1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55
56 struct qed_pi_info {
57 qed_int_comp_cb_t comp_cb;
58 void *cookie;
59 };
60
61 struct qed_sb_sp_info {
62 struct qed_sb_info sb_info;
63
64 /* per protocol index data */
65 struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
66 };
67
68 enum qed_attention_type {
69 QED_ATTN_TYPE_ATTN,
70 QED_ATTN_TYPE_PARITY,
71 };
72
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74 ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75
76 struct aeu_invert_reg_bit {
77 char bit_name[30];
78
79 #define ATTENTION_PARITY (1 << 0)
80
81 #define ATTENTION_LENGTH_MASK (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT (4)
83 #define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \
84 ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \
88 ATTENTION_PARITY)
89
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT (12)
93
94 #define ATTENTION_BB_MASK (0x00700000)
95 #define ATTENTION_BB_SHIFT (20)
96 #define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT BIT(23)
98
99 unsigned int flags;
100
101 /* Callback to call if attention will be triggered */
102 int (*cb)(struct qed_hwfn *p_hwfn);
103
104 enum block_id block_index;
105 };
106
107 struct aeu_invert_reg {
108 struct aeu_invert_reg_bit bits[32];
109 };
110
111 #define MAX_ATTN_GRPS (8)
112 #define NUM_ATTN_REGS (9)
113
114 /* Specific HW attention callbacks */
qed_mcp_attn_cb(struct qed_hwfn * p_hwfn)115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118
119 /* This might occur on certain instances; Log it once then mask it */
120 DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121 tmp);
122 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123 0xffffffff);
124
125 return 0;
126 }
127
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18)
qed_pswhst_attn_cb(struct qed_hwfn * p_hwfn)141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144 PSWHST_REG_INCORRECT_ACCESS_VALID);
145
146 if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147 u32 addr, data, length;
148
149 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 PSWHST_REG_INCORRECT_ACCESS_DATA);
153 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155
156 DP_INFO(p_hwfn->cdev,
157 "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158 addr, length,
159 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161 (u8) GET_FIELD(data,
162 ATTENTION_INCORRECT_ACCESS_VF_VALID),
163 (u8) GET_FIELD(data,
164 ATTENTION_INCORRECT_ACCESS_CLIENT),
165 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166 (u8) GET_FIELD(data,
167 ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168 data);
169 }
170
171 return 0;
172 }
173
174 #define QED_GRC_ATTENTION_VALID_BIT (1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
177 #define QED_GRC_ATTENTION_RDWR_BIT (1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK (0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT (24)
180 #define QED_GRC_ATTENTION_PF_MASK (0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT (0)
182 #define QED_GRC_ATTENTION_VF_MASK (0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT (4)
184 #define QED_GRC_ATTENTION_PRIV_MASK (0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT (14)
186 #define QED_GRC_ATTENTION_PRIV_VF (0)
attn_master_to_str(u8 master)187 static const char *attn_master_to_str(u8 master)
188 {
189 switch (master) {
190 case 1: return "PXP";
191 case 2: return "MCP";
192 case 3: return "MSDM";
193 case 4: return "PSDM";
194 case 5: return "YSDM";
195 case 6: return "USDM";
196 case 7: return "TSDM";
197 case 8: return "XSDM";
198 case 9: return "DBU";
199 case 10: return "DMAE";
200 default:
201 return "Unknown";
202 }
203 }
204
qed_grc_attn_cb(struct qed_hwfn * p_hwfn)205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207 u32 tmp, tmp2;
208
209 /* We've already cleared the timeout interrupt register, so we learn
210 * of interrupts via the validity register
211 */
212 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214 if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215 goto out;
216
217 /* Read the GRC timeout information */
218 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220 tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222
223 DP_INFO(p_hwfn->cdev,
224 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225 tmp2, tmp,
226 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
232 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233
234 out:
235 /* Regardles of anything else, clean the validity bit */
236 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238 return 0;
239 }
240
241 #define PGLUE_ATTENTION_VALID (1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID (1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23)
255 #define PGLUE_ATTENTION_ICPL_VALID (1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID (1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID (1 << 23)
qed_pglub_rbc_attn_cb(struct qed_hwfn * p_hwfn)258 static int qed_pglub_rbc_attn_cb(struct qed_hwfn *p_hwfn)
259 {
260 u32 tmp;
261
262 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
263 PGLUE_B_REG_TX_ERR_WR_DETAILS2);
264 if (tmp & PGLUE_ATTENTION_VALID) {
265 u32 addr_lo, addr_hi, details;
266
267 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
269 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
270 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
271 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
272 PGLUE_B_REG_TX_ERR_WR_DETAILS);
273
274 DP_INFO(p_hwfn,
275 "Illegal write by chip to [%08x:%08x] blocked.\n"
276 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
277 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
278 addr_hi, addr_lo, details,
279 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
280 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
281 GET_FIELD(details,
282 PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
283 tmp,
284 GET_FIELD(tmp,
285 PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
286 GET_FIELD(tmp,
287 PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
288 GET_FIELD(tmp,
289 PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
290 }
291
292 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
293 PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294 if (tmp & PGLUE_ATTENTION_RD_VALID) {
295 u32 addr_lo, addr_hi, details;
296
297 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
298 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
300 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
302 PGLUE_B_REG_TX_ERR_RD_DETAILS);
303
304 DP_INFO(p_hwfn,
305 "Illegal read by chip from [%08x:%08x] blocked.\n"
306 " Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307 " Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308 addr_hi, addr_lo, details,
309 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311 GET_FIELD(details,
312 PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313 tmp,
314 GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
315 : 0,
316 GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
317 GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
318 : 0);
319 }
320
321 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
322 PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323 if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324 DP_INFO(p_hwfn, "ICPL error - %08x\n", tmp);
325
326 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
327 PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
328 if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
329 u32 addr_hi, addr_lo;
330
331 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
332 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
333 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
334 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
335
336 DP_INFO(p_hwfn, "ZLR eror - %08x [Address %08x:%08x]\n",
337 tmp, addr_hi, addr_lo);
338 }
339
340 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
341 PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
342 if (tmp & PGLUE_ATTENTION_ILT_VALID) {
343 u32 addr_hi, addr_lo, details;
344
345 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
347 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
348 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
349 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
350 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
351
352 DP_INFO(p_hwfn,
353 "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
354 details, tmp, addr_hi, addr_lo);
355 }
356
357 /* Clear the indications */
358 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
359 PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
360
361 return 0;
362 }
363
364 #define QED_DORQ_ATTENTION_REASON_MASK (0xfffff)
365 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
366 #define QED_DORQ_ATTENTION_SIZE_MASK (0x7f)
367 #define QED_DORQ_ATTENTION_SIZE_SHIFT (16)
qed_dorq_attn_cb(struct qed_hwfn * p_hwfn)368 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
369 {
370 u32 reason;
371
372 reason = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
373 QED_DORQ_ATTENTION_REASON_MASK;
374 if (reason) {
375 u32 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
376 DORQ_REG_DB_DROP_DETAILS);
377
378 DP_INFO(p_hwfn->cdev,
379 "DORQ db_drop: address 0x%08x Opaque FID 0x%04x Size [bytes] 0x%08x Reason: 0x%08x\n",
380 qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
381 DORQ_REG_DB_DROP_DETAILS_ADDRESS),
382 (u16)(details & QED_DORQ_ATTENTION_OPAQUE_MASK),
383 GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
384 reason);
385 }
386
387 return -EINVAL;
388 }
389
390 /* Instead of major changes to the data-structure, we have a some 'special'
391 * identifiers for sources that changed meaning between adapters.
392 */
393 enum aeu_invert_reg_special_type {
394 AEU_INVERT_REG_SPECIAL_CNIG_0,
395 AEU_INVERT_REG_SPECIAL_CNIG_1,
396 AEU_INVERT_REG_SPECIAL_CNIG_2,
397 AEU_INVERT_REG_SPECIAL_CNIG_3,
398 AEU_INVERT_REG_SPECIAL_MAX,
399 };
400
401 static struct aeu_invert_reg_bit
402 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
403 {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
404 {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
405 {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
406 {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
407 };
408
409 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
410 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
411 {
412 { /* After Invert 1 */
413 {"GPIO0 function%d",
414 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
415 }
416 },
417
418 {
419 { /* After Invert 2 */
420 {"PGLUE config_space", ATTENTION_SINGLE,
421 NULL, MAX_BLOCK_ID},
422 {"PGLUE misc_flr", ATTENTION_SINGLE,
423 NULL, MAX_BLOCK_ID},
424 {"PGLUE B RBC", ATTENTION_PAR_INT,
425 qed_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
426 {"PGLUE misc_mctp", ATTENTION_SINGLE,
427 NULL, MAX_BLOCK_ID},
428 {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
429 {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
430 {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
431 {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
432 (1 << ATTENTION_OFFSET_SHIFT),
433 NULL, MAX_BLOCK_ID},
434 {"PCIE glue/PXP VPD %d",
435 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
436 }
437 },
438
439 {
440 { /* After Invert 3 */
441 {"General Attention %d",
442 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
443 }
444 },
445
446 {
447 { /* After Invert 4 */
448 {"General Attention 32", ATTENTION_SINGLE,
449 NULL, MAX_BLOCK_ID},
450 {"General Attention %d",
451 (2 << ATTENTION_LENGTH_SHIFT) |
452 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
453 {"General Attention 35", ATTENTION_SINGLE,
454 NULL, MAX_BLOCK_ID},
455 {"NWS Parity",
456 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
457 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
458 NULL, BLOCK_NWS},
459 {"NWS Interrupt",
460 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
461 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
462 NULL, BLOCK_NWS},
463 {"NWM Parity",
464 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
465 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
466 NULL, BLOCK_NWM},
467 {"NWM Interrupt",
468 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
469 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
470 NULL, BLOCK_NWM},
471 {"MCP CPU", ATTENTION_SINGLE,
472 qed_mcp_attn_cb, MAX_BLOCK_ID},
473 {"MCP Watchdog timer", ATTENTION_SINGLE,
474 NULL, MAX_BLOCK_ID},
475 {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
476 {"AVS stop status ready", ATTENTION_SINGLE,
477 NULL, MAX_BLOCK_ID},
478 {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
479 {"MSTAT per-path", ATTENTION_PAR_INT,
480 NULL, MAX_BLOCK_ID},
481 {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
482 NULL, MAX_BLOCK_ID},
483 {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
484 {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
485 {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
486 {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
487 {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
488 }
489 },
490
491 {
492 { /* After Invert 5 */
493 {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
494 {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
495 {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
496 {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
497 {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
498 {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
499 {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
500 {"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM},
501 {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
502 {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
503 {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
504 {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
505 {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
506 {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
507 {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
508 {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
509 }
510 },
511
512 {
513 { /* After Invert 6 */
514 {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
515 {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
516 {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
517 {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
518 {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
519 {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
520 {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
521 {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
522 {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
523 {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
524 {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
525 {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
526 {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
527 {"DORQ", ATTENTION_PAR_INT,
528 qed_dorq_attn_cb, BLOCK_DORQ},
529 {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
530 {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
531 }
532 },
533
534 {
535 { /* After Invert 7 */
536 {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
537 {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
538 {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
539 {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
540 {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
541 {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
542 {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
543 {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
544 {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
545 {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
546 {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
547 {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
548 {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
549 {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
550 {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
551 {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
552 {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
553 }
554 },
555
556 {
557 { /* After Invert 8 */
558 {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
559 NULL, BLOCK_PSWRQ2},
560 {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
561 {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
562 NULL, BLOCK_PSWWR2},
563 {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
564 {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
565 NULL, BLOCK_PSWRD2},
566 {"PSWHST", ATTENTION_PAR_INT,
567 qed_pswhst_attn_cb, BLOCK_PSWHST},
568 {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
569 NULL, BLOCK_PSWHST2},
570 {"GRC", ATTENTION_PAR_INT,
571 qed_grc_attn_cb, BLOCK_GRC},
572 {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
573 {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
574 {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
575 {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
576 {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
577 {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
578 {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
579 {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
580 {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
581 {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
582 NULL, BLOCK_PGLCS},
583 {"PERST_B assertion", ATTENTION_SINGLE,
584 NULL, MAX_BLOCK_ID},
585 {"PERST_B deassertion", ATTENTION_SINGLE,
586 NULL, MAX_BLOCK_ID},
587 {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
588 NULL, MAX_BLOCK_ID},
589 }
590 },
591
592 {
593 { /* After Invert 9 */
594 {"MCP Latched memory", ATTENTION_PAR,
595 NULL, MAX_BLOCK_ID},
596 {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
597 NULL, MAX_BLOCK_ID},
598 {"MCP Latched ump_tx", ATTENTION_PAR,
599 NULL, MAX_BLOCK_ID},
600 {"MCP Latched scratchpad", ATTENTION_PAR,
601 NULL, MAX_BLOCK_ID},
602 {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
603 NULL, MAX_BLOCK_ID},
604 }
605 },
606 };
607
608 static struct aeu_invert_reg_bit *
qed_int_aeu_translate(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_bit)609 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
610 struct aeu_invert_reg_bit *p_bit)
611 {
612 if (!QED_IS_BB(p_hwfn->cdev))
613 return p_bit;
614
615 if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
616 return p_bit;
617
618 return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
619 ATTENTION_BB_SHIFT];
620 }
621
qed_int_is_parity_flag(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_bit)622 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
623 struct aeu_invert_reg_bit *p_bit)
624 {
625 return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
626 ATTENTION_PARITY);
627 }
628
629 #define ATTN_STATE_BITS (0xfff)
630 #define ATTN_BITS_MASKABLE (0x3ff)
631 struct qed_sb_attn_info {
632 /* Virtual & Physical address of the SB */
633 struct atten_status_block *sb_attn;
634 dma_addr_t sb_phys;
635
636 /* Last seen running index */
637 u16 index;
638
639 /* A mask of the AEU bits resulting in a parity error */
640 u32 parity_mask[NUM_ATTN_REGS];
641
642 /* A pointer to the attention description structure */
643 struct aeu_invert_reg *p_aeu_desc;
644
645 /* Previously asserted attentions, which are still unasserted */
646 u16 known_attn;
647
648 /* Cleanup address for the link's general hw attention */
649 u32 mfw_attn_addr;
650 };
651
qed_attn_update_idx(struct qed_hwfn * p_hwfn,struct qed_sb_attn_info * p_sb_desc)652 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
653 struct qed_sb_attn_info *p_sb_desc)
654 {
655 u16 rc = 0, index;
656
657 /* Make certain HW write took affect */
658 mmiowb();
659
660 index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
661 if (p_sb_desc->index != index) {
662 p_sb_desc->index = index;
663 rc = QED_SB_ATT_IDX;
664 }
665
666 /* Make certain we got a consistent view with HW */
667 mmiowb();
668
669 return rc;
670 }
671
672 /**
673 * @brief qed_int_assertion - handles asserted attention bits
674 *
675 * @param p_hwfn
676 * @param asserted_bits newly asserted bits
677 * @return int
678 */
qed_int_assertion(struct qed_hwfn * p_hwfn,u16 asserted_bits)679 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
680 {
681 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
682 u32 igu_mask;
683
684 /* Mask the source of the attention in the IGU */
685 igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
686 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
687 igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
688 igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
689 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
690
691 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
692 "inner known ATTN state: 0x%04x --> 0x%04x\n",
693 sb_attn_sw->known_attn,
694 sb_attn_sw->known_attn | asserted_bits);
695 sb_attn_sw->known_attn |= asserted_bits;
696
697 /* Handle MCP events */
698 if (asserted_bits & 0x100) {
699 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
700 /* Clean the MCP attention */
701 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
702 sb_attn_sw->mfw_attn_addr, 0);
703 }
704
705 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
706 GTT_BAR0_MAP_REG_IGU_CMD +
707 ((IGU_CMD_ATTN_BIT_SET_UPPER -
708 IGU_CMD_INT_ACK_BASE) << 3),
709 (u32)asserted_bits);
710
711 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
712 asserted_bits);
713
714 return 0;
715 }
716
qed_int_attn_print(struct qed_hwfn * p_hwfn,enum block_id id,enum dbg_attn_type type,bool b_clear)717 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
718 enum block_id id,
719 enum dbg_attn_type type, bool b_clear)
720 {
721 struct dbg_attn_block_result attn_results;
722 enum dbg_status status;
723
724 memset(&attn_results, 0, sizeof(attn_results));
725
726 status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
727 b_clear, &attn_results);
728 if (status != DBG_STATUS_OK)
729 DP_NOTICE(p_hwfn,
730 "Failed to parse attention information [status: %s]\n",
731 qed_dbg_get_status_str(status));
732 else
733 qed_dbg_parse_attn(p_hwfn, &attn_results);
734 }
735
736 /**
737 * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
738 * cause of the attention
739 *
740 * @param p_hwfn
741 * @param p_aeu - descriptor of an AEU bit which caused the attention
742 * @param aeu_en_reg - register offset of the AEU enable reg. which configured
743 * this bit to this group.
744 * @param bit_index - index of this bit in the aeu_en_reg
745 *
746 * @return int
747 */
748 static int
qed_int_deassertion_aeu_bit(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_aeu,u32 aeu_en_reg,const char * p_bit_name,u32 bitmask)749 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
750 struct aeu_invert_reg_bit *p_aeu,
751 u32 aeu_en_reg,
752 const char *p_bit_name, u32 bitmask)
753 {
754 bool b_fatal = false;
755 int rc = -EINVAL;
756 u32 val;
757
758 DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
759 p_bit_name, bitmask);
760
761 /* Call callback before clearing the interrupt status */
762 if (p_aeu->cb) {
763 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
764 p_bit_name);
765 rc = p_aeu->cb(p_hwfn);
766 }
767
768 if (rc)
769 b_fatal = true;
770
771 /* Print HW block interrupt registers */
772 if (p_aeu->block_index != MAX_BLOCK_ID)
773 qed_int_attn_print(p_hwfn, p_aeu->block_index,
774 ATTN_TYPE_INTERRUPT, !b_fatal);
775
776
777 /* If the attention is benign, no need to prevent it */
778 if (!rc)
779 goto out;
780
781 /* Prevent this Attention from being asserted in the future */
782 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
783 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
784 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
785 p_bit_name);
786
787 out:
788 return rc;
789 }
790
791 /**
792 * @brief qed_int_deassertion_parity - handle a single parity AEU source
793 *
794 * @param p_hwfn
795 * @param p_aeu - descriptor of an AEU bit which caused the parity
796 * @param aeu_en_reg - address of the AEU enable register
797 * @param bit_index
798 */
qed_int_deassertion_parity(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_aeu,u32 aeu_en_reg,u8 bit_index)799 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
800 struct aeu_invert_reg_bit *p_aeu,
801 u32 aeu_en_reg, u8 bit_index)
802 {
803 u32 block_id = p_aeu->block_index, mask, val;
804
805 DP_NOTICE(p_hwfn->cdev,
806 "%s parity attention is set [address 0x%08x, bit %d]\n",
807 p_aeu->bit_name, aeu_en_reg, bit_index);
808
809 if (block_id != MAX_BLOCK_ID) {
810 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
811
812 /* In BB, there's a single parity bit for several blocks */
813 if (block_id == BLOCK_BTB) {
814 qed_int_attn_print(p_hwfn, BLOCK_OPTE,
815 ATTN_TYPE_PARITY, false);
816 qed_int_attn_print(p_hwfn, BLOCK_MCP,
817 ATTN_TYPE_PARITY, false);
818 }
819 }
820
821 /* Prevent this parity error from being re-asserted */
822 mask = ~BIT(bit_index);
823 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
824 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
825 DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
826 p_aeu->bit_name);
827 }
828
829 /**
830 * @brief - handles deassertion of previously asserted attentions.
831 *
832 * @param p_hwfn
833 * @param deasserted_bits - newly deasserted bits
834 * @return int
835 *
836 */
qed_int_deassertion(struct qed_hwfn * p_hwfn,u16 deasserted_bits)837 static int qed_int_deassertion(struct qed_hwfn *p_hwfn,
838 u16 deasserted_bits)
839 {
840 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
841 u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
842 u8 i, j, k, bit_idx;
843 int rc = 0;
844
845 /* Read the attention registers in the AEU */
846 for (i = 0; i < NUM_ATTN_REGS; i++) {
847 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
848 MISC_REG_AEU_AFTER_INVERT_1_IGU +
849 i * 0x4);
850 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
851 "Deasserted bits [%d]: %08x\n",
852 i, aeu_inv_arr[i]);
853 }
854
855 /* Find parity attentions first */
856 for (i = 0; i < NUM_ATTN_REGS; i++) {
857 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
858 u32 parities;
859
860 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
861 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
862
863 /* Skip register in which no parity bit is currently set */
864 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
865 if (!parities)
866 continue;
867
868 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
869 struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
870
871 if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
872 !!(parities & BIT(bit_idx)))
873 qed_int_deassertion_parity(p_hwfn, p_bit,
874 aeu_en, bit_idx);
875
876 bit_idx += ATTENTION_LENGTH(p_bit->flags);
877 }
878 }
879
880 /* Find non-parity cause for attention and act */
881 for (k = 0; k < MAX_ATTN_GRPS; k++) {
882 struct aeu_invert_reg_bit *p_aeu;
883
884 /* Handle only groups whose attention is currently deasserted */
885 if (!(deasserted_bits & (1 << k)))
886 continue;
887
888 for (i = 0; i < NUM_ATTN_REGS; i++) {
889 u32 bits;
890
891 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
892 i * sizeof(u32) +
893 k * sizeof(u32) * NUM_ATTN_REGS;
894
895 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
896 bits = aeu_inv_arr[i] & en;
897
898 /* Skip if no bit from this group is currently set */
899 if (!bits)
900 continue;
901
902 /* Find all set bits from current register which belong
903 * to current group, making them responsible for the
904 * previous assertion.
905 */
906 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
907 long unsigned int bitmask;
908 u8 bit, bit_len;
909
910 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
911 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
912
913 bit = bit_idx;
914 bit_len = ATTENTION_LENGTH(p_aeu->flags);
915 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
916 /* Skip Parity */
917 bit++;
918 bit_len--;
919 }
920
921 bitmask = bits & (((1 << bit_len) - 1) << bit);
922 bitmask >>= bit;
923
924 if (bitmask) {
925 u32 flags = p_aeu->flags;
926 char bit_name[30];
927 u8 num;
928
929 num = (u8)find_first_bit(&bitmask,
930 bit_len);
931
932 /* Some bits represent more than a
933 * a single interrupt. Correctly print
934 * their name.
935 */
936 if (ATTENTION_LENGTH(flags) > 2 ||
937 ((flags & ATTENTION_PAR_INT) &&
938 ATTENTION_LENGTH(flags) > 1))
939 snprintf(bit_name, 30,
940 p_aeu->bit_name, num);
941 else
942 strncpy(bit_name,
943 p_aeu->bit_name, 30);
944
945 /* We now need to pass bitmask in its
946 * correct position.
947 */
948 bitmask <<= bit;
949
950 /* Handle source of the attention */
951 qed_int_deassertion_aeu_bit(p_hwfn,
952 p_aeu,
953 aeu_en,
954 bit_name,
955 bitmask);
956 }
957
958 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
959 }
960 }
961 }
962
963 /* Clear IGU indication for the deasserted bits */
964 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
965 GTT_BAR0_MAP_REG_IGU_CMD +
966 ((IGU_CMD_ATTN_BIT_CLR_UPPER -
967 IGU_CMD_INT_ACK_BASE) << 3),
968 ~((u32)deasserted_bits));
969
970 /* Unmask deasserted attentions in IGU */
971 aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
972 aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
973 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
974
975 /* Clear deassertion from inner state */
976 sb_attn_sw->known_attn &= ~deasserted_bits;
977
978 return rc;
979 }
980
qed_int_attentions(struct qed_hwfn * p_hwfn)981 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
982 {
983 struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
984 struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
985 u32 attn_bits = 0, attn_acks = 0;
986 u16 asserted_bits, deasserted_bits;
987 __le16 index;
988 int rc = 0;
989
990 /* Read current attention bits/acks - safeguard against attentions
991 * by guaranting work on a synchronized timeframe
992 */
993 do {
994 index = p_sb_attn->sb_index;
995 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
996 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
997 } while (index != p_sb_attn->sb_index);
998 p_sb_attn->sb_index = index;
999
1000 /* Attention / Deassertion are meaningful (and in correct state)
1001 * only when they differ and consistent with known state - deassertion
1002 * when previous attention & current ack, and assertion when current
1003 * attention with no previous attention
1004 */
1005 asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1006 ~p_sb_attn_sw->known_attn;
1007 deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1008 p_sb_attn_sw->known_attn;
1009
1010 if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1011 DP_INFO(p_hwfn,
1012 "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1013 index, attn_bits, attn_acks, asserted_bits,
1014 deasserted_bits, p_sb_attn_sw->known_attn);
1015 } else if (asserted_bits == 0x100) {
1016 DP_INFO(p_hwfn, "MFW indication via attention\n");
1017 } else {
1018 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1019 "MFW indication [deassertion]\n");
1020 }
1021
1022 if (asserted_bits) {
1023 rc = qed_int_assertion(p_hwfn, asserted_bits);
1024 if (rc)
1025 return rc;
1026 }
1027
1028 if (deasserted_bits)
1029 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1030
1031 return rc;
1032 }
1033
qed_sb_ack_attn(struct qed_hwfn * p_hwfn,void __iomem * igu_addr,u32 ack_cons)1034 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1035 void __iomem *igu_addr, u32 ack_cons)
1036 {
1037 struct igu_prod_cons_update igu_ack = { 0 };
1038
1039 igu_ack.sb_id_and_flags =
1040 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1041 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1042 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1043 (IGU_SEG_ACCESS_ATTN <<
1044 IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1045
1046 DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1047
1048 /* Both segments (interrupts & acks) are written to same place address;
1049 * Need to guarantee all commands will be received (in-order) by HW.
1050 */
1051 mmiowb();
1052 barrier();
1053 }
1054
qed_int_sp_dpc(unsigned long hwfn_cookie)1055 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1056 {
1057 struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1058 struct qed_pi_info *pi_info = NULL;
1059 struct qed_sb_attn_info *sb_attn;
1060 struct qed_sb_info *sb_info;
1061 int arr_size;
1062 u16 rc = 0;
1063
1064 if (!p_hwfn->p_sp_sb) {
1065 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1066 return;
1067 }
1068
1069 sb_info = &p_hwfn->p_sp_sb->sb_info;
1070 arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1071 if (!sb_info) {
1072 DP_ERR(p_hwfn->cdev,
1073 "Status block is NULL - cannot ack interrupts\n");
1074 return;
1075 }
1076
1077 if (!p_hwfn->p_sb_attn) {
1078 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1079 return;
1080 }
1081 sb_attn = p_hwfn->p_sb_attn;
1082
1083 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1084 p_hwfn, p_hwfn->my_id);
1085
1086 /* Disable ack for def status block. Required both for msix +
1087 * inta in non-mask mode, in inta does no harm.
1088 */
1089 qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1090
1091 /* Gather Interrupts/Attentions information */
1092 if (!sb_info->sb_virt) {
1093 DP_ERR(p_hwfn->cdev,
1094 "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1095 } else {
1096 u32 tmp_index = sb_info->sb_ack;
1097
1098 rc = qed_sb_update_sb_idx(sb_info);
1099 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1100 "Interrupt indices: 0x%08x --> 0x%08x\n",
1101 tmp_index, sb_info->sb_ack);
1102 }
1103
1104 if (!sb_attn || !sb_attn->sb_attn) {
1105 DP_ERR(p_hwfn->cdev,
1106 "Attentions Status block is NULL - cannot check for new attentions!\n");
1107 } else {
1108 u16 tmp_index = sb_attn->index;
1109
1110 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1111 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1112 "Attention indices: 0x%08x --> 0x%08x\n",
1113 tmp_index, sb_attn->index);
1114 }
1115
1116 /* Check if we expect interrupts at this time. if not just ack them */
1117 if (!(rc & QED_SB_EVENT_MASK)) {
1118 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1119 return;
1120 }
1121
1122 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1123 if (!p_hwfn->p_dpc_ptt) {
1124 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1125 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1126 return;
1127 }
1128
1129 if (rc & QED_SB_ATT_IDX)
1130 qed_int_attentions(p_hwfn);
1131
1132 if (rc & QED_SB_IDX) {
1133 int pi;
1134
1135 /* Look for a free index */
1136 for (pi = 0; pi < arr_size; pi++) {
1137 pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1138 if (pi_info->comp_cb)
1139 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1140 }
1141 }
1142
1143 if (sb_attn && (rc & QED_SB_ATT_IDX))
1144 /* This should be done before the interrupts are enabled,
1145 * since otherwise a new attention will be generated.
1146 */
1147 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1148
1149 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1150 }
1151
qed_int_sb_attn_free(struct qed_hwfn * p_hwfn)1152 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1153 {
1154 struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1155
1156 if (!p_sb)
1157 return;
1158
1159 if (p_sb->sb_attn)
1160 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1161 SB_ATTN_ALIGNED_SIZE(p_hwfn),
1162 p_sb->sb_attn, p_sb->sb_phys);
1163 kfree(p_sb);
1164 p_hwfn->p_sb_attn = NULL;
1165 }
1166
qed_int_sb_attn_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1167 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1168 struct qed_ptt *p_ptt)
1169 {
1170 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1171
1172 memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1173
1174 sb_info->index = 0;
1175 sb_info->known_attn = 0;
1176
1177 /* Configure Attention Status Block in IGU */
1178 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1179 lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1180 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1181 upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1182 }
1183
qed_int_sb_attn_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,void * sb_virt_addr,dma_addr_t sb_phy_addr)1184 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1185 struct qed_ptt *p_ptt,
1186 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1187 {
1188 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1189 int i, j, k;
1190
1191 sb_info->sb_attn = sb_virt_addr;
1192 sb_info->sb_phys = sb_phy_addr;
1193
1194 /* Set the pointer to the AEU descriptors */
1195 sb_info->p_aeu_desc = aeu_descs;
1196
1197 /* Calculate Parity Masks */
1198 memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1199 for (i = 0; i < NUM_ATTN_REGS; i++) {
1200 /* j is array index, k is bit index */
1201 for (j = 0, k = 0; k < 32; j++) {
1202 struct aeu_invert_reg_bit *p_aeu;
1203
1204 p_aeu = &aeu_descs[i].bits[j];
1205 if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1206 sb_info->parity_mask[i] |= 1 << k;
1207
1208 k += ATTENTION_LENGTH(p_aeu->flags);
1209 }
1210 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1211 "Attn Mask [Reg %d]: 0x%08x\n",
1212 i, sb_info->parity_mask[i]);
1213 }
1214
1215 /* Set the address of cleanup for the mcp attention */
1216 sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1217 MISC_REG_AEU_GENERAL_ATTN_0;
1218
1219 qed_int_sb_attn_setup(p_hwfn, p_ptt);
1220 }
1221
qed_int_sb_attn_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1222 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1223 struct qed_ptt *p_ptt)
1224 {
1225 struct qed_dev *cdev = p_hwfn->cdev;
1226 struct qed_sb_attn_info *p_sb;
1227 dma_addr_t p_phys = 0;
1228 void *p_virt;
1229
1230 /* SB struct */
1231 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1232 if (!p_sb)
1233 return -ENOMEM;
1234
1235 /* SB ring */
1236 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1237 SB_ATTN_ALIGNED_SIZE(p_hwfn),
1238 &p_phys, GFP_KERNEL);
1239
1240 if (!p_virt) {
1241 kfree(p_sb);
1242 return -ENOMEM;
1243 }
1244
1245 /* Attention setup */
1246 p_hwfn->p_sb_attn = p_sb;
1247 qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1248
1249 return 0;
1250 }
1251
1252 /* coalescing timeout = timeset << (timer_res + 1) */
1253 #define QED_CAU_DEF_RX_USECS 24
1254 #define QED_CAU_DEF_TX_USECS 48
1255
qed_init_cau_sb_entry(struct qed_hwfn * p_hwfn,struct cau_sb_entry * p_sb_entry,u8 pf_id,u16 vf_number,u8 vf_valid)1256 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1257 struct cau_sb_entry *p_sb_entry,
1258 u8 pf_id, u16 vf_number, u8 vf_valid)
1259 {
1260 struct qed_dev *cdev = p_hwfn->cdev;
1261 u32 cau_state;
1262 u8 timer_res;
1263
1264 memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1265
1266 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1267 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1268 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1269 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1270 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1271
1272 cau_state = CAU_HC_DISABLE_STATE;
1273
1274 if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1275 cau_state = CAU_HC_ENABLE_STATE;
1276 if (!cdev->rx_coalesce_usecs)
1277 cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1278 if (!cdev->tx_coalesce_usecs)
1279 cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1280 }
1281
1282 /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1283 if (cdev->rx_coalesce_usecs <= 0x7F)
1284 timer_res = 0;
1285 else if (cdev->rx_coalesce_usecs <= 0xFF)
1286 timer_res = 1;
1287 else
1288 timer_res = 2;
1289 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1290
1291 if (cdev->tx_coalesce_usecs <= 0x7F)
1292 timer_res = 0;
1293 else if (cdev->tx_coalesce_usecs <= 0xFF)
1294 timer_res = 1;
1295 else
1296 timer_res = 2;
1297 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1298
1299 SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1300 SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1301 }
1302
qed_int_cau_conf_pi(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,u32 pi_index,enum qed_coalescing_fsm coalescing_fsm,u8 timeset)1303 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1304 struct qed_ptt *p_ptt,
1305 u16 igu_sb_id,
1306 u32 pi_index,
1307 enum qed_coalescing_fsm coalescing_fsm,
1308 u8 timeset)
1309 {
1310 struct cau_pi_entry pi_entry;
1311 u32 sb_offset, pi_offset;
1312
1313 if (IS_VF(p_hwfn->cdev))
1314 return;
1315
1316 sb_offset = igu_sb_id * PIS_PER_SB_E4;
1317 memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1318
1319 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1320 if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1321 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1322 else
1323 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1324
1325 pi_offset = sb_offset + pi_index;
1326 if (p_hwfn->hw_init_done) {
1327 qed_wr(p_hwfn, p_ptt,
1328 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1329 *((u32 *)&(pi_entry)));
1330 } else {
1331 STORE_RT_REG(p_hwfn,
1332 CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1333 *((u32 *)&(pi_entry)));
1334 }
1335 }
1336
qed_int_cau_conf_sb(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,dma_addr_t sb_phys,u16 igu_sb_id,u16 vf_number,u8 vf_valid)1337 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1338 struct qed_ptt *p_ptt,
1339 dma_addr_t sb_phys,
1340 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1341 {
1342 struct cau_sb_entry sb_entry;
1343
1344 qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1345 vf_number, vf_valid);
1346
1347 if (p_hwfn->hw_init_done) {
1348 /* Wide-bus, initialize via DMAE */
1349 u64 phys_addr = (u64)sb_phys;
1350
1351 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1352 CAU_REG_SB_ADDR_MEMORY +
1353 igu_sb_id * sizeof(u64), 2, 0);
1354 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1355 CAU_REG_SB_VAR_MEMORY +
1356 igu_sb_id * sizeof(u64), 2, 0);
1357 } else {
1358 /* Initialize Status Block Address */
1359 STORE_RT_REG_AGG(p_hwfn,
1360 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1361 igu_sb_id * 2,
1362 sb_phys);
1363
1364 STORE_RT_REG_AGG(p_hwfn,
1365 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1366 igu_sb_id * 2,
1367 sb_entry);
1368 }
1369
1370 /* Configure pi coalescing if set */
1371 if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1372 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1373 u8 timeset, timer_res;
1374 u8 i;
1375
1376 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1377 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1378 timer_res = 0;
1379 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1380 timer_res = 1;
1381 else
1382 timer_res = 2;
1383 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1384 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1385 QED_COAL_RX_STATE_MACHINE, timeset);
1386
1387 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1388 timer_res = 0;
1389 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1390 timer_res = 1;
1391 else
1392 timer_res = 2;
1393 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1394 for (i = 0; i < num_tc; i++) {
1395 qed_int_cau_conf_pi(p_hwfn, p_ptt,
1396 igu_sb_id, TX_PI(i),
1397 QED_COAL_TX_STATE_MACHINE,
1398 timeset);
1399 }
1400 }
1401 }
1402
qed_int_sb_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_sb_info * sb_info)1403 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1404 struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1405 {
1406 /* zero status block and ack counter */
1407 sb_info->sb_ack = 0;
1408 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1409
1410 if (IS_PF(p_hwfn->cdev))
1411 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1412 sb_info->igu_sb_id, 0, 0);
1413 }
1414
qed_get_igu_free_sb(struct qed_hwfn * p_hwfn,bool b_is_pf)1415 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1416 {
1417 struct qed_igu_block *p_block;
1418 u16 igu_id;
1419
1420 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1421 igu_id++) {
1422 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1423
1424 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1425 !(p_block->status & QED_IGU_STATUS_FREE))
1426 continue;
1427
1428 if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1429 return p_block;
1430 }
1431
1432 return NULL;
1433 }
1434
qed_get_pf_igu_sb_id(struct qed_hwfn * p_hwfn,u16 vector_id)1435 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1436 {
1437 struct qed_igu_block *p_block;
1438 u16 igu_id;
1439
1440 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1441 igu_id++) {
1442 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1443
1444 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1445 !p_block->is_pf ||
1446 p_block->vector_number != vector_id)
1447 continue;
1448
1449 return igu_id;
1450 }
1451
1452 return QED_SB_INVALID_IDX;
1453 }
1454
qed_get_igu_sb_id(struct qed_hwfn * p_hwfn,u16 sb_id)1455 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1456 {
1457 u16 igu_sb_id;
1458
1459 /* Assuming continuous set of IGU SBs dedicated for given PF */
1460 if (sb_id == QED_SP_SB_ID)
1461 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1462 else if (IS_PF(p_hwfn->cdev))
1463 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1464 else
1465 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1466
1467 if (sb_id == QED_SP_SB_ID)
1468 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1469 "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1470 else
1471 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1472 "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1473
1474 return igu_sb_id;
1475 }
1476
qed_int_sb_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_sb_info * sb_info,void * sb_virt_addr,dma_addr_t sb_phy_addr,u16 sb_id)1477 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1478 struct qed_ptt *p_ptt,
1479 struct qed_sb_info *sb_info,
1480 void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1481 {
1482 sb_info->sb_virt = sb_virt_addr;
1483 sb_info->sb_phys = sb_phy_addr;
1484
1485 sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1486
1487 if (sb_id != QED_SP_SB_ID) {
1488 if (IS_PF(p_hwfn->cdev)) {
1489 struct qed_igu_info *p_info;
1490 struct qed_igu_block *p_block;
1491
1492 p_info = p_hwfn->hw_info.p_igu_info;
1493 p_block = &p_info->entry[sb_info->igu_sb_id];
1494
1495 p_block->sb_info = sb_info;
1496 p_block->status &= ~QED_IGU_STATUS_FREE;
1497 p_info->usage.free_cnt--;
1498 } else {
1499 qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1500 }
1501 }
1502
1503 sb_info->cdev = p_hwfn->cdev;
1504
1505 /* The igu address will hold the absolute address that needs to be
1506 * written to for a specific status block
1507 */
1508 if (IS_PF(p_hwfn->cdev)) {
1509 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1510 GTT_BAR0_MAP_REG_IGU_CMD +
1511 (sb_info->igu_sb_id << 3);
1512 } else {
1513 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1514 PXP_VF_BAR0_START_IGU +
1515 ((IGU_CMD_INT_ACK_BASE +
1516 sb_info->igu_sb_id) << 3);
1517 }
1518
1519 sb_info->flags |= QED_SB_INFO_INIT;
1520
1521 qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1522
1523 return 0;
1524 }
1525
qed_int_sb_release(struct qed_hwfn * p_hwfn,struct qed_sb_info * sb_info,u16 sb_id)1526 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1527 struct qed_sb_info *sb_info, u16 sb_id)
1528 {
1529 struct qed_igu_block *p_block;
1530 struct qed_igu_info *p_info;
1531
1532 if (!sb_info)
1533 return 0;
1534
1535 /* zero status block and ack counter */
1536 sb_info->sb_ack = 0;
1537 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1538
1539 if (IS_VF(p_hwfn->cdev)) {
1540 qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1541 return 0;
1542 }
1543
1544 p_info = p_hwfn->hw_info.p_igu_info;
1545 p_block = &p_info->entry[sb_info->igu_sb_id];
1546
1547 /* Vector 0 is reserved to Default SB */
1548 if (!p_block->vector_number) {
1549 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1550 return -EINVAL;
1551 }
1552
1553 /* Lose reference to client's SB info, and fix counters */
1554 p_block->sb_info = NULL;
1555 p_block->status |= QED_IGU_STATUS_FREE;
1556 p_info->usage.free_cnt++;
1557
1558 return 0;
1559 }
1560
qed_int_sp_sb_free(struct qed_hwfn * p_hwfn)1561 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1562 {
1563 struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1564
1565 if (!p_sb)
1566 return;
1567
1568 if (p_sb->sb_info.sb_virt)
1569 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1570 SB_ALIGNED_SIZE(p_hwfn),
1571 p_sb->sb_info.sb_virt,
1572 p_sb->sb_info.sb_phys);
1573 kfree(p_sb);
1574 p_hwfn->p_sp_sb = NULL;
1575 }
1576
qed_int_sp_sb_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1577 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1578 {
1579 struct qed_sb_sp_info *p_sb;
1580 dma_addr_t p_phys = 0;
1581 void *p_virt;
1582
1583 /* SB struct */
1584 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1585 if (!p_sb)
1586 return -ENOMEM;
1587
1588 /* SB ring */
1589 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1590 SB_ALIGNED_SIZE(p_hwfn),
1591 &p_phys, GFP_KERNEL);
1592 if (!p_virt) {
1593 kfree(p_sb);
1594 return -ENOMEM;
1595 }
1596
1597 /* Status Block setup */
1598 p_hwfn->p_sp_sb = p_sb;
1599 qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1600 p_phys, QED_SP_SB_ID);
1601
1602 memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1603
1604 return 0;
1605 }
1606
qed_int_register_cb(struct qed_hwfn * p_hwfn,qed_int_comp_cb_t comp_cb,void * cookie,u8 * sb_idx,__le16 ** p_fw_cons)1607 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1608 qed_int_comp_cb_t comp_cb,
1609 void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1610 {
1611 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1612 int rc = -ENOMEM;
1613 u8 pi;
1614
1615 /* Look for a free index */
1616 for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1617 if (p_sp_sb->pi_info_arr[pi].comp_cb)
1618 continue;
1619
1620 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1621 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1622 *sb_idx = pi;
1623 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1624 rc = 0;
1625 break;
1626 }
1627
1628 return rc;
1629 }
1630
qed_int_unregister_cb(struct qed_hwfn * p_hwfn,u8 pi)1631 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1632 {
1633 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1634
1635 if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1636 return -ENOMEM;
1637
1638 p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1639 p_sp_sb->pi_info_arr[pi].cookie = NULL;
1640
1641 return 0;
1642 }
1643
qed_int_get_sp_sb_id(struct qed_hwfn * p_hwfn)1644 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1645 {
1646 return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1647 }
1648
qed_int_igu_enable_int(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,enum qed_int_mode int_mode)1649 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1650 struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1651 {
1652 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1653
1654 p_hwfn->cdev->int_mode = int_mode;
1655 switch (p_hwfn->cdev->int_mode) {
1656 case QED_INT_MODE_INTA:
1657 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1658 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1659 break;
1660
1661 case QED_INT_MODE_MSI:
1662 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1663 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1664 break;
1665
1666 case QED_INT_MODE_MSIX:
1667 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1668 break;
1669 case QED_INT_MODE_POLL:
1670 break;
1671 }
1672
1673 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1674 }
1675
qed_int_igu_enable_attn(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1676 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1677 struct qed_ptt *p_ptt)
1678 {
1679
1680 /* Configure AEU signal change to produce attentions */
1681 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1682 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1683 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1684 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1685
1686 /* Flush the writes to IGU */
1687 mmiowb();
1688
1689 /* Unmask AEU signals toward IGU */
1690 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1691 }
1692
1693 int
qed_int_igu_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,enum qed_int_mode int_mode)1694 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1695 struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1696 {
1697 int rc = 0;
1698
1699 qed_int_igu_enable_attn(p_hwfn, p_ptt);
1700
1701 if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1702 rc = qed_slowpath_irq_req(p_hwfn);
1703 if (rc) {
1704 DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1705 return -EINVAL;
1706 }
1707 p_hwfn->b_int_requested = true;
1708 }
1709 /* Enable interrupt Generation */
1710 qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1711 p_hwfn->b_int_enabled = 1;
1712
1713 return rc;
1714 }
1715
qed_int_igu_disable_int(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1716 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1717 {
1718 p_hwfn->b_int_enabled = 0;
1719
1720 if (IS_VF(p_hwfn->cdev))
1721 return;
1722
1723 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1724 }
1725
1726 #define IGU_CLEANUP_SLEEP_LENGTH (1000)
qed_int_igu_cleanup_sb(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,bool cleanup_set,u16 opaque_fid)1727 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1728 struct qed_ptt *p_ptt,
1729 u16 igu_sb_id,
1730 bool cleanup_set, u16 opaque_fid)
1731 {
1732 u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1733 u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1734 u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1735
1736 /* Set the data field */
1737 SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1738 SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1739 SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1740
1741 /* Set the control register */
1742 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1743 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1744 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1745
1746 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1747
1748 barrier();
1749
1750 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1751
1752 /* Flush the write to IGU */
1753 mmiowb();
1754
1755 /* calculate where to read the status bit from */
1756 sb_bit = 1 << (igu_sb_id % 32);
1757 sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1758
1759 sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1760
1761 /* Now wait for the command to complete */
1762 do {
1763 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1764
1765 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1766 break;
1767
1768 usleep_range(5000, 10000);
1769 } while (--sleep_cnt);
1770
1771 if (!sleep_cnt)
1772 DP_NOTICE(p_hwfn,
1773 "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1774 val, igu_sb_id);
1775 }
1776
qed_int_igu_init_pure_rt_single(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,u16 opaque,bool b_set)1777 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1778 struct qed_ptt *p_ptt,
1779 u16 igu_sb_id, u16 opaque, bool b_set)
1780 {
1781 struct qed_igu_block *p_block;
1782 int pi, i;
1783
1784 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1785 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1786 "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1787 igu_sb_id,
1788 p_block->function_id,
1789 p_block->is_pf, p_block->vector_number);
1790
1791 /* Set */
1792 if (b_set)
1793 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1794
1795 /* Clear */
1796 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1797
1798 /* Wait for the IGU SB to cleanup */
1799 for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1800 u32 val;
1801
1802 val = qed_rd(p_hwfn, p_ptt,
1803 IGU_REG_WRITE_DONE_PENDING +
1804 ((igu_sb_id / 32) * 4));
1805 if (val & BIT((igu_sb_id % 32)))
1806 usleep_range(10, 20);
1807 else
1808 break;
1809 }
1810 if (i == IGU_CLEANUP_SLEEP_LENGTH)
1811 DP_NOTICE(p_hwfn,
1812 "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1813 igu_sb_id);
1814
1815 /* Clear the CAU for the SB */
1816 for (pi = 0; pi < 12; pi++)
1817 qed_wr(p_hwfn, p_ptt,
1818 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1819 }
1820
qed_int_igu_init_pure_rt(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool b_set,bool b_slowpath)1821 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1822 struct qed_ptt *p_ptt,
1823 bool b_set, bool b_slowpath)
1824 {
1825 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1826 struct qed_igu_block *p_block;
1827 u16 igu_sb_id = 0;
1828 u32 val = 0;
1829
1830 val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1831 val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1832 val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1833 qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1834
1835 for (igu_sb_id = 0;
1836 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1837 p_block = &p_info->entry[igu_sb_id];
1838
1839 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1840 !p_block->is_pf ||
1841 (p_block->status & QED_IGU_STATUS_DSB))
1842 continue;
1843
1844 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1845 p_hwfn->hw_info.opaque_fid,
1846 b_set);
1847 }
1848
1849 if (b_slowpath)
1850 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
1851 p_info->igu_dsb_id,
1852 p_hwfn->hw_info.opaque_fid,
1853 b_set);
1854 }
1855
qed_int_igu_reset_cam(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1856 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1857 {
1858 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1859 struct qed_igu_block *p_block;
1860 int pf_sbs, vf_sbs;
1861 u16 igu_sb_id;
1862 u32 val, rval;
1863
1864 if (!RESC_NUM(p_hwfn, QED_SB)) {
1865 p_info->b_allow_pf_vf_change = false;
1866 } else {
1867 /* Use the numbers the MFW have provided -
1868 * don't forget MFW accounts for the default SB as well.
1869 */
1870 p_info->b_allow_pf_vf_change = true;
1871
1872 if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
1873 DP_INFO(p_hwfn,
1874 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
1875 RESC_NUM(p_hwfn, QED_SB) - 1,
1876 p_info->usage.cnt);
1877 p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
1878 }
1879
1880 if (IS_PF_SRIOV(p_hwfn)) {
1881 u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
1882
1883 if (vfs != p_info->usage.iov_cnt)
1884 DP_VERBOSE(p_hwfn,
1885 NETIF_MSG_INTR,
1886 "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
1887 p_info->usage.iov_cnt, vfs);
1888
1889 /* At this point we know how many SBs we have totally
1890 * in IGU + number of PF SBs. So we can validate that
1891 * we'd have sufficient for VF.
1892 */
1893 if (vfs > p_info->usage.free_cnt +
1894 p_info->usage.free_cnt_iov - p_info->usage.cnt) {
1895 DP_NOTICE(p_hwfn,
1896 "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
1897 p_info->usage.free_cnt +
1898 p_info->usage.free_cnt_iov,
1899 p_info->usage.cnt, vfs);
1900 return -EINVAL;
1901 }
1902
1903 /* Currently cap the number of VFs SBs by the
1904 * number of VFs.
1905 */
1906 p_info->usage.iov_cnt = vfs;
1907 }
1908 }
1909
1910 /* Mark all SBs as free, now in the right PF/VFs division */
1911 p_info->usage.free_cnt = p_info->usage.cnt;
1912 p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
1913 p_info->usage.orig = p_info->usage.cnt;
1914 p_info->usage.iov_orig = p_info->usage.iov_cnt;
1915
1916 /* We now proceed to re-configure the IGU cam to reflect the initial
1917 * configuration. We can start with the Default SB.
1918 */
1919 pf_sbs = p_info->usage.cnt;
1920 vf_sbs = p_info->usage.iov_cnt;
1921
1922 for (igu_sb_id = p_info->igu_dsb_id;
1923 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1924 p_block = &p_info->entry[igu_sb_id];
1925 val = 0;
1926
1927 if (!(p_block->status & QED_IGU_STATUS_VALID))
1928 continue;
1929
1930 if (p_block->status & QED_IGU_STATUS_DSB) {
1931 p_block->function_id = p_hwfn->rel_pf_id;
1932 p_block->is_pf = 1;
1933 p_block->vector_number = 0;
1934 p_block->status = QED_IGU_STATUS_VALID |
1935 QED_IGU_STATUS_PF |
1936 QED_IGU_STATUS_DSB;
1937 } else if (pf_sbs) {
1938 pf_sbs--;
1939 p_block->function_id = p_hwfn->rel_pf_id;
1940 p_block->is_pf = 1;
1941 p_block->vector_number = p_info->usage.cnt - pf_sbs;
1942 p_block->status = QED_IGU_STATUS_VALID |
1943 QED_IGU_STATUS_PF |
1944 QED_IGU_STATUS_FREE;
1945 } else if (vf_sbs) {
1946 p_block->function_id =
1947 p_hwfn->cdev->p_iov_info->first_vf_in_pf +
1948 p_info->usage.iov_cnt - vf_sbs;
1949 p_block->is_pf = 0;
1950 p_block->vector_number = 0;
1951 p_block->status = QED_IGU_STATUS_VALID |
1952 QED_IGU_STATUS_FREE;
1953 vf_sbs--;
1954 } else {
1955 p_block->function_id = 0;
1956 p_block->is_pf = 0;
1957 p_block->vector_number = 0;
1958 }
1959
1960 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
1961 p_block->function_id);
1962 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
1963 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
1964 p_block->vector_number);
1965
1966 /* VF entries would be enabled when VF is initializaed */
1967 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
1968
1969 rval = qed_rd(p_hwfn, p_ptt,
1970 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
1971
1972 if (rval != val) {
1973 qed_wr(p_hwfn, p_ptt,
1974 IGU_REG_MAPPING_MEMORY +
1975 sizeof(u32) * igu_sb_id, val);
1976
1977 DP_VERBOSE(p_hwfn,
1978 NETIF_MSG_INTR,
1979 "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
1980 igu_sb_id,
1981 p_block->function_id,
1982 p_block->is_pf,
1983 p_block->vector_number, rval, val);
1984 }
1985 }
1986
1987 return 0;
1988 }
1989
qed_int_igu_read_cam_block(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id)1990 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
1991 struct qed_ptt *p_ptt, u16 igu_sb_id)
1992 {
1993 u32 val = qed_rd(p_hwfn, p_ptt,
1994 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
1995 struct qed_igu_block *p_block;
1996
1997 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1998
1999 /* Fill the block information */
2000 p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2001 p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2002 p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2003 p_block->igu_sb_id = igu_sb_id;
2004 }
2005
qed_int_igu_read_cam(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2006 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2007 {
2008 struct qed_igu_info *p_igu_info;
2009 struct qed_igu_block *p_block;
2010 u32 min_vf = 0, max_vf = 0;
2011 u16 igu_sb_id;
2012
2013 p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2014 if (!p_hwfn->hw_info.p_igu_info)
2015 return -ENOMEM;
2016
2017 p_igu_info = p_hwfn->hw_info.p_igu_info;
2018
2019 /* Distinguish between existent and non-existent default SB */
2020 p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2021
2022 /* Find the range of VF ids whose SB belong to this PF */
2023 if (p_hwfn->cdev->p_iov_info) {
2024 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2025
2026 min_vf = p_iov->first_vf_in_pf;
2027 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2028 }
2029
2030 for (igu_sb_id = 0;
2031 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2032 /* Read current entry; Notice it might not belong to this PF */
2033 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2034 p_block = &p_igu_info->entry[igu_sb_id];
2035
2036 if ((p_block->is_pf) &&
2037 (p_block->function_id == p_hwfn->rel_pf_id)) {
2038 p_block->status = QED_IGU_STATUS_PF |
2039 QED_IGU_STATUS_VALID |
2040 QED_IGU_STATUS_FREE;
2041
2042 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2043 p_igu_info->usage.cnt++;
2044 } else if (!(p_block->is_pf) &&
2045 (p_block->function_id >= min_vf) &&
2046 (p_block->function_id < max_vf)) {
2047 /* Available for VFs of this PF */
2048 p_block->status = QED_IGU_STATUS_VALID |
2049 QED_IGU_STATUS_FREE;
2050
2051 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2052 p_igu_info->usage.iov_cnt++;
2053 }
2054
2055 /* Mark the First entry belonging to the PF or its VFs
2056 * as the default SB [we'll reset IGU prior to first usage].
2057 */
2058 if ((p_block->status & QED_IGU_STATUS_VALID) &&
2059 (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2060 p_igu_info->igu_dsb_id = igu_sb_id;
2061 p_block->status |= QED_IGU_STATUS_DSB;
2062 }
2063
2064 /* limit number of prints by having each PF print only its
2065 * entries with the exception of PF0 which would print
2066 * everything.
2067 */
2068 if ((p_block->status & QED_IGU_STATUS_VALID) ||
2069 (p_hwfn->abs_pf_id == 0)) {
2070 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2071 "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2072 igu_sb_id, p_block->function_id,
2073 p_block->is_pf, p_block->vector_number);
2074 }
2075 }
2076
2077 if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2078 DP_NOTICE(p_hwfn,
2079 "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2080 p_igu_info->igu_dsb_id);
2081 return -EINVAL;
2082 }
2083
2084 /* All non default SB are considered free at this point */
2085 p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2086 p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2087
2088 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2089 "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2090 p_igu_info->igu_dsb_id,
2091 p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2092
2093 return 0;
2094 }
2095
2096 /**
2097 * @brief Initialize igu runtime registers
2098 *
2099 * @param p_hwfn
2100 */
qed_int_igu_init_rt(struct qed_hwfn * p_hwfn)2101 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2102 {
2103 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2104
2105 STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2106 }
2107
qed_int_igu_read_sisr_reg(struct qed_hwfn * p_hwfn)2108 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2109 {
2110 u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2111 IGU_CMD_INT_ACK_BASE;
2112 u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2113 IGU_CMD_INT_ACK_BASE;
2114 u32 intr_status_hi = 0, intr_status_lo = 0;
2115 u64 intr_status = 0;
2116
2117 intr_status_lo = REG_RD(p_hwfn,
2118 GTT_BAR0_MAP_REG_IGU_CMD +
2119 lsb_igu_cmd_addr * 8);
2120 intr_status_hi = REG_RD(p_hwfn,
2121 GTT_BAR0_MAP_REG_IGU_CMD +
2122 msb_igu_cmd_addr * 8);
2123 intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2124
2125 return intr_status;
2126 }
2127
qed_int_sp_dpc_setup(struct qed_hwfn * p_hwfn)2128 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2129 {
2130 tasklet_init(p_hwfn->sp_dpc,
2131 qed_int_sp_dpc, (unsigned long)p_hwfn);
2132 p_hwfn->b_sp_dpc_enabled = true;
2133 }
2134
qed_int_sp_dpc_alloc(struct qed_hwfn * p_hwfn)2135 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
2136 {
2137 p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
2138 if (!p_hwfn->sp_dpc)
2139 return -ENOMEM;
2140
2141 return 0;
2142 }
2143
qed_int_sp_dpc_free(struct qed_hwfn * p_hwfn)2144 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
2145 {
2146 kfree(p_hwfn->sp_dpc);
2147 p_hwfn->sp_dpc = NULL;
2148 }
2149
qed_int_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2150 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2151 {
2152 int rc = 0;
2153
2154 rc = qed_int_sp_dpc_alloc(p_hwfn);
2155 if (rc)
2156 return rc;
2157
2158 rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2159 if (rc)
2160 return rc;
2161
2162 rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2163
2164 return rc;
2165 }
2166
qed_int_free(struct qed_hwfn * p_hwfn)2167 void qed_int_free(struct qed_hwfn *p_hwfn)
2168 {
2169 qed_int_sp_sb_free(p_hwfn);
2170 qed_int_sb_attn_free(p_hwfn);
2171 qed_int_sp_dpc_free(p_hwfn);
2172 }
2173
qed_int_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2174 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2175 {
2176 qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2177 qed_int_sb_attn_setup(p_hwfn, p_ptt);
2178 qed_int_sp_dpc_setup(p_hwfn);
2179 }
2180
qed_int_get_num_sbs(struct qed_hwfn * p_hwfn,struct qed_sb_cnt_info * p_sb_cnt_info)2181 void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
2182 struct qed_sb_cnt_info *p_sb_cnt_info)
2183 {
2184 struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2185
2186 if (!info || !p_sb_cnt_info)
2187 return;
2188
2189 memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2190 }
2191
qed_int_disable_post_isr_release(struct qed_dev * cdev)2192 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2193 {
2194 int i;
2195
2196 for_each_hwfn(cdev, i)
2197 cdev->hwfns[i].b_int_requested = false;
2198 }
2199
qed_int_set_timer_res(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 timer_res,u16 sb_id,bool tx)2200 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2201 u8 timer_res, u16 sb_id, bool tx)
2202 {
2203 struct cau_sb_entry sb_entry;
2204 int rc;
2205
2206 if (!p_hwfn->hw_init_done) {
2207 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2208 return -EINVAL;
2209 }
2210
2211 rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2212 sb_id * sizeof(u64),
2213 (u64)(uintptr_t)&sb_entry, 2, 0);
2214 if (rc) {
2215 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2216 return rc;
2217 }
2218
2219 if (tx)
2220 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2221 else
2222 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2223
2224 rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2225 (u64)(uintptr_t)&sb_entry,
2226 CAU_REG_SB_VAR_MEMORY +
2227 sb_id * sizeof(u64), 2, 0);
2228 if (rc) {
2229 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2230 return rc;
2231 }
2232
2233 return rc;
2234 }
2235