394
395 static void
at86rf230_async_write_reg(struct at86rf230_local * lp,u8 reg,u8 val,struct at86rf230_state_change * ctx,void (* complete)(void * context))396 at86rf230_async_write_reg(struct at86rf230_local *lp, u8 reg, u8 val,
397 struct at86rf230_state_change *ctx,
398 void (*complete)(void *context))
399 {
400 int rc;
401
402 ctx->buf[0] = (reg & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
403 ctx->buf[1] = val;
404 ctx->msg.complete = complete;
405 rc = spi_async(lp->spi, &ctx->msg);
406 if (rc)
407 at86rf230_async_error(lp, ctx, rc);
408 }
409
410 static void
at86rf230_async_state_assert(void * context)411 at86rf230_async_state_assert(void *context)
412 {
413 struct at86rf230_state_change *ctx = context;
414 struct at86rf230_local *lp = ctx->lp;
415 const u8 *buf = ctx->buf;
416 const u8 trx_state = buf[1] & TRX_STATE_MASK;
417
418 /* Assert state change */
419 if (trx_state != ctx->to_state) {
420 /* Special handling if transceiver state is in
421 * STATE_BUSY_RX_AACK and a SHR was detected.
422 */
423 if (trx_state == STATE_BUSY_RX_AACK) {
424 /* Undocumented race condition. If we send a state
425 * change to STATE_RX_AACK_ON the transceiver could
426 * change his state automatically to STATE_BUSY_RX_AACK
427 * if a SHR was detected. This is not an error, but we
428 * can't assert this.
429 */
430 if (ctx->to_state == STATE_RX_AACK_ON)
431 goto done;
432
433 /* If we change to STATE_TX_ON without forcing and
434 * transceiver state is STATE_BUSY_RX_AACK, we wait
435 * 'tFrame + tPAck' receiving time. In this time the
436 * PDU should be received. If the transceiver is still
437 * in STATE_BUSY_RX_AACK, we run a force state change
438 * to STATE_TX_ON. This is a timeout handling, if the
439 * transceiver stucks in STATE_BUSY_RX_AACK.
440 *
441 * Additional we do several retries to try to get into
442 * TX_ON state without forcing. If the retries are
443 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
444 * will do a force change.
445 */
446 if (ctx->to_state == STATE_TX_ON ||
447 ctx->to_state == STATE_TRX_OFF) {
448 u8 state = ctx->to_state;
449
450 if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
451 state = STATE_FORCE_TRX_OFF;
452 lp->tx_retry++;
453
454 at86rf230_async_state_change(lp, ctx, state,
455 ctx->complete);
456 return;
457 }
458 }
459
460 dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
461 ctx->from_state, ctx->to_state, trx_state);
462 }
463
464 done:
465 if (ctx->complete)
466 ctx->complete(context);
467 }
468
at86rf230_async_state_timer(struct hrtimer * timer)469 static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
470 {
471 struct at86rf230_state_change *ctx =
472 container_of(timer, struct at86rf230_state_change, timer);
473 struct at86rf230_local *lp = ctx->lp;
474
475 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
476 at86rf230_async_state_assert);
477
478 return HRTIMER_NORESTART;
479 }
480
481 /* Do state change timing delay. */
482 static void
at86rf230_async_state_delay(void * context)483 at86rf230_async_state_delay(void *context)
484 {
485 struct at86rf230_state_change *ctx = context;
486 struct at86rf230_local *lp = ctx->lp;
487 struct at86rf2xx_chip_data *c = lp->data;
488 bool force = false;
489 ktime_t tim;
490
491 /* The force state changes are will show as normal states in the
492 * state status subregister. We change the to_state to the
493 * corresponding one and remember if it was a force change, this
494 * differs if we do a state change from STATE_BUSY_RX_AACK.
495 */
496 switch (ctx->to_state) {
497 case STATE_FORCE_TX_ON:
498 ctx->to_state = STATE_TX_ON;
499 force = true;
500 break;
501 case STATE_FORCE_TRX_OFF:
502 ctx->to_state = STATE_TRX_OFF;
503 force = true;
504 break;
505 default:
506 break;
507 }
508
509 switch (ctx->from_state) {
510 case STATE_TRX_OFF:
511 switch (ctx->to_state) {
512 case STATE_RX_AACK_ON:
513 tim = c->t_off_to_aack * NSEC_PER_USEC;
514 /* state change from TRX_OFF to RX_AACK_ON to do a
515 * calibration, we need to reset the timeout for the
516 * next one.
517 */
518 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
519 goto change;
520 case STATE_TX_ARET_ON:
521 case STATE_TX_ON:
522 tim = c->t_off_to_tx_on * NSEC_PER_USEC;
523 /* state change from TRX_OFF to TX_ON or ARET_ON to do
524 * a calibration, we need to reset the timeout for the
525 * next one.
526 */
527 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
528 goto change;
529 default:
530 break;
531 }
532 break;
533 case STATE_BUSY_RX_AACK:
534 switch (ctx->to_state) {
535 case STATE_TRX_OFF:
536 case STATE_TX_ON:
537 /* Wait for worst case receiving time if we
538 * didn't make a force change from BUSY_RX_AACK
539 * to TX_ON or TRX_OFF.
540 */
541 if (!force) {
542 tim = (c->t_frame + c->t_p_ack) * NSEC_PER_USEC;
543 goto change;
544 }
545 break;
546 default:
547 break;
548 }
549 break;
550 /* Default value, means RESET state */
551 case STATE_P_ON:
552 switch (ctx->to_state) {
553 case STATE_TRX_OFF:
554 tim = c->t_reset_to_off * NSEC_PER_USEC;
555 goto change;
556 default:
557 break;
558 }
559 break;
560 default:
561 break;
562 }
563
564 /* Default delay is 1us in the most cases */
565 udelay(1);
566 at86rf230_async_state_timer(&ctx->timer);
567 return;
568
569 change:
570 hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
571 }
572
573 static void
at86rf230_async_state_change_start(void * context)574 at86rf230_async_state_change_start(void *context)
575 {
576 struct at86rf230_state_change *ctx = context;
577 struct at86rf230_local *lp = ctx->lp;
578 u8 *buf = ctx->buf;
579 const u8 trx_state = buf[1] & TRX_STATE_MASK;
580
581 /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
582 if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
583 udelay(1);
584 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
585 at86rf230_async_state_change_start);
586 return;
587 }
588
589 /* Check if we already are in the state which we change in */
590 if (trx_state == ctx->to_state) {
591 if (ctx->complete)
592 ctx->complete(context);
593 return;
594 }
595
596 /* Set current state to the context of state change */
597 ctx->from_state = trx_state;
598
599 /* Going into the next step for a state change which do a timing
600 * relevant delay.
601 */
602 at86rf230_async_write_reg(lp, RG_TRX_STATE, ctx->to_state, ctx,
603 at86rf230_async_state_delay);
604 }
605
606 static void
at86rf230_async_state_change(struct at86rf230_local * lp,struct at86rf230_state_change * ctx,const u8 state,void (* complete)(void * context))607 at86rf230_async_state_change(struct at86rf230_local *lp,
608 struct at86rf230_state_change *ctx,
609 const u8 state, void (*complete)(void *context))
610 {
611 /* Initialization for the state change context */
612 ctx->to_state = state;
613 ctx->complete = complete;
614 at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
615 at86rf230_async_state_change_start);
616 }
617
618 static void
at86rf230_sync_state_change_complete(void * context)619 at86rf230_sync_state_change_complete(void *context)
620 {
621 struct at86rf230_state_change *ctx = context;
622 struct at86rf230_local *lp = ctx->lp;
623
624 complete(&lp->state_complete);
625 }
626
627 /* This function do a sync framework above the async state change.
628 * Some callbacks of the IEEE 802.15.4 driver interface need to be
629 * handled synchronously.
630 */
631 static int
at86rf230_sync_state_change(struct at86rf230_local * lp,unsigned int state)632 at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
633 {
634 unsigned long rc;
635
636 at86rf230_async_state_change(lp, &lp->state, state,
637 at86rf230_sync_state_change_complete);
638
639 rc = wait_for_completion_timeout(&lp->state_complete,
640 msecs_to_jiffies(100));
641 if (!rc) {
642 at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
643 return -ETIMEDOUT;
644 }
645
646 return 0;
647 }
648
649 static void
at86rf230_tx_complete(void * context)650 at86rf230_tx_complete(void *context)
651 {
652 struct at86rf230_state_change *ctx = context;
653 struct at86rf230_local *lp = ctx->lp;
654
655 ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
656 kfree(ctx);
657 }
658
659 static void
at86rf230_tx_on(void * context)660 at86rf230_tx_on(void *context)
661 {
662 struct at86rf230_state_change *ctx = context;
663 struct at86rf230_local *lp = ctx->lp;
664
665 at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
666 at86rf230_tx_complete);
667 }
668
669 static void
at86rf230_tx_trac_check(void * context)670 at86rf230_tx_trac_check(void *context)
671 {
672 struct at86rf230_state_change *ctx = context;
673 struct at86rf230_local *lp = ctx->lp;
674
675 if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) {
676 u8 trac = TRAC_MASK(ctx->buf[1]);
677
678 switch (trac) {
679 case TRAC_SUCCESS:
680 lp->trac.success++;
681 break;
682 case TRAC_SUCCESS_DATA_PENDING:
683 lp->trac.success_data_pending++;
684 break;
685 case TRAC_CHANNEL_ACCESS_FAILURE:
686 lp->trac.channel_access_failure++;
687 break;
688 case TRAC_NO_ACK:
689 lp->trac.no_ack++;
690 break;
691 case TRAC_INVALID:
692 lp->trac.invalid++;
693 break;
694 default:
695 WARN_ONCE(1, "received tx trac status %d\n", trac);
696 break;
697 }
698 }
699
700 at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_tx_on);
701 }
702
703 static void
at86rf230_rx_read_frame_complete(void * context)704 at86rf230_rx_read_frame_complete(void *context)
705 {
706 struct at86rf230_state_change *ctx = context;
707 struct at86rf230_local *lp = ctx->lp;
708 const u8 *buf = ctx->buf;
709 struct sk_buff *skb;
710 u8 len, lqi;
711
712 len = buf[1];
713 if (!ieee802154_is_valid_psdu_len(len)) {
714 dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
715 len = IEEE802154_MTU;
716 }
717 lqi = buf[2 + len];
718
719 skb = dev_alloc_skb(IEEE802154_MTU);
720 if (!skb) {
721 dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
722 kfree(ctx);
723 return;
724 }
725
726 skb_put_data(skb, buf + 2, len);
727 ieee802154_rx_irqsafe(lp->hw, skb, lqi);
728 kfree(ctx);
729 }
730
731 static void
at86rf230_rx_trac_check(void * context)732 at86rf230_rx_trac_check(void *context)
733 {
734 struct at86rf230_state_change *ctx = context;
735 struct at86rf230_local *lp = ctx->lp;
736 u8 *buf = ctx->buf;
737 int rc;
738
739 if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) {
740 u8 trac = TRAC_MASK(buf[1]);
741
742 switch (trac) {
743 case TRAC_SUCCESS:
744 lp->trac.success++;
745 break;
746 case TRAC_SUCCESS_WAIT_FOR_ACK:
747 lp->trac.success_wait_for_ack++;
748 break;
749 case TRAC_INVALID:
750 lp->trac.invalid++;
751 break;
752 default:
753 WARN_ONCE(1, "received rx trac status %d\n", trac);
754 break;
755 }
756 }
757
758 buf[0] = CMD_FB;
759 ctx->trx.len = AT86RF2XX_MAX_BUF;
760 ctx->msg.complete = at86rf230_rx_read_frame_complete;
761 rc = spi_async(lp->spi, &ctx->msg);
762 if (rc) {
763 ctx->trx.len = 2;
764 at86rf230_async_error(lp, ctx, rc);
765 }
766 }
767
768 static void
at86rf230_irq_trx_end(void * context)769 at86rf230_irq_trx_end(void *context)
770 {
771 struct at86rf230_state_change *ctx = context;
772 struct at86rf230_local *lp = ctx->lp;
773
774 if (lp->is_tx) {
775 lp->is_tx = 0;
776 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
777 at86rf230_tx_trac_check);
778 } else {
779 at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
780 at86rf230_rx_trac_check);
781 }
782 }
783
784 static void
at86rf230_irq_status(void * context)785 at86rf230_irq_status(void *context)
786 {
787 struct at86rf230_state_change *ctx = context;
788 struct at86rf230_local *lp = ctx->lp;
789 const u8 *buf = ctx->buf;
790 u8 irq = buf[1];
791
792 enable_irq(lp->spi->irq);
793
794 if (irq & IRQ_TRX_END) {
795 at86rf230_irq_trx_end(ctx);
796 } else {
797 dev_err(&lp->spi->dev, "not supported irq %02x received\n",
798 irq);
799 kfree(ctx);
800 }
801 }
802
803 static void
at86rf230_setup_spi_messages(struct at86rf230_local * lp,struct at86rf230_state_change * state)804 at86rf230_setup_spi_messages(struct at86rf230_local *lp,
805 struct at86rf230_state_change *state)
806 {
807 state->lp = lp;
808 state->irq = lp->spi->irq;
809 spi_message_init(&state->msg);
810 state->msg.context = state;
811 state->trx.len = 2;
812 state->trx.tx_buf = state->buf;
813 state->trx.rx_buf = state->buf;
814 spi_message_add_tail(&state->trx, &state->msg);
815 hrtimer_init(&state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
816 state->timer.function = at86rf230_async_state_timer;
817 }
818
at86rf230_isr(int irq,void * data)819 static irqreturn_t at86rf230_isr(int irq, void *data)
820 {
821 struct at86rf230_local *lp = data;
822 struct at86rf230_state_change *ctx;
823 int rc;
824
825 disable_irq_nosync(irq);
826
827 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
828 if (!ctx) {
829 enable_irq(irq);
830 return IRQ_NONE;
831 }
832
833 at86rf230_setup_spi_messages(lp, ctx);
834 /* tell on error handling to free ctx */
835 ctx->free = true;
836
837 ctx->buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
838 ctx->msg.complete = at86rf230_irq_status;
839 rc = spi_async(lp->spi, &ctx->msg);
840 if (rc) {
841 at86rf230_async_error(lp, ctx, rc);
842 enable_irq(irq);
843 return IRQ_NONE;
844 }
845
846 return IRQ_HANDLED;
847 }
848
849 static void
at86rf230_write_frame_complete(void * context)850 at86rf230_write_frame_complete(void *context)
851 {
852 struct at86rf230_state_change *ctx = context;
853 struct at86rf230_local *lp = ctx->lp;
854
855 ctx->trx.len = 2;
856
857 if (gpio_is_valid(lp->slp_tr))
858 at86rf230_slp_tr_rising_edge(lp);
859 else
860 at86rf230_async_write_reg(lp, RG_TRX_STATE, STATE_BUSY_TX, ctx,
861 NULL);
862 }
863
864 static void
at86rf230_write_frame(void * context)865 at86rf230_write_frame(void *context)
866 {
867 struct at86rf230_state_change *ctx = context;
868 struct at86rf230_local *lp = ctx->lp;
869 struct sk_buff *skb = lp->tx_skb;
870 u8 *buf = ctx->buf;
871 int rc;
872
873 lp->is_tx = 1;
874
875 buf[0] = CMD_FB | CMD_WRITE;
876 buf[1] = skb->len + 2;
877 memcpy(buf + 2, skb->data, skb->len);
878 ctx->trx.len = skb->len + 2;
879 ctx->msg.complete = at86rf230_write_frame_complete;
880 rc = spi_async(lp->spi, &ctx->msg);
881 if (rc) {
882 ctx->trx.len = 2;
883 at86rf230_async_error(lp, ctx, rc);
884 }
885 }
886
887 static void
at86rf230_xmit_tx_on(void * context)888 at86rf230_xmit_tx_on(void *context)
889 {
890 struct at86rf230_state_change *ctx = context;
891 struct at86rf230_local *lp = ctx->lp;
892
893 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
894 at86rf230_write_frame);
895 }
896
897 static void
at86rf230_xmit_start(void * context)898 at86rf230_xmit_start(void *context)
899 {
900 struct at86rf230_state_change *ctx = context;
901 struct at86rf230_local *lp = ctx->lp;
902
903 /* check if we change from off state */
904 if (lp->is_tx_from_off)
905 at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
906 at86rf230_write_frame);
907 else
908 at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
909 at86rf230_xmit_tx_on);
910 }
911
912 static int
at86rf230_xmit(struct ieee802154_hw * hw,struct sk_buff * skb)913 at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
914 {
915 struct at86rf230_local *lp = hw->priv;
916 struct at86rf230_state_change *ctx = &lp->tx;
917
918 lp->tx_skb = skb;
919 lp->tx_retry = 0;
920
921 /* After 5 minutes in PLL and the same frequency we run again the
922 * calibration loops which is recommended by at86rf2xx datasheets.
923 *
924 * The calibration is initiate by a state change from TRX_OFF
925 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
926 * function then to start in the next 5 minutes.
927 */
928 if (time_is_before_jiffies(lp->cal_timeout)) {
929 lp->is_tx_from_off = true;
930 at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
931 at86rf230_xmit_start);
932 } else {
933 lp->is_tx_from_off = false;
934 at86rf230_xmit_start(ctx);
935 }
936
937 return 0;
938 }
939
940 static int
at86rf230_ed(struct ieee802154_hw * hw,u8 * level)941 at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
942 {
943 WARN_ON(!level);
944 *level = 0xbe;
945 return 0;
946 }
947
948 static int
at86rf230_start(struct ieee802154_hw * hw)949 at86rf230_start(struct ieee802154_hw *hw)
950 {
951 struct at86rf230_local *lp = hw->priv;
952
953 /* reset trac stats on start */
954 if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS))
955 memset(&lp->trac, 0, sizeof(struct at86rf230_trac));
956
957 at86rf230_awake(lp);
958 enable_irq(lp->spi->irq);
959
960 return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON);
961 }
962
963 static void
at86rf230_stop(struct ieee802154_hw * hw)964 at86rf230_stop(struct ieee802154_hw *hw)
965 {
966 struct at86rf230_local *lp = hw->priv;
967 u8 csma_seed[2];
968
969 at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
970
971 disable_irq(lp->spi->irq);
972
973 /* It's recommended to set random new csma_seeds before sleep state.
974 * Makes only sense in the stop callback, not doing this inside of
975 * at86rf230_sleep, this is also used when we don't transmit afterwards
976 * when calling start callback again.
977 */
978 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
979 at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
980 at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
981
982 at86rf230_sleep(lp);
983 }
984
985 static int
at86rf23x_set_channel(struct at86rf230_local * lp,u8 page,u8 channel)986 at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
987 {
988 return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
989 }
990
991 #define AT86RF2XX_MAX_ED_LEVELS 0xF
992 static const s32 at86rf233_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
993 -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600,
994 -7400, -7200, -7000, -6800, -6600, -6400,
995 };
996
997 static const s32 at86rf231_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = {
998 -9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300,
999 -7100, -6900, -6700, -6500, -6300, -6100,
1000 };
1001
1002 static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = {
1003 -10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200,
1004 -8000, -7800, -7600, -7400, -7200, -7000,
1005 };
1006
1007 static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = {
1008 -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000,
1009 -7800, -7600, -7400, -7200, -7000, -6800,
1010 };
1011
1012 static inline int
at86rf212_update_cca_ed_level(struct at86rf230_local * lp,int rssi_base_val)1013 at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val)
1014 {
1015 unsigned int cca_ed_thres;
1016 int rc;
1017
1018 rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres);
1019 if (rc < 0)
1020 return rc;
1021
1022 switch (rssi_base_val) {
1023 case -98:
1024 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98;
1025 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98);
1026 lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres];
1027 break;
1028 case -100:
1029 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1030 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1031 lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres];
1032 break;
1033 default:
1034 WARN_ON(1);
1035 }
1036
1037 return 0;
1038 }
1039
1040 static int
at86rf212_set_channel(struct at86rf230_local * lp,u8 page,u8 channel)1041 at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1042 {
1043 int rc;
1044
1045 if (channel == 0)
1046 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1047 else
1048 rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1049 if (rc < 0)
1050 return rc;
1051
1052 if (page == 0) {
1053 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1054 lp->data->rssi_base_val = -100;
1055 } else {
1056 rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1057 lp->data->rssi_base_val = -98;
1058 }
1059 if (rc < 0)
1060 return rc;
1061
1062 rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val);
1063 if (rc < 0)
1064 return rc;
1065
1066 /* This sets the symbol_duration according frequency on the 212.
1067 * TODO move this handling while set channel and page in cfg802154.
1068 * We can do that, this timings are according 802.15.4 standard.
1069 * If we do that in cfg802154, this is a more generic calculation.
1070 *
1071 * This should also protected from ifs_timer. Means cancel timer and
1072 * init with a new value. For now, this is okay.
1073 */
1074 if (channel == 0) {
1075 if (page == 0) {
1076 /* SUB:0 and BPSK:0 -> BPSK-20 */
1077 lp->hw->phy->symbol_duration = 50;
1078 } else {
1079 /* SUB:1 and BPSK:0 -> BPSK-40 */
1080 lp->hw->phy->symbol_duration = 25;
1081 }
1082 } else {
1083 if (page == 0)
1084 /* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1085 lp->hw->phy->symbol_duration = 40;
1086 else
1087 /* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1088 lp->hw->phy->symbol_duration = 16;
1089 }
1090
1091 lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1092 lp->hw->phy->symbol_duration;
1093 lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1094 lp->hw->phy->symbol_duration;
1095
1096 return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1097 }
1098
1099 static int
at86rf230_channel(struct ieee802154_hw * hw,u8 page,u8 channel)1100 at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1101 {
1102 struct at86rf230_local *lp = hw->priv;
1103 int rc;
1104
1105 rc = lp->data->set_channel(lp, page, channel);
1106 /* Wait for PLL */
1107 usleep_range(lp->data->t_channel_switch,
1108 lp->data->t_channel_switch + 10);
1109
1110 lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1111 return rc;
1112 }
1113
1114 static int
at86rf230_set_hw_addr_filt(struct ieee802154_hw * hw,struct ieee802154_hw_addr_filt * filt,unsigned long changed)1115 at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1116 struct ieee802154_hw_addr_filt *filt,
1117 unsigned long changed)
1118 {
1119 struct at86rf230_local *lp = hw->priv;
1120
1121 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1122 u16 addr = le16_to_cpu(filt->short_addr);
1123
1124 dev_vdbg(&lp->spi->dev, "%s called for saddr\n", __func__);
1125 __at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1126 __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1127 }
1128
1129 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1130 u16 pan = le16_to_cpu(filt->pan_id);
1131
1132 dev_vdbg(&lp->spi->dev, "%s called for pan id\n", __func__);
1133 __at86rf230_write(lp, RG_PAN_ID_0, pan);
1134 __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1135 }
1136
1137 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1138 u8 i, addr[8];
1139
1140 memcpy(addr, &filt->ieee_addr, 8);
1141 dev_vdbg(&lp->spi->dev, "%s called for IEEE addr\n", __func__);
1142 for (i = 0; i < 8; i++)
1143 __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1144 }
1145
1146 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1147 dev_vdbg(&lp->spi->dev, "%s called for panc change\n", __func__);
1148 if (filt->pan_coord)
1149 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1150 else
1151 at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1152 }
1153
1154 return 0;
1155 }
1156
1157 #define AT86RF23X_MAX_TX_POWERS 0xF
1158 static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1159 400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600,
1160 -800, -1200, -1700,
1161 };
1162
1163 static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = {
1164 300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700,
1165 -900, -1200, -1700,
1166 };
1167
1168 #define AT86RF212_MAX_TX_POWERS 0x1F
1169 static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = {
1170 500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
1171 -800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
1172 -1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
1173 };
1174
1175 static int
at86rf23x_set_txpower(struct at86rf230_local * lp,s32 mbm)1176 at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm)
1177 {
1178 u32 i;
1179
1180 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1181 if (lp->hw->phy->supported.tx_powers[i] == mbm)
1182 return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i);
1183 }
1184
1185 return -EINVAL;
1186 }
1187
1188 static int
at86rf212_set_txpower(struct at86rf230_local * lp,s32 mbm)1189 at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm)
1190 {
1191 u32 i;
1192
1193 for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
1194 if (lp->hw->phy->supported.tx_powers[i] == mbm)
1195 return at86rf230_write_subreg(lp, SR_TX_PWR_212, i);
1196 }
1197
1198 return -EINVAL;
1199 }
1200
1201 static int
at86rf230_set_txpower(struct ieee802154_hw * hw,s32 mbm)1202 at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm)
1203 {
1204 struct at86rf230_local *lp = hw->priv;
1205
1206 return lp->data->set_txpower(lp, mbm);
1207 }
1208
1209 static int
at86rf230_set_lbt(struct ieee802154_hw * hw,bool on)1210 at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1211 {
1212 struct at86rf230_local *lp = hw->priv;
1213
1214 return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1215 }
1216
1217 static int
at86rf230_set_cca_mode(struct ieee802154_hw * hw,const struct wpan_phy_cca * cca)1218 at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1219 const struct wpan_phy_cca *cca)
1220 {
1221 struct at86rf230_local *lp = hw->priv;
1222 u8 val;
1223
1224 /* mapping 802.15.4 to driver spec */
1225 switch (cca->mode) {
1226 case NL802154_CCA_ENERGY:
1227 val = 1;
1228 break;
1229 case NL802154_CCA_CARRIER:
1230 val = 2;
1231 break;
1232 case NL802154_CCA_ENERGY_CARRIER:
1233 switch (cca->opt) {
1234 case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1235 val = 3;
1236 break;
1237 case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1238 val = 0;
1239 break;
1240 default:
1241 return -EINVAL;
1242 }
1243 break;
1244 default:
1245 return -EINVAL;
1246 }
1247
1248 return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1249 }
1250
1251 static int
at86rf230_set_cca_ed_level(struct ieee802154_hw * hw,s32 mbm)1252 at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
1253 {
1254 struct at86rf230_local *lp = hw->priv;
1255 u32 i;
1256
1257 for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
1258 if (hw->phy->supported.cca_ed_levels[i] == mbm)
1259 return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i);
1260 }
1261
1262 return -EINVAL;
1263 }
1264
1265 static int
at86rf230_set_csma_params(struct ieee802154_hw * hw,u8 min_be,u8 max_be,u8 retries)1266 at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1267 u8 retries)
1268 {
1269 struct at86rf230_local *lp = hw->priv;
1270 int rc;
1271
1272 rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1273 if (rc)
1274 return rc;
1275
1276 rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1277 if (rc)
1278 return rc;
1279
1280 return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1281 }
1282
1283 static int
at86rf230_set_frame_retries(struct ieee802154_hw * hw,s8 retries)1284 at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1285 {
1286 struct at86rf230_local *lp = hw->priv;
1287
1288 return at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1289 }
1290
1291 static int
at86rf230_set_promiscuous_mode(struct ieee802154_hw * hw,const bool on)1292 at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1293 {
1294 struct at86rf230_local *lp = hw->priv;
1295 int rc;
1296
1297 if (on) {
1298 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1299 if (rc < 0)
1300 return rc;
1301
1302 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1303 if (rc < 0)
1304 return rc;
1305 } else {
1306 rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1307 if (rc < 0)
1308 return rc;
1309
1310 rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1311 if (rc < 0)
1312 return rc;
1313 }
1314
1315 return 0;
1316 }
1317
1318 static const struct ieee802154_ops at86rf230_ops = {
1319 .owner = THIS_MODULE,
1320 .xmit_async = at86rf230_xmit,
1321 .ed = at86rf230_ed,
1322 .set_channel = at86rf230_channel,
1323 .start = at86rf230_start,
1324 .stop = at86rf230_stop,
1325 .set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1326 .set_txpower = at86rf230_set_txpower,
1327 .set_lbt = at86rf230_set_lbt,
1328 .set_cca_mode = at86rf230_set_cca_mode,
1329 .set_cca_ed_level = at86rf230_set_cca_ed_level,
1330 .set_csma_params = at86rf230_set_csma_params,
1331 .set_frame_retries = at86rf230_set_frame_retries,
1332 .set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1333 };
1334
1335 static struct at86rf2xx_chip_data at86rf233_data = {
1336 .t_sleep_cycle = 330,
1337 .t_channel_switch = 11,
1338 .t_reset_to_off = 26,
1339 .t_off_to_aack = 80,
1340 .t_off_to_tx_on = 80,
1341 .t_off_to_sleep = 35,
1342 .t_sleep_to_off = 1000,
1343 .t_frame = 4096,
1344 .t_p_ack = 545,
1345 .rssi_base_val = -94,
1346 .set_channel = at86rf23x_set_channel,
1347 .set_txpower = at86rf23x_set_txpower,
1348 };
1349
1350 static struct at86rf2xx_chip_data at86rf231_data = {
1351 .t_sleep_cycle = 330,
1352 .t_channel_switch = 24,
1353 .t_reset_to_off = 37,
1354 .t_off_to_aack = 110,
1355 .t_off_to_tx_on = 110,
1356 .t_off_to_sleep = 35,
1357 .t_sleep_to_off = 1000,
1358 .t_frame = 4096,
1359 .t_p_ack = 545,
1360 .rssi_base_val = -91,
1361 .set_channel = at86rf23x_set_channel,
1362 .set_txpower = at86rf23x_set_txpower,
1363 };
1364
1365 static struct at86rf2xx_chip_data at86rf212_data = {
1366 .t_sleep_cycle = 330,
1367 .t_channel_switch = 11,
1368 .t_reset_to_off = 26,
1369 .t_off_to_aack = 200,
1370 .t_off_to_tx_on = 200,
1371 .t_off_to_sleep = 35,
1372 .t_sleep_to_off = 1000,
1373 .t_frame = 4096,
1374 .t_p_ack = 545,
1375 .rssi_base_val = -100,
1376 .set_channel = at86rf212_set_channel,
1377 .set_txpower = at86rf212_set_txpower,
1378 };
1379
at86rf230_hw_init(struct at86rf230_local * lp,u8 xtal_trim)1380 static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1381 {
1382 int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1383 unsigned int dvdd;
1384 u8 csma_seed[2];
1385
1386 rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1387 if (rc)
1388 return rc;
1389
1390 irq_type = irq_get_trigger_type(lp->spi->irq);
1391 if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1392 irq_type == IRQ_TYPE_LEVEL_LOW)
1393 irq_pol = IRQ_ACTIVE_LOW;
1394
1395 rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1396 if (rc)
1397 return rc;
1398
1399 rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1400 if (rc)
1401 return rc;
1402
1403 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1404 if (rc)
1405 return rc;
1406
1407 /* reset values differs in at86rf231 and at86rf233 */
1408 rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1409 if (rc)
1410 return rc;
1411
1412 get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1413 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1414 if (rc)
1415 return rc;
1416 rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1417 if (rc)
1418 return rc;
1419
1420 /* CLKM changes are applied immediately */
1421 rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1422 if (rc)
1423 return rc;
1424
1425 /* Turn CLKM Off */
1426 rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1427 if (rc)
1428 return rc;
1429 /* Wait the next SLEEP cycle */
1430 usleep_range(lp->data->t_sleep_cycle,
1431 lp->data->t_sleep_cycle + 100);
1432
1433 /* xtal_trim value is calculated by:
1434 * CL = 0.5 * (CX + CTRIM + CPAR)
1435 *
1436 * whereas:
1437 * CL = capacitor of used crystal
1438 * CX = connected capacitors at xtal pins
1439 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1440 * but this is different on each board setup. You need to fine
1441 * tuning this value via CTRIM.
1442 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1443 * 0 pF upto 4.5 pF.
1444 *
1445 * Examples:
1446 * atben transceiver:
1447 *
1448 * CL = 8 pF
1449 * CX = 12 pF
1450 * CPAR = 3 pF (We assume the magic constant from datasheet)
1451 * CTRIM = 0.9 pF
1452 *
1453 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1454 *
1455 * xtal_trim = 0x3
1456 *
1457 * openlabs transceiver:
1458 *
1459 * CL = 16 pF
1460 * CX = 22 pF
1461 * CPAR = 3 pF (We assume the magic constant from datasheet)
1462 * CTRIM = 4.5 pF
1463 *
1464 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1465 *
1466 * xtal_trim = 0xf
1467 */
1468 rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1469 if (rc)
1470 return rc;
1471
1472 rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1473 if (rc)
1474 return rc;
1475 if (!dvdd) {
1476 dev_err(&lp->spi->dev, "DVDD error\n");
1477 return -EINVAL;
1478 }
1479
1480 /* Force setting slotted operation bit to 0. Sometimes the atben
1481 * sets this bit and I don't know why. We set this always force
1482 * to zero while probing.
1483 */
1484 return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1485 }
1486
1487 static int
at86rf230_get_pdata(struct spi_device * spi,int * rstn,int * slp_tr,u8 * xtal_trim)1488 at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1489 u8 *xtal_trim)
1490 {
1491 struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1492 int ret;
1493
1494 if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1495 if (!pdata)
1496 return -ENOENT;
1497
1498 *rstn = pdata->rstn;
1499 *slp_tr = pdata->slp_tr;
1500 *xtal_trim = pdata->xtal_trim;
1501 return 0;
1502 }
1503
1504 *rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1505 *slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1506 ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1507 if (ret < 0 && ret != -EINVAL)
1508 return ret;
1509
1510 return 0;
1511 }
1512
1513 static int
at86rf230_detect_device(struct at86rf230_local * lp)1514 at86rf230_detect_device(struct at86rf230_local *lp)
1515 {
1516 unsigned int part, version, val;
1517 u16 man_id = 0;
1518 const char *chip;
1519 int rc;
1520
1521 rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1522 if (rc)
1523 return rc;
1524 man_id |= val;
1525
1526 rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1527 if (rc)
1528 return rc;
1529 man_id |= (val << 8);
1530
1531 rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1532 if (rc)
1533 return rc;
1534
1535 rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1536 if (rc)
1537 return rc;
1538
1539 if (man_id != 0x001f) {
1540 dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1541 man_id >> 8, man_id & 0xFF);
1542 return -EINVAL;
1543 }
1544
1545 lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
1546 IEEE802154_HW_CSMA_PARAMS |
1547 IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
1548 IEEE802154_HW_PROMISCUOUS;
1549
1550 lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
1551 WPAN_PHY_FLAG_CCA_ED_LEVEL |
1552 WPAN_PHY_FLAG_CCA_MODE;
1553
1554 lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1555 BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
1556 lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
1557 BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
1558
1559 lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1560
1561 switch (part) {
1562 case 2:
1563 chip = "at86rf230";
1564 rc = -ENOTSUPP;
1565 goto not_supp;
1566 case 3:
1567 chip = "at86rf231";
1568 lp->data = &at86rf231_data;
1569 lp->hw->phy->supported.channels[0] = 0x7FFF800;
1570 lp->hw->phy->current_channel = 11;
1571 lp->hw->phy->symbol_duration = 16;
1572 lp->hw->phy->supported.tx_powers = at86rf231_powers;
1573 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers);
1574 lp->hw->phy->supported.cca_ed_levels = at86rf231_ed_levels;
1575 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf231_ed_levels);
1576 break;
1577 case 7:
1578 chip = "at86rf212";
1579 lp->data = &at86rf212_data;
1580 lp->hw->flags |= IEEE802154_HW_LBT;
1581 lp->hw->phy->supported.channels[0] = 0x00007FF;
1582 lp->hw->phy->supported.channels[2] = 0x00007FF;
1583 lp->hw->phy->current_channel = 5;
1584 lp->hw->phy->symbol_duration = 25;
1585 lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH;
1586 lp->hw->phy->supported.tx_powers = at86rf212_powers;
1587 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers);
1588 lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100;
1589 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100);
1590 break;
1591 case 11:
1592 chip = "at86rf233";
1593 lp->data = &at86rf233_data;
1594 lp->hw->phy->supported.channels[0] = 0x7FFF800;
1595 lp->hw->phy->current_channel = 13;
1596 lp->hw->phy->symbol_duration = 16;
1597 lp->hw->phy->supported.tx_powers = at86rf233_powers;
1598 lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers);
1599 lp->hw->phy->supported.cca_ed_levels = at86rf233_ed_levels;
1600 lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf233_ed_levels);
1601 break;
1602 default:
1603 chip = "unknown";
1604 rc = -ENOTSUPP;
1605 goto not_supp;
1606 }
1607
1608 lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7];
1609 lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0];
1610
1611 not_supp:
1612 dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1613
1614 return rc;
1615 }
1616
1617 #ifdef CONFIG_IEEE802154_AT86RF230_DEBUGFS
1618 static struct dentry *at86rf230_debugfs_root;
1619
at86rf230_stats_show(struct seq_file * file,void * offset)1620 static int at86rf230_stats_show(struct seq_file *file, void *offset)
1621 {
1622 struct at86rf230_local *lp = file->private;
1623
1624 seq_printf(file, "SUCCESS:\t\t%8llu\n", lp->trac.success);
1625 seq_printf(file, "SUCCESS_DATA_PENDING:\t%8llu\n",
1626 lp->trac.success_data_pending);
1627 seq_printf(file, "SUCCESS_WAIT_FOR_ACK:\t%8llu\n",
1628 lp->trac.success_wait_for_ack);
1629 seq_printf(file, "CHANNEL_ACCESS_FAILURE:\t%8llu\n",
1630 lp->trac.channel_access_failure);
1631 seq_printf(file, "NO_ACK:\t\t\t%8llu\n", lp->trac.no_ack);
1632 seq_printf(file, "INVALID:\t\t%8llu\n", lp->trac.invalid);
1633 return 0;
1634 }
1635
at86rf230_stats_open(struct inode * inode,struct file * file)1636 static int at86rf230_stats_open(struct inode *inode, struct file *file)
1637 {
1638 return single_open(file, at86rf230_stats_show, inode->i_private);
1639 }
1640
1641 static const struct file_operations at86rf230_stats_fops = {
1642 .open = at86rf230_stats_open,
1643 .read = seq_read,
1644 .llseek = seq_lseek,
1645 .release = single_release,
1646 };
1647
at86rf230_debugfs_init(struct at86rf230_local * lp)1648 static int at86rf230_debugfs_init(struct at86rf230_local *lp)
1649 {
1650 char debugfs_dir_name[DNAME_INLINE_LEN + 1] = "at86rf230-";
1651 struct dentry *stats;
1652
1653 strncat(debugfs_dir_name, dev_name(&lp->spi->dev), DNAME_INLINE_LEN);
1654
1655 at86rf230_debugfs_root = debugfs_create_dir(debugfs_dir_name, NULL);
1656 if (!at86rf230_debugfs_root)
1657 return -ENOMEM;
1658
1659 stats = debugfs_create_file("trac_stats", 0444,
1660 at86rf230_debugfs_root, lp,
1661 &at86rf230_stats_fops);
1662 if (!stats)
1663 return -ENOMEM;
1664
1665 return 0;
1666 }
1667
at86rf230_debugfs_remove(void)1668 static void at86rf230_debugfs_remove(void)
1669 {
1670 debugfs_remove_recursive(at86rf230_debugfs_root);
1671 }
1672 #else
at86rf230_debugfs_init(struct at86rf230_local * lp)1673 static int at86rf230_debugfs_init(struct at86rf230_local *lp) { return 0; }
at86rf230_debugfs_remove(void)1674 static void at86rf230_debugfs_remove(void) { }
1675 #endif
1676
at86rf230_probe(struct spi_device * spi)1677 static int at86rf230_probe(struct spi_device *spi)
1678 {
1679 struct ieee802154_hw *hw;
1680 struct at86rf230_local *lp;
1681 unsigned int status;
1682 int rc, irq_type, rstn, slp_tr;
1683 u8 xtal_trim = 0;
1684
1685 if (!spi->irq) {
1686 dev_err(&spi->dev, "no IRQ specified\n");
1687 return -EINVAL;
1688 }
1689
1690 rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1691 if (rc < 0) {
1692 dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1693 return rc;
1694 }
1695
1696 if (gpio_is_valid(rstn)) {
1697 rc = devm_gpio_request_one(&spi->dev, rstn,
1698 GPIOF_OUT_INIT_HIGH, "rstn");
1699 if (rc)
1700 return rc;
1701 }
1702
1703 if (gpio_is_valid(slp_tr)) {
1704 rc = devm_gpio_request_one(&spi->dev, slp_tr,
1705 GPIOF_OUT_INIT_LOW, "slp_tr");
1706 if (rc)
1707 return rc;
1708 }
1709
1710 /* Reset */
1711 if (gpio_is_valid(rstn)) {
1712 udelay(1);
1713 gpio_set_value_cansleep(rstn, 0);
1714 udelay(1);
1715 gpio_set_value_cansleep(rstn, 1);
1716 usleep_range(120, 240);
1717 }
1718
1719 hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1720 if (!hw)
1721 return -ENOMEM;
1722
1723 lp = hw->priv;
1724 lp->hw = hw;
1725 lp->spi = spi;
1726 lp->slp_tr = slp_tr;
1727 hw->parent = &spi->dev;
1728 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1729
1730 lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1731 if (IS_ERR(lp->regmap)) {
1732 rc = PTR_ERR(lp->regmap);
1733 dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1734 rc);
1735 goto free_dev;
1736 }
1737
1738 at86rf230_setup_spi_messages(lp, &lp->state);
1739 at86rf230_setup_spi_messages(lp, &lp->tx);
1740
1741 rc = at86rf230_detect_device(lp);
1742 if (rc < 0)
1743 goto free_dev;
1744
1745 init_completion(&lp->state_complete);
1746
1747 spi_set_drvdata(spi, lp);
1748
1749 rc = at86rf230_hw_init(lp, xtal_trim);
1750 if (rc)
1751 goto free_dev;
1752
1753 /* Read irq status register to reset irq line */
1754 rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1755 if (rc)
1756 goto free_dev;
1757
1758 irq_type = irq_get_trigger_type(spi->irq);
1759 if (!irq_type)
1760 irq_type = IRQF_TRIGGER_HIGH;
1761
1762 rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1763 IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1764 if (rc)
1765 goto free_dev;
1766
1767 /* disable_irq by default and wait for starting hardware */
1768 disable_irq(spi->irq);
1769
1770 /* going into sleep by default */
1771 at86rf230_sleep(lp);
1772
1773 rc = at86rf230_debugfs_init(lp);
1774 if (rc)
1775 goto free_dev;
1776
1777 rc = ieee802154_register_hw(lp->hw);
1778 if (rc)
1779 goto free_debugfs;
1780
1781 return rc;
1782
1783 free_debugfs:
1784 at86rf230_debugfs_remove();
1785 free_dev:
1786 ieee802154_free_hw(lp->hw);
1787
1788 return rc;
1789 }
1790
at86rf230_remove(struct spi_device * spi)1791 static int at86rf230_remove(struct spi_device *spi)
1792 {
1793 struct at86rf230_local *lp = spi_get_drvdata(spi);
1794
1795 /* mask all at86rf230 irq's */
1796 at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1797 ieee802154_unregister_hw(lp->hw);
1798 ieee802154_free_hw(lp->hw);
1799 at86rf230_debugfs_remove();
1800 dev_dbg(&spi->dev, "unregistered at86rf230\n");
1801
1802 return 0;
1803 }
1804
1805 static const struct of_device_id at86rf230_of_match[] = {
1806 { .compatible = "atmel,at86rf230", },
1807 { .compatible = "atmel,at86rf231", },
1808 { .compatible = "atmel,at86rf233", },
1809 { .compatible = "atmel,at86rf212", },
1810 { },
1811 };
1812 MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1813
1814 static const struct spi_device_id at86rf230_device_id[] = {
1815 { .name = "at86rf230", },
1816 { .name = "at86rf231", },
1817 { .name = "at86rf233", },
1818 { .name = "at86rf212", },
1819 { },
1820 };
1821 MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1822
1823 static struct spi_driver at86rf230_driver = {
1824 .id_table = at86rf230_device_id,
1825 .driver = {
1826 .of_match_table = of_match_ptr(at86rf230_of_match),
1827 .name = "at86rf230",
1828 },
1829 .probe = at86rf230_probe,
1830 .remove = at86rf230_remove,
1831 };
1832
1833 module_spi_driver(at86rf230_driver);
1834
1835 MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1836 MODULE_LICENSE("GPL v2");
1837