1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39 #include <linux/sys_soc.h>
40
41 #include <linux/pinctrl/consumer.h>
42 #include <net/pkt_cls.h>
43
44 #include "cpsw.h"
45 #include "cpsw_ale.h"
46 #include "cpts.h"
47 #include "davinci_cpdma.h"
48
49 #include <net/pkt_sched.h>
50
51 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
52 NETIF_MSG_DRV | NETIF_MSG_LINK | \
53 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
54 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
55 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
56 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
57 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
58 NETIF_MSG_RX_STATUS)
59
60 #define cpsw_info(priv, type, format, ...) \
61 do { \
62 if (netif_msg_##type(priv) && net_ratelimit()) \
63 dev_info(priv->dev, format, ## __VA_ARGS__); \
64 } while (0)
65
66 #define cpsw_err(priv, type, format, ...) \
67 do { \
68 if (netif_msg_##type(priv) && net_ratelimit()) \
69 dev_err(priv->dev, format, ## __VA_ARGS__); \
70 } while (0)
71
72 #define cpsw_dbg(priv, type, format, ...) \
73 do { \
74 if (netif_msg_##type(priv) && net_ratelimit()) \
75 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
76 } while (0)
77
78 #define cpsw_notice(priv, type, format, ...) \
79 do { \
80 if (netif_msg_##type(priv) && net_ratelimit()) \
81 dev_notice(priv->dev, format, ## __VA_ARGS__); \
82 } while (0)
83
84 #define ALE_ALL_PORTS 0x7
85
86 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
87 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
88 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
89
90 #define CPSW_VERSION_1 0x19010a
91 #define CPSW_VERSION_2 0x19010c
92 #define CPSW_VERSION_3 0x19010f
93 #define CPSW_VERSION_4 0x190112
94
95 #define HOST_PORT_NUM 0
96 #define CPSW_ALE_PORTS_NUM 3
97 #define SLIVER_SIZE 0x40
98
99 #define CPSW1_HOST_PORT_OFFSET 0x028
100 #define CPSW1_SLAVE_OFFSET 0x050
101 #define CPSW1_SLAVE_SIZE 0x040
102 #define CPSW1_CPDMA_OFFSET 0x100
103 #define CPSW1_STATERAM_OFFSET 0x200
104 #define CPSW1_HW_STATS 0x400
105 #define CPSW1_CPTS_OFFSET 0x500
106 #define CPSW1_ALE_OFFSET 0x600
107 #define CPSW1_SLIVER_OFFSET 0x700
108
109 #define CPSW2_HOST_PORT_OFFSET 0x108
110 #define CPSW2_SLAVE_OFFSET 0x200
111 #define CPSW2_SLAVE_SIZE 0x100
112 #define CPSW2_CPDMA_OFFSET 0x800
113 #define CPSW2_HW_STATS 0x900
114 #define CPSW2_STATERAM_OFFSET 0xa00
115 #define CPSW2_CPTS_OFFSET 0xc00
116 #define CPSW2_ALE_OFFSET 0xd00
117 #define CPSW2_SLIVER_OFFSET 0xd80
118 #define CPSW2_BD_OFFSET 0x2000
119
120 #define CPDMA_RXTHRESH 0x0c0
121 #define CPDMA_RXFREE 0x0e0
122 #define CPDMA_TXHDP 0x00
123 #define CPDMA_RXHDP 0x20
124 #define CPDMA_TXCP 0x40
125 #define CPDMA_RXCP 0x60
126
127 #define CPSW_POLL_WEIGHT 64
128 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE 4
129 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN)
130 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN +\
131 ETH_FCS_LEN +\
132 CPSW_RX_VLAN_ENCAP_HDR_SIZE)
133
134 #define RX_PRIORITY_MAPPING 0x76543210
135 #define TX_PRIORITY_MAPPING 0x33221100
136 #define CPDMA_TX_PRIORITY_MAP 0x76543210
137
138 #define CPSW_VLAN_AWARE BIT(1)
139 #define CPSW_RX_VLAN_ENCAP BIT(2)
140 #define CPSW_ALE_VLAN_AWARE 1
141
142 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
143 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
144 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
145
146 #define CPSW_INTPACEEN (0x3f << 16)
147 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
148 #define CPSW_CMINTMAX_CNT 63
149 #define CPSW_CMINTMIN_CNT 2
150 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
151 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
152
153 #define cpsw_slave_index(cpsw, priv) \
154 ((cpsw->data.dual_emac) ? priv->emac_port : \
155 cpsw->data.active_slave)
156 #define IRQ_NUM 2
157 #define CPSW_MAX_QUEUES 8
158 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
159 #define CPSW_FIFO_QUEUE_TYPE_SHIFT 16
160 #define CPSW_FIFO_SHAPE_EN_SHIFT 16
161 #define CPSW_FIFO_RATE_EN_SHIFT 20
162 #define CPSW_TC_NUM 4
163 #define CPSW_FIFO_SHAPERS_NUM (CPSW_TC_NUM - 1)
164 #define CPSW_PCT_MASK 0x7f
165
166 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT 29
167 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK GENMASK(2, 0)
168 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT 16
169 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT 8
170 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK GENMASK(1, 0)
171 enum {
172 CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
173 CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
174 CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
175 CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
176 };
177
178 static int debug_level;
179 module_param(debug_level, int, 0);
180 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
181
182 static int ale_ageout = 10;
183 module_param(ale_ageout, int, 0);
184 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
185
186 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
187 module_param(rx_packet_max, int, 0);
188 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
189
190 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
191 module_param(descs_pool_size, int, 0444);
192 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
193
194 struct cpsw_wr_regs {
195 u32 id_ver;
196 u32 soft_reset;
197 u32 control;
198 u32 int_control;
199 u32 rx_thresh_en;
200 u32 rx_en;
201 u32 tx_en;
202 u32 misc_en;
203 u32 mem_allign1[8];
204 u32 rx_thresh_stat;
205 u32 rx_stat;
206 u32 tx_stat;
207 u32 misc_stat;
208 u32 mem_allign2[8];
209 u32 rx_imax;
210 u32 tx_imax;
211
212 };
213
214 struct cpsw_ss_regs {
215 u32 id_ver;
216 u32 control;
217 u32 soft_reset;
218 u32 stat_port_en;
219 u32 ptype;
220 u32 soft_idle;
221 u32 thru_rate;
222 u32 gap_thresh;
223 u32 tx_start_wds;
224 u32 flow_control;
225 u32 vlan_ltype;
226 u32 ts_ltype;
227 u32 dlr_ltype;
228 };
229
230 /* CPSW_PORT_V1 */
231 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
232 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
233 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
234 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
235 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
236 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
237 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
238 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
239
240 /* CPSW_PORT_V2 */
241 #define CPSW2_CONTROL 0x00 /* Control Register */
242 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
243 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
244 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
245 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
246 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
247 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
248
249 /* CPSW_PORT_V1 and V2 */
250 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
251 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
252 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
253
254 /* CPSW_PORT_V2 only */
255 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
256 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
257 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
258 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
259 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
260 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
261 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
262 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
263
264 /* Bit definitions for the CPSW2_CONTROL register */
265 #define PASS_PRI_TAGGED BIT(24) /* Pass Priority Tagged */
266 #define VLAN_LTYPE2_EN BIT(21) /* VLAN LTYPE 2 enable */
267 #define VLAN_LTYPE1_EN BIT(20) /* VLAN LTYPE 1 enable */
268 #define DSCP_PRI_EN BIT(16) /* DSCP Priority Enable */
269 #define TS_107 BIT(15) /* Tyme Sync Dest IP Address 107 */
270 #define TS_320 BIT(14) /* Time Sync Dest Port 320 enable */
271 #define TS_319 BIT(13) /* Time Sync Dest Port 319 enable */
272 #define TS_132 BIT(12) /* Time Sync Dest IP Addr 132 enable */
273 #define TS_131 BIT(11) /* Time Sync Dest IP Addr 131 enable */
274 #define TS_130 BIT(10) /* Time Sync Dest IP Addr 130 enable */
275 #define TS_129 BIT(9) /* Time Sync Dest IP Addr 129 enable */
276 #define TS_TTL_NONZERO BIT(8) /* Time Sync Time To Live Non-zero enable */
277 #define TS_ANNEX_F_EN BIT(6) /* Time Sync Annex F enable */
278 #define TS_ANNEX_D_EN BIT(4) /* Time Sync Annex D enable */
279 #define TS_LTYPE2_EN BIT(3) /* Time Sync LTYPE 2 enable */
280 #define TS_LTYPE1_EN BIT(2) /* Time Sync LTYPE 1 enable */
281 #define TS_TX_EN BIT(1) /* Time Sync Transmit Enable */
282 #define TS_RX_EN BIT(0) /* Time Sync Receive Enable */
283
284 #define CTRL_V2_TS_BITS \
285 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
286 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
287
288 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
289 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
290 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
291
292
293 #define CTRL_V3_TS_BITS \
294 (TS_107 | TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
295 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
296 TS_LTYPE1_EN)
297
298 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
299 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
300 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
301
302 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
303 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
304 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
305 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
306 #define TS_MSG_TYPE_EN_MASK (0xffff)
307
308 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
309 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
310
311 /* Bit definitions for the CPSW1_TS_CTL register */
312 #define CPSW_V1_TS_RX_EN BIT(0)
313 #define CPSW_V1_TS_TX_EN BIT(4)
314 #define CPSW_V1_MSG_TYPE_OFS 16
315
316 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
317 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
318
319 #define CPSW_MAX_BLKS_TX 15
320 #define CPSW_MAX_BLKS_TX_SHIFT 4
321 #define CPSW_MAX_BLKS_RX 5
322
323 struct cpsw_host_regs {
324 u32 max_blks;
325 u32 blk_cnt;
326 u32 tx_in_ctl;
327 u32 port_vlan;
328 u32 tx_pri_map;
329 u32 cpdma_tx_pri_map;
330 u32 cpdma_rx_chan_map;
331 };
332
333 struct cpsw_sliver_regs {
334 u32 id_ver;
335 u32 mac_control;
336 u32 mac_status;
337 u32 soft_reset;
338 u32 rx_maxlen;
339 u32 __reserved_0;
340 u32 rx_pause;
341 u32 tx_pause;
342 u32 __reserved_1;
343 u32 rx_pri_map;
344 };
345
346 struct cpsw_hw_stats {
347 u32 rxgoodframes;
348 u32 rxbroadcastframes;
349 u32 rxmulticastframes;
350 u32 rxpauseframes;
351 u32 rxcrcerrors;
352 u32 rxaligncodeerrors;
353 u32 rxoversizedframes;
354 u32 rxjabberframes;
355 u32 rxundersizedframes;
356 u32 rxfragments;
357 u32 __pad_0[2];
358 u32 rxoctets;
359 u32 txgoodframes;
360 u32 txbroadcastframes;
361 u32 txmulticastframes;
362 u32 txpauseframes;
363 u32 txdeferredframes;
364 u32 txcollisionframes;
365 u32 txsinglecollframes;
366 u32 txmultcollframes;
367 u32 txexcessivecollisions;
368 u32 txlatecollisions;
369 u32 txunderrun;
370 u32 txcarriersenseerrors;
371 u32 txoctets;
372 u32 octetframes64;
373 u32 octetframes65t127;
374 u32 octetframes128t255;
375 u32 octetframes256t511;
376 u32 octetframes512t1023;
377 u32 octetframes1024tup;
378 u32 netoctets;
379 u32 rxsofoverruns;
380 u32 rxmofoverruns;
381 u32 rxdmaoverruns;
382 };
383
384 struct cpsw_slave_data {
385 struct device_node *phy_node;
386 char phy_id[MII_BUS_ID_SIZE];
387 int phy_if;
388 u8 mac_addr[ETH_ALEN];
389 u16 dual_emac_res_vlan; /* Reserved VLAN for DualEMAC */
390 };
391
392 struct cpsw_platform_data {
393 struct cpsw_slave_data *slave_data;
394 u32 ss_reg_ofs; /* Subsystem control register offset */
395 u32 channels; /* number of cpdma channels (symmetric) */
396 u32 slaves; /* number of slave cpgmac ports */
397 u32 active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
398 u32 ale_entries; /* ale table size */
399 u32 bd_ram_size; /*buffer descriptor ram size */
400 u32 mac_control; /* Mac control register */
401 u16 default_vlan; /* Def VLAN for ALE lookup in VLAN aware mode*/
402 bool dual_emac; /* Enable Dual EMAC mode */
403 };
404
405 struct cpsw_slave {
406 void __iomem *regs;
407 struct cpsw_sliver_regs __iomem *sliver;
408 int slave_num;
409 u32 mac_control;
410 struct cpsw_slave_data *data;
411 struct phy_device *phy;
412 struct net_device *ndev;
413 u32 port_vlan;
414 };
415
slave_read(struct cpsw_slave * slave,u32 offset)416 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
417 {
418 return readl_relaxed(slave->regs + offset);
419 }
420
slave_write(struct cpsw_slave * slave,u32 val,u32 offset)421 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
422 {
423 writel_relaxed(val, slave->regs + offset);
424 }
425
426 struct cpsw_vector {
427 struct cpdma_chan *ch;
428 int budget;
429 };
430
431 struct cpsw_common {
432 struct device *dev;
433 struct cpsw_platform_data data;
434 struct napi_struct napi_rx;
435 struct napi_struct napi_tx;
436 struct cpsw_ss_regs __iomem *regs;
437 struct cpsw_wr_regs __iomem *wr_regs;
438 u8 __iomem *hw_stats;
439 struct cpsw_host_regs __iomem *host_port_regs;
440 u32 version;
441 u32 coal_intvl;
442 u32 bus_freq_mhz;
443 int rx_packet_max;
444 struct cpsw_slave *slaves;
445 struct cpdma_ctlr *dma;
446 struct cpsw_vector txv[CPSW_MAX_QUEUES];
447 struct cpsw_vector rxv[CPSW_MAX_QUEUES];
448 struct cpsw_ale *ale;
449 bool quirk_irq;
450 bool rx_irq_disabled;
451 bool tx_irq_disabled;
452 u32 irqs_table[IRQ_NUM];
453 struct cpts *cpts;
454 int rx_ch_num, tx_ch_num;
455 int speed;
456 int usage_count;
457 };
458
459 struct cpsw_priv {
460 struct net_device *ndev;
461 struct device *dev;
462 u32 msg_enable;
463 u8 mac_addr[ETH_ALEN];
464 bool rx_pause;
465 bool tx_pause;
466 bool mqprio_hw;
467 int fifo_bw[CPSW_TC_NUM];
468 int shp_cfg_speed;
469 u32 emac_port;
470 struct cpsw_common *cpsw;
471 };
472
473 struct cpsw_stats {
474 char stat_string[ETH_GSTRING_LEN];
475 int type;
476 int sizeof_stat;
477 int stat_offset;
478 };
479
480 enum {
481 CPSW_STATS,
482 CPDMA_RX_STATS,
483 CPDMA_TX_STATS,
484 };
485
486 #define CPSW_STAT(m) CPSW_STATS, \
487 sizeof(((struct cpsw_hw_stats *)0)->m), \
488 offsetof(struct cpsw_hw_stats, m)
489 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
490 sizeof(((struct cpdma_chan_stats *)0)->m), \
491 offsetof(struct cpdma_chan_stats, m)
492 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
493 sizeof(((struct cpdma_chan_stats *)0)->m), \
494 offsetof(struct cpdma_chan_stats, m)
495
496 static const struct cpsw_stats cpsw_gstrings_stats[] = {
497 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
498 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
499 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
500 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
501 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
502 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
503 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
504 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
505 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
506 { "Rx Fragments", CPSW_STAT(rxfragments) },
507 { "Rx Octets", CPSW_STAT(rxoctets) },
508 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
509 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
510 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
511 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
512 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
513 { "Collisions", CPSW_STAT(txcollisionframes) },
514 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
515 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
516 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
517 { "Late Collisions", CPSW_STAT(txlatecollisions) },
518 { "Tx Underrun", CPSW_STAT(txunderrun) },
519 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
520 { "Tx Octets", CPSW_STAT(txoctets) },
521 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
522 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
523 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
524 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
525 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
526 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
527 { "Net Octets", CPSW_STAT(netoctets) },
528 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
529 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
530 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
531 };
532
533 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
534 { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
535 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
536 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
537 { "misqueued", CPDMA_RX_STAT(misqueued) },
538 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
539 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
540 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
541 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
542 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
543 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
544 { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
545 { "requeue", CPDMA_RX_STAT(requeue) },
546 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
547 };
548
549 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats)
550 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats)
551
552 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
553 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
554 #define for_each_slave(priv, func, arg...) \
555 do { \
556 struct cpsw_slave *slave; \
557 struct cpsw_common *cpsw = (priv)->cpsw; \
558 int n; \
559 if (cpsw->data.dual_emac) \
560 (func)((cpsw)->slaves + priv->emac_port, ##arg);\
561 else \
562 for (n = cpsw->data.slaves, \
563 slave = cpsw->slaves; \
564 n; n--) \
565 (func)(slave++, ##arg); \
566 } while (0)
567
cpsw_get_slave_port(u32 slave_num)568 static inline int cpsw_get_slave_port(u32 slave_num)
569 {
570 return slave_num + 1;
571 }
572
cpsw_add_mcast(struct cpsw_priv * priv,u8 * addr)573 static void cpsw_add_mcast(struct cpsw_priv *priv, u8 *addr)
574 {
575 struct cpsw_common *cpsw = priv->cpsw;
576
577 if (cpsw->data.dual_emac) {
578 struct cpsw_slave *slave = cpsw->slaves + priv->emac_port;
579 int slave_port = cpsw_get_slave_port(slave->slave_num);
580
581 cpsw_ale_add_mcast(cpsw->ale, addr,
582 1 << slave_port | ALE_PORT_HOST,
583 ALE_VLAN, slave->port_vlan, 0);
584 return;
585 }
586
587 cpsw_ale_add_mcast(cpsw->ale, addr, ALE_ALL_PORTS, 0, 0, 0);
588 }
589
cpsw_set_promiscious(struct net_device * ndev,bool enable)590 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
591 {
592 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
593 struct cpsw_ale *ale = cpsw->ale;
594 int i;
595
596 if (cpsw->data.dual_emac) {
597 bool flag = false;
598
599 /* Enabling promiscuous mode for one interface will be
600 * common for both the interface as the interface shares
601 * the same hardware resource.
602 */
603 for (i = 0; i < cpsw->data.slaves; i++)
604 if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
605 flag = true;
606
607 if (!enable && flag) {
608 enable = true;
609 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
610 }
611
612 if (enable) {
613 /* Enable Bypass */
614 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
615
616 dev_dbg(&ndev->dev, "promiscuity enabled\n");
617 } else {
618 /* Disable Bypass */
619 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
620 dev_dbg(&ndev->dev, "promiscuity disabled\n");
621 }
622 } else {
623 if (enable) {
624 unsigned long timeout = jiffies + HZ;
625
626 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
627 for (i = 0; i <= cpsw->data.slaves; i++) {
628 cpsw_ale_control_set(ale, i,
629 ALE_PORT_NOLEARN, 1);
630 cpsw_ale_control_set(ale, i,
631 ALE_PORT_NO_SA_UPDATE, 1);
632 }
633
634 /* Clear All Untouched entries */
635 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
636 do {
637 cpu_relax();
638 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
639 break;
640 } while (time_after(timeout, jiffies));
641 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
642
643 /* Clear all mcast from ALE */
644 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
645
646 /* Flood All Unicast Packets to Host port */
647 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
648 dev_dbg(&ndev->dev, "promiscuity enabled\n");
649 } else {
650 /* Don't Flood All Unicast Packets to Host port */
651 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
652
653 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
654 for (i = 0; i <= cpsw->data.slaves; i++) {
655 cpsw_ale_control_set(ale, i,
656 ALE_PORT_NOLEARN, 0);
657 cpsw_ale_control_set(ale, i,
658 ALE_PORT_NO_SA_UPDATE, 0);
659 }
660 dev_dbg(&ndev->dev, "promiscuity disabled\n");
661 }
662 }
663 }
664
cpsw_ndo_set_rx_mode(struct net_device * ndev)665 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
666 {
667 struct cpsw_priv *priv = netdev_priv(ndev);
668 struct cpsw_common *cpsw = priv->cpsw;
669 int vid;
670
671 if (cpsw->data.dual_emac)
672 vid = cpsw->slaves[priv->emac_port].port_vlan;
673 else
674 vid = cpsw->data.default_vlan;
675
676 if (ndev->flags & IFF_PROMISC) {
677 /* Enable promiscuous mode */
678 cpsw_set_promiscious(ndev, true);
679 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
680 return;
681 } else {
682 /* Disable promiscuous mode */
683 cpsw_set_promiscious(ndev, false);
684 }
685
686 /* Restore allmulti on vlans if necessary */
687 cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
688
689 /* Clear all mcast from ALE */
690 cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
691
692 if (!netdev_mc_empty(ndev)) {
693 struct netdev_hw_addr *ha;
694
695 /* program multicast address list into ALE register */
696 netdev_for_each_mc_addr(ha, ndev) {
697 cpsw_add_mcast(priv, ha->addr);
698 }
699 }
700 }
701
cpsw_intr_enable(struct cpsw_common * cpsw)702 static void cpsw_intr_enable(struct cpsw_common *cpsw)
703 {
704 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
705 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
706
707 cpdma_ctlr_int_ctrl(cpsw->dma, true);
708 return;
709 }
710
cpsw_intr_disable(struct cpsw_common * cpsw)711 static void cpsw_intr_disable(struct cpsw_common *cpsw)
712 {
713 writel_relaxed(0, &cpsw->wr_regs->tx_en);
714 writel_relaxed(0, &cpsw->wr_regs->rx_en);
715
716 cpdma_ctlr_int_ctrl(cpsw->dma, false);
717 return;
718 }
719
cpsw_tx_handler(void * token,int len,int status)720 static void cpsw_tx_handler(void *token, int len, int status)
721 {
722 struct netdev_queue *txq;
723 struct sk_buff *skb = token;
724 struct net_device *ndev = skb->dev;
725 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
726
727 /* Check whether the queue is stopped due to stalled tx dma, if the
728 * queue is stopped then start the queue as we have free desc for tx
729 */
730 txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
731 if (unlikely(netif_tx_queue_stopped(txq)))
732 netif_tx_wake_queue(txq);
733
734 cpts_tx_timestamp(cpsw->cpts, skb);
735 ndev->stats.tx_packets++;
736 ndev->stats.tx_bytes += len;
737 dev_kfree_skb_any(skb);
738 }
739
cpsw_rx_vlan_encap(struct sk_buff * skb)740 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
741 {
742 struct cpsw_priv *priv = netdev_priv(skb->dev);
743 struct cpsw_common *cpsw = priv->cpsw;
744 u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
745 u16 vtag, vid, prio, pkt_type;
746
747 /* Remove VLAN header encapsulation word */
748 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
749
750 pkt_type = (rx_vlan_encap_hdr >>
751 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
752 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
753 /* Ignore unknown & Priority-tagged packets*/
754 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
755 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
756 return;
757
758 vid = (rx_vlan_encap_hdr >>
759 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
760 VLAN_VID_MASK;
761 /* Ignore vid 0 and pass packet as is */
762 if (!vid)
763 return;
764 /* Ignore default vlans in dual mac mode */
765 if (cpsw->data.dual_emac &&
766 vid == cpsw->slaves[priv->emac_port].port_vlan)
767 return;
768
769 prio = (rx_vlan_encap_hdr >>
770 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
771 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
772
773 vtag = (prio << VLAN_PRIO_SHIFT) | vid;
774 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
775
776 /* strip vlan tag for VLAN-tagged packet */
777 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
778 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
779 skb_pull(skb, VLAN_HLEN);
780 }
781 }
782
cpsw_rx_handler(void * token,int len,int status)783 static void cpsw_rx_handler(void *token, int len, int status)
784 {
785 struct cpdma_chan *ch;
786 struct sk_buff *skb = token;
787 struct sk_buff *new_skb;
788 struct net_device *ndev = skb->dev;
789 int ret = 0, port;
790 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
791
792 if (cpsw->data.dual_emac) {
793 port = CPDMA_RX_SOURCE_PORT(status);
794 if (port) {
795 ndev = cpsw->slaves[--port].ndev;
796 skb->dev = ndev;
797 }
798 }
799
800 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
801 /* In dual emac mode check for all interfaces */
802 if (cpsw->data.dual_emac && cpsw->usage_count &&
803 (status >= 0)) {
804 /* The packet received is for the interface which
805 * is already down and the other interface is up
806 * and running, instead of freeing which results
807 * in reducing of the number of rx descriptor in
808 * DMA engine, requeue skb back to cpdma.
809 */
810 new_skb = skb;
811 goto requeue;
812 }
813
814 /* the interface is going down, skbs are purged */
815 dev_kfree_skb_any(skb);
816 return;
817 }
818
819 new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
820 if (new_skb) {
821 skb_copy_queue_mapping(new_skb, skb);
822 skb_put(skb, len);
823 if (status & CPDMA_RX_VLAN_ENCAP)
824 cpsw_rx_vlan_encap(skb);
825 cpts_rx_timestamp(cpsw->cpts, skb);
826 skb->protocol = eth_type_trans(skb, ndev);
827 netif_receive_skb(skb);
828 ndev->stats.rx_bytes += len;
829 ndev->stats.rx_packets++;
830 kmemleak_not_leak(new_skb);
831 } else {
832 ndev->stats.rx_dropped++;
833 new_skb = skb;
834 }
835
836 requeue:
837 if (netif_dormant(ndev)) {
838 dev_kfree_skb_any(new_skb);
839 return;
840 }
841
842 ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
843 ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
844 skb_tailroom(new_skb), 0);
845 if (WARN_ON(ret < 0))
846 dev_kfree_skb_any(new_skb);
847 }
848
cpsw_split_res(struct net_device * ndev)849 static void cpsw_split_res(struct net_device *ndev)
850 {
851 struct cpsw_priv *priv = netdev_priv(ndev);
852 u32 consumed_rate = 0, bigest_rate = 0;
853 struct cpsw_common *cpsw = priv->cpsw;
854 struct cpsw_vector *txv = cpsw->txv;
855 int i, ch_weight, rlim_ch_num = 0;
856 int budget, bigest_rate_ch = 0;
857 u32 ch_rate, max_rate;
858 int ch_budget = 0;
859
860 for (i = 0; i < cpsw->tx_ch_num; i++) {
861 ch_rate = cpdma_chan_get_rate(txv[i].ch);
862 if (!ch_rate)
863 continue;
864
865 rlim_ch_num++;
866 consumed_rate += ch_rate;
867 }
868
869 if (cpsw->tx_ch_num == rlim_ch_num) {
870 max_rate = consumed_rate;
871 } else if (!rlim_ch_num) {
872 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
873 bigest_rate = 0;
874 max_rate = consumed_rate;
875 } else {
876 max_rate = cpsw->speed * 1000;
877
878 /* if max_rate is less then expected due to reduced link speed,
879 * split proportionally according next potential max speed
880 */
881 if (max_rate < consumed_rate)
882 max_rate *= 10;
883
884 if (max_rate < consumed_rate)
885 max_rate *= 10;
886
887 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
888 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
889 (cpsw->tx_ch_num - rlim_ch_num);
890 bigest_rate = (max_rate - consumed_rate) /
891 (cpsw->tx_ch_num - rlim_ch_num);
892 }
893
894 /* split tx weight/budget */
895 budget = CPSW_POLL_WEIGHT;
896 for (i = 0; i < cpsw->tx_ch_num; i++) {
897 ch_rate = cpdma_chan_get_rate(txv[i].ch);
898 if (ch_rate) {
899 txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
900 if (!txv[i].budget)
901 txv[i].budget++;
902 if (ch_rate > bigest_rate) {
903 bigest_rate_ch = i;
904 bigest_rate = ch_rate;
905 }
906
907 ch_weight = (ch_rate * 100) / max_rate;
908 if (!ch_weight)
909 ch_weight++;
910 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
911 } else {
912 txv[i].budget = ch_budget;
913 if (!bigest_rate_ch)
914 bigest_rate_ch = i;
915 cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
916 }
917
918 budget -= txv[i].budget;
919 }
920
921 if (budget)
922 txv[bigest_rate_ch].budget += budget;
923
924 /* split rx budget */
925 budget = CPSW_POLL_WEIGHT;
926 ch_budget = budget / cpsw->rx_ch_num;
927 for (i = 0; i < cpsw->rx_ch_num; i++) {
928 cpsw->rxv[i].budget = ch_budget;
929 budget -= ch_budget;
930 }
931
932 if (budget)
933 cpsw->rxv[0].budget += budget;
934 }
935
cpsw_tx_interrupt(int irq,void * dev_id)936 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
937 {
938 struct cpsw_common *cpsw = dev_id;
939
940 writel(0, &cpsw->wr_regs->tx_en);
941 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
942
943 if (cpsw->quirk_irq) {
944 disable_irq_nosync(cpsw->irqs_table[1]);
945 cpsw->tx_irq_disabled = true;
946 }
947
948 napi_schedule(&cpsw->napi_tx);
949 return IRQ_HANDLED;
950 }
951
cpsw_rx_interrupt(int irq,void * dev_id)952 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
953 {
954 struct cpsw_common *cpsw = dev_id;
955
956 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
957 writel(0, &cpsw->wr_regs->rx_en);
958
959 if (cpsw->quirk_irq) {
960 disable_irq_nosync(cpsw->irqs_table[0]);
961 cpsw->rx_irq_disabled = true;
962 }
963
964 napi_schedule(&cpsw->napi_rx);
965 return IRQ_HANDLED;
966 }
967
cpsw_tx_mq_poll(struct napi_struct * napi_tx,int budget)968 static int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
969 {
970 u32 ch_map;
971 int num_tx, cur_budget, ch;
972 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
973 struct cpsw_vector *txv;
974
975 /* process every unprocessed channel */
976 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
977 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
978 if (!(ch_map & 0x80))
979 continue;
980
981 txv = &cpsw->txv[ch];
982 if (unlikely(txv->budget > budget - num_tx))
983 cur_budget = budget - num_tx;
984 else
985 cur_budget = txv->budget;
986
987 num_tx += cpdma_chan_process(txv->ch, cur_budget);
988 if (num_tx >= budget)
989 break;
990 }
991
992 if (num_tx < budget) {
993 napi_complete(napi_tx);
994 writel(0xff, &cpsw->wr_regs->tx_en);
995 }
996
997 return num_tx;
998 }
999
cpsw_tx_poll(struct napi_struct * napi_tx,int budget)1000 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
1001 {
1002 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
1003 int num_tx;
1004
1005 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
1006 if (num_tx < budget) {
1007 napi_complete(napi_tx);
1008 writel(0xff, &cpsw->wr_regs->tx_en);
1009 if (cpsw->tx_irq_disabled) {
1010 cpsw->tx_irq_disabled = false;
1011 enable_irq(cpsw->irqs_table[1]);
1012 }
1013 }
1014
1015 return num_tx;
1016 }
1017
cpsw_rx_mq_poll(struct napi_struct * napi_rx,int budget)1018 static int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
1019 {
1020 u32 ch_map;
1021 int num_rx, cur_budget, ch;
1022 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1023 struct cpsw_vector *rxv;
1024
1025 /* process every unprocessed channel */
1026 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1027 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1028 if (!(ch_map & 0x01))
1029 continue;
1030
1031 rxv = &cpsw->rxv[ch];
1032 if (unlikely(rxv->budget > budget - num_rx))
1033 cur_budget = budget - num_rx;
1034 else
1035 cur_budget = rxv->budget;
1036
1037 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1038 if (num_rx >= budget)
1039 break;
1040 }
1041
1042 if (num_rx < budget) {
1043 napi_complete_done(napi_rx, num_rx);
1044 writel(0xff, &cpsw->wr_regs->rx_en);
1045 }
1046
1047 return num_rx;
1048 }
1049
cpsw_rx_poll(struct napi_struct * napi_rx,int budget)1050 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
1051 {
1052 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
1053 int num_rx;
1054
1055 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
1056 if (num_rx < budget) {
1057 napi_complete_done(napi_rx, num_rx);
1058 writel(0xff, &cpsw->wr_regs->rx_en);
1059 if (cpsw->rx_irq_disabled) {
1060 cpsw->rx_irq_disabled = false;
1061 enable_irq(cpsw->irqs_table[0]);
1062 }
1063 }
1064
1065 return num_rx;
1066 }
1067
soft_reset(const char * module,void __iomem * reg)1068 static inline void soft_reset(const char *module, void __iomem *reg)
1069 {
1070 unsigned long timeout = jiffies + HZ;
1071
1072 writel_relaxed(1, reg);
1073 do {
1074 cpu_relax();
1075 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1076
1077 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1078 }
1079
cpsw_set_slave_mac(struct cpsw_slave * slave,struct cpsw_priv * priv)1080 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1081 struct cpsw_priv *priv)
1082 {
1083 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1084 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1085 }
1086
cpsw_shp_is_off(struct cpsw_priv * priv)1087 static bool cpsw_shp_is_off(struct cpsw_priv *priv)
1088 {
1089 struct cpsw_common *cpsw = priv->cpsw;
1090 struct cpsw_slave *slave;
1091 u32 shift, mask, val;
1092
1093 val = readl_relaxed(&cpsw->regs->ptype);
1094
1095 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1096 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1097 mask = 7 << shift;
1098 val = val & mask;
1099
1100 return !val;
1101 }
1102
cpsw_fifo_shp_on(struct cpsw_priv * priv,int fifo,int on)1103 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
1104 {
1105 struct cpsw_common *cpsw = priv->cpsw;
1106 struct cpsw_slave *slave;
1107 u32 shift, mask, val;
1108
1109 val = readl_relaxed(&cpsw->regs->ptype);
1110
1111 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1112 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
1113 mask = (1 << --fifo) << shift;
1114 val = on ? val | mask : val & ~mask;
1115
1116 writel_relaxed(val, &cpsw->regs->ptype);
1117 }
1118
_cpsw_adjust_link(struct cpsw_slave * slave,struct cpsw_priv * priv,bool * link)1119 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1120 struct cpsw_priv *priv, bool *link)
1121 {
1122 struct phy_device *phy = slave->phy;
1123 u32 mac_control = 0;
1124 u32 slave_port;
1125 struct cpsw_common *cpsw = priv->cpsw;
1126
1127 if (!phy)
1128 return;
1129
1130 slave_port = cpsw_get_slave_port(slave->slave_num);
1131
1132 if (phy->link) {
1133 mac_control = cpsw->data.mac_control;
1134
1135 /* enable forwarding */
1136 cpsw_ale_control_set(cpsw->ale, slave_port,
1137 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1138
1139 if (phy->speed == 1000)
1140 mac_control |= BIT(7); /* GIGABITEN */
1141 if (phy->duplex)
1142 mac_control |= BIT(0); /* FULLDUPLEXEN */
1143
1144 /* set speed_in input in case RMII mode is used in 100Mbps */
1145 if (phy->speed == 100)
1146 mac_control |= BIT(15);
1147 /* in band mode only works in 10Mbps RGMII mode */
1148 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1149 mac_control |= BIT(18); /* In Band mode */
1150
1151 if (priv->rx_pause)
1152 mac_control |= BIT(3);
1153
1154 if (priv->tx_pause)
1155 mac_control |= BIT(4);
1156
1157 *link = true;
1158
1159 if (priv->shp_cfg_speed &&
1160 priv->shp_cfg_speed != slave->phy->speed &&
1161 !cpsw_shp_is_off(priv))
1162 dev_warn(priv->dev,
1163 "Speed was changed, CBS shaper speeds are changed!");
1164 } else {
1165 mac_control = 0;
1166 /* disable forwarding */
1167 cpsw_ale_control_set(cpsw->ale, slave_port,
1168 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1169 }
1170
1171 if (mac_control != slave->mac_control) {
1172 phy_print_status(phy);
1173 writel_relaxed(mac_control, &slave->sliver->mac_control);
1174 }
1175
1176 slave->mac_control = mac_control;
1177 }
1178
cpsw_get_common_speed(struct cpsw_common * cpsw)1179 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1180 {
1181 int i, speed;
1182
1183 for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1184 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1185 speed += cpsw->slaves[i].phy->speed;
1186
1187 return speed;
1188 }
1189
cpsw_need_resplit(struct cpsw_common * cpsw)1190 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1191 {
1192 int i, rlim_ch_num;
1193 int speed, ch_rate;
1194
1195 /* re-split resources only in case speed was changed */
1196 speed = cpsw_get_common_speed(cpsw);
1197 if (speed == cpsw->speed || !speed)
1198 return 0;
1199
1200 cpsw->speed = speed;
1201
1202 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1203 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1204 if (!ch_rate)
1205 break;
1206
1207 rlim_ch_num++;
1208 }
1209
1210 /* cases not dependent on speed */
1211 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1212 return 0;
1213
1214 return 1;
1215 }
1216
cpsw_adjust_link(struct net_device * ndev)1217 static void cpsw_adjust_link(struct net_device *ndev)
1218 {
1219 struct cpsw_priv *priv = netdev_priv(ndev);
1220 struct cpsw_common *cpsw = priv->cpsw;
1221 bool link = false;
1222
1223 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1224
1225 if (link) {
1226 if (cpsw_need_resplit(cpsw))
1227 cpsw_split_res(ndev);
1228
1229 netif_carrier_on(ndev);
1230 if (netif_running(ndev))
1231 netif_tx_wake_all_queues(ndev);
1232 } else {
1233 netif_carrier_off(ndev);
1234 netif_tx_stop_all_queues(ndev);
1235 }
1236 }
1237
cpsw_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * coal)1238 static int cpsw_get_coalesce(struct net_device *ndev,
1239 struct ethtool_coalesce *coal)
1240 {
1241 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1242
1243 coal->rx_coalesce_usecs = cpsw->coal_intvl;
1244 return 0;
1245 }
1246
cpsw_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * coal)1247 static int cpsw_set_coalesce(struct net_device *ndev,
1248 struct ethtool_coalesce *coal)
1249 {
1250 struct cpsw_priv *priv = netdev_priv(ndev);
1251 u32 int_ctrl;
1252 u32 num_interrupts = 0;
1253 u32 prescale = 0;
1254 u32 addnl_dvdr = 1;
1255 u32 coal_intvl = 0;
1256 struct cpsw_common *cpsw = priv->cpsw;
1257
1258 coal_intvl = coal->rx_coalesce_usecs;
1259
1260 int_ctrl = readl(&cpsw->wr_regs->int_control);
1261 prescale = cpsw->bus_freq_mhz * 4;
1262
1263 if (!coal->rx_coalesce_usecs) {
1264 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1265 goto update_return;
1266 }
1267
1268 if (coal_intvl < CPSW_CMINTMIN_INTVL)
1269 coal_intvl = CPSW_CMINTMIN_INTVL;
1270
1271 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1272 /* Interrupt pacer works with 4us Pulse, we can
1273 * throttle further by dilating the 4us pulse.
1274 */
1275 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1276
1277 if (addnl_dvdr > 1) {
1278 prescale *= addnl_dvdr;
1279 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1280 coal_intvl = (CPSW_CMINTMAX_INTVL
1281 * addnl_dvdr);
1282 } else {
1283 addnl_dvdr = 1;
1284 coal_intvl = CPSW_CMINTMAX_INTVL;
1285 }
1286 }
1287
1288 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1289 writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1290 writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1291
1292 int_ctrl |= CPSW_INTPACEEN;
1293 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1294 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1295
1296 update_return:
1297 writel(int_ctrl, &cpsw->wr_regs->int_control);
1298
1299 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1300 cpsw->coal_intvl = coal_intvl;
1301
1302 return 0;
1303 }
1304
cpsw_get_sset_count(struct net_device * ndev,int sset)1305 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1306 {
1307 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1308
1309 switch (sset) {
1310 case ETH_SS_STATS:
1311 return (CPSW_STATS_COMMON_LEN +
1312 (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1313 CPSW_STATS_CH_LEN);
1314 default:
1315 return -EOPNOTSUPP;
1316 }
1317 }
1318
cpsw_add_ch_strings(u8 ** p,int ch_num,int rx_dir)1319 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1320 {
1321 int ch_stats_len;
1322 int line;
1323 int i;
1324
1325 ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1326 for (i = 0; i < ch_stats_len; i++) {
1327 line = i % CPSW_STATS_CH_LEN;
1328 snprintf(*p, ETH_GSTRING_LEN,
1329 "%s DMA chan %ld: %s", rx_dir ? "Rx" : "Tx",
1330 (long)(i / CPSW_STATS_CH_LEN),
1331 cpsw_gstrings_ch_stats[line].stat_string);
1332 *p += ETH_GSTRING_LEN;
1333 }
1334 }
1335
cpsw_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1336 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1337 {
1338 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1339 u8 *p = data;
1340 int i;
1341
1342 switch (stringset) {
1343 case ETH_SS_STATS:
1344 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1345 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1346 ETH_GSTRING_LEN);
1347 p += ETH_GSTRING_LEN;
1348 }
1349
1350 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1351 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1352 break;
1353 }
1354 }
1355
cpsw_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * stats,u64 * data)1356 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1357 struct ethtool_stats *stats, u64 *data)
1358 {
1359 u8 *p;
1360 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1361 struct cpdma_chan_stats ch_stats;
1362 int i, l, ch;
1363
1364 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1365 for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1366 data[l] = readl(cpsw->hw_stats +
1367 cpsw_gstrings_stats[l].stat_offset);
1368
1369 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1370 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1371 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1372 p = (u8 *)&ch_stats +
1373 cpsw_gstrings_ch_stats[i].stat_offset;
1374 data[l] = *(u32 *)p;
1375 }
1376 }
1377
1378 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1379 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1380 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1381 p = (u8 *)&ch_stats +
1382 cpsw_gstrings_ch_stats[i].stat_offset;
1383 data[l] = *(u32 *)p;
1384 }
1385 }
1386 }
1387
cpsw_tx_packet_submit(struct cpsw_priv * priv,struct sk_buff * skb,struct cpdma_chan * txch)1388 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1389 struct sk_buff *skb,
1390 struct cpdma_chan *txch)
1391 {
1392 struct cpsw_common *cpsw = priv->cpsw;
1393
1394 skb_tx_timestamp(skb);
1395 return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1396 priv->emac_port + cpsw->data.dual_emac);
1397 }
1398
cpsw_add_dual_emac_def_ale_entries(struct cpsw_priv * priv,struct cpsw_slave * slave,u32 slave_port)1399 static inline void cpsw_add_dual_emac_def_ale_entries(
1400 struct cpsw_priv *priv, struct cpsw_slave *slave,
1401 u32 slave_port)
1402 {
1403 struct cpsw_common *cpsw = priv->cpsw;
1404 u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1405
1406 if (cpsw->version == CPSW_VERSION_1)
1407 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1408 else
1409 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1410 cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1411 port_mask, port_mask, 0);
1412 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1413 port_mask, ALE_VLAN, slave->port_vlan, 0);
1414 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1415 HOST_PORT_NUM, ALE_VLAN |
1416 ALE_SECURE, slave->port_vlan);
1417 cpsw_ale_control_set(cpsw->ale, slave_port,
1418 ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1419 }
1420
soft_reset_slave(struct cpsw_slave * slave)1421 static void soft_reset_slave(struct cpsw_slave *slave)
1422 {
1423 char name[32];
1424
1425 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1426 soft_reset(name, &slave->sliver->soft_reset);
1427 }
1428
cpsw_slave_open(struct cpsw_slave * slave,struct cpsw_priv * priv)1429 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1430 {
1431 u32 slave_port;
1432 struct phy_device *phy;
1433 struct cpsw_common *cpsw = priv->cpsw;
1434
1435 soft_reset_slave(slave);
1436
1437 /* setup priority mapping */
1438 writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1439
1440 switch (cpsw->version) {
1441 case CPSW_VERSION_1:
1442 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1443 /* Increase RX FIFO size to 5 for supporting fullduplex
1444 * flow control mode
1445 */
1446 slave_write(slave,
1447 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1448 CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1449 break;
1450 case CPSW_VERSION_2:
1451 case CPSW_VERSION_3:
1452 case CPSW_VERSION_4:
1453 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1454 /* Increase RX FIFO size to 5 for supporting fullduplex
1455 * flow control mode
1456 */
1457 slave_write(slave,
1458 (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1459 CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1460 break;
1461 }
1462
1463 /* setup max packet size, and mac address */
1464 writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1465 cpsw_set_slave_mac(slave, priv);
1466
1467 slave->mac_control = 0; /* no link yet */
1468
1469 slave_port = cpsw_get_slave_port(slave->slave_num);
1470
1471 if (cpsw->data.dual_emac)
1472 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1473 else
1474 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1475 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1476
1477 if (slave->data->phy_node) {
1478 phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1479 &cpsw_adjust_link, 0, slave->data->phy_if);
1480 if (!phy) {
1481 dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1482 slave->data->phy_node,
1483 slave->slave_num);
1484 return;
1485 }
1486 } else {
1487 phy = phy_connect(priv->ndev, slave->data->phy_id,
1488 &cpsw_adjust_link, slave->data->phy_if);
1489 if (IS_ERR(phy)) {
1490 dev_err(priv->dev,
1491 "phy \"%s\" not found on slave %d, err %ld\n",
1492 slave->data->phy_id, slave->slave_num,
1493 PTR_ERR(phy));
1494 return;
1495 }
1496 }
1497
1498 slave->phy = phy;
1499
1500 phy_attached_info(slave->phy);
1501
1502 phy_start(slave->phy);
1503
1504 /* Configure GMII_SEL register */
1505 cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1506 }
1507
cpsw_add_default_vlan(struct cpsw_priv * priv)1508 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1509 {
1510 struct cpsw_common *cpsw = priv->cpsw;
1511 const int vlan = cpsw->data.default_vlan;
1512 u32 reg;
1513 int i;
1514 int unreg_mcast_mask;
1515
1516 reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1517 CPSW2_PORT_VLAN;
1518
1519 writel(vlan, &cpsw->host_port_regs->port_vlan);
1520
1521 for (i = 0; i < cpsw->data.slaves; i++)
1522 slave_write(cpsw->slaves + i, vlan, reg);
1523
1524 if (priv->ndev->flags & IFF_ALLMULTI)
1525 unreg_mcast_mask = ALE_ALL_PORTS;
1526 else
1527 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1528
1529 cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1530 ALE_ALL_PORTS, ALE_ALL_PORTS,
1531 unreg_mcast_mask);
1532 }
1533
cpsw_init_host_port(struct cpsw_priv * priv)1534 static void cpsw_init_host_port(struct cpsw_priv *priv)
1535 {
1536 u32 fifo_mode;
1537 u32 control_reg;
1538 struct cpsw_common *cpsw = priv->cpsw;
1539
1540 /* soft reset the controller and initialize ale */
1541 soft_reset("cpsw", &cpsw->regs->soft_reset);
1542 cpsw_ale_start(cpsw->ale);
1543
1544 /* switch to vlan unaware mode */
1545 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1546 CPSW_ALE_VLAN_AWARE);
1547 control_reg = readl(&cpsw->regs->control);
1548 control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1549 writel(control_reg, &cpsw->regs->control);
1550 fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1551 CPSW_FIFO_NORMAL_MODE;
1552 writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1553
1554 /* setup host port priority mapping */
1555 writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1556 &cpsw->host_port_regs->cpdma_tx_pri_map);
1557 writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1558
1559 cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1560 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1561
1562 if (!cpsw->data.dual_emac) {
1563 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1564 0, 0);
1565 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1566 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1567 }
1568 }
1569
cpsw_fill_rx_channels(struct cpsw_priv * priv)1570 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1571 {
1572 struct cpsw_common *cpsw = priv->cpsw;
1573 struct sk_buff *skb;
1574 int ch_buf_num;
1575 int ch, i, ret;
1576
1577 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1578 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1579 for (i = 0; i < ch_buf_num; i++) {
1580 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1581 cpsw->rx_packet_max,
1582 GFP_KERNEL);
1583 if (!skb) {
1584 cpsw_err(priv, ifup, "cannot allocate skb\n");
1585 return -ENOMEM;
1586 }
1587
1588 skb_set_queue_mapping(skb, ch);
1589 ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1590 skb->data, skb_tailroom(skb),
1591 0);
1592 if (ret < 0) {
1593 cpsw_err(priv, ifup,
1594 "cannot submit skb to channel %d rx, error %d\n",
1595 ch, ret);
1596 kfree_skb(skb);
1597 return ret;
1598 }
1599 kmemleak_not_leak(skb);
1600 }
1601
1602 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1603 ch, ch_buf_num);
1604 }
1605
1606 return 0;
1607 }
1608
cpsw_slave_stop(struct cpsw_slave * slave,struct cpsw_common * cpsw)1609 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1610 {
1611 u32 slave_port;
1612
1613 slave_port = cpsw_get_slave_port(slave->slave_num);
1614
1615 if (!slave->phy)
1616 return;
1617 phy_stop(slave->phy);
1618 phy_disconnect(slave->phy);
1619 slave->phy = NULL;
1620 cpsw_ale_control_set(cpsw->ale, slave_port,
1621 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1622 soft_reset_slave(slave);
1623 }
1624
cpsw_tc_to_fifo(int tc,int num_tc)1625 static int cpsw_tc_to_fifo(int tc, int num_tc)
1626 {
1627 if (tc == num_tc - 1)
1628 return 0;
1629
1630 return CPSW_FIFO_SHAPERS_NUM - tc;
1631 }
1632
cpsw_set_fifo_bw(struct cpsw_priv * priv,int fifo,int bw)1633 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
1634 {
1635 struct cpsw_common *cpsw = priv->cpsw;
1636 u32 val = 0, send_pct, shift;
1637 struct cpsw_slave *slave;
1638 int pct = 0, i;
1639
1640 if (bw > priv->shp_cfg_speed * 1000)
1641 goto err;
1642
1643 /* shaping has to stay enabled for highest fifos linearly
1644 * and fifo bw no more then interface can allow
1645 */
1646 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1647 send_pct = slave_read(slave, SEND_PERCENT);
1648 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
1649 if (!bw) {
1650 if (i >= fifo || !priv->fifo_bw[i])
1651 continue;
1652
1653 dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
1654 continue;
1655 }
1656
1657 if (!priv->fifo_bw[i] && i > fifo) {
1658 dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
1659 return -EINVAL;
1660 }
1661
1662 shift = (i - 1) * 8;
1663 if (i == fifo) {
1664 send_pct &= ~(CPSW_PCT_MASK << shift);
1665 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
1666 if (!val)
1667 val = 1;
1668
1669 send_pct |= val << shift;
1670 pct += val;
1671 continue;
1672 }
1673
1674 if (priv->fifo_bw[i])
1675 pct += (send_pct >> shift) & CPSW_PCT_MASK;
1676 }
1677
1678 if (pct >= 100)
1679 goto err;
1680
1681 slave_write(slave, send_pct, SEND_PERCENT);
1682 priv->fifo_bw[fifo] = bw;
1683
1684 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
1685 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
1686
1687 return 0;
1688 err:
1689 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
1690 return -EINVAL;
1691 }
1692
cpsw_set_fifo_rlimit(struct cpsw_priv * priv,int fifo,int bw)1693 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
1694 {
1695 struct cpsw_common *cpsw = priv->cpsw;
1696 struct cpsw_slave *slave;
1697 u32 tx_in_ctl_rg, val;
1698 int ret;
1699
1700 ret = cpsw_set_fifo_bw(priv, fifo, bw);
1701 if (ret)
1702 return ret;
1703
1704 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1705 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
1706 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
1707
1708 if (!bw)
1709 cpsw_fifo_shp_on(priv, fifo, bw);
1710
1711 val = slave_read(slave, tx_in_ctl_rg);
1712 if (cpsw_shp_is_off(priv)) {
1713 /* disable FIFOs rate limited queues */
1714 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
1715
1716 /* set type of FIFO queues to normal priority mode */
1717 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
1718
1719 /* set type of FIFO queues to be rate limited */
1720 if (bw)
1721 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
1722 else
1723 priv->shp_cfg_speed = 0;
1724 }
1725
1726 /* toggle a FIFO rate limited queue */
1727 if (bw)
1728 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1729 else
1730 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
1731 slave_write(slave, val, tx_in_ctl_rg);
1732
1733 /* FIFO transmit shape enable */
1734 cpsw_fifo_shp_on(priv, fifo, bw);
1735 return 0;
1736 }
1737
1738 /* Defaults:
1739 * class A - prio 3
1740 * class B - prio 2
1741 * shaping for class A should be set first
1742 */
cpsw_set_cbs(struct net_device * ndev,struct tc_cbs_qopt_offload * qopt)1743 static int cpsw_set_cbs(struct net_device *ndev,
1744 struct tc_cbs_qopt_offload *qopt)
1745 {
1746 struct cpsw_priv *priv = netdev_priv(ndev);
1747 struct cpsw_common *cpsw = priv->cpsw;
1748 struct cpsw_slave *slave;
1749 int prev_speed = 0;
1750 int tc, ret, fifo;
1751 u32 bw = 0;
1752
1753 tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
1754
1755 /* enable channels in backward order, as highest FIFOs must be rate
1756 * limited first and for compliance with CPDMA rate limited channels
1757 * that also used in bacward order. FIFO0 cannot be rate limited.
1758 */
1759 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
1760 if (!fifo) {
1761 dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
1762 return -EINVAL;
1763 }
1764
1765 /* do nothing, it's disabled anyway */
1766 if (!qopt->enable && !priv->fifo_bw[fifo])
1767 return 0;
1768
1769 /* shapers can be set if link speed is known */
1770 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1771 if (slave->phy && slave->phy->link) {
1772 if (priv->shp_cfg_speed &&
1773 priv->shp_cfg_speed != slave->phy->speed)
1774 prev_speed = priv->shp_cfg_speed;
1775
1776 priv->shp_cfg_speed = slave->phy->speed;
1777 }
1778
1779 if (!priv->shp_cfg_speed) {
1780 dev_err(priv->dev, "Link speed is not known");
1781 return -1;
1782 }
1783
1784 ret = pm_runtime_get_sync(cpsw->dev);
1785 if (ret < 0) {
1786 pm_runtime_put_noidle(cpsw->dev);
1787 return ret;
1788 }
1789
1790 bw = qopt->enable ? qopt->idleslope : 0;
1791 ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
1792 if (ret) {
1793 priv->shp_cfg_speed = prev_speed;
1794 prev_speed = 0;
1795 }
1796
1797 if (bw && prev_speed)
1798 dev_warn(priv->dev,
1799 "Speed was changed, CBS shaper speeds are changed!");
1800
1801 pm_runtime_put_sync(cpsw->dev);
1802 return ret;
1803 }
1804
cpsw_cbs_resume(struct cpsw_slave * slave,struct cpsw_priv * priv)1805 static void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1806 {
1807 int fifo, bw;
1808
1809 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1810 bw = priv->fifo_bw[fifo];
1811 if (!bw)
1812 continue;
1813
1814 cpsw_set_fifo_rlimit(priv, fifo, bw);
1815 }
1816 }
1817
cpsw_mqprio_resume(struct cpsw_slave * slave,struct cpsw_priv * priv)1818 static void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1819 {
1820 struct cpsw_common *cpsw = priv->cpsw;
1821 u32 tx_prio_map = 0;
1822 int i, tc, fifo;
1823 u32 tx_prio_rg;
1824
1825 if (!priv->mqprio_hw)
1826 return;
1827
1828 for (i = 0; i < 8; i++) {
1829 tc = netdev_get_prio_tc_map(priv->ndev, i);
1830 fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1831 tx_prio_map |= fifo << (4 * i);
1832 }
1833
1834 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1835 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1836
1837 slave_write(slave, tx_prio_map, tx_prio_rg);
1838 }
1839
1840 /* restore resources after port reset */
cpsw_restore(struct cpsw_priv * priv)1841 static void cpsw_restore(struct cpsw_priv *priv)
1842 {
1843 /* restore MQPRIO offload */
1844 for_each_slave(priv, cpsw_mqprio_resume, priv);
1845
1846 /* restore CBS offload */
1847 for_each_slave(priv, cpsw_cbs_resume, priv);
1848 }
1849
cpsw_ndo_open(struct net_device * ndev)1850 static int cpsw_ndo_open(struct net_device *ndev)
1851 {
1852 struct cpsw_priv *priv = netdev_priv(ndev);
1853 struct cpsw_common *cpsw = priv->cpsw;
1854 int ret;
1855 u32 reg;
1856
1857 ret = pm_runtime_get_sync(cpsw->dev);
1858 if (ret < 0) {
1859 pm_runtime_put_noidle(cpsw->dev);
1860 return ret;
1861 }
1862
1863 netif_carrier_off(ndev);
1864
1865 /* Notify the stack of the actual queue counts. */
1866 ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1867 if (ret) {
1868 dev_err(priv->dev, "cannot set real number of tx queues\n");
1869 goto err_cleanup;
1870 }
1871
1872 ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1873 if (ret) {
1874 dev_err(priv->dev, "cannot set real number of rx queues\n");
1875 goto err_cleanup;
1876 }
1877
1878 reg = cpsw->version;
1879
1880 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1881 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1882 CPSW_RTL_VERSION(reg));
1883
1884 /* Initialize host and slave ports */
1885 if (!cpsw->usage_count)
1886 cpsw_init_host_port(priv);
1887 for_each_slave(priv, cpsw_slave_open, priv);
1888
1889 /* Add default VLAN */
1890 if (!cpsw->data.dual_emac)
1891 cpsw_add_default_vlan(priv);
1892 else
1893 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1894 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1895
1896 /* initialize shared resources for every ndev */
1897 if (!cpsw->usage_count) {
1898 /* disable priority elevation */
1899 writel_relaxed(0, &cpsw->regs->ptype);
1900
1901 /* enable statistics collection only on all ports */
1902 writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1903
1904 /* Enable internal fifo flow control */
1905 writel(0x7, &cpsw->regs->flow_control);
1906
1907 napi_enable(&cpsw->napi_rx);
1908 napi_enable(&cpsw->napi_tx);
1909
1910 if (cpsw->tx_irq_disabled) {
1911 cpsw->tx_irq_disabled = false;
1912 enable_irq(cpsw->irqs_table[1]);
1913 }
1914
1915 if (cpsw->rx_irq_disabled) {
1916 cpsw->rx_irq_disabled = false;
1917 enable_irq(cpsw->irqs_table[0]);
1918 }
1919
1920 ret = cpsw_fill_rx_channels(priv);
1921 if (ret < 0)
1922 goto err_cleanup;
1923
1924 if (cpts_register(cpsw->cpts))
1925 dev_err(priv->dev, "error registering cpts device\n");
1926
1927 }
1928
1929 cpsw_restore(priv);
1930
1931 /* Enable Interrupt pacing if configured */
1932 if (cpsw->coal_intvl != 0) {
1933 struct ethtool_coalesce coal;
1934
1935 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1936 cpsw_set_coalesce(ndev, &coal);
1937 }
1938
1939 cpdma_ctlr_start(cpsw->dma);
1940 cpsw_intr_enable(cpsw);
1941 cpsw->usage_count++;
1942
1943 return 0;
1944
1945 err_cleanup:
1946 cpdma_ctlr_stop(cpsw->dma);
1947 for_each_slave(priv, cpsw_slave_stop, cpsw);
1948 pm_runtime_put_sync(cpsw->dev);
1949 netif_carrier_off(priv->ndev);
1950 return ret;
1951 }
1952
cpsw_ndo_stop(struct net_device * ndev)1953 static int cpsw_ndo_stop(struct net_device *ndev)
1954 {
1955 struct cpsw_priv *priv = netdev_priv(ndev);
1956 struct cpsw_common *cpsw = priv->cpsw;
1957
1958 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1959 netif_tx_stop_all_queues(priv->ndev);
1960 netif_carrier_off(priv->ndev);
1961
1962 if (cpsw->usage_count <= 1) {
1963 napi_disable(&cpsw->napi_rx);
1964 napi_disable(&cpsw->napi_tx);
1965 cpts_unregister(cpsw->cpts);
1966 cpsw_intr_disable(cpsw);
1967 cpdma_ctlr_stop(cpsw->dma);
1968 cpsw_ale_stop(cpsw->ale);
1969 }
1970 for_each_slave(priv, cpsw_slave_stop, cpsw);
1971
1972 if (cpsw_need_resplit(cpsw))
1973 cpsw_split_res(ndev);
1974
1975 cpsw->usage_count--;
1976 pm_runtime_put_sync(cpsw->dev);
1977 return 0;
1978 }
1979
cpsw_ndo_start_xmit(struct sk_buff * skb,struct net_device * ndev)1980 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1981 struct net_device *ndev)
1982 {
1983 struct cpsw_priv *priv = netdev_priv(ndev);
1984 struct cpsw_common *cpsw = priv->cpsw;
1985 struct cpts *cpts = cpsw->cpts;
1986 struct netdev_queue *txq;
1987 struct cpdma_chan *txch;
1988 int ret, q_idx;
1989
1990 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1991 cpsw_err(priv, tx_err, "packet pad failed\n");
1992 ndev->stats.tx_dropped++;
1993 return NET_XMIT_DROP;
1994 }
1995
1996 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1997 cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1998 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1999
2000 q_idx = skb_get_queue_mapping(skb);
2001 if (q_idx >= cpsw->tx_ch_num)
2002 q_idx = q_idx % cpsw->tx_ch_num;
2003
2004 txch = cpsw->txv[q_idx].ch;
2005 txq = netdev_get_tx_queue(ndev, q_idx);
2006 ret = cpsw_tx_packet_submit(priv, skb, txch);
2007 if (unlikely(ret != 0)) {
2008 cpsw_err(priv, tx_err, "desc submit failed\n");
2009 goto fail;
2010 }
2011
2012 /* If there is no more tx desc left free then we need to
2013 * tell the kernel to stop sending us tx frames.
2014 */
2015 if (unlikely(!cpdma_check_free_tx_desc(txch))) {
2016 netif_tx_stop_queue(txq);
2017
2018 /* Barrier, so that stop_queue visible to other cpus */
2019 smp_mb__after_atomic();
2020
2021 if (cpdma_check_free_tx_desc(txch))
2022 netif_tx_wake_queue(txq);
2023 }
2024
2025 return NETDEV_TX_OK;
2026 fail:
2027 ndev->stats.tx_dropped++;
2028 netif_tx_stop_queue(txq);
2029
2030 /* Barrier, so that stop_queue visible to other cpus */
2031 smp_mb__after_atomic();
2032
2033 if (cpdma_check_free_tx_desc(txch))
2034 netif_tx_wake_queue(txq);
2035
2036 return NETDEV_TX_BUSY;
2037 }
2038
2039 #if IS_ENABLED(CONFIG_TI_CPTS)
2040
cpsw_hwtstamp_v1(struct cpsw_common * cpsw)2041 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
2042 {
2043 struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
2044 u32 ts_en, seq_id;
2045
2046 if (!cpts_is_tx_enabled(cpsw->cpts) &&
2047 !cpts_is_rx_enabled(cpsw->cpts)) {
2048 slave_write(slave, 0, CPSW1_TS_CTL);
2049 return;
2050 }
2051
2052 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
2053 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
2054
2055 if (cpts_is_tx_enabled(cpsw->cpts))
2056 ts_en |= CPSW_V1_TS_TX_EN;
2057
2058 if (cpts_is_rx_enabled(cpsw->cpts))
2059 ts_en |= CPSW_V1_TS_RX_EN;
2060
2061 slave_write(slave, ts_en, CPSW1_TS_CTL);
2062 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
2063 }
2064
cpsw_hwtstamp_v2(struct cpsw_priv * priv)2065 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
2066 {
2067 struct cpsw_slave *slave;
2068 struct cpsw_common *cpsw = priv->cpsw;
2069 u32 ctrl, mtype;
2070
2071 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2072
2073 ctrl = slave_read(slave, CPSW2_CONTROL);
2074 switch (cpsw->version) {
2075 case CPSW_VERSION_2:
2076 ctrl &= ~CTRL_V2_ALL_TS_MASK;
2077
2078 if (cpts_is_tx_enabled(cpsw->cpts))
2079 ctrl |= CTRL_V2_TX_TS_BITS;
2080
2081 if (cpts_is_rx_enabled(cpsw->cpts))
2082 ctrl |= CTRL_V2_RX_TS_BITS;
2083 break;
2084 case CPSW_VERSION_3:
2085 default:
2086 ctrl &= ~CTRL_V3_ALL_TS_MASK;
2087
2088 if (cpts_is_tx_enabled(cpsw->cpts))
2089 ctrl |= CTRL_V3_TX_TS_BITS;
2090
2091 if (cpts_is_rx_enabled(cpsw->cpts))
2092 ctrl |= CTRL_V3_RX_TS_BITS;
2093 break;
2094 }
2095
2096 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
2097
2098 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
2099 slave_write(slave, ctrl, CPSW2_CONTROL);
2100 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
2101 }
2102
cpsw_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)2103 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2104 {
2105 struct cpsw_priv *priv = netdev_priv(dev);
2106 struct hwtstamp_config cfg;
2107 struct cpsw_common *cpsw = priv->cpsw;
2108 struct cpts *cpts = cpsw->cpts;
2109
2110 if (cpsw->version != CPSW_VERSION_1 &&
2111 cpsw->version != CPSW_VERSION_2 &&
2112 cpsw->version != CPSW_VERSION_3)
2113 return -EOPNOTSUPP;
2114
2115 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
2116 return -EFAULT;
2117
2118 /* reserved for future extensions */
2119 if (cfg.flags)
2120 return -EINVAL;
2121
2122 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
2123 return -ERANGE;
2124
2125 switch (cfg.rx_filter) {
2126 case HWTSTAMP_FILTER_NONE:
2127 cpts_rx_enable(cpts, 0);
2128 break;
2129 case HWTSTAMP_FILTER_ALL:
2130 case HWTSTAMP_FILTER_NTP_ALL:
2131 return -ERANGE;
2132 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2133 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2134 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2135 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
2136 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
2137 break;
2138 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2139 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2140 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2141 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2142 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2143 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2144 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2145 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2146 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2147 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
2148 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
2149 break;
2150 default:
2151 return -ERANGE;
2152 }
2153
2154 cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
2155
2156 switch (cpsw->version) {
2157 case CPSW_VERSION_1:
2158 cpsw_hwtstamp_v1(cpsw);
2159 break;
2160 case CPSW_VERSION_2:
2161 case CPSW_VERSION_3:
2162 cpsw_hwtstamp_v2(priv);
2163 break;
2164 default:
2165 WARN_ON(1);
2166 }
2167
2168 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2169 }
2170
cpsw_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)2171 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2172 {
2173 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
2174 struct cpts *cpts = cpsw->cpts;
2175 struct hwtstamp_config cfg;
2176
2177 if (cpsw->version != CPSW_VERSION_1 &&
2178 cpsw->version != CPSW_VERSION_2 &&
2179 cpsw->version != CPSW_VERSION_3)
2180 return -EOPNOTSUPP;
2181
2182 cfg.flags = 0;
2183 cfg.tx_type = cpts_is_tx_enabled(cpts) ?
2184 HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2185 cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
2186 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
2187
2188 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
2189 }
2190 #else
cpsw_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)2191 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
2192 {
2193 return -EOPNOTSUPP;
2194 }
2195
cpsw_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)2196 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
2197 {
2198 return -EOPNOTSUPP;
2199 }
2200 #endif /*CONFIG_TI_CPTS*/
2201
cpsw_ndo_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2202 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2203 {
2204 struct cpsw_priv *priv = netdev_priv(dev);
2205 struct cpsw_common *cpsw = priv->cpsw;
2206 int slave_no = cpsw_slave_index(cpsw, priv);
2207
2208 if (!netif_running(dev))
2209 return -EINVAL;
2210
2211 switch (cmd) {
2212 case SIOCSHWTSTAMP:
2213 return cpsw_hwtstamp_set(dev, req);
2214 case SIOCGHWTSTAMP:
2215 return cpsw_hwtstamp_get(dev, req);
2216 }
2217
2218 if (!cpsw->slaves[slave_no].phy)
2219 return -EOPNOTSUPP;
2220 return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
2221 }
2222
cpsw_ndo_tx_timeout(struct net_device * ndev)2223 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
2224 {
2225 struct cpsw_priv *priv = netdev_priv(ndev);
2226 struct cpsw_common *cpsw = priv->cpsw;
2227 int ch;
2228
2229 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
2230 ndev->stats.tx_errors++;
2231 cpsw_intr_disable(cpsw);
2232 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
2233 cpdma_chan_stop(cpsw->txv[ch].ch);
2234 cpdma_chan_start(cpsw->txv[ch].ch);
2235 }
2236
2237 cpsw_intr_enable(cpsw);
2238 netif_trans_update(ndev);
2239 netif_tx_wake_all_queues(ndev);
2240 }
2241
cpsw_ndo_set_mac_address(struct net_device * ndev,void * p)2242 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
2243 {
2244 struct cpsw_priv *priv = netdev_priv(ndev);
2245 struct sockaddr *addr = (struct sockaddr *)p;
2246 struct cpsw_common *cpsw = priv->cpsw;
2247 int flags = 0;
2248 u16 vid = 0;
2249 int ret;
2250
2251 if (!is_valid_ether_addr(addr->sa_data))
2252 return -EADDRNOTAVAIL;
2253
2254 ret = pm_runtime_get_sync(cpsw->dev);
2255 if (ret < 0) {
2256 pm_runtime_put_noidle(cpsw->dev);
2257 return ret;
2258 }
2259
2260 if (cpsw->data.dual_emac) {
2261 vid = cpsw->slaves[priv->emac_port].port_vlan;
2262 flags = ALE_VLAN;
2263 }
2264
2265 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
2266 flags, vid);
2267 cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
2268 flags, vid);
2269
2270 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
2271 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2272 for_each_slave(priv, cpsw_set_slave_mac, priv);
2273
2274 pm_runtime_put(cpsw->dev);
2275
2276 return 0;
2277 }
2278
2279 #ifdef CONFIG_NET_POLL_CONTROLLER
cpsw_ndo_poll_controller(struct net_device * ndev)2280 static void cpsw_ndo_poll_controller(struct net_device *ndev)
2281 {
2282 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2283
2284 cpsw_intr_disable(cpsw);
2285 cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
2286 cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
2287 cpsw_intr_enable(cpsw);
2288 }
2289 #endif
2290
cpsw_add_vlan_ale_entry(struct cpsw_priv * priv,unsigned short vid)2291 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
2292 unsigned short vid)
2293 {
2294 int ret;
2295 int unreg_mcast_mask = 0;
2296 u32 port_mask;
2297 struct cpsw_common *cpsw = priv->cpsw;
2298
2299 if (cpsw->data.dual_emac) {
2300 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2301
2302 if (priv->ndev->flags & IFF_ALLMULTI)
2303 unreg_mcast_mask = port_mask;
2304 } else {
2305 port_mask = ALE_ALL_PORTS;
2306
2307 if (priv->ndev->flags & IFF_ALLMULTI)
2308 unreg_mcast_mask = ALE_ALL_PORTS;
2309 else
2310 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2311 }
2312
2313 ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2314 unreg_mcast_mask);
2315 if (ret != 0)
2316 return ret;
2317
2318 ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2319 HOST_PORT_NUM, ALE_VLAN, vid);
2320 if (ret != 0)
2321 goto clean_vid;
2322
2323 ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2324 port_mask, ALE_VLAN, vid, 0);
2325 if (ret != 0)
2326 goto clean_vlan_ucast;
2327 return 0;
2328
2329 clean_vlan_ucast:
2330 cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2331 HOST_PORT_NUM, ALE_VLAN, vid);
2332 clean_vid:
2333 cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2334 return ret;
2335 }
2336
cpsw_ndo_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)2337 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2338 __be16 proto, u16 vid)
2339 {
2340 struct cpsw_priv *priv = netdev_priv(ndev);
2341 struct cpsw_common *cpsw = priv->cpsw;
2342 int ret;
2343
2344 if (vid == cpsw->data.default_vlan)
2345 return 0;
2346
2347 ret = pm_runtime_get_sync(cpsw->dev);
2348 if (ret < 0) {
2349 pm_runtime_put_noidle(cpsw->dev);
2350 return ret;
2351 }
2352
2353 if (cpsw->data.dual_emac) {
2354 /* In dual EMAC, reserved VLAN id should not be used for
2355 * creating VLAN interfaces as this can break the dual
2356 * EMAC port separation
2357 */
2358 int i;
2359
2360 for (i = 0; i < cpsw->data.slaves; i++) {
2361 if (vid == cpsw->slaves[i].port_vlan) {
2362 ret = -EINVAL;
2363 goto err;
2364 }
2365 }
2366 }
2367
2368 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2369 ret = cpsw_add_vlan_ale_entry(priv, vid);
2370 err:
2371 pm_runtime_put(cpsw->dev);
2372 return ret;
2373 }
2374
cpsw_ndo_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)2375 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2376 __be16 proto, u16 vid)
2377 {
2378 struct cpsw_priv *priv = netdev_priv(ndev);
2379 struct cpsw_common *cpsw = priv->cpsw;
2380 int ret;
2381
2382 if (vid == cpsw->data.default_vlan)
2383 return 0;
2384
2385 ret = pm_runtime_get_sync(cpsw->dev);
2386 if (ret < 0) {
2387 pm_runtime_put_noidle(cpsw->dev);
2388 return ret;
2389 }
2390
2391 if (cpsw->data.dual_emac) {
2392 int i;
2393
2394 for (i = 0; i < cpsw->data.slaves; i++) {
2395 if (vid == cpsw->slaves[i].port_vlan)
2396 goto err;
2397 }
2398 }
2399
2400 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2401 ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2402 ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2403 HOST_PORT_NUM, ALE_VLAN, vid);
2404 ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2405 0, ALE_VLAN, vid);
2406 err:
2407 pm_runtime_put(cpsw->dev);
2408 return ret;
2409 }
2410
cpsw_ndo_set_tx_maxrate(struct net_device * ndev,int queue,u32 rate)2411 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2412 {
2413 struct cpsw_priv *priv = netdev_priv(ndev);
2414 struct cpsw_common *cpsw = priv->cpsw;
2415 struct cpsw_slave *slave;
2416 u32 min_rate;
2417 u32 ch_rate;
2418 int i, ret;
2419
2420 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2421 if (ch_rate == rate)
2422 return 0;
2423
2424 ch_rate = rate * 1000;
2425 min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2426 if ((ch_rate < min_rate && ch_rate)) {
2427 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2428 min_rate);
2429 return -EINVAL;
2430 }
2431
2432 if (rate > cpsw->speed) {
2433 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2434 return -EINVAL;
2435 }
2436
2437 ret = pm_runtime_get_sync(cpsw->dev);
2438 if (ret < 0) {
2439 pm_runtime_put_noidle(cpsw->dev);
2440 return ret;
2441 }
2442
2443 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2444 pm_runtime_put(cpsw->dev);
2445
2446 if (ret)
2447 return ret;
2448
2449 /* update rates for slaves tx queues */
2450 for (i = 0; i < cpsw->data.slaves; i++) {
2451 slave = &cpsw->slaves[i];
2452 if (!slave->ndev)
2453 continue;
2454
2455 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2456 }
2457
2458 cpsw_split_res(ndev);
2459 return ret;
2460 }
2461
cpsw_set_mqprio(struct net_device * ndev,void * type_data)2462 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
2463 {
2464 struct tc_mqprio_qopt_offload *mqprio = type_data;
2465 struct cpsw_priv *priv = netdev_priv(ndev);
2466 struct cpsw_common *cpsw = priv->cpsw;
2467 int fifo, num_tc, count, offset;
2468 struct cpsw_slave *slave;
2469 u32 tx_prio_map = 0;
2470 int i, tc, ret;
2471
2472 num_tc = mqprio->qopt.num_tc;
2473 if (num_tc > CPSW_TC_NUM)
2474 return -EINVAL;
2475
2476 if (mqprio->mode != TC_MQPRIO_MODE_DCB)
2477 return -EINVAL;
2478
2479 ret = pm_runtime_get_sync(cpsw->dev);
2480 if (ret < 0) {
2481 pm_runtime_put_noidle(cpsw->dev);
2482 return ret;
2483 }
2484
2485 if (num_tc) {
2486 for (i = 0; i < 8; i++) {
2487 tc = mqprio->qopt.prio_tc_map[i];
2488 fifo = cpsw_tc_to_fifo(tc, num_tc);
2489 tx_prio_map |= fifo << (4 * i);
2490 }
2491
2492 netdev_set_num_tc(ndev, num_tc);
2493 for (i = 0; i < num_tc; i++) {
2494 count = mqprio->qopt.count[i];
2495 offset = mqprio->qopt.offset[i];
2496 netdev_set_tc_queue(ndev, i, count, offset);
2497 }
2498 }
2499
2500 if (!mqprio->qopt.hw) {
2501 /* restore default configuration */
2502 netdev_reset_tc(ndev);
2503 tx_prio_map = TX_PRIORITY_MAPPING;
2504 }
2505
2506 priv->mqprio_hw = mqprio->qopt.hw;
2507
2508 offset = cpsw->version == CPSW_VERSION_1 ?
2509 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
2510
2511 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
2512 slave_write(slave, tx_prio_map, offset);
2513
2514 pm_runtime_put_sync(cpsw->dev);
2515
2516 return 0;
2517 }
2518
cpsw_ndo_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)2519 static int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
2520 void *type_data)
2521 {
2522 switch (type) {
2523 case TC_SETUP_QDISC_CBS:
2524 return cpsw_set_cbs(ndev, type_data);
2525
2526 case TC_SETUP_QDISC_MQPRIO:
2527 return cpsw_set_mqprio(ndev, type_data);
2528
2529 default:
2530 return -EOPNOTSUPP;
2531 }
2532 }
2533
2534 static const struct net_device_ops cpsw_netdev_ops = {
2535 .ndo_open = cpsw_ndo_open,
2536 .ndo_stop = cpsw_ndo_stop,
2537 .ndo_start_xmit = cpsw_ndo_start_xmit,
2538 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
2539 .ndo_do_ioctl = cpsw_ndo_ioctl,
2540 .ndo_validate_addr = eth_validate_addr,
2541 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
2542 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
2543 .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate,
2544 #ifdef CONFIG_NET_POLL_CONTROLLER
2545 .ndo_poll_controller = cpsw_ndo_poll_controller,
2546 #endif
2547 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
2548 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
2549 .ndo_setup_tc = cpsw_ndo_setup_tc,
2550 };
2551
cpsw_get_regs_len(struct net_device * ndev)2552 static int cpsw_get_regs_len(struct net_device *ndev)
2553 {
2554 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2555
2556 return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2557 }
2558
cpsw_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * p)2559 static void cpsw_get_regs(struct net_device *ndev,
2560 struct ethtool_regs *regs, void *p)
2561 {
2562 u32 *reg = p;
2563 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2564
2565 /* update CPSW IP version */
2566 regs->version = cpsw->version;
2567
2568 cpsw_ale_dump(cpsw->ale, reg);
2569 }
2570
cpsw_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2571 static void cpsw_get_drvinfo(struct net_device *ndev,
2572 struct ethtool_drvinfo *info)
2573 {
2574 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2575 struct platform_device *pdev = to_platform_device(cpsw->dev);
2576
2577 strlcpy(info->driver, "cpsw", sizeof(info->driver));
2578 strlcpy(info->version, "1.0", sizeof(info->version));
2579 strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2580 }
2581
cpsw_get_msglevel(struct net_device * ndev)2582 static u32 cpsw_get_msglevel(struct net_device *ndev)
2583 {
2584 struct cpsw_priv *priv = netdev_priv(ndev);
2585 return priv->msg_enable;
2586 }
2587
cpsw_set_msglevel(struct net_device * ndev,u32 value)2588 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2589 {
2590 struct cpsw_priv *priv = netdev_priv(ndev);
2591 priv->msg_enable = value;
2592 }
2593
2594 #if IS_ENABLED(CONFIG_TI_CPTS)
cpsw_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2595 static int cpsw_get_ts_info(struct net_device *ndev,
2596 struct ethtool_ts_info *info)
2597 {
2598 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2599
2600 info->so_timestamping =
2601 SOF_TIMESTAMPING_TX_HARDWARE |
2602 SOF_TIMESTAMPING_TX_SOFTWARE |
2603 SOF_TIMESTAMPING_RX_HARDWARE |
2604 SOF_TIMESTAMPING_RX_SOFTWARE |
2605 SOF_TIMESTAMPING_SOFTWARE |
2606 SOF_TIMESTAMPING_RAW_HARDWARE;
2607 info->phc_index = cpsw->cpts->phc_index;
2608 info->tx_types =
2609 (1 << HWTSTAMP_TX_OFF) |
2610 (1 << HWTSTAMP_TX_ON);
2611 info->rx_filters =
2612 (1 << HWTSTAMP_FILTER_NONE) |
2613 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2614 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2615 return 0;
2616 }
2617 #else
cpsw_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2618 static int cpsw_get_ts_info(struct net_device *ndev,
2619 struct ethtool_ts_info *info)
2620 {
2621 info->so_timestamping =
2622 SOF_TIMESTAMPING_TX_SOFTWARE |
2623 SOF_TIMESTAMPING_RX_SOFTWARE |
2624 SOF_TIMESTAMPING_SOFTWARE;
2625 info->phc_index = -1;
2626 info->tx_types = 0;
2627 info->rx_filters = 0;
2628 return 0;
2629 }
2630 #endif
2631
cpsw_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * ecmd)2632 static int cpsw_get_link_ksettings(struct net_device *ndev,
2633 struct ethtool_link_ksettings *ecmd)
2634 {
2635 struct cpsw_priv *priv = netdev_priv(ndev);
2636 struct cpsw_common *cpsw = priv->cpsw;
2637 int slave_no = cpsw_slave_index(cpsw, priv);
2638
2639 if (!cpsw->slaves[slave_no].phy)
2640 return -EOPNOTSUPP;
2641
2642 phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2643 return 0;
2644 }
2645
cpsw_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * ecmd)2646 static int cpsw_set_link_ksettings(struct net_device *ndev,
2647 const struct ethtool_link_ksettings *ecmd)
2648 {
2649 struct cpsw_priv *priv = netdev_priv(ndev);
2650 struct cpsw_common *cpsw = priv->cpsw;
2651 int slave_no = cpsw_slave_index(cpsw, priv);
2652
2653 if (cpsw->slaves[slave_no].phy)
2654 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2655 ecmd);
2656 else
2657 return -EOPNOTSUPP;
2658 }
2659
cpsw_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2660 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2661 {
2662 struct cpsw_priv *priv = netdev_priv(ndev);
2663 struct cpsw_common *cpsw = priv->cpsw;
2664 int slave_no = cpsw_slave_index(cpsw, priv);
2665
2666 wol->supported = 0;
2667 wol->wolopts = 0;
2668
2669 if (cpsw->slaves[slave_no].phy)
2670 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2671 }
2672
cpsw_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2673 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2674 {
2675 struct cpsw_priv *priv = netdev_priv(ndev);
2676 struct cpsw_common *cpsw = priv->cpsw;
2677 int slave_no = cpsw_slave_index(cpsw, priv);
2678
2679 if (cpsw->slaves[slave_no].phy)
2680 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2681 else
2682 return -EOPNOTSUPP;
2683 }
2684
cpsw_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2685 static void cpsw_get_pauseparam(struct net_device *ndev,
2686 struct ethtool_pauseparam *pause)
2687 {
2688 struct cpsw_priv *priv = netdev_priv(ndev);
2689
2690 pause->autoneg = AUTONEG_DISABLE;
2691 pause->rx_pause = priv->rx_pause ? true : false;
2692 pause->tx_pause = priv->tx_pause ? true : false;
2693 }
2694
cpsw_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2695 static int cpsw_set_pauseparam(struct net_device *ndev,
2696 struct ethtool_pauseparam *pause)
2697 {
2698 struct cpsw_priv *priv = netdev_priv(ndev);
2699 bool link;
2700
2701 priv->rx_pause = pause->rx_pause ? true : false;
2702 priv->tx_pause = pause->tx_pause ? true : false;
2703
2704 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2705 return 0;
2706 }
2707
cpsw_ethtool_op_begin(struct net_device * ndev)2708 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2709 {
2710 struct cpsw_priv *priv = netdev_priv(ndev);
2711 struct cpsw_common *cpsw = priv->cpsw;
2712 int ret;
2713
2714 ret = pm_runtime_get_sync(cpsw->dev);
2715 if (ret < 0) {
2716 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2717 pm_runtime_put_noidle(cpsw->dev);
2718 }
2719
2720 return ret;
2721 }
2722
cpsw_ethtool_op_complete(struct net_device * ndev)2723 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2724 {
2725 struct cpsw_priv *priv = netdev_priv(ndev);
2726 int ret;
2727
2728 ret = pm_runtime_put(priv->cpsw->dev);
2729 if (ret < 0)
2730 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2731 }
2732
cpsw_get_channels(struct net_device * ndev,struct ethtool_channels * ch)2733 static void cpsw_get_channels(struct net_device *ndev,
2734 struct ethtool_channels *ch)
2735 {
2736 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2737
2738 ch->max_rx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2739 ch->max_tx = cpsw->quirk_irq ? 1 : CPSW_MAX_QUEUES;
2740 ch->max_combined = 0;
2741 ch->max_other = 0;
2742 ch->other_count = 0;
2743 ch->rx_count = cpsw->rx_ch_num;
2744 ch->tx_count = cpsw->tx_ch_num;
2745 ch->combined_count = 0;
2746 }
2747
cpsw_check_ch_settings(struct cpsw_common * cpsw,struct ethtool_channels * ch)2748 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2749 struct ethtool_channels *ch)
2750 {
2751 if (cpsw->quirk_irq) {
2752 dev_err(cpsw->dev, "Maximum one tx/rx queue is allowed");
2753 return -EOPNOTSUPP;
2754 }
2755
2756 if (ch->combined_count)
2757 return -EINVAL;
2758
2759 /* verify we have at least one channel in each direction */
2760 if (!ch->rx_count || !ch->tx_count)
2761 return -EINVAL;
2762
2763 if (ch->rx_count > cpsw->data.channels ||
2764 ch->tx_count > cpsw->data.channels)
2765 return -EINVAL;
2766
2767 return 0;
2768 }
2769
cpsw_update_channels_res(struct cpsw_priv * priv,int ch_num,int rx)2770 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2771 {
2772 struct cpsw_common *cpsw = priv->cpsw;
2773 void (*handler)(void *, int, int);
2774 struct netdev_queue *queue;
2775 struct cpsw_vector *vec;
2776 int ret, *ch, vch;
2777
2778 if (rx) {
2779 ch = &cpsw->rx_ch_num;
2780 vec = cpsw->rxv;
2781 handler = cpsw_rx_handler;
2782 } else {
2783 ch = &cpsw->tx_ch_num;
2784 vec = cpsw->txv;
2785 handler = cpsw_tx_handler;
2786 }
2787
2788 while (*ch < ch_num) {
2789 vch = rx ? *ch : 7 - *ch;
2790 vec[*ch].ch = cpdma_chan_create(cpsw->dma, vch, handler, rx);
2791 queue = netdev_get_tx_queue(priv->ndev, *ch);
2792 queue->tx_maxrate = 0;
2793
2794 if (IS_ERR(vec[*ch].ch))
2795 return PTR_ERR(vec[*ch].ch);
2796
2797 if (!vec[*ch].ch)
2798 return -EINVAL;
2799
2800 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2801 (rx ? "rx" : "tx"));
2802 (*ch)++;
2803 }
2804
2805 while (*ch > ch_num) {
2806 (*ch)--;
2807
2808 ret = cpdma_chan_destroy(vec[*ch].ch);
2809 if (ret)
2810 return ret;
2811
2812 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2813 (rx ? "rx" : "tx"));
2814 }
2815
2816 return 0;
2817 }
2818
cpsw_update_channels(struct cpsw_priv * priv,struct ethtool_channels * ch)2819 static int cpsw_update_channels(struct cpsw_priv *priv,
2820 struct ethtool_channels *ch)
2821 {
2822 int ret;
2823
2824 ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2825 if (ret)
2826 return ret;
2827
2828 ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2829 if (ret)
2830 return ret;
2831
2832 return 0;
2833 }
2834
cpsw_suspend_data_pass(struct net_device * ndev)2835 static void cpsw_suspend_data_pass(struct net_device *ndev)
2836 {
2837 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2838 struct cpsw_slave *slave;
2839 int i;
2840
2841 /* Disable NAPI scheduling */
2842 cpsw_intr_disable(cpsw);
2843
2844 /* Stop all transmit queues for every network device.
2845 * Disable re-using rx descriptors with dormant_on.
2846 */
2847 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2848 if (!(slave->ndev && netif_running(slave->ndev)))
2849 continue;
2850
2851 netif_tx_stop_all_queues(slave->ndev);
2852 netif_dormant_on(slave->ndev);
2853 }
2854
2855 /* Handle rest of tx packets and stop cpdma channels */
2856 cpdma_ctlr_stop(cpsw->dma);
2857 }
2858
cpsw_resume_data_pass(struct net_device * ndev)2859 static int cpsw_resume_data_pass(struct net_device *ndev)
2860 {
2861 struct cpsw_priv *priv = netdev_priv(ndev);
2862 struct cpsw_common *cpsw = priv->cpsw;
2863 struct cpsw_slave *slave;
2864 int i, ret;
2865
2866 /* Allow rx packets handling */
2867 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2868 if (slave->ndev && netif_running(slave->ndev))
2869 netif_dormant_off(slave->ndev);
2870
2871 /* After this receive is started */
2872 if (cpsw->usage_count) {
2873 ret = cpsw_fill_rx_channels(priv);
2874 if (ret)
2875 return ret;
2876
2877 cpdma_ctlr_start(cpsw->dma);
2878 cpsw_intr_enable(cpsw);
2879 }
2880
2881 /* Resume transmit for every affected interface */
2882 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2883 if (slave->ndev && netif_running(slave->ndev))
2884 netif_tx_start_all_queues(slave->ndev);
2885
2886 return 0;
2887 }
2888
cpsw_set_channels(struct net_device * ndev,struct ethtool_channels * chs)2889 static int cpsw_set_channels(struct net_device *ndev,
2890 struct ethtool_channels *chs)
2891 {
2892 struct cpsw_priv *priv = netdev_priv(ndev);
2893 struct cpsw_common *cpsw = priv->cpsw;
2894 struct cpsw_slave *slave;
2895 int i, ret;
2896
2897 ret = cpsw_check_ch_settings(cpsw, chs);
2898 if (ret < 0)
2899 return ret;
2900
2901 cpsw_suspend_data_pass(ndev);
2902 ret = cpsw_update_channels(priv, chs);
2903 if (ret)
2904 goto err;
2905
2906 for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2907 if (!(slave->ndev && netif_running(slave->ndev)))
2908 continue;
2909
2910 /* Inform stack about new count of queues */
2911 ret = netif_set_real_num_tx_queues(slave->ndev,
2912 cpsw->tx_ch_num);
2913 if (ret) {
2914 dev_err(priv->dev, "cannot set real number of tx queues\n");
2915 goto err;
2916 }
2917
2918 ret = netif_set_real_num_rx_queues(slave->ndev,
2919 cpsw->rx_ch_num);
2920 if (ret) {
2921 dev_err(priv->dev, "cannot set real number of rx queues\n");
2922 goto err;
2923 }
2924 }
2925
2926 if (cpsw->usage_count)
2927 cpsw_split_res(ndev);
2928
2929 ret = cpsw_resume_data_pass(ndev);
2930 if (!ret)
2931 return 0;
2932 err:
2933 dev_err(priv->dev, "cannot update channels number, closing device\n");
2934 dev_close(ndev);
2935 return ret;
2936 }
2937
cpsw_get_eee(struct net_device * ndev,struct ethtool_eee * edata)2938 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2939 {
2940 struct cpsw_priv *priv = netdev_priv(ndev);
2941 struct cpsw_common *cpsw = priv->cpsw;
2942 int slave_no = cpsw_slave_index(cpsw, priv);
2943
2944 if (cpsw->slaves[slave_no].phy)
2945 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2946 else
2947 return -EOPNOTSUPP;
2948 }
2949
cpsw_set_eee(struct net_device * ndev,struct ethtool_eee * edata)2950 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2951 {
2952 struct cpsw_priv *priv = netdev_priv(ndev);
2953 struct cpsw_common *cpsw = priv->cpsw;
2954 int slave_no = cpsw_slave_index(cpsw, priv);
2955
2956 if (cpsw->slaves[slave_no].phy)
2957 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2958 else
2959 return -EOPNOTSUPP;
2960 }
2961
cpsw_nway_reset(struct net_device * ndev)2962 static int cpsw_nway_reset(struct net_device *ndev)
2963 {
2964 struct cpsw_priv *priv = netdev_priv(ndev);
2965 struct cpsw_common *cpsw = priv->cpsw;
2966 int slave_no = cpsw_slave_index(cpsw, priv);
2967
2968 if (cpsw->slaves[slave_no].phy)
2969 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2970 else
2971 return -EOPNOTSUPP;
2972 }
2973
cpsw_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering)2974 static void cpsw_get_ringparam(struct net_device *ndev,
2975 struct ethtool_ringparam *ering)
2976 {
2977 struct cpsw_priv *priv = netdev_priv(ndev);
2978 struct cpsw_common *cpsw = priv->cpsw;
2979
2980 /* not supported */
2981 ering->tx_max_pending = 0;
2982 ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2983 ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2984 ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2985 }
2986
cpsw_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering)2987 static int cpsw_set_ringparam(struct net_device *ndev,
2988 struct ethtool_ringparam *ering)
2989 {
2990 struct cpsw_priv *priv = netdev_priv(ndev);
2991 struct cpsw_common *cpsw = priv->cpsw;
2992 int ret;
2993
2994 /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2995
2996 if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2997 ering->rx_pending < CPSW_MAX_QUEUES ||
2998 ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2999 return -EINVAL;
3000
3001 if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
3002 return 0;
3003
3004 cpsw_suspend_data_pass(ndev);
3005
3006 cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
3007
3008 if (cpsw->usage_count)
3009 cpdma_chan_split_pool(cpsw->dma);
3010
3011 ret = cpsw_resume_data_pass(ndev);
3012 if (!ret)
3013 return 0;
3014
3015 dev_err(&ndev->dev, "cannot set ring params, closing device\n");
3016 dev_close(ndev);
3017 return ret;
3018 }
3019
3020 static const struct ethtool_ops cpsw_ethtool_ops = {
3021 .get_drvinfo = cpsw_get_drvinfo,
3022 .get_msglevel = cpsw_get_msglevel,
3023 .set_msglevel = cpsw_set_msglevel,
3024 .get_link = ethtool_op_get_link,
3025 .get_ts_info = cpsw_get_ts_info,
3026 .get_coalesce = cpsw_get_coalesce,
3027 .set_coalesce = cpsw_set_coalesce,
3028 .get_sset_count = cpsw_get_sset_count,
3029 .get_strings = cpsw_get_strings,
3030 .get_ethtool_stats = cpsw_get_ethtool_stats,
3031 .get_pauseparam = cpsw_get_pauseparam,
3032 .set_pauseparam = cpsw_set_pauseparam,
3033 .get_wol = cpsw_get_wol,
3034 .set_wol = cpsw_set_wol,
3035 .get_regs_len = cpsw_get_regs_len,
3036 .get_regs = cpsw_get_regs,
3037 .begin = cpsw_ethtool_op_begin,
3038 .complete = cpsw_ethtool_op_complete,
3039 .get_channels = cpsw_get_channels,
3040 .set_channels = cpsw_set_channels,
3041 .get_link_ksettings = cpsw_get_link_ksettings,
3042 .set_link_ksettings = cpsw_set_link_ksettings,
3043 .get_eee = cpsw_get_eee,
3044 .set_eee = cpsw_set_eee,
3045 .nway_reset = cpsw_nway_reset,
3046 .get_ringparam = cpsw_get_ringparam,
3047 .set_ringparam = cpsw_set_ringparam,
3048 };
3049
cpsw_slave_init(struct cpsw_slave * slave,struct cpsw_common * cpsw,u32 slave_reg_ofs,u32 sliver_reg_ofs)3050 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
3051 u32 slave_reg_ofs, u32 sliver_reg_ofs)
3052 {
3053 void __iomem *regs = cpsw->regs;
3054 int slave_num = slave->slave_num;
3055 struct cpsw_slave_data *data = cpsw->data.slave_data + slave_num;
3056
3057 slave->data = data;
3058 slave->regs = regs + slave_reg_ofs;
3059 slave->sliver = regs + sliver_reg_ofs;
3060 slave->port_vlan = data->dual_emac_res_vlan;
3061 }
3062
cpsw_probe_dt(struct cpsw_platform_data * data,struct platform_device * pdev)3063 static int cpsw_probe_dt(struct cpsw_platform_data *data,
3064 struct platform_device *pdev)
3065 {
3066 struct device_node *node = pdev->dev.of_node;
3067 struct device_node *slave_node;
3068 int i = 0, ret;
3069 u32 prop;
3070
3071 if (!node)
3072 return -EINVAL;
3073
3074 if (of_property_read_u32(node, "slaves", &prop)) {
3075 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
3076 return -EINVAL;
3077 }
3078 data->slaves = prop;
3079
3080 if (of_property_read_u32(node, "active_slave", &prop)) {
3081 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
3082 return -EINVAL;
3083 }
3084 data->active_slave = prop;
3085
3086 data->slave_data = devm_kcalloc(&pdev->dev,
3087 data->slaves,
3088 sizeof(struct cpsw_slave_data),
3089 GFP_KERNEL);
3090 if (!data->slave_data)
3091 return -ENOMEM;
3092
3093 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
3094 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
3095 return -EINVAL;
3096 }
3097 data->channels = prop;
3098
3099 if (of_property_read_u32(node, "ale_entries", &prop)) {
3100 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
3101 return -EINVAL;
3102 }
3103 data->ale_entries = prop;
3104
3105 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
3106 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
3107 return -EINVAL;
3108 }
3109 data->bd_ram_size = prop;
3110
3111 if (of_property_read_u32(node, "mac_control", &prop)) {
3112 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
3113 return -EINVAL;
3114 }
3115 data->mac_control = prop;
3116
3117 if (of_property_read_bool(node, "dual_emac"))
3118 data->dual_emac = 1;
3119
3120 /*
3121 * Populate all the child nodes here...
3122 */
3123 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
3124 /* We do not want to force this, as in some cases may not have child */
3125 if (ret)
3126 dev_warn(&pdev->dev, "Doesn't have any child node\n");
3127
3128 for_each_available_child_of_node(node, slave_node) {
3129 struct cpsw_slave_data *slave_data = data->slave_data + i;
3130 const void *mac_addr = NULL;
3131 int lenp;
3132 const __be32 *parp;
3133
3134 /* This is no slave child node, continue */
3135 if (strcmp(slave_node->name, "slave"))
3136 continue;
3137
3138 slave_data->phy_node = of_parse_phandle(slave_node,
3139 "phy-handle", 0);
3140 parp = of_get_property(slave_node, "phy_id", &lenp);
3141 if (slave_data->phy_node) {
3142 dev_dbg(&pdev->dev,
3143 "slave[%d] using phy-handle=\"%pOF\"\n",
3144 i, slave_data->phy_node);
3145 } else if (of_phy_is_fixed_link(slave_node)) {
3146 /* In the case of a fixed PHY, the DT node associated
3147 * to the PHY is the Ethernet MAC DT node.
3148 */
3149 ret = of_phy_register_fixed_link(slave_node);
3150 if (ret) {
3151 if (ret != -EPROBE_DEFER)
3152 dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
3153 return ret;
3154 }
3155 slave_data->phy_node = of_node_get(slave_node);
3156 } else if (parp) {
3157 u32 phyid;
3158 struct device_node *mdio_node;
3159 struct platform_device *mdio;
3160
3161 if (lenp != (sizeof(__be32) * 2)) {
3162 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
3163 goto no_phy_slave;
3164 }
3165 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
3166 phyid = be32_to_cpup(parp+1);
3167 mdio = of_find_device_by_node(mdio_node);
3168 of_node_put(mdio_node);
3169 if (!mdio) {
3170 dev_err(&pdev->dev, "Missing mdio platform device\n");
3171 return -EINVAL;
3172 }
3173 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
3174 PHY_ID_FMT, mdio->name, phyid);
3175 put_device(&mdio->dev);
3176 } else {
3177 dev_err(&pdev->dev,
3178 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
3179 i);
3180 goto no_phy_slave;
3181 }
3182 slave_data->phy_if = of_get_phy_mode(slave_node);
3183 if (slave_data->phy_if < 0) {
3184 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
3185 i);
3186 return slave_data->phy_if;
3187 }
3188
3189 no_phy_slave:
3190 mac_addr = of_get_mac_address(slave_node);
3191 if (mac_addr) {
3192 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
3193 } else {
3194 ret = ti_cm_get_macid(&pdev->dev, i,
3195 slave_data->mac_addr);
3196 if (ret)
3197 return ret;
3198 }
3199 if (data->dual_emac) {
3200 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
3201 &prop)) {
3202 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
3203 slave_data->dual_emac_res_vlan = i+1;
3204 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
3205 slave_data->dual_emac_res_vlan, i);
3206 } else {
3207 slave_data->dual_emac_res_vlan = prop;
3208 }
3209 }
3210
3211 i++;
3212 if (i == data->slaves)
3213 break;
3214 }
3215
3216 return 0;
3217 }
3218
cpsw_remove_dt(struct platform_device * pdev)3219 static void cpsw_remove_dt(struct platform_device *pdev)
3220 {
3221 struct net_device *ndev = platform_get_drvdata(pdev);
3222 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3223 struct cpsw_platform_data *data = &cpsw->data;
3224 struct device_node *node = pdev->dev.of_node;
3225 struct device_node *slave_node;
3226 int i = 0;
3227
3228 for_each_available_child_of_node(node, slave_node) {
3229 struct cpsw_slave_data *slave_data = &data->slave_data[i];
3230
3231 if (strcmp(slave_node->name, "slave"))
3232 continue;
3233
3234 if (of_phy_is_fixed_link(slave_node))
3235 of_phy_deregister_fixed_link(slave_node);
3236
3237 of_node_put(slave_data->phy_node);
3238
3239 i++;
3240 if (i == data->slaves)
3241 break;
3242 }
3243
3244 of_platform_depopulate(&pdev->dev);
3245 }
3246
cpsw_probe_dual_emac(struct cpsw_priv * priv)3247 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
3248 {
3249 struct cpsw_common *cpsw = priv->cpsw;
3250 struct cpsw_platform_data *data = &cpsw->data;
3251 struct net_device *ndev;
3252 struct cpsw_priv *priv_sl2;
3253 int ret = 0;
3254
3255 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3256 if (!ndev) {
3257 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
3258 return -ENOMEM;
3259 }
3260
3261 priv_sl2 = netdev_priv(ndev);
3262 priv_sl2->cpsw = cpsw;
3263 priv_sl2->ndev = ndev;
3264 priv_sl2->dev = &ndev->dev;
3265 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3266
3267 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
3268 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
3269 ETH_ALEN);
3270 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
3271 priv_sl2->mac_addr);
3272 } else {
3273 eth_random_addr(priv_sl2->mac_addr);
3274 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
3275 priv_sl2->mac_addr);
3276 }
3277 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
3278
3279 priv_sl2->emac_port = 1;
3280 cpsw->slaves[1].ndev = ndev;
3281 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3282
3283 ndev->netdev_ops = &cpsw_netdev_ops;
3284 ndev->ethtool_ops = &cpsw_ethtool_ops;
3285
3286 /* register the network device */
3287 SET_NETDEV_DEV(ndev, cpsw->dev);
3288 ret = register_netdev(ndev);
3289 if (ret) {
3290 dev_err(cpsw->dev, "cpsw: error registering net device\n");
3291 free_netdev(ndev);
3292 ret = -ENODEV;
3293 }
3294
3295 return ret;
3296 }
3297
3298 static const struct of_device_id cpsw_of_mtable[] = {
3299 { .compatible = "ti,cpsw"},
3300 { .compatible = "ti,am335x-cpsw"},
3301 { .compatible = "ti,am4372-cpsw"},
3302 { .compatible = "ti,dra7-cpsw"},
3303 { /* sentinel */ },
3304 };
3305 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
3306
3307 static const struct soc_device_attribute cpsw_soc_devices[] = {
3308 { .family = "AM33xx", .revision = "ES1.0"},
3309 { /* sentinel */ }
3310 };
3311
cpsw_probe(struct platform_device * pdev)3312 static int cpsw_probe(struct platform_device *pdev)
3313 {
3314 struct clk *clk;
3315 struct cpsw_platform_data *data;
3316 struct net_device *ndev;
3317 struct cpsw_priv *priv;
3318 struct cpdma_params dma_params;
3319 struct cpsw_ale_params ale_params;
3320 void __iomem *ss_regs;
3321 void __iomem *cpts_regs;
3322 struct resource *res, *ss_res;
3323 struct gpio_descs *mode;
3324 u32 slave_offset, sliver_offset, slave_size;
3325 const struct soc_device_attribute *soc;
3326 struct cpsw_common *cpsw;
3327 int ret = 0, i, ch;
3328 int irq;
3329
3330 cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
3331 if (!cpsw)
3332 return -ENOMEM;
3333
3334 cpsw->dev = &pdev->dev;
3335
3336 ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
3337 if (!ndev) {
3338 dev_err(&pdev->dev, "error allocating net_device\n");
3339 return -ENOMEM;
3340 }
3341
3342 platform_set_drvdata(pdev, ndev);
3343 priv = netdev_priv(ndev);
3344 priv->cpsw = cpsw;
3345 priv->ndev = ndev;
3346 priv->dev = &ndev->dev;
3347 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
3348 cpsw->rx_packet_max = max(rx_packet_max, 128);
3349
3350 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
3351 if (IS_ERR(mode)) {
3352 ret = PTR_ERR(mode);
3353 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
3354 goto clean_ndev_ret;
3355 }
3356
3357 /*
3358 * This may be required here for child devices.
3359 */
3360 pm_runtime_enable(&pdev->dev);
3361
3362 /* Select default pin state */
3363 pinctrl_pm_select_default_state(&pdev->dev);
3364
3365 /* Need to enable clocks with runtime PM api to access module
3366 * registers
3367 */
3368 ret = pm_runtime_get_sync(&pdev->dev);
3369 if (ret < 0) {
3370 pm_runtime_put_noidle(&pdev->dev);
3371 goto clean_runtime_disable_ret;
3372 }
3373
3374 ret = cpsw_probe_dt(&cpsw->data, pdev);
3375 if (ret)
3376 goto clean_dt_ret;
3377
3378 data = &cpsw->data;
3379 cpsw->rx_ch_num = 1;
3380 cpsw->tx_ch_num = 1;
3381
3382 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3383 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3384 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3385 } else {
3386 eth_random_addr(priv->mac_addr);
3387 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3388 }
3389
3390 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3391
3392 cpsw->slaves = devm_kcalloc(&pdev->dev,
3393 data->slaves, sizeof(struct cpsw_slave),
3394 GFP_KERNEL);
3395 if (!cpsw->slaves) {
3396 ret = -ENOMEM;
3397 goto clean_dt_ret;
3398 }
3399 for (i = 0; i < data->slaves; i++)
3400 cpsw->slaves[i].slave_num = i;
3401
3402 cpsw->slaves[0].ndev = ndev;
3403 priv->emac_port = 0;
3404
3405 clk = devm_clk_get(&pdev->dev, "fck");
3406 if (IS_ERR(clk)) {
3407 dev_err(priv->dev, "fck is not found\n");
3408 ret = -ENODEV;
3409 goto clean_dt_ret;
3410 }
3411 cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3412
3413 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3414 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3415 if (IS_ERR(ss_regs)) {
3416 ret = PTR_ERR(ss_regs);
3417 goto clean_dt_ret;
3418 }
3419 cpsw->regs = ss_regs;
3420
3421 cpsw->version = readl(&cpsw->regs->id_ver);
3422
3423 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3424 cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3425 if (IS_ERR(cpsw->wr_regs)) {
3426 ret = PTR_ERR(cpsw->wr_regs);
3427 goto clean_dt_ret;
3428 }
3429
3430 memset(&dma_params, 0, sizeof(dma_params));
3431 memset(&ale_params, 0, sizeof(ale_params));
3432
3433 switch (cpsw->version) {
3434 case CPSW_VERSION_1:
3435 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3436 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
3437 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
3438 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
3439 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
3440 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
3441 slave_offset = CPSW1_SLAVE_OFFSET;
3442 slave_size = CPSW1_SLAVE_SIZE;
3443 sliver_offset = CPSW1_SLIVER_OFFSET;
3444 dma_params.desc_mem_phys = 0;
3445 break;
3446 case CPSW_VERSION_2:
3447 case CPSW_VERSION_3:
3448 case CPSW_VERSION_4:
3449 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3450 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
3451 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
3452 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
3453 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
3454 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
3455 slave_offset = CPSW2_SLAVE_OFFSET;
3456 slave_size = CPSW2_SLAVE_SIZE;
3457 sliver_offset = CPSW2_SLIVER_OFFSET;
3458 dma_params.desc_mem_phys =
3459 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3460 break;
3461 default:
3462 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3463 ret = -ENODEV;
3464 goto clean_dt_ret;
3465 }
3466 for (i = 0; i < cpsw->data.slaves; i++) {
3467 struct cpsw_slave *slave = &cpsw->slaves[i];
3468
3469 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3470 slave_offset += slave_size;
3471 sliver_offset += SLIVER_SIZE;
3472 }
3473
3474 dma_params.dev = &pdev->dev;
3475 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
3476 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
3477 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
3478 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
3479 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
3480
3481 dma_params.num_chan = data->channels;
3482 dma_params.has_soft_reset = true;
3483 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
3484 dma_params.desc_mem_size = data->bd_ram_size;
3485 dma_params.desc_align = 16;
3486 dma_params.has_ext_regs = true;
3487 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
3488 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
3489 dma_params.descs_pool_size = descs_pool_size;
3490
3491 cpsw->dma = cpdma_ctlr_create(&dma_params);
3492 if (!cpsw->dma) {
3493 dev_err(priv->dev, "error initializing dma\n");
3494 ret = -ENOMEM;
3495 goto clean_dt_ret;
3496 }
3497
3498 soc = soc_device_match(cpsw_soc_devices);
3499 if (soc)
3500 cpsw->quirk_irq = 1;
3501
3502 ch = cpsw->quirk_irq ? 0 : 7;
3503 cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
3504 if (IS_ERR(cpsw->txv[0].ch)) {
3505 dev_err(priv->dev, "error initializing tx dma channel\n");
3506 ret = PTR_ERR(cpsw->txv[0].ch);
3507 goto clean_dma_ret;
3508 }
3509
3510 cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3511 if (IS_ERR(cpsw->rxv[0].ch)) {
3512 dev_err(priv->dev, "error initializing rx dma channel\n");
3513 ret = PTR_ERR(cpsw->rxv[0].ch);
3514 goto clean_dma_ret;
3515 }
3516
3517 ale_params.dev = &pdev->dev;
3518 ale_params.ale_ageout = ale_ageout;
3519 ale_params.ale_entries = data->ale_entries;
3520 ale_params.ale_ports = CPSW_ALE_PORTS_NUM;
3521
3522 cpsw->ale = cpsw_ale_create(&ale_params);
3523 if (!cpsw->ale) {
3524 dev_err(priv->dev, "error initializing ale engine\n");
3525 ret = -ENODEV;
3526 goto clean_dma_ret;
3527 }
3528
3529 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3530 if (IS_ERR(cpsw->cpts)) {
3531 ret = PTR_ERR(cpsw->cpts);
3532 goto clean_dma_ret;
3533 }
3534
3535 ndev->irq = platform_get_irq(pdev, 1);
3536 if (ndev->irq < 0) {
3537 dev_err(priv->dev, "error getting irq resource\n");
3538 ret = ndev->irq;
3539 goto clean_dma_ret;
3540 }
3541
3542 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3543
3544 ndev->netdev_ops = &cpsw_netdev_ops;
3545 ndev->ethtool_ops = &cpsw_ethtool_ops;
3546 netif_napi_add(ndev, &cpsw->napi_rx,
3547 cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
3548 CPSW_POLL_WEIGHT);
3549 netif_tx_napi_add(ndev, &cpsw->napi_tx,
3550 cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
3551 CPSW_POLL_WEIGHT);
3552 cpsw_split_res(ndev);
3553
3554 /* register the network device */
3555 SET_NETDEV_DEV(ndev, &pdev->dev);
3556 ret = register_netdev(ndev);
3557 if (ret) {
3558 dev_err(priv->dev, "error registering net device\n");
3559 ret = -ENODEV;
3560 goto clean_dma_ret;
3561 }
3562
3563 if (cpsw->data.dual_emac) {
3564 ret = cpsw_probe_dual_emac(priv);
3565 if (ret) {
3566 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3567 goto clean_unregister_netdev_ret;
3568 }
3569 }
3570
3571 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3572 * MISC IRQs which are always kept disabled with this driver so
3573 * we will not request them.
3574 *
3575 * If anyone wants to implement support for those, make sure to
3576 * first request and append them to irqs_table array.
3577 */
3578
3579 /* RX IRQ */
3580 irq = platform_get_irq(pdev, 1);
3581 if (irq < 0) {
3582 ret = irq;
3583 goto clean_dma_ret;
3584 }
3585
3586 cpsw->irqs_table[0] = irq;
3587 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3588 0, dev_name(&pdev->dev), cpsw);
3589 if (ret < 0) {
3590 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3591 goto clean_dma_ret;
3592 }
3593
3594 /* TX IRQ */
3595 irq = platform_get_irq(pdev, 2);
3596 if (irq < 0) {
3597 ret = irq;
3598 goto clean_dma_ret;
3599 }
3600
3601 cpsw->irqs_table[1] = irq;
3602 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3603 0, dev_name(&pdev->dev), cpsw);
3604 if (ret < 0) {
3605 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3606 goto clean_dma_ret;
3607 }
3608
3609 cpsw_notice(priv, probe,
3610 "initialized device (regs %pa, irq %d, pool size %d)\n",
3611 &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3612
3613 pm_runtime_put(&pdev->dev);
3614
3615 return 0;
3616
3617 clean_unregister_netdev_ret:
3618 unregister_netdev(ndev);
3619 clean_dma_ret:
3620 cpdma_ctlr_destroy(cpsw->dma);
3621 clean_dt_ret:
3622 cpsw_remove_dt(pdev);
3623 pm_runtime_put_sync(&pdev->dev);
3624 clean_runtime_disable_ret:
3625 pm_runtime_disable(&pdev->dev);
3626 clean_ndev_ret:
3627 free_netdev(priv->ndev);
3628 return ret;
3629 }
3630
cpsw_remove(struct platform_device * pdev)3631 static int cpsw_remove(struct platform_device *pdev)
3632 {
3633 struct net_device *ndev = platform_get_drvdata(pdev);
3634 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3635 int ret;
3636
3637 ret = pm_runtime_get_sync(&pdev->dev);
3638 if (ret < 0) {
3639 pm_runtime_put_noidle(&pdev->dev);
3640 return ret;
3641 }
3642
3643 if (cpsw->data.dual_emac)
3644 unregister_netdev(cpsw->slaves[1].ndev);
3645 unregister_netdev(ndev);
3646
3647 cpts_release(cpsw->cpts);
3648 cpdma_ctlr_destroy(cpsw->dma);
3649 cpsw_remove_dt(pdev);
3650 pm_runtime_put_sync(&pdev->dev);
3651 pm_runtime_disable(&pdev->dev);
3652 if (cpsw->data.dual_emac)
3653 free_netdev(cpsw->slaves[1].ndev);
3654 free_netdev(ndev);
3655 return 0;
3656 }
3657
3658 #ifdef CONFIG_PM_SLEEP
cpsw_suspend(struct device * dev)3659 static int cpsw_suspend(struct device *dev)
3660 {
3661 struct platform_device *pdev = to_platform_device(dev);
3662 struct net_device *ndev = platform_get_drvdata(pdev);
3663 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3664
3665 if (cpsw->data.dual_emac) {
3666 int i;
3667
3668 for (i = 0; i < cpsw->data.slaves; i++) {
3669 if (netif_running(cpsw->slaves[i].ndev))
3670 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3671 }
3672 } else {
3673 if (netif_running(ndev))
3674 cpsw_ndo_stop(ndev);
3675 }
3676
3677 /* Select sleep pin state */
3678 pinctrl_pm_select_sleep_state(dev);
3679
3680 return 0;
3681 }
3682
cpsw_resume(struct device * dev)3683 static int cpsw_resume(struct device *dev)
3684 {
3685 struct platform_device *pdev = to_platform_device(dev);
3686 struct net_device *ndev = platform_get_drvdata(pdev);
3687 struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3688
3689 /* Select default pin state */
3690 pinctrl_pm_select_default_state(dev);
3691
3692 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3693 rtnl_lock();
3694 if (cpsw->data.dual_emac) {
3695 int i;
3696
3697 for (i = 0; i < cpsw->data.slaves; i++) {
3698 if (netif_running(cpsw->slaves[i].ndev))
3699 cpsw_ndo_open(cpsw->slaves[i].ndev);
3700 }
3701 } else {
3702 if (netif_running(ndev))
3703 cpsw_ndo_open(ndev);
3704 }
3705 rtnl_unlock();
3706
3707 return 0;
3708 }
3709 #endif
3710
3711 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3712
3713 static struct platform_driver cpsw_driver = {
3714 .driver = {
3715 .name = "cpsw",
3716 .pm = &cpsw_pm_ops,
3717 .of_match_table = cpsw_of_mtable,
3718 },
3719 .probe = cpsw_probe,
3720 .remove = cpsw_remove,
3721 };
3722
3723 module_platform_driver(cpsw_driver);
3724
3725 MODULE_LICENSE("GPL");
3726 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3727 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3728 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
3729