1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
54
55
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <linux/uaccess.h>
80
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
101 NETIF_MSG_PROBE | \
102 NETIF_MSG_LINK)
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
112 CP_STATS_SIZE)
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
119
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
122
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
128
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
131
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
135
136 enum {
137 /* NIC register offsets */
138 MAC0 = 0x00, /* Ethernet hardware address. */
139 MAR0 = 0x08, /* Multicast filter. */
140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd = 0x37, /* Command register */
144 IntrMask = 0x3C, /* Interrupt mask */
145 IntrStatus = 0x3E, /* Interrupt status */
146 TxConfig = 0x40, /* Tx configuration */
147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig = 0x44, /* Rx configuration */
149 RxMissed = 0x4C, /* 24 bits valid, write clears */
150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1 = 0x52, /* Config1 */
152 Config3 = 0x59, /* Config3 */
153 Config4 = 0x5A, /* Config4 */
154 MultiIntr = 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl = 0x62, /* MII BMCR */
156 BasicModeStatus = 0x64, /* MII BMSR */
157 NWayAdvert = 0x66, /* MII ADVERTISE */
158 NWayLPAR = 0x68, /* MII LPA */
159 NWayExpansion = 0x6A, /* MII Expansion */
160 TxDmaOkLowDesc = 0x82, /* Low 16 bit address of a Tx descriptor. */
161 Config5 = 0xD8, /* Config5 */
162 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
163 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
164 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
165 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
166 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
167 TxThresh = 0xEC, /* Early Tx threshold */
168 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
169 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
170
171 /* Tx and Rx status descriptors */
172 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
173 RingEnd = (1 << 30), /* End of descriptor ring */
174 FirstFrag = (1 << 29), /* First segment of a packet */
175 LastFrag = (1 << 28), /* Final segment of a packet */
176 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
177 MSSShift = 16, /* MSS value position */
178 MSSMask = 0x7ff, /* MSS value: 11 bits */
179 TxError = (1 << 23), /* Tx error summary */
180 RxError = (1 << 20), /* Rx error summary */
181 IPCS = (1 << 18), /* Calculate IP checksum */
182 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
183 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
184 TxVlanTag = (1 << 17), /* Add VLAN tag */
185 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
186 IPFail = (1 << 15), /* IP checksum failed */
187 UDPFail = (1 << 14), /* UDP/IP checksum failed */
188 TCPFail = (1 << 13), /* TCP/IP checksum failed */
189 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
190 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
191 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
192 RxProtoTCP = 1,
193 RxProtoUDP = 2,
194 RxProtoIP = 3,
195 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
196 TxOWC = (1 << 22), /* Tx Out-of-window collision */
197 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
198 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
199 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
200 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201 RxErrFrame = (1 << 27), /* Rx frame alignment error */
202 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
203 RxErrCRC = (1 << 18), /* Rx CRC error */
204 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
205 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
206 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207
208 /* StatsAddr register */
209 DumpStats = (1 << 3), /* Begin stats dump */
210
211 /* RxConfig register */
212 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
213 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
214 AcceptErr = 0x20, /* Accept packets with CRC errors */
215 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
216 AcceptBroadcast = 0x08, /* Accept broadcast packets */
217 AcceptMulticast = 0x04, /* Accept multicast packets */
218 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
219 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
220
221 /* IntrMask / IntrStatus registers */
222 PciErr = (1 << 15), /* System error on the PCI bus */
223 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224 LenChg = (1 << 13), /* Cable length change */
225 SWInt = (1 << 8), /* Software-requested interrupt */
226 TxEmpty = (1 << 7), /* No Tx descriptors available */
227 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
228 LinkChg = (1 << 5), /* Packet underrun, or link change */
229 RxEmpty = (1 << 4), /* No Rx descriptors available */
230 TxErr = (1 << 3), /* Tx error */
231 TxOK = (1 << 2), /* Tx packet sent */
232 RxErr = (1 << 1), /* Rx error */
233 RxOK = (1 << 0), /* Rx packet received */
234 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
235 but hardware likes to raise it */
236
237 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
238 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
239 RxErr | RxOK | IntrResvd,
240
241 /* C mode command register */
242 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
243 RxOn = (1 << 3), /* Rx mode enable */
244 TxOn = (1 << 2), /* Tx mode enable */
245
246 /* C+ mode command register */
247 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
248 RxChkSum = (1 << 5), /* Rx checksum offload enable */
249 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
250 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
251 CpRxOn = (1 << 1), /* Rx mode enable */
252 CpTxOn = (1 << 0), /* Tx mode enable */
253
254 /* Cfg9436 EEPROM control register */
255 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
256 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
257
258 /* TxConfig register */
259 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
261
262 /* Early Tx Threshold register */
263 TxThreshMask = 0x3f, /* Mask bits 5-0 */
264 TxThreshMax = 2048, /* Max early Tx threshold */
265
266 /* Config1 register */
267 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
268 LWACT = (1 << 4), /* LWAKE active mode */
269 PMEnable = (1 << 0), /* Enable various PM features of chip */
270
271 /* Config3 register */
272 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
273 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
274 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
275
276 /* Config4 register */
277 LWPTN = (1 << 1), /* LWAKE Pattern */
278 LWPME = (1 << 4), /* LANWAKE vs PMEB */
279
280 /* Config5 register */
281 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
282 MWF = (1 << 5), /* Accept Multicast wakeup frame */
283 UWF = (1 << 4), /* Accept Unicast wakeup frame */
284 LANWake = (1 << 1), /* Enable LANWake signal */
285 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
286
287 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
288 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
289 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
290 };
291
292 static const unsigned int cp_rx_config =
293 (RX_FIFO_THRESH << RxCfgFIFOShift) |
294 (RX_DMA_BURST << RxCfgDMAShift);
295
296 struct cp_desc {
297 __le32 opts1;
298 __le32 opts2;
299 __le64 addr;
300 };
301
302 struct cp_dma_stats {
303 __le64 tx_ok;
304 __le64 rx_ok;
305 __le64 tx_err;
306 __le32 rx_err;
307 __le16 rx_fifo;
308 __le16 frame_align;
309 __le32 tx_ok_1col;
310 __le32 tx_ok_mcol;
311 __le64 rx_ok_phys;
312 __le64 rx_ok_bcast;
313 __le32 rx_ok_mcast;
314 __le16 tx_abort;
315 __le16 tx_underrun;
316 } __packed;
317
318 struct cp_extra_stats {
319 unsigned long rx_frags;
320 };
321
322 struct cp_private {
323 void __iomem *regs;
324 struct net_device *dev;
325 spinlock_t lock;
326 u32 msg_enable;
327
328 struct napi_struct napi;
329
330 struct pci_dev *pdev;
331 u32 rx_config;
332 u16 cpcmd;
333
334 struct cp_extra_stats cp_stats;
335
336 unsigned rx_head ____cacheline_aligned;
337 unsigned rx_tail;
338 struct cp_desc *rx_ring;
339 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
340
341 unsigned tx_head ____cacheline_aligned;
342 unsigned tx_tail;
343 struct cp_desc *tx_ring;
344 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
345 u32 tx_opts[CP_TX_RING_SIZE];
346
347 unsigned rx_buf_sz;
348 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
349
350 dma_addr_t ring_dma;
351
352 struct mii_if_info mii_if;
353 };
354
355 #define cpr8(reg) readb(cp->regs + (reg))
356 #define cpr16(reg) readw(cp->regs + (reg))
357 #define cpr32(reg) readl(cp->regs + (reg))
358 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
359 #define cpw16(reg,val) writew((val), cp->regs + (reg))
360 #define cpw32(reg,val) writel((val), cp->regs + (reg))
361 #define cpw8_f(reg,val) do { \
362 writeb((val), cp->regs + (reg)); \
363 readb(cp->regs + (reg)); \
364 } while (0)
365 #define cpw16_f(reg,val) do { \
366 writew((val), cp->regs + (reg)); \
367 readw(cp->regs + (reg)); \
368 } while (0)
369 #define cpw32_f(reg,val) do { \
370 writel((val), cp->regs + (reg)); \
371 readl(cp->regs + (reg)); \
372 } while (0)
373
374
375 static void __cp_set_rx_mode (struct net_device *dev);
376 static void cp_tx (struct cp_private *cp);
377 static void cp_clean_rings (struct cp_private *cp);
378 #ifdef CONFIG_NET_POLL_CONTROLLER
379 static void cp_poll_controller(struct net_device *dev);
380 #endif
381 static int cp_get_eeprom_len(struct net_device *dev);
382 static int cp_get_eeprom(struct net_device *dev,
383 struct ethtool_eeprom *eeprom, u8 *data);
384 static int cp_set_eeprom(struct net_device *dev,
385 struct ethtool_eeprom *eeprom, u8 *data);
386
387 static struct {
388 const char str[ETH_GSTRING_LEN];
389 } ethtool_stats_keys[] = {
390 { "tx_ok" },
391 { "rx_ok" },
392 { "tx_err" },
393 { "rx_err" },
394 { "rx_fifo" },
395 { "frame_align" },
396 { "tx_ok_1col" },
397 { "tx_ok_mcol" },
398 { "rx_ok_phys" },
399 { "rx_ok_bcast" },
400 { "rx_ok_mcast" },
401 { "tx_abort" },
402 { "tx_underrun" },
403 { "rx_frags" },
404 };
405
406
cp_set_rxbufsize(struct cp_private * cp)407 static inline void cp_set_rxbufsize (struct cp_private *cp)
408 {
409 unsigned int mtu = cp->dev->mtu;
410
411 if (mtu > ETH_DATA_LEN)
412 /* MTU + ethernet header + FCS + optional VLAN tag */
413 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
414 else
415 cp->rx_buf_sz = PKT_BUF_SZ;
416 }
417
cp_rx_skb(struct cp_private * cp,struct sk_buff * skb,struct cp_desc * desc)418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
419 struct cp_desc *desc)
420 {
421 u32 opts2 = le32_to_cpu(desc->opts2);
422
423 skb->protocol = eth_type_trans (skb, cp->dev);
424
425 cp->dev->stats.rx_packets++;
426 cp->dev->stats.rx_bytes += skb->len;
427
428 if (opts2 & RxVlanTagged)
429 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
430
431 napi_gro_receive(&cp->napi, skb);
432 }
433
cp_rx_err_acct(struct cp_private * cp,unsigned rx_tail,u32 status,u32 len)434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
435 u32 status, u32 len)
436 {
437 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
438 rx_tail, status, len);
439 cp->dev->stats.rx_errors++;
440 if (status & RxErrFrame)
441 cp->dev->stats.rx_frame_errors++;
442 if (status & RxErrCRC)
443 cp->dev->stats.rx_crc_errors++;
444 if ((status & RxErrRunt) || (status & RxErrLong))
445 cp->dev->stats.rx_length_errors++;
446 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
447 cp->dev->stats.rx_length_errors++;
448 if (status & RxErrFIFO)
449 cp->dev->stats.rx_fifo_errors++;
450 }
451
cp_rx_csum_ok(u32 status)452 static inline unsigned int cp_rx_csum_ok (u32 status)
453 {
454 unsigned int protocol = (status >> 16) & 0x3;
455
456 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
457 ((protocol == RxProtoUDP) && !(status & UDPFail)))
458 return 1;
459 else
460 return 0;
461 }
462
cp_rx_poll(struct napi_struct * napi,int budget)463 static int cp_rx_poll(struct napi_struct *napi, int budget)
464 {
465 struct cp_private *cp = container_of(napi, struct cp_private, napi);
466 struct net_device *dev = cp->dev;
467 unsigned int rx_tail = cp->rx_tail;
468 int rx = 0;
469
470 cpw16(IntrStatus, cp_rx_intr_mask);
471
472 while (rx < budget) {
473 u32 status, len;
474 dma_addr_t mapping, new_mapping;
475 struct sk_buff *skb, *new_skb;
476 struct cp_desc *desc;
477 const unsigned buflen = cp->rx_buf_sz;
478
479 skb = cp->rx_skb[rx_tail];
480 BUG_ON(!skb);
481
482 desc = &cp->rx_ring[rx_tail];
483 status = le32_to_cpu(desc->opts1);
484 if (status & DescOwn)
485 break;
486
487 len = (status & 0x1fff) - 4;
488 mapping = le64_to_cpu(desc->addr);
489
490 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
491 /* we don't support incoming fragmented frames.
492 * instead, we attempt to ensure that the
493 * pre-allocated RX skbs are properly sized such
494 * that RX fragments are never encountered
495 */
496 cp_rx_err_acct(cp, rx_tail, status, len);
497 dev->stats.rx_dropped++;
498 cp->cp_stats.rx_frags++;
499 goto rx_next;
500 }
501
502 if (status & (RxError | RxErrFIFO)) {
503 cp_rx_err_acct(cp, rx_tail, status, len);
504 goto rx_next;
505 }
506
507 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
508 rx_tail, status, len);
509
510 new_skb = napi_alloc_skb(napi, buflen);
511 if (!new_skb) {
512 dev->stats.rx_dropped++;
513 goto rx_next;
514 }
515
516 new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
517 PCI_DMA_FROMDEVICE);
518 if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
519 dev->stats.rx_dropped++;
520 kfree_skb(new_skb);
521 goto rx_next;
522 }
523
524 dma_unmap_single(&cp->pdev->dev, mapping,
525 buflen, PCI_DMA_FROMDEVICE);
526
527 /* Handle checksum offloading for incoming packets. */
528 if (cp_rx_csum_ok(status))
529 skb->ip_summed = CHECKSUM_UNNECESSARY;
530 else
531 skb_checksum_none_assert(skb);
532
533 skb_put(skb, len);
534
535 cp->rx_skb[rx_tail] = new_skb;
536
537 cp_rx_skb(cp, skb, desc);
538 rx++;
539 mapping = new_mapping;
540
541 rx_next:
542 cp->rx_ring[rx_tail].opts2 = 0;
543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 if (rx_tail == (CP_RX_RING_SIZE - 1))
545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 cp->rx_buf_sz);
547 else
548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 rx_tail = NEXT_RX(rx_tail);
550 }
551
552 cp->rx_tail = rx_tail;
553
554 /* if we did not reach work limit, then we're done with
555 * this round of polling
556 */
557 if (rx < budget && napi_complete_done(napi, rx)) {
558 unsigned long flags;
559
560 spin_lock_irqsave(&cp->lock, flags);
561 cpw16_f(IntrMask, cp_intr_mask);
562 spin_unlock_irqrestore(&cp->lock, flags);
563 }
564
565 return rx;
566 }
567
cp_interrupt(int irq,void * dev_instance)568 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
569 {
570 struct net_device *dev = dev_instance;
571 struct cp_private *cp;
572 int handled = 0;
573 u16 status;
574
575 if (unlikely(dev == NULL))
576 return IRQ_NONE;
577 cp = netdev_priv(dev);
578
579 spin_lock(&cp->lock);
580
581 status = cpr16(IntrStatus);
582 if (!status || (status == 0xFFFF))
583 goto out_unlock;
584
585 handled = 1;
586
587 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
588 status, cpr8(Cmd), cpr16(CpCmd));
589
590 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
591
592 /* close possible race's with dev_close */
593 if (unlikely(!netif_running(dev))) {
594 cpw16(IntrMask, 0);
595 goto out_unlock;
596 }
597
598 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
599 if (napi_schedule_prep(&cp->napi)) {
600 cpw16_f(IntrMask, cp_norx_intr_mask);
601 __napi_schedule(&cp->napi);
602 }
603
604 if (status & (TxOK | TxErr | TxEmpty | SWInt))
605 cp_tx(cp);
606 if (status & LinkChg)
607 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
608
609
610 if (status & PciErr) {
611 u16 pci_status;
612
613 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
614 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
615 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
616 status, pci_status);
617
618 /* TODO: reset hardware */
619 }
620
621 out_unlock:
622 spin_unlock(&cp->lock);
623
624 return IRQ_RETVAL(handled);
625 }
626
627 #ifdef CONFIG_NET_POLL_CONTROLLER
628 /*
629 * Polling receive - used by netconsole and other diagnostic tools
630 * to allow network i/o with interrupts disabled.
631 */
cp_poll_controller(struct net_device * dev)632 static void cp_poll_controller(struct net_device *dev)
633 {
634 struct cp_private *cp = netdev_priv(dev);
635 const int irq = cp->pdev->irq;
636
637 disable_irq(irq);
638 cp_interrupt(irq, dev);
639 enable_irq(irq);
640 }
641 #endif
642
cp_tx(struct cp_private * cp)643 static void cp_tx (struct cp_private *cp)
644 {
645 unsigned tx_head = cp->tx_head;
646 unsigned tx_tail = cp->tx_tail;
647 unsigned bytes_compl = 0, pkts_compl = 0;
648
649 while (tx_tail != tx_head) {
650 struct cp_desc *txd = cp->tx_ring + tx_tail;
651 struct sk_buff *skb;
652 u32 status;
653
654 rmb();
655 status = le32_to_cpu(txd->opts1);
656 if (status & DescOwn)
657 break;
658
659 skb = cp->tx_skb[tx_tail];
660 BUG_ON(!skb);
661
662 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
663 cp->tx_opts[tx_tail] & 0xffff,
664 PCI_DMA_TODEVICE);
665
666 if (status & LastFrag) {
667 if (status & (TxError | TxFIFOUnder)) {
668 netif_dbg(cp, tx_err, cp->dev,
669 "tx err, status 0x%x\n", status);
670 cp->dev->stats.tx_errors++;
671 if (status & TxOWC)
672 cp->dev->stats.tx_window_errors++;
673 if (status & TxMaxCol)
674 cp->dev->stats.tx_aborted_errors++;
675 if (status & TxLinkFail)
676 cp->dev->stats.tx_carrier_errors++;
677 if (status & TxFIFOUnder)
678 cp->dev->stats.tx_fifo_errors++;
679 } else {
680 cp->dev->stats.collisions +=
681 ((status >> TxColCntShift) & TxColCntMask);
682 cp->dev->stats.tx_packets++;
683 cp->dev->stats.tx_bytes += skb->len;
684 netif_dbg(cp, tx_done, cp->dev,
685 "tx done, slot %d\n", tx_tail);
686 }
687 bytes_compl += skb->len;
688 pkts_compl++;
689 dev_kfree_skb_irq(skb);
690 }
691
692 cp->tx_skb[tx_tail] = NULL;
693
694 tx_tail = NEXT_TX(tx_tail);
695 }
696
697 cp->tx_tail = tx_tail;
698
699 netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
700 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
701 netif_wake_queue(cp->dev);
702 }
703
cp_tx_vlan_tag(struct sk_buff * skb)704 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
705 {
706 return skb_vlan_tag_present(skb) ?
707 TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
708 }
709
unwind_tx_frag_mapping(struct cp_private * cp,struct sk_buff * skb,int first,int entry_last)710 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
711 int first, int entry_last)
712 {
713 int frag, index;
714 struct cp_desc *txd;
715 skb_frag_t *this_frag;
716 for (frag = 0; frag+first < entry_last; frag++) {
717 index = first+frag;
718 cp->tx_skb[index] = NULL;
719 txd = &cp->tx_ring[index];
720 this_frag = &skb_shinfo(skb)->frags[frag];
721 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
722 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
723 }
724 }
725
cp_start_xmit(struct sk_buff * skb,struct net_device * dev)726 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
727 struct net_device *dev)
728 {
729 struct cp_private *cp = netdev_priv(dev);
730 unsigned entry;
731 u32 eor, opts1;
732 unsigned long intr_flags;
733 __le32 opts2;
734 int mss = 0;
735
736 spin_lock_irqsave(&cp->lock, intr_flags);
737
738 /* This is a hard error, log it. */
739 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
740 netif_stop_queue(dev);
741 spin_unlock_irqrestore(&cp->lock, intr_flags);
742 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
743 return NETDEV_TX_BUSY;
744 }
745
746 entry = cp->tx_head;
747 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
748 mss = skb_shinfo(skb)->gso_size;
749
750 if (mss > MSSMask) {
751 netdev_WARN_ONCE(dev, "Net bug: GSO size %d too large for 8139CP\n",
752 mss);
753 goto out_dma_error;
754 }
755
756 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
757 opts1 = DescOwn;
758 if (mss)
759 opts1 |= LargeSend | (mss << MSSShift);
760 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
761 const struct iphdr *ip = ip_hdr(skb);
762 if (ip->protocol == IPPROTO_TCP)
763 opts1 |= IPCS | TCPCS;
764 else if (ip->protocol == IPPROTO_UDP)
765 opts1 |= IPCS | UDPCS;
766 else {
767 WARN_ONCE(1,
768 "Net bug: asked to checksum invalid Legacy IP packet\n");
769 goto out_dma_error;
770 }
771 }
772
773 if (skb_shinfo(skb)->nr_frags == 0) {
774 struct cp_desc *txd = &cp->tx_ring[entry];
775 u32 len;
776 dma_addr_t mapping;
777
778 len = skb->len;
779 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
780 if (dma_mapping_error(&cp->pdev->dev, mapping))
781 goto out_dma_error;
782
783 txd->opts2 = opts2;
784 txd->addr = cpu_to_le64(mapping);
785 wmb();
786
787 opts1 |= eor | len | FirstFrag | LastFrag;
788
789 txd->opts1 = cpu_to_le32(opts1);
790 wmb();
791
792 cp->tx_skb[entry] = skb;
793 cp->tx_opts[entry] = opts1;
794 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
795 entry, skb->len);
796 } else {
797 struct cp_desc *txd;
798 u32 first_len, first_eor, ctrl;
799 dma_addr_t first_mapping;
800 int frag, first_entry = entry;
801
802 /* We must give this initial chunk to the device last.
803 * Otherwise we could race with the device.
804 */
805 first_eor = eor;
806 first_len = skb_headlen(skb);
807 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
808 first_len, PCI_DMA_TODEVICE);
809 if (dma_mapping_error(&cp->pdev->dev, first_mapping))
810 goto out_dma_error;
811
812 cp->tx_skb[entry] = skb;
813
814 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
815 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
816 u32 len;
817 dma_addr_t mapping;
818
819 entry = NEXT_TX(entry);
820
821 len = skb_frag_size(this_frag);
822 mapping = dma_map_single(&cp->pdev->dev,
823 skb_frag_address(this_frag),
824 len, PCI_DMA_TODEVICE);
825 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
826 unwind_tx_frag_mapping(cp, skb, first_entry, entry);
827 goto out_dma_error;
828 }
829
830 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
831
832 ctrl = opts1 | eor | len;
833
834 if (frag == skb_shinfo(skb)->nr_frags - 1)
835 ctrl |= LastFrag;
836
837 txd = &cp->tx_ring[entry];
838 txd->opts2 = opts2;
839 txd->addr = cpu_to_le64(mapping);
840 wmb();
841
842 txd->opts1 = cpu_to_le32(ctrl);
843 wmb();
844
845 cp->tx_opts[entry] = ctrl;
846 cp->tx_skb[entry] = skb;
847 }
848
849 txd = &cp->tx_ring[first_entry];
850 txd->opts2 = opts2;
851 txd->addr = cpu_to_le64(first_mapping);
852 wmb();
853
854 ctrl = opts1 | first_eor | first_len | FirstFrag;
855 txd->opts1 = cpu_to_le32(ctrl);
856 wmb();
857
858 cp->tx_opts[first_entry] = ctrl;
859 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
860 first_entry, entry, skb->len);
861 }
862 cp->tx_head = NEXT_TX(entry);
863
864 netdev_sent_queue(dev, skb->len);
865 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
866 netif_stop_queue(dev);
867
868 out_unlock:
869 spin_unlock_irqrestore(&cp->lock, intr_flags);
870
871 cpw8(TxPoll, NormalTxPoll);
872
873 return NETDEV_TX_OK;
874 out_dma_error:
875 dev_kfree_skb_any(skb);
876 cp->dev->stats.tx_dropped++;
877 goto out_unlock;
878 }
879
880 /* Set or clear the multicast filter for this adaptor.
881 This routine is not state sensitive and need not be SMP locked. */
882
__cp_set_rx_mode(struct net_device * dev)883 static void __cp_set_rx_mode (struct net_device *dev)
884 {
885 struct cp_private *cp = netdev_priv(dev);
886 u32 mc_filter[2]; /* Multicast hash filter */
887 int rx_mode;
888
889 /* Note: do not reorder, GCC is clever about common statements. */
890 if (dev->flags & IFF_PROMISC) {
891 /* Unconditionally log net taps. */
892 rx_mode =
893 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
894 AcceptAllPhys;
895 mc_filter[1] = mc_filter[0] = 0xffffffff;
896 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
897 (dev->flags & IFF_ALLMULTI)) {
898 /* Too many to filter perfectly -- accept all multicasts. */
899 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
900 mc_filter[1] = mc_filter[0] = 0xffffffff;
901 } else {
902 struct netdev_hw_addr *ha;
903 rx_mode = AcceptBroadcast | AcceptMyPhys;
904 mc_filter[1] = mc_filter[0] = 0;
905 netdev_for_each_mc_addr(ha, dev) {
906 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
907
908 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
909 rx_mode |= AcceptMulticast;
910 }
911 }
912
913 /* We can safely update without stopping the chip. */
914 cp->rx_config = cp_rx_config | rx_mode;
915 cpw32_f(RxConfig, cp->rx_config);
916
917 cpw32_f (MAR0 + 0, mc_filter[0]);
918 cpw32_f (MAR0 + 4, mc_filter[1]);
919 }
920
cp_set_rx_mode(struct net_device * dev)921 static void cp_set_rx_mode (struct net_device *dev)
922 {
923 unsigned long flags;
924 struct cp_private *cp = netdev_priv(dev);
925
926 spin_lock_irqsave (&cp->lock, flags);
927 __cp_set_rx_mode(dev);
928 spin_unlock_irqrestore (&cp->lock, flags);
929 }
930
__cp_get_stats(struct cp_private * cp)931 static void __cp_get_stats(struct cp_private *cp)
932 {
933 /* only lower 24 bits valid; write any value to clear */
934 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
935 cpw32 (RxMissed, 0);
936 }
937
cp_get_stats(struct net_device * dev)938 static struct net_device_stats *cp_get_stats(struct net_device *dev)
939 {
940 struct cp_private *cp = netdev_priv(dev);
941 unsigned long flags;
942
943 /* The chip only need report frame silently dropped. */
944 spin_lock_irqsave(&cp->lock, flags);
945 if (netif_running(dev) && netif_device_present(dev))
946 __cp_get_stats(cp);
947 spin_unlock_irqrestore(&cp->lock, flags);
948
949 return &dev->stats;
950 }
951
cp_stop_hw(struct cp_private * cp)952 static void cp_stop_hw (struct cp_private *cp)
953 {
954 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
955 cpw16_f(IntrMask, 0);
956 cpw8(Cmd, 0);
957 cpw16_f(CpCmd, 0);
958 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
959
960 cp->rx_tail = 0;
961 cp->tx_head = cp->tx_tail = 0;
962
963 netdev_reset_queue(cp->dev);
964 }
965
cp_reset_hw(struct cp_private * cp)966 static void cp_reset_hw (struct cp_private *cp)
967 {
968 unsigned work = 1000;
969
970 cpw8(Cmd, CmdReset);
971
972 while (work--) {
973 if (!(cpr8(Cmd) & CmdReset))
974 return;
975
976 schedule_timeout_uninterruptible(10);
977 }
978
979 netdev_err(cp->dev, "hardware reset timeout\n");
980 }
981
cp_start_hw(struct cp_private * cp)982 static inline void cp_start_hw (struct cp_private *cp)
983 {
984 dma_addr_t ring_dma;
985
986 cpw16(CpCmd, cp->cpcmd);
987
988 /*
989 * These (at least TxRingAddr) need to be configured after the
990 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
991 * (C+ Command Register) recommends that these and more be configured
992 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
993 * it's been observed that the TxRingAddr is actually reset to garbage
994 * when C+ mode Tx is enabled in CpCmd.
995 */
996 cpw32_f(HiTxRingAddr, 0);
997 cpw32_f(HiTxRingAddr + 4, 0);
998
999 ring_dma = cp->ring_dma;
1000 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1001 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1002
1003 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1004 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1005 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1006
1007 /*
1008 * Strictly speaking, the datasheet says this should be enabled
1009 * *before* setting the descriptor addresses. But what, then, would
1010 * prevent it from doing DMA to random unconfigured addresses?
1011 * This variant appears to work fine.
1012 */
1013 cpw8(Cmd, RxOn | TxOn);
1014
1015 netdev_reset_queue(cp->dev);
1016 }
1017
cp_enable_irq(struct cp_private * cp)1018 static void cp_enable_irq(struct cp_private *cp)
1019 {
1020 cpw16_f(IntrMask, cp_intr_mask);
1021 }
1022
cp_init_hw(struct cp_private * cp)1023 static void cp_init_hw (struct cp_private *cp)
1024 {
1025 struct net_device *dev = cp->dev;
1026
1027 cp_reset_hw(cp);
1028
1029 cpw8_f (Cfg9346, Cfg9346_Unlock);
1030
1031 /* Restore our idea of the MAC address. */
1032 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1033 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1034
1035 cp_start_hw(cp);
1036 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1037
1038 __cp_set_rx_mode(dev);
1039 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1040
1041 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1042 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1043 cpw8(Config3, PARMEnable);
1044 cp->wol_enabled = 0;
1045
1046 cpw8(Config5, cpr8(Config5) & PMEStatus);
1047
1048 cpw16(MultiIntr, 0);
1049
1050 cpw8_f(Cfg9346, Cfg9346_Lock);
1051 }
1052
cp_refill_rx(struct cp_private * cp)1053 static int cp_refill_rx(struct cp_private *cp)
1054 {
1055 struct net_device *dev = cp->dev;
1056 unsigned i;
1057
1058 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1059 struct sk_buff *skb;
1060 dma_addr_t mapping;
1061
1062 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1063 if (!skb)
1064 goto err_out;
1065
1066 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1067 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1068 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1069 kfree_skb(skb);
1070 goto err_out;
1071 }
1072 cp->rx_skb[i] = skb;
1073
1074 cp->rx_ring[i].opts2 = 0;
1075 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1076 if (i == (CP_RX_RING_SIZE - 1))
1077 cp->rx_ring[i].opts1 =
1078 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1079 else
1080 cp->rx_ring[i].opts1 =
1081 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1082 }
1083
1084 return 0;
1085
1086 err_out:
1087 cp_clean_rings(cp);
1088 return -ENOMEM;
1089 }
1090
cp_init_rings_index(struct cp_private * cp)1091 static void cp_init_rings_index (struct cp_private *cp)
1092 {
1093 cp->rx_tail = 0;
1094 cp->tx_head = cp->tx_tail = 0;
1095 }
1096
cp_init_rings(struct cp_private * cp)1097 static int cp_init_rings (struct cp_private *cp)
1098 {
1099 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1100 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1101 memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1102
1103 cp_init_rings_index(cp);
1104
1105 return cp_refill_rx (cp);
1106 }
1107
cp_alloc_rings(struct cp_private * cp)1108 static int cp_alloc_rings (struct cp_private *cp)
1109 {
1110 struct device *d = &cp->pdev->dev;
1111 void *mem;
1112 int rc;
1113
1114 mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1115 if (!mem)
1116 return -ENOMEM;
1117
1118 cp->rx_ring = mem;
1119 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1120
1121 rc = cp_init_rings(cp);
1122 if (rc < 0)
1123 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1124
1125 return rc;
1126 }
1127
cp_clean_rings(struct cp_private * cp)1128 static void cp_clean_rings (struct cp_private *cp)
1129 {
1130 struct cp_desc *desc;
1131 unsigned i;
1132
1133 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1134 if (cp->rx_skb[i]) {
1135 desc = cp->rx_ring + i;
1136 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1137 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1138 dev_kfree_skb_any(cp->rx_skb[i]);
1139 }
1140 }
1141
1142 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1143 if (cp->tx_skb[i]) {
1144 struct sk_buff *skb = cp->tx_skb[i];
1145
1146 desc = cp->tx_ring + i;
1147 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1148 le32_to_cpu(desc->opts1) & 0xffff,
1149 PCI_DMA_TODEVICE);
1150 if (le32_to_cpu(desc->opts1) & LastFrag)
1151 dev_kfree_skb_any(skb);
1152 cp->dev->stats.tx_dropped++;
1153 }
1154 }
1155 netdev_reset_queue(cp->dev);
1156
1157 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1158 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1159 memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1160
1161 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1162 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1163 }
1164
cp_free_rings(struct cp_private * cp)1165 static void cp_free_rings (struct cp_private *cp)
1166 {
1167 cp_clean_rings(cp);
1168 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1169 cp->ring_dma);
1170 cp->rx_ring = NULL;
1171 cp->tx_ring = NULL;
1172 }
1173
cp_open(struct net_device * dev)1174 static int cp_open (struct net_device *dev)
1175 {
1176 struct cp_private *cp = netdev_priv(dev);
1177 const int irq = cp->pdev->irq;
1178 int rc;
1179
1180 netif_dbg(cp, ifup, dev, "enabling interface\n");
1181
1182 rc = cp_alloc_rings(cp);
1183 if (rc)
1184 return rc;
1185
1186 napi_enable(&cp->napi);
1187
1188 cp_init_hw(cp);
1189
1190 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1191 if (rc)
1192 goto err_out_hw;
1193
1194 cp_enable_irq(cp);
1195
1196 netif_carrier_off(dev);
1197 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1198 netif_start_queue(dev);
1199
1200 return 0;
1201
1202 err_out_hw:
1203 napi_disable(&cp->napi);
1204 cp_stop_hw(cp);
1205 cp_free_rings(cp);
1206 return rc;
1207 }
1208
cp_close(struct net_device * dev)1209 static int cp_close (struct net_device *dev)
1210 {
1211 struct cp_private *cp = netdev_priv(dev);
1212 unsigned long flags;
1213
1214 napi_disable(&cp->napi);
1215
1216 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1217
1218 spin_lock_irqsave(&cp->lock, flags);
1219
1220 netif_stop_queue(dev);
1221 netif_carrier_off(dev);
1222
1223 cp_stop_hw(cp);
1224
1225 spin_unlock_irqrestore(&cp->lock, flags);
1226
1227 free_irq(cp->pdev->irq, dev);
1228
1229 cp_free_rings(cp);
1230 return 0;
1231 }
1232
cp_tx_timeout(struct net_device * dev)1233 static void cp_tx_timeout(struct net_device *dev)
1234 {
1235 struct cp_private *cp = netdev_priv(dev);
1236 unsigned long flags;
1237 int rc, i;
1238
1239 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1240 cpr8(Cmd), cpr16(CpCmd),
1241 cpr16(IntrStatus), cpr16(IntrMask));
1242
1243 spin_lock_irqsave(&cp->lock, flags);
1244
1245 netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1246 cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1247 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1248 netif_dbg(cp, tx_err, cp->dev,
1249 "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1250 i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1251 cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1252 le64_to_cpu(cp->tx_ring[i].addr),
1253 cp->tx_skb[i]);
1254 }
1255
1256 cp_stop_hw(cp);
1257 cp_clean_rings(cp);
1258 rc = cp_init_rings(cp);
1259 cp_start_hw(cp);
1260 __cp_set_rx_mode(dev);
1261 cpw16_f(IntrMask, cp_norx_intr_mask);
1262
1263 netif_wake_queue(dev);
1264 napi_schedule_irqoff(&cp->napi);
1265
1266 spin_unlock_irqrestore(&cp->lock, flags);
1267 }
1268
cp_change_mtu(struct net_device * dev,int new_mtu)1269 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1270 {
1271 struct cp_private *cp = netdev_priv(dev);
1272
1273 /* if network interface not up, no need for complexity */
1274 if (!netif_running(dev)) {
1275 dev->mtu = new_mtu;
1276 cp_set_rxbufsize(cp); /* set new rx buf size */
1277 return 0;
1278 }
1279
1280 /* network IS up, close it, reset MTU, and come up again. */
1281 cp_close(dev);
1282 dev->mtu = new_mtu;
1283 cp_set_rxbufsize(cp);
1284 return cp_open(dev);
1285 }
1286
1287 static const char mii_2_8139_map[8] = {
1288 BasicModeCtrl,
1289 BasicModeStatus,
1290 0,
1291 0,
1292 NWayAdvert,
1293 NWayLPAR,
1294 NWayExpansion,
1295 0
1296 };
1297
mdio_read(struct net_device * dev,int phy_id,int location)1298 static int mdio_read(struct net_device *dev, int phy_id, int location)
1299 {
1300 struct cp_private *cp = netdev_priv(dev);
1301
1302 return location < 8 && mii_2_8139_map[location] ?
1303 readw(cp->regs + mii_2_8139_map[location]) : 0;
1304 }
1305
1306
mdio_write(struct net_device * dev,int phy_id,int location,int value)1307 static void mdio_write(struct net_device *dev, int phy_id, int location,
1308 int value)
1309 {
1310 struct cp_private *cp = netdev_priv(dev);
1311
1312 if (location == 0) {
1313 cpw8(Cfg9346, Cfg9346_Unlock);
1314 cpw16(BasicModeCtrl, value);
1315 cpw8(Cfg9346, Cfg9346_Lock);
1316 } else if (location < 8 && mii_2_8139_map[location])
1317 cpw16(mii_2_8139_map[location], value);
1318 }
1319
1320 /* Set the ethtool Wake-on-LAN settings */
netdev_set_wol(struct cp_private * cp,const struct ethtool_wolinfo * wol)1321 static int netdev_set_wol (struct cp_private *cp,
1322 const struct ethtool_wolinfo *wol)
1323 {
1324 u8 options;
1325
1326 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1327 /* If WOL is being disabled, no need for complexity */
1328 if (wol->wolopts) {
1329 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1330 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1331 }
1332
1333 cpw8 (Cfg9346, Cfg9346_Unlock);
1334 cpw8 (Config3, options);
1335 cpw8 (Cfg9346, Cfg9346_Lock);
1336
1337 options = 0; /* Paranoia setting */
1338 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1339 /* If WOL is being disabled, no need for complexity */
1340 if (wol->wolopts) {
1341 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1342 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1343 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1344 }
1345
1346 cpw8 (Config5, options);
1347
1348 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1349
1350 return 0;
1351 }
1352
1353 /* Get the ethtool Wake-on-LAN settings */
netdev_get_wol(struct cp_private * cp,struct ethtool_wolinfo * wol)1354 static void netdev_get_wol (struct cp_private *cp,
1355 struct ethtool_wolinfo *wol)
1356 {
1357 u8 options;
1358
1359 wol->wolopts = 0; /* Start from scratch */
1360 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1361 WAKE_MCAST | WAKE_UCAST;
1362 /* We don't need to go on if WOL is disabled */
1363 if (!cp->wol_enabled) return;
1364
1365 options = cpr8 (Config3);
1366 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1367 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1368
1369 options = 0; /* Paranoia setting */
1370 options = cpr8 (Config5);
1371 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1372 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1373 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1374 }
1375
cp_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1376 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1377 {
1378 struct cp_private *cp = netdev_priv(dev);
1379
1380 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1381 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1382 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1383 }
1384
cp_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)1385 static void cp_get_ringparam(struct net_device *dev,
1386 struct ethtool_ringparam *ring)
1387 {
1388 ring->rx_max_pending = CP_RX_RING_SIZE;
1389 ring->tx_max_pending = CP_TX_RING_SIZE;
1390 ring->rx_pending = CP_RX_RING_SIZE;
1391 ring->tx_pending = CP_TX_RING_SIZE;
1392 }
1393
cp_get_regs_len(struct net_device * dev)1394 static int cp_get_regs_len(struct net_device *dev)
1395 {
1396 return CP_REGS_SIZE;
1397 }
1398
cp_get_sset_count(struct net_device * dev,int sset)1399 static int cp_get_sset_count (struct net_device *dev, int sset)
1400 {
1401 switch (sset) {
1402 case ETH_SS_STATS:
1403 return CP_NUM_STATS;
1404 default:
1405 return -EOPNOTSUPP;
1406 }
1407 }
1408
cp_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1409 static int cp_get_link_ksettings(struct net_device *dev,
1410 struct ethtool_link_ksettings *cmd)
1411 {
1412 struct cp_private *cp = netdev_priv(dev);
1413 unsigned long flags;
1414
1415 spin_lock_irqsave(&cp->lock, flags);
1416 mii_ethtool_get_link_ksettings(&cp->mii_if, cmd);
1417 spin_unlock_irqrestore(&cp->lock, flags);
1418
1419 return 0;
1420 }
1421
cp_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1422 static int cp_set_link_ksettings(struct net_device *dev,
1423 const struct ethtool_link_ksettings *cmd)
1424 {
1425 struct cp_private *cp = netdev_priv(dev);
1426 int rc;
1427 unsigned long flags;
1428
1429 spin_lock_irqsave(&cp->lock, flags);
1430 rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd);
1431 spin_unlock_irqrestore(&cp->lock, flags);
1432
1433 return rc;
1434 }
1435
cp_nway_reset(struct net_device * dev)1436 static int cp_nway_reset(struct net_device *dev)
1437 {
1438 struct cp_private *cp = netdev_priv(dev);
1439 return mii_nway_restart(&cp->mii_if);
1440 }
1441
cp_get_msglevel(struct net_device * dev)1442 static u32 cp_get_msglevel(struct net_device *dev)
1443 {
1444 struct cp_private *cp = netdev_priv(dev);
1445 return cp->msg_enable;
1446 }
1447
cp_set_msglevel(struct net_device * dev,u32 value)1448 static void cp_set_msglevel(struct net_device *dev, u32 value)
1449 {
1450 struct cp_private *cp = netdev_priv(dev);
1451 cp->msg_enable = value;
1452 }
1453
cp_set_features(struct net_device * dev,netdev_features_t features)1454 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1455 {
1456 struct cp_private *cp = netdev_priv(dev);
1457 unsigned long flags;
1458
1459 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1460 return 0;
1461
1462 spin_lock_irqsave(&cp->lock, flags);
1463
1464 if (features & NETIF_F_RXCSUM)
1465 cp->cpcmd |= RxChkSum;
1466 else
1467 cp->cpcmd &= ~RxChkSum;
1468
1469 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1470 cp->cpcmd |= RxVlanOn;
1471 else
1472 cp->cpcmd &= ~RxVlanOn;
1473
1474 cpw16_f(CpCmd, cp->cpcmd);
1475 spin_unlock_irqrestore(&cp->lock, flags);
1476
1477 return 0;
1478 }
1479
cp_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)1480 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1481 void *p)
1482 {
1483 struct cp_private *cp = netdev_priv(dev);
1484 unsigned long flags;
1485
1486 if (regs->len < CP_REGS_SIZE)
1487 return /* -EINVAL */;
1488
1489 regs->version = CP_REGS_VER;
1490
1491 spin_lock_irqsave(&cp->lock, flags);
1492 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1493 spin_unlock_irqrestore(&cp->lock, flags);
1494 }
1495
cp_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1496 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1497 {
1498 struct cp_private *cp = netdev_priv(dev);
1499 unsigned long flags;
1500
1501 spin_lock_irqsave (&cp->lock, flags);
1502 netdev_get_wol (cp, wol);
1503 spin_unlock_irqrestore (&cp->lock, flags);
1504 }
1505
cp_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1506 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1507 {
1508 struct cp_private *cp = netdev_priv(dev);
1509 unsigned long flags;
1510 int rc;
1511
1512 spin_lock_irqsave (&cp->lock, flags);
1513 rc = netdev_set_wol (cp, wol);
1514 spin_unlock_irqrestore (&cp->lock, flags);
1515
1516 return rc;
1517 }
1518
cp_get_strings(struct net_device * dev,u32 stringset,u8 * buf)1519 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1520 {
1521 switch (stringset) {
1522 case ETH_SS_STATS:
1523 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys));
1524 break;
1525 default:
1526 BUG();
1527 break;
1528 }
1529 }
1530
cp_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)1531 static void cp_get_ethtool_stats (struct net_device *dev,
1532 struct ethtool_stats *estats, u64 *tmp_stats)
1533 {
1534 struct cp_private *cp = netdev_priv(dev);
1535 struct cp_dma_stats *nic_stats;
1536 dma_addr_t dma;
1537 int i;
1538
1539 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1540 &dma, GFP_KERNEL);
1541 if (!nic_stats)
1542 return;
1543
1544 /* begin NIC statistics dump */
1545 cpw32(StatsAddr + 4, (u64)dma >> 32);
1546 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1547 cpr32(StatsAddr);
1548
1549 for (i = 0; i < 1000; i++) {
1550 if ((cpr32(StatsAddr) & DumpStats) == 0)
1551 break;
1552 udelay(10);
1553 }
1554 cpw32(StatsAddr, 0);
1555 cpw32(StatsAddr + 4, 0);
1556 cpr32(StatsAddr);
1557
1558 i = 0;
1559 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1560 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1561 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1562 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1563 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1564 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1565 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1566 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1567 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1568 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1569 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1570 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1571 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1572 tmp_stats[i++] = cp->cp_stats.rx_frags;
1573 BUG_ON(i != CP_NUM_STATS);
1574
1575 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1576 }
1577
1578 static const struct ethtool_ops cp_ethtool_ops = {
1579 .get_drvinfo = cp_get_drvinfo,
1580 .get_regs_len = cp_get_regs_len,
1581 .get_sset_count = cp_get_sset_count,
1582 .nway_reset = cp_nway_reset,
1583 .get_link = ethtool_op_get_link,
1584 .get_msglevel = cp_get_msglevel,
1585 .set_msglevel = cp_set_msglevel,
1586 .get_regs = cp_get_regs,
1587 .get_wol = cp_get_wol,
1588 .set_wol = cp_set_wol,
1589 .get_strings = cp_get_strings,
1590 .get_ethtool_stats = cp_get_ethtool_stats,
1591 .get_eeprom_len = cp_get_eeprom_len,
1592 .get_eeprom = cp_get_eeprom,
1593 .set_eeprom = cp_set_eeprom,
1594 .get_ringparam = cp_get_ringparam,
1595 .get_link_ksettings = cp_get_link_ksettings,
1596 .set_link_ksettings = cp_set_link_ksettings,
1597 };
1598
cp_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1599 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1600 {
1601 struct cp_private *cp = netdev_priv(dev);
1602 int rc;
1603 unsigned long flags;
1604
1605 if (!netif_running(dev))
1606 return -EINVAL;
1607
1608 spin_lock_irqsave(&cp->lock, flags);
1609 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1610 spin_unlock_irqrestore(&cp->lock, flags);
1611 return rc;
1612 }
1613
cp_set_mac_address(struct net_device * dev,void * p)1614 static int cp_set_mac_address(struct net_device *dev, void *p)
1615 {
1616 struct cp_private *cp = netdev_priv(dev);
1617 struct sockaddr *addr = p;
1618
1619 if (!is_valid_ether_addr(addr->sa_data))
1620 return -EADDRNOTAVAIL;
1621
1622 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1623
1624 spin_lock_irq(&cp->lock);
1625
1626 cpw8_f(Cfg9346, Cfg9346_Unlock);
1627 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1628 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1629 cpw8_f(Cfg9346, Cfg9346_Lock);
1630
1631 spin_unlock_irq(&cp->lock);
1632
1633 return 0;
1634 }
1635
1636 /* Serial EEPROM section. */
1637
1638 /* EEPROM_Ctrl bits. */
1639 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1640 #define EE_CS 0x08 /* EEPROM chip select. */
1641 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1642 #define EE_WRITE_0 0x00
1643 #define EE_WRITE_1 0x02
1644 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1645 #define EE_ENB (0x80 | EE_CS)
1646
1647 /* Delay between EEPROM clock transitions.
1648 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1649 */
1650
1651 #define eeprom_delay() readb(ee_addr)
1652
1653 /* The EEPROM commands include the alway-set leading bit. */
1654 #define EE_EXTEND_CMD (4)
1655 #define EE_WRITE_CMD (5)
1656 #define EE_READ_CMD (6)
1657 #define EE_ERASE_CMD (7)
1658
1659 #define EE_EWDS_ADDR (0)
1660 #define EE_WRAL_ADDR (1)
1661 #define EE_ERAL_ADDR (2)
1662 #define EE_EWEN_ADDR (3)
1663
1664 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1665
eeprom_cmd_start(void __iomem * ee_addr)1666 static void eeprom_cmd_start(void __iomem *ee_addr)
1667 {
1668 writeb (EE_ENB & ~EE_CS, ee_addr);
1669 writeb (EE_ENB, ee_addr);
1670 eeprom_delay ();
1671 }
1672
eeprom_cmd(void __iomem * ee_addr,int cmd,int cmd_len)1673 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1674 {
1675 int i;
1676
1677 /* Shift the command bits out. */
1678 for (i = cmd_len - 1; i >= 0; i--) {
1679 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1680 writeb (EE_ENB | dataval, ee_addr);
1681 eeprom_delay ();
1682 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1683 eeprom_delay ();
1684 }
1685 writeb (EE_ENB, ee_addr);
1686 eeprom_delay ();
1687 }
1688
eeprom_cmd_end(void __iomem * ee_addr)1689 static void eeprom_cmd_end(void __iomem *ee_addr)
1690 {
1691 writeb(0, ee_addr);
1692 eeprom_delay ();
1693 }
1694
eeprom_extend_cmd(void __iomem * ee_addr,int extend_cmd,int addr_len)1695 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1696 int addr_len)
1697 {
1698 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1699
1700 eeprom_cmd_start(ee_addr);
1701 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1702 eeprom_cmd_end(ee_addr);
1703 }
1704
read_eeprom(void __iomem * ioaddr,int location,int addr_len)1705 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1706 {
1707 int i;
1708 u16 retval = 0;
1709 void __iomem *ee_addr = ioaddr + Cfg9346;
1710 int read_cmd = location | (EE_READ_CMD << addr_len);
1711
1712 eeprom_cmd_start(ee_addr);
1713 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1714
1715 for (i = 16; i > 0; i--) {
1716 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1717 eeprom_delay ();
1718 retval =
1719 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1720 0);
1721 writeb (EE_ENB, ee_addr);
1722 eeprom_delay ();
1723 }
1724
1725 eeprom_cmd_end(ee_addr);
1726
1727 return retval;
1728 }
1729
write_eeprom(void __iomem * ioaddr,int location,u16 val,int addr_len)1730 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1731 int addr_len)
1732 {
1733 int i;
1734 void __iomem *ee_addr = ioaddr + Cfg9346;
1735 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1736
1737 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1738
1739 eeprom_cmd_start(ee_addr);
1740 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1741 eeprom_cmd(ee_addr, val, 16);
1742 eeprom_cmd_end(ee_addr);
1743
1744 eeprom_cmd_start(ee_addr);
1745 for (i = 0; i < 20000; i++)
1746 if (readb(ee_addr) & EE_DATA_READ)
1747 break;
1748 eeprom_cmd_end(ee_addr);
1749
1750 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1751 }
1752
cp_get_eeprom_len(struct net_device * dev)1753 static int cp_get_eeprom_len(struct net_device *dev)
1754 {
1755 struct cp_private *cp = netdev_priv(dev);
1756 int size;
1757
1758 spin_lock_irq(&cp->lock);
1759 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1760 spin_unlock_irq(&cp->lock);
1761
1762 return size;
1763 }
1764
cp_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1765 static int cp_get_eeprom(struct net_device *dev,
1766 struct ethtool_eeprom *eeprom, u8 *data)
1767 {
1768 struct cp_private *cp = netdev_priv(dev);
1769 unsigned int addr_len;
1770 u16 val;
1771 u32 offset = eeprom->offset >> 1;
1772 u32 len = eeprom->len;
1773 u32 i = 0;
1774
1775 eeprom->magic = CP_EEPROM_MAGIC;
1776
1777 spin_lock_irq(&cp->lock);
1778
1779 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1780
1781 if (eeprom->offset & 1) {
1782 val = read_eeprom(cp->regs, offset, addr_len);
1783 data[i++] = (u8)(val >> 8);
1784 offset++;
1785 }
1786
1787 while (i < len - 1) {
1788 val = read_eeprom(cp->regs, offset, addr_len);
1789 data[i++] = (u8)val;
1790 data[i++] = (u8)(val >> 8);
1791 offset++;
1792 }
1793
1794 if (i < len) {
1795 val = read_eeprom(cp->regs, offset, addr_len);
1796 data[i] = (u8)val;
1797 }
1798
1799 spin_unlock_irq(&cp->lock);
1800 return 0;
1801 }
1802
cp_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1803 static int cp_set_eeprom(struct net_device *dev,
1804 struct ethtool_eeprom *eeprom, u8 *data)
1805 {
1806 struct cp_private *cp = netdev_priv(dev);
1807 unsigned int addr_len;
1808 u16 val;
1809 u32 offset = eeprom->offset >> 1;
1810 u32 len = eeprom->len;
1811 u32 i = 0;
1812
1813 if (eeprom->magic != CP_EEPROM_MAGIC)
1814 return -EINVAL;
1815
1816 spin_lock_irq(&cp->lock);
1817
1818 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1819
1820 if (eeprom->offset & 1) {
1821 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1822 val |= (u16)data[i++] << 8;
1823 write_eeprom(cp->regs, offset, val, addr_len);
1824 offset++;
1825 }
1826
1827 while (i < len - 1) {
1828 val = (u16)data[i++];
1829 val |= (u16)data[i++] << 8;
1830 write_eeprom(cp->regs, offset, val, addr_len);
1831 offset++;
1832 }
1833
1834 if (i < len) {
1835 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1836 val |= (u16)data[i];
1837 write_eeprom(cp->regs, offset, val, addr_len);
1838 }
1839
1840 spin_unlock_irq(&cp->lock);
1841 return 0;
1842 }
1843
1844 /* Put the board into D3cold state and wait for WakeUp signal */
cp_set_d3_state(struct cp_private * cp)1845 static void cp_set_d3_state (struct cp_private *cp)
1846 {
1847 pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1848 pci_set_power_state (cp->pdev, PCI_D3hot);
1849 }
1850
cp_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1851 static netdev_features_t cp_features_check(struct sk_buff *skb,
1852 struct net_device *dev,
1853 netdev_features_t features)
1854 {
1855 if (skb_shinfo(skb)->gso_size > MSSMask)
1856 features &= ~NETIF_F_TSO;
1857
1858 return vlan_features_check(skb, features);
1859 }
1860 static const struct net_device_ops cp_netdev_ops = {
1861 .ndo_open = cp_open,
1862 .ndo_stop = cp_close,
1863 .ndo_validate_addr = eth_validate_addr,
1864 .ndo_set_mac_address = cp_set_mac_address,
1865 .ndo_set_rx_mode = cp_set_rx_mode,
1866 .ndo_get_stats = cp_get_stats,
1867 .ndo_do_ioctl = cp_ioctl,
1868 .ndo_start_xmit = cp_start_xmit,
1869 .ndo_tx_timeout = cp_tx_timeout,
1870 .ndo_set_features = cp_set_features,
1871 .ndo_change_mtu = cp_change_mtu,
1872 .ndo_features_check = cp_features_check,
1873
1874 #ifdef CONFIG_NET_POLL_CONTROLLER
1875 .ndo_poll_controller = cp_poll_controller,
1876 #endif
1877 };
1878
cp_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1879 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1880 {
1881 struct net_device *dev;
1882 struct cp_private *cp;
1883 int rc;
1884 void __iomem *regs;
1885 resource_size_t pciaddr;
1886 unsigned int addr_len, i, pci_using_dac;
1887
1888 pr_info_once("%s", version);
1889
1890 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1891 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1892 dev_info(&pdev->dev,
1893 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1894 pdev->vendor, pdev->device, pdev->revision);
1895 return -ENODEV;
1896 }
1897
1898 dev = alloc_etherdev(sizeof(struct cp_private));
1899 if (!dev)
1900 return -ENOMEM;
1901 SET_NETDEV_DEV(dev, &pdev->dev);
1902
1903 cp = netdev_priv(dev);
1904 cp->pdev = pdev;
1905 cp->dev = dev;
1906 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1907 spin_lock_init (&cp->lock);
1908 cp->mii_if.dev = dev;
1909 cp->mii_if.mdio_read = mdio_read;
1910 cp->mii_if.mdio_write = mdio_write;
1911 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1912 cp->mii_if.phy_id_mask = 0x1f;
1913 cp->mii_if.reg_num_mask = 0x1f;
1914 cp_set_rxbufsize(cp);
1915
1916 rc = pci_enable_device(pdev);
1917 if (rc)
1918 goto err_out_free;
1919
1920 rc = pci_set_mwi(pdev);
1921 if (rc)
1922 goto err_out_disable;
1923
1924 rc = pci_request_regions(pdev, DRV_NAME);
1925 if (rc)
1926 goto err_out_mwi;
1927
1928 pciaddr = pci_resource_start(pdev, 1);
1929 if (!pciaddr) {
1930 rc = -EIO;
1931 dev_err(&pdev->dev, "no MMIO resource\n");
1932 goto err_out_res;
1933 }
1934 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1935 rc = -EIO;
1936 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1937 (unsigned long long)pci_resource_len(pdev, 1));
1938 goto err_out_res;
1939 }
1940
1941 /* Configure DMA attributes. */
1942 if ((sizeof(dma_addr_t) > 4) &&
1943 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1944 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1945 pci_using_dac = 1;
1946 } else {
1947 pci_using_dac = 0;
1948
1949 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1950 if (rc) {
1951 dev_err(&pdev->dev,
1952 "No usable DMA configuration, aborting\n");
1953 goto err_out_res;
1954 }
1955 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1956 if (rc) {
1957 dev_err(&pdev->dev,
1958 "No usable consistent DMA configuration, aborting\n");
1959 goto err_out_res;
1960 }
1961 }
1962
1963 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1964 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1965
1966 dev->features |= NETIF_F_RXCSUM;
1967 dev->hw_features |= NETIF_F_RXCSUM;
1968
1969 regs = ioremap(pciaddr, CP_REGS_SIZE);
1970 if (!regs) {
1971 rc = -EIO;
1972 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1973 (unsigned long long)pci_resource_len(pdev, 1),
1974 (unsigned long long)pciaddr);
1975 goto err_out_res;
1976 }
1977 cp->regs = regs;
1978
1979 cp_stop_hw(cp);
1980
1981 /* read MAC address from EEPROM */
1982 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1983 for (i = 0; i < 3; i++)
1984 ((__le16 *) (dev->dev_addr))[i] =
1985 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1986
1987 dev->netdev_ops = &cp_netdev_ops;
1988 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1989 dev->ethtool_ops = &cp_ethtool_ops;
1990 dev->watchdog_timeo = TX_TIMEOUT;
1991
1992 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1993 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1994
1995 if (pci_using_dac)
1996 dev->features |= NETIF_F_HIGHDMA;
1997
1998 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1999 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2000 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2001 NETIF_F_HIGHDMA;
2002
2003 /* MTU range: 60 - 4096 */
2004 dev->min_mtu = CP_MIN_MTU;
2005 dev->max_mtu = CP_MAX_MTU;
2006
2007 rc = register_netdev(dev);
2008 if (rc)
2009 goto err_out_iomap;
2010
2011 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2012 regs, dev->dev_addr, pdev->irq);
2013
2014 pci_set_drvdata(pdev, dev);
2015
2016 /* enable busmastering and memory-write-invalidate */
2017 pci_set_master(pdev);
2018
2019 if (cp->wol_enabled)
2020 cp_set_d3_state (cp);
2021
2022 return 0;
2023
2024 err_out_iomap:
2025 iounmap(regs);
2026 err_out_res:
2027 pci_release_regions(pdev);
2028 err_out_mwi:
2029 pci_clear_mwi(pdev);
2030 err_out_disable:
2031 pci_disable_device(pdev);
2032 err_out_free:
2033 free_netdev(dev);
2034 return rc;
2035 }
2036
cp_remove_one(struct pci_dev * pdev)2037 static void cp_remove_one (struct pci_dev *pdev)
2038 {
2039 struct net_device *dev = pci_get_drvdata(pdev);
2040 struct cp_private *cp = netdev_priv(dev);
2041
2042 unregister_netdev(dev);
2043 iounmap(cp->regs);
2044 if (cp->wol_enabled)
2045 pci_set_power_state (pdev, PCI_D0);
2046 pci_release_regions(pdev);
2047 pci_clear_mwi(pdev);
2048 pci_disable_device(pdev);
2049 free_netdev(dev);
2050 }
2051
2052 #ifdef CONFIG_PM
cp_suspend(struct pci_dev * pdev,pm_message_t state)2053 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2054 {
2055 struct net_device *dev = pci_get_drvdata(pdev);
2056 struct cp_private *cp = netdev_priv(dev);
2057 unsigned long flags;
2058
2059 if (!netif_running(dev))
2060 return 0;
2061
2062 netif_device_detach (dev);
2063 netif_stop_queue (dev);
2064
2065 spin_lock_irqsave (&cp->lock, flags);
2066
2067 /* Disable Rx and Tx */
2068 cpw16 (IntrMask, 0);
2069 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2070
2071 spin_unlock_irqrestore (&cp->lock, flags);
2072
2073 pci_save_state(pdev);
2074 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2075 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2076
2077 return 0;
2078 }
2079
cp_resume(struct pci_dev * pdev)2080 static int cp_resume (struct pci_dev *pdev)
2081 {
2082 struct net_device *dev = pci_get_drvdata (pdev);
2083 struct cp_private *cp = netdev_priv(dev);
2084 unsigned long flags;
2085
2086 if (!netif_running(dev))
2087 return 0;
2088
2089 netif_device_attach (dev);
2090
2091 pci_set_power_state(pdev, PCI_D0);
2092 pci_restore_state(pdev);
2093 pci_enable_wake(pdev, PCI_D0, 0);
2094
2095 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2096 cp_init_rings_index (cp);
2097 cp_init_hw (cp);
2098 cp_enable_irq(cp);
2099 netif_start_queue (dev);
2100
2101 spin_lock_irqsave (&cp->lock, flags);
2102
2103 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2104
2105 spin_unlock_irqrestore (&cp->lock, flags);
2106
2107 return 0;
2108 }
2109 #endif /* CONFIG_PM */
2110
2111 static const struct pci_device_id cp_pci_tbl[] = {
2112 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
2113 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
2114 { },
2115 };
2116 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2117
2118 static struct pci_driver cp_driver = {
2119 .name = DRV_NAME,
2120 .id_table = cp_pci_tbl,
2121 .probe = cp_init_one,
2122 .remove = cp_remove_one,
2123 #ifdef CONFIG_PM
2124 .resume = cp_resume,
2125 .suspend = cp_suspend,
2126 #endif
2127 };
2128
2129 module_pci_driver(cp_driver);
2130