1 /*
2  * PXA168 ethernet driver.
3  * Most of the code is derived from mv643xx ethernet driver.
4  *
5  * Copyright (C) 2010 Marvell International Ltd.
6  *		Sachin Sanap <ssanap@marvell.com>
7  *		Zhangfei Gao <zgao6@marvell.com>
8  *		Philip Rakity <prakity@marvell.com>
9  *		Mark Brown <markb@marvell.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include <linux/bitops.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/in.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/ip.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/of_net.h>
39 #include <linux/phy.h>
40 #include <linux/platform_device.h>
41 #include <linux/pxa168_eth.h>
42 #include <linux/tcp.h>
43 #include <linux/types.h>
44 #include <linux/udp.h>
45 #include <linux/workqueue.h>
46 
47 #include <asm/pgtable.h>
48 #include <asm/cacheflush.h>
49 
50 #define DRIVER_NAME	"pxa168-eth"
51 #define DRIVER_VERSION	"0.3"
52 
53 /*
54  * Registers
55  */
56 
57 #define PHY_ADDRESS		0x0000
58 #define SMI			0x0010
59 #define PORT_CONFIG		0x0400
60 #define PORT_CONFIG_EXT		0x0408
61 #define PORT_COMMAND		0x0410
62 #define PORT_STATUS		0x0418
63 #define HTPR			0x0428
64 #define MAC_ADDR_LOW		0x0430
65 #define MAC_ADDR_HIGH		0x0438
66 #define SDMA_CONFIG		0x0440
67 #define SDMA_CMD		0x0448
68 #define INT_CAUSE		0x0450
69 #define INT_W_CLEAR		0x0454
70 #define INT_MASK		0x0458
71 #define ETH_F_RX_DESC_0		0x0480
72 #define ETH_C_RX_DESC_0		0x04A0
73 #define ETH_C_TX_DESC_1		0x04E4
74 
75 /* smi register */
76 #define SMI_BUSY		(1 << 28)	/* 0 - Write, 1 - Read  */
77 #define SMI_R_VALID		(1 << 27)	/* 0 - Write, 1 - Read  */
78 #define SMI_OP_W		(0 << 26)	/* Write operation      */
79 #define SMI_OP_R		(1 << 26)	/* Read operation */
80 
81 #define PHY_WAIT_ITERATIONS	10
82 
83 #define PXA168_ETH_PHY_ADDR_DEFAULT	0
84 /* RX & TX descriptor command */
85 #define BUF_OWNED_BY_DMA	(1 << 31)
86 
87 /* RX descriptor status */
88 #define RX_EN_INT		(1 << 23)
89 #define RX_FIRST_DESC		(1 << 17)
90 #define RX_LAST_DESC		(1 << 16)
91 #define RX_ERROR		(1 << 15)
92 
93 /* TX descriptor command */
94 #define TX_EN_INT		(1 << 23)
95 #define TX_GEN_CRC		(1 << 22)
96 #define TX_ZERO_PADDING		(1 << 18)
97 #define TX_FIRST_DESC		(1 << 17)
98 #define TX_LAST_DESC		(1 << 16)
99 #define TX_ERROR		(1 << 15)
100 
101 /* SDMA_CMD */
102 #define SDMA_CMD_AT		(1 << 31)
103 #define SDMA_CMD_TXDL		(1 << 24)
104 #define SDMA_CMD_TXDH		(1 << 23)
105 #define SDMA_CMD_AR		(1 << 15)
106 #define SDMA_CMD_ERD		(1 << 7)
107 
108 /* Bit definitions of the Port Config Reg */
109 #define PCR_DUPLEX_FULL		(1 << 15)
110 #define PCR_HS			(1 << 12)
111 #define PCR_EN			(1 << 7)
112 #define PCR_PM			(1 << 0)
113 
114 /* Bit definitions of the Port Config Extend Reg */
115 #define PCXR_2BSM		(1 << 28)
116 #define PCXR_DSCP_EN		(1 << 21)
117 #define PCXR_RMII_EN		(1 << 20)
118 #define PCXR_AN_SPEED_DIS	(1 << 19)
119 #define PCXR_SPEED_100		(1 << 18)
120 #define PCXR_MFL_1518		(0 << 14)
121 #define PCXR_MFL_1536		(1 << 14)
122 #define PCXR_MFL_2048		(2 << 14)
123 #define PCXR_MFL_64K		(3 << 14)
124 #define PCXR_FLOWCTL_DIS	(1 << 12)
125 #define PCXR_FLP		(1 << 11)
126 #define PCXR_AN_FLOWCTL_DIS	(1 << 10)
127 #define PCXR_AN_DUPLEX_DIS	(1 << 9)
128 #define PCXR_PRIO_TX_OFF	3
129 #define PCXR_TX_HIGH_PRI	(7 << PCXR_PRIO_TX_OFF)
130 
131 /* Bit definitions of the SDMA Config Reg */
132 #define SDCR_BSZ_OFF		12
133 #define SDCR_BSZ8		(3 << SDCR_BSZ_OFF)
134 #define SDCR_BSZ4		(2 << SDCR_BSZ_OFF)
135 #define SDCR_BSZ2		(1 << SDCR_BSZ_OFF)
136 #define SDCR_BSZ1		(0 << SDCR_BSZ_OFF)
137 #define SDCR_BLMR		(1 << 6)
138 #define SDCR_BLMT		(1 << 7)
139 #define SDCR_RIFB		(1 << 9)
140 #define SDCR_RC_OFF		2
141 #define SDCR_RC_MAX_RETRANS	(0xf << SDCR_RC_OFF)
142 
143 /*
144  * Bit definitions of the Interrupt Cause Reg
145  * and Interrupt MASK Reg is the same
146  */
147 #define ICR_RXBUF		(1 << 0)
148 #define ICR_TXBUF_H		(1 << 2)
149 #define ICR_TXBUF_L		(1 << 3)
150 #define ICR_TXEND_H		(1 << 6)
151 #define ICR_TXEND_L		(1 << 7)
152 #define ICR_RXERR		(1 << 8)
153 #define ICR_TXERR_H		(1 << 10)
154 #define ICR_TXERR_L		(1 << 11)
155 #define ICR_TX_UDR		(1 << 13)
156 #define ICR_MII_CH		(1 << 28)
157 
158 #define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
159 				ICR_TXERR_H  | ICR_TXERR_L |\
160 				ICR_TXEND_H  | ICR_TXEND_L |\
161 				ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
162 
163 #define ETH_HW_IP_ALIGN		2	/* hw aligns IP header */
164 
165 #define NUM_RX_DESCS		64
166 #define NUM_TX_DESCS		64
167 
168 #define HASH_ADD		0
169 #define HASH_DELETE		1
170 #define HASH_ADDR_TABLE_SIZE	0x4000	/* 16K (1/2K address - PCR_HS == 1) */
171 #define HOP_NUMBER		12
172 
173 /* Bit definitions for Port status */
174 #define PORT_SPEED_100		(1 << 0)
175 #define FULL_DUPLEX		(1 << 1)
176 #define FLOW_CONTROL_DISABLED	(1 << 2)
177 #define LINK_UP			(1 << 3)
178 
179 /* Bit definitions for work to be done */
180 #define WORK_TX_DONE		(1 << 1)
181 
182 /*
183  * Misc definitions.
184  */
185 #define SKB_DMA_REALIGN		((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
186 
187 struct rx_desc {
188 	u32 cmd_sts;		/* Descriptor command status            */
189 	u16 byte_cnt;		/* Descriptor buffer byte count         */
190 	u16 buf_size;		/* Buffer size                          */
191 	u32 buf_ptr;		/* Descriptor buffer pointer            */
192 	u32 next_desc_ptr;	/* Next descriptor pointer              */
193 };
194 
195 struct tx_desc {
196 	u32 cmd_sts;		/* Command/status field                 */
197 	u16 reserved;
198 	u16 byte_cnt;		/* buffer byte count                    */
199 	u32 buf_ptr;		/* pointer to buffer for this descriptor */
200 	u32 next_desc_ptr;	/* Pointer to next descriptor           */
201 };
202 
203 struct pxa168_eth_private {
204 	int port_num;		/* User Ethernet port number    */
205 	int phy_addr;
206 	int phy_speed;
207 	int phy_duplex;
208 	phy_interface_t phy_intf;
209 
210 	int rx_resource_err;	/* Rx ring resource error flag */
211 
212 	/* Next available and first returning Rx resource */
213 	int rx_curr_desc_q, rx_used_desc_q;
214 
215 	/* Next available and first returning Tx resource */
216 	int tx_curr_desc_q, tx_used_desc_q;
217 
218 	struct rx_desc *p_rx_desc_area;
219 	dma_addr_t rx_desc_dma;
220 	int rx_desc_area_size;
221 	struct sk_buff **rx_skb;
222 
223 	struct tx_desc *p_tx_desc_area;
224 	dma_addr_t tx_desc_dma;
225 	int tx_desc_area_size;
226 	struct sk_buff **tx_skb;
227 
228 	struct work_struct tx_timeout_task;
229 
230 	struct net_device *dev;
231 	struct napi_struct napi;
232 	u8 work_todo;
233 	int skb_size;
234 
235 	/* Size of Tx Ring per queue */
236 	int tx_ring_size;
237 	/* Number of tx descriptors in use */
238 	int tx_desc_count;
239 	/* Size of Rx Ring per queue */
240 	int rx_ring_size;
241 	/* Number of rx descriptors in use */
242 	int rx_desc_count;
243 
244 	/*
245 	 * Used in case RX Ring is empty, which can occur when
246 	 * system does not have resources (skb's)
247 	 */
248 	struct timer_list timeout;
249 	struct mii_bus *smi_bus;
250 
251 	/* clock */
252 	struct clk *clk;
253 	struct pxa168_eth_platform_data *pd;
254 	/*
255 	 * Ethernet controller base address.
256 	 */
257 	void __iomem *base;
258 
259 	/* Pointer to the hardware address filter table */
260 	void *htpr;
261 	dma_addr_t htpr_dma;
262 };
263 
264 struct addr_table_entry {
265 	__le32 lo;
266 	__le32 hi;
267 };
268 
269 /* Bit fields of a Hash Table Entry */
270 enum hash_table_entry {
271 	HASH_ENTRY_VALID = 1,
272 	SKIP = 2,
273 	HASH_ENTRY_RECEIVE_DISCARD = 4,
274 	HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
275 };
276 
277 static int pxa168_init_hw(struct pxa168_eth_private *pep);
278 static int pxa168_init_phy(struct net_device *dev);
279 static void eth_port_reset(struct net_device *dev);
280 static void eth_port_start(struct net_device *dev);
281 static int pxa168_eth_open(struct net_device *dev);
282 static int pxa168_eth_stop(struct net_device *dev);
283 
rdl(struct pxa168_eth_private * pep,int offset)284 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
285 {
286 	return readl_relaxed(pep->base + offset);
287 }
288 
wrl(struct pxa168_eth_private * pep,int offset,u32 data)289 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
290 {
291 	writel_relaxed(data, pep->base + offset);
292 }
293 
abort_dma(struct pxa168_eth_private * pep)294 static void abort_dma(struct pxa168_eth_private *pep)
295 {
296 	int delay;
297 	int max_retries = 40;
298 
299 	do {
300 		wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
301 		udelay(100);
302 
303 		delay = 10;
304 		while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
305 		       && delay-- > 0) {
306 			udelay(10);
307 		}
308 	} while (max_retries-- > 0 && delay <= 0);
309 
310 	if (max_retries <= 0)
311 		netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
312 }
313 
rxq_refill(struct net_device * dev)314 static void rxq_refill(struct net_device *dev)
315 {
316 	struct pxa168_eth_private *pep = netdev_priv(dev);
317 	struct sk_buff *skb;
318 	struct rx_desc *p_used_rx_desc;
319 	int used_rx_desc;
320 
321 	while (pep->rx_desc_count < pep->rx_ring_size) {
322 		int size;
323 
324 		skb = netdev_alloc_skb(dev, pep->skb_size);
325 		if (!skb)
326 			break;
327 		if (SKB_DMA_REALIGN)
328 			skb_reserve(skb, SKB_DMA_REALIGN);
329 		pep->rx_desc_count++;
330 		/* Get 'used' Rx descriptor */
331 		used_rx_desc = pep->rx_used_desc_q;
332 		p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
333 		size = skb_end_pointer(skb) - skb->data;
334 		p_used_rx_desc->buf_ptr = dma_map_single(NULL,
335 							 skb->data,
336 							 size,
337 							 DMA_FROM_DEVICE);
338 		p_used_rx_desc->buf_size = size;
339 		pep->rx_skb[used_rx_desc] = skb;
340 
341 		/* Return the descriptor to DMA ownership */
342 		dma_wmb();
343 		p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
344 		dma_wmb();
345 
346 		/* Move the used descriptor pointer to the next descriptor */
347 		pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
348 
349 		/* Any Rx return cancels the Rx resource error status */
350 		pep->rx_resource_err = 0;
351 
352 		skb_reserve(skb, ETH_HW_IP_ALIGN);
353 	}
354 
355 	/*
356 	 * If RX ring is empty of SKB, set a timer to try allocating
357 	 * again at a later time.
358 	 */
359 	if (pep->rx_desc_count == 0) {
360 		pep->timeout.expires = jiffies + (HZ / 10);
361 		add_timer(&pep->timeout);
362 	}
363 }
364 
rxq_refill_timer_wrapper(struct timer_list * t)365 static inline void rxq_refill_timer_wrapper(struct timer_list *t)
366 {
367 	struct pxa168_eth_private *pep = from_timer(pep, t, timeout);
368 	napi_schedule(&pep->napi);
369 }
370 
flip_8_bits(u8 x)371 static inline u8 flip_8_bits(u8 x)
372 {
373 	return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
374 	    | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
375 	    | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
376 	    | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
377 }
378 
nibble_swap_every_byte(unsigned char * mac_addr)379 static void nibble_swap_every_byte(unsigned char *mac_addr)
380 {
381 	int i;
382 	for (i = 0; i < ETH_ALEN; i++) {
383 		mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
384 				((mac_addr[i] & 0xf0) >> 4);
385 	}
386 }
387 
inverse_every_nibble(unsigned char * mac_addr)388 static void inverse_every_nibble(unsigned char *mac_addr)
389 {
390 	int i;
391 	for (i = 0; i < ETH_ALEN; i++)
392 		mac_addr[i] = flip_8_bits(mac_addr[i]);
393 }
394 
395 /*
396  * ----------------------------------------------------------------------------
397  * This function will calculate the hash function of the address.
398  * Inputs
399  * mac_addr_orig    - MAC address.
400  * Outputs
401  * return the calculated entry.
402  */
hash_function(unsigned char * mac_addr_orig)403 static u32 hash_function(unsigned char *mac_addr_orig)
404 {
405 	u32 hash_result;
406 	u32 addr0;
407 	u32 addr1;
408 	u32 addr2;
409 	u32 addr3;
410 	unsigned char mac_addr[ETH_ALEN];
411 
412 	/* Make a copy of MAC address since we are going to performe bit
413 	 * operations on it
414 	 */
415 	memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
416 
417 	nibble_swap_every_byte(mac_addr);
418 	inverse_every_nibble(mac_addr);
419 
420 	addr0 = (mac_addr[5] >> 2) & 0x3f;
421 	addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
422 	addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
423 	addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
424 
425 	hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
426 	hash_result = hash_result & 0x07ff;
427 	return hash_result;
428 }
429 
430 /*
431  * ----------------------------------------------------------------------------
432  * This function will add/del an entry to the address table.
433  * Inputs
434  * pep - ETHERNET .
435  * mac_addr - MAC address.
436  * skip - if 1, skip this address.Used in case of deleting an entry which is a
437  *	  part of chain in the hash table.We can't just delete the entry since
438  *	  that will break the chain.We need to defragment the tables time to
439  *	  time.
440  * rd   - 0 Discard packet upon match.
441  *	- 1 Receive packet upon match.
442  * Outputs
443  * address table entry is added/deleted.
444  * 0 if success.
445  * -ENOSPC if table full
446  */
add_del_hash_entry(struct pxa168_eth_private * pep,unsigned char * mac_addr,u32 rd,u32 skip,int del)447 static int add_del_hash_entry(struct pxa168_eth_private *pep,
448 			      unsigned char *mac_addr,
449 			      u32 rd, u32 skip, int del)
450 {
451 	struct addr_table_entry *entry, *start;
452 	u32 new_high;
453 	u32 new_low;
454 	u32 i;
455 
456 	new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
457 	    | (((mac_addr[1] >> 0) & 0xf) << 11)
458 	    | (((mac_addr[0] >> 4) & 0xf) << 7)
459 	    | (((mac_addr[0] >> 0) & 0xf) << 3)
460 	    | (((mac_addr[3] >> 4) & 0x1) << 31)
461 	    | (((mac_addr[3] >> 0) & 0xf) << 27)
462 	    | (((mac_addr[2] >> 4) & 0xf) << 23)
463 	    | (((mac_addr[2] >> 0) & 0xf) << 19)
464 	    | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
465 	    | HASH_ENTRY_VALID;
466 
467 	new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
468 	    | (((mac_addr[5] >> 0) & 0xf) << 11)
469 	    | (((mac_addr[4] >> 4) & 0xf) << 7)
470 	    | (((mac_addr[4] >> 0) & 0xf) << 3)
471 	    | (((mac_addr[3] >> 5) & 0x7) << 0);
472 
473 	/*
474 	 * Pick the appropriate table, start scanning for free/reusable
475 	 * entries at the index obtained by hashing the specified MAC address
476 	 */
477 	start = pep->htpr;
478 	entry = start + hash_function(mac_addr);
479 	for (i = 0; i < HOP_NUMBER; i++) {
480 		if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
481 			break;
482 		} else {
483 			/* if same address put in same position */
484 			if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
485 				(new_low & 0xfffffff8)) &&
486 				(le32_to_cpu(entry->hi) == new_high)) {
487 				break;
488 			}
489 		}
490 		if (entry == start + 0x7ff)
491 			entry = start;
492 		else
493 			entry++;
494 	}
495 
496 	if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
497 	    (le32_to_cpu(entry->hi) != new_high) && del)
498 		return 0;
499 
500 	if (i == HOP_NUMBER) {
501 		if (!del) {
502 			netdev_info(pep->dev,
503 				    "%s: table section is full, need to "
504 				    "move to 16kB implementation?\n",
505 				    __FILE__);
506 			return -ENOSPC;
507 		} else
508 			return 0;
509 	}
510 
511 	/*
512 	 * Update the selected entry
513 	 */
514 	if (del) {
515 		entry->hi = 0;
516 		entry->lo = 0;
517 	} else {
518 		entry->hi = cpu_to_le32(new_high);
519 		entry->lo = cpu_to_le32(new_low);
520 	}
521 
522 	return 0;
523 }
524 
525 /*
526  * ----------------------------------------------------------------------------
527  *  Create an addressTable entry from MAC address info
528  *  found in the specifed net_device struct
529  *
530  *  Input : pointer to ethernet interface network device structure
531  *  Output : N/A
532  */
update_hash_table_mac_address(struct pxa168_eth_private * pep,unsigned char * oaddr,unsigned char * addr)533 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
534 					  unsigned char *oaddr,
535 					  unsigned char *addr)
536 {
537 	/* Delete old entry */
538 	if (oaddr)
539 		add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
540 	/* Add new entry */
541 	add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
542 }
543 
init_hash_table(struct pxa168_eth_private * pep)544 static int init_hash_table(struct pxa168_eth_private *pep)
545 {
546 	/*
547 	 * Hardware expects CPU to build a hash table based on a predefined
548 	 * hash function and populate it based on hardware address. The
549 	 * location of the hash table is identified by 32-bit pointer stored
550 	 * in HTPR internal register. Two possible sizes exists for the hash
551 	 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
552 	 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
553 	 * 1/2kB.
554 	 */
555 	/* TODO: Add support for 8kB hash table and alternative hash
556 	 * function.Driver can dynamically switch to them if the 1/2kB hash
557 	 * table is full.
558 	 */
559 	if (!pep->htpr) {
560 		pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
561 						HASH_ADDR_TABLE_SIZE,
562 						&pep->htpr_dma, GFP_KERNEL);
563 		if (!pep->htpr)
564 			return -ENOMEM;
565 	} else {
566 		memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
567 	}
568 	wrl(pep, HTPR, pep->htpr_dma);
569 	return 0;
570 }
571 
pxa168_eth_set_rx_mode(struct net_device * dev)572 static void pxa168_eth_set_rx_mode(struct net_device *dev)
573 {
574 	struct pxa168_eth_private *pep = netdev_priv(dev);
575 	struct netdev_hw_addr *ha;
576 	u32 val;
577 
578 	val = rdl(pep, PORT_CONFIG);
579 	if (dev->flags & IFF_PROMISC)
580 		val |= PCR_PM;
581 	else
582 		val &= ~PCR_PM;
583 	wrl(pep, PORT_CONFIG, val);
584 
585 	/*
586 	 * Remove the old list of MAC address and add dev->addr
587 	 * and multicast address.
588 	 */
589 	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
590 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
591 
592 	netdev_for_each_mc_addr(ha, dev)
593 		update_hash_table_mac_address(pep, NULL, ha->addr);
594 }
595 
pxa168_eth_get_mac_address(struct net_device * dev,unsigned char * addr)596 static void pxa168_eth_get_mac_address(struct net_device *dev,
597 				       unsigned char *addr)
598 {
599 	struct pxa168_eth_private *pep = netdev_priv(dev);
600 	unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
601 	unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
602 
603 	addr[0] = (mac_h >> 24) & 0xff;
604 	addr[1] = (mac_h >> 16) & 0xff;
605 	addr[2] = (mac_h >> 8) & 0xff;
606 	addr[3] = mac_h & 0xff;
607 	addr[4] = (mac_l >> 8) & 0xff;
608 	addr[5] = mac_l & 0xff;
609 }
610 
pxa168_eth_set_mac_address(struct net_device * dev,void * addr)611 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
612 {
613 	struct sockaddr *sa = addr;
614 	struct pxa168_eth_private *pep = netdev_priv(dev);
615 	unsigned char oldMac[ETH_ALEN];
616 	u32 mac_h, mac_l;
617 
618 	if (!is_valid_ether_addr(sa->sa_data))
619 		return -EADDRNOTAVAIL;
620 	memcpy(oldMac, dev->dev_addr, ETH_ALEN);
621 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
622 
623 	mac_h = dev->dev_addr[0] << 24;
624 	mac_h |= dev->dev_addr[1] << 16;
625 	mac_h |= dev->dev_addr[2] << 8;
626 	mac_h |= dev->dev_addr[3];
627 	mac_l = dev->dev_addr[4] << 8;
628 	mac_l |= dev->dev_addr[5];
629 	wrl(pep, MAC_ADDR_HIGH, mac_h);
630 	wrl(pep, MAC_ADDR_LOW, mac_l);
631 
632 	netif_addr_lock_bh(dev);
633 	update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
634 	netif_addr_unlock_bh(dev);
635 	return 0;
636 }
637 
eth_port_start(struct net_device * dev)638 static void eth_port_start(struct net_device *dev)
639 {
640 	unsigned int val = 0;
641 	struct pxa168_eth_private *pep = netdev_priv(dev);
642 	int tx_curr_desc, rx_curr_desc;
643 
644 	phy_start(dev->phydev);
645 
646 	/* Assignment of Tx CTRP of given queue */
647 	tx_curr_desc = pep->tx_curr_desc_q;
648 	wrl(pep, ETH_C_TX_DESC_1,
649 	    (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
650 
651 	/* Assignment of Rx CRDP of given queue */
652 	rx_curr_desc = pep->rx_curr_desc_q;
653 	wrl(pep, ETH_C_RX_DESC_0,
654 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
655 
656 	wrl(pep, ETH_F_RX_DESC_0,
657 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
658 
659 	/* Clear all interrupts */
660 	wrl(pep, INT_CAUSE, 0);
661 
662 	/* Enable all interrupts for receive, transmit and error. */
663 	wrl(pep, INT_MASK, ALL_INTS);
664 
665 	val = rdl(pep, PORT_CONFIG);
666 	val |= PCR_EN;
667 	wrl(pep, PORT_CONFIG, val);
668 
669 	/* Start RX DMA engine */
670 	val = rdl(pep, SDMA_CMD);
671 	val |= SDMA_CMD_ERD;
672 	wrl(pep, SDMA_CMD, val);
673 }
674 
eth_port_reset(struct net_device * dev)675 static void eth_port_reset(struct net_device *dev)
676 {
677 	struct pxa168_eth_private *pep = netdev_priv(dev);
678 	unsigned int val = 0;
679 
680 	/* Stop all interrupts for receive, transmit and error. */
681 	wrl(pep, INT_MASK, 0);
682 
683 	/* Clear all interrupts */
684 	wrl(pep, INT_CAUSE, 0);
685 
686 	/* Stop RX DMA */
687 	val = rdl(pep, SDMA_CMD);
688 	val &= ~SDMA_CMD_ERD;	/* abort dma command */
689 
690 	/* Abort any transmit and receive operations and put DMA
691 	 * in idle state.
692 	 */
693 	abort_dma(pep);
694 
695 	/* Disable port */
696 	val = rdl(pep, PORT_CONFIG);
697 	val &= ~PCR_EN;
698 	wrl(pep, PORT_CONFIG, val);
699 
700 	phy_stop(dev->phydev);
701 }
702 
703 /*
704  * txq_reclaim - Free the tx desc data for completed descriptors
705  * If force is non-zero, frees uncompleted descriptors as well
706  */
txq_reclaim(struct net_device * dev,int force)707 static int txq_reclaim(struct net_device *dev, int force)
708 {
709 	struct pxa168_eth_private *pep = netdev_priv(dev);
710 	struct tx_desc *desc;
711 	u32 cmd_sts;
712 	struct sk_buff *skb;
713 	int tx_index;
714 	dma_addr_t addr;
715 	int count;
716 	int released = 0;
717 
718 	netif_tx_lock(dev);
719 
720 	pep->work_todo &= ~WORK_TX_DONE;
721 	while (pep->tx_desc_count > 0) {
722 		tx_index = pep->tx_used_desc_q;
723 		desc = &pep->p_tx_desc_area[tx_index];
724 		cmd_sts = desc->cmd_sts;
725 		if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
726 			if (released > 0) {
727 				goto txq_reclaim_end;
728 			} else {
729 				released = -1;
730 				goto txq_reclaim_end;
731 			}
732 		}
733 		pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
734 		pep->tx_desc_count--;
735 		addr = desc->buf_ptr;
736 		count = desc->byte_cnt;
737 		skb = pep->tx_skb[tx_index];
738 		if (skb)
739 			pep->tx_skb[tx_index] = NULL;
740 
741 		if (cmd_sts & TX_ERROR) {
742 			if (net_ratelimit())
743 				netdev_err(dev, "Error in TX\n");
744 			dev->stats.tx_errors++;
745 		}
746 		dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
747 		if (skb)
748 			dev_kfree_skb_irq(skb);
749 		released++;
750 	}
751 txq_reclaim_end:
752 	netif_tx_unlock(dev);
753 	return released;
754 }
755 
pxa168_eth_tx_timeout(struct net_device * dev)756 static void pxa168_eth_tx_timeout(struct net_device *dev)
757 {
758 	struct pxa168_eth_private *pep = netdev_priv(dev);
759 
760 	netdev_info(dev, "TX timeout  desc_count %d\n", pep->tx_desc_count);
761 
762 	schedule_work(&pep->tx_timeout_task);
763 }
764 
pxa168_eth_tx_timeout_task(struct work_struct * work)765 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
766 {
767 	struct pxa168_eth_private *pep = container_of(work,
768 						 struct pxa168_eth_private,
769 						 tx_timeout_task);
770 	struct net_device *dev = pep->dev;
771 	pxa168_eth_stop(dev);
772 	pxa168_eth_open(dev);
773 }
774 
rxq_process(struct net_device * dev,int budget)775 static int rxq_process(struct net_device *dev, int budget)
776 {
777 	struct pxa168_eth_private *pep = netdev_priv(dev);
778 	struct net_device_stats *stats = &dev->stats;
779 	unsigned int received_packets = 0;
780 	struct sk_buff *skb;
781 
782 	while (budget-- > 0) {
783 		int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
784 		struct rx_desc *rx_desc;
785 		unsigned int cmd_sts;
786 
787 		/* Do not process Rx ring in case of Rx ring resource error */
788 		if (pep->rx_resource_err)
789 			break;
790 		rx_curr_desc = pep->rx_curr_desc_q;
791 		rx_used_desc = pep->rx_used_desc_q;
792 		rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
793 		cmd_sts = rx_desc->cmd_sts;
794 		dma_rmb();
795 		if (cmd_sts & (BUF_OWNED_BY_DMA))
796 			break;
797 		skb = pep->rx_skb[rx_curr_desc];
798 		pep->rx_skb[rx_curr_desc] = NULL;
799 
800 		rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
801 		pep->rx_curr_desc_q = rx_next_curr_desc;
802 
803 		/* Rx descriptors exhausted. */
804 		/* Set the Rx ring resource error flag */
805 		if (rx_next_curr_desc == rx_used_desc)
806 			pep->rx_resource_err = 1;
807 		pep->rx_desc_count--;
808 		dma_unmap_single(NULL, rx_desc->buf_ptr,
809 				 rx_desc->buf_size,
810 				 DMA_FROM_DEVICE);
811 		received_packets++;
812 		/*
813 		 * Update statistics.
814 		 * Note byte count includes 4 byte CRC count
815 		 */
816 		stats->rx_packets++;
817 		stats->rx_bytes += rx_desc->byte_cnt;
818 		/*
819 		 * In case received a packet without first / last bits on OR
820 		 * the error summary bit is on, the packets needs to be droped.
821 		 */
822 		if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
823 		     (RX_FIRST_DESC | RX_LAST_DESC))
824 		    || (cmd_sts & RX_ERROR)) {
825 
826 			stats->rx_dropped++;
827 			if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
828 			    (RX_FIRST_DESC | RX_LAST_DESC)) {
829 				if (net_ratelimit())
830 					netdev_err(dev,
831 						   "Rx pkt on multiple desc\n");
832 			}
833 			if (cmd_sts & RX_ERROR)
834 				stats->rx_errors++;
835 			dev_kfree_skb_irq(skb);
836 		} else {
837 			/*
838 			 * The -4 is for the CRC in the trailer of the
839 			 * received packet
840 			 */
841 			skb_put(skb, rx_desc->byte_cnt - 4);
842 			skb->protocol = eth_type_trans(skb, dev);
843 			netif_receive_skb(skb);
844 		}
845 	}
846 	/* Fill RX ring with skb's */
847 	rxq_refill(dev);
848 	return received_packets;
849 }
850 
pxa168_eth_collect_events(struct pxa168_eth_private * pep,struct net_device * dev)851 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
852 				     struct net_device *dev)
853 {
854 	u32 icr;
855 	int ret = 0;
856 
857 	icr = rdl(pep, INT_CAUSE);
858 	if (icr == 0)
859 		return IRQ_NONE;
860 
861 	wrl(pep, INT_CAUSE, ~icr);
862 	if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
863 		pep->work_todo |= WORK_TX_DONE;
864 		ret = 1;
865 	}
866 	if (icr & ICR_RXBUF)
867 		ret = 1;
868 	return ret;
869 }
870 
pxa168_eth_int_handler(int irq,void * dev_id)871 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
872 {
873 	struct net_device *dev = (struct net_device *)dev_id;
874 	struct pxa168_eth_private *pep = netdev_priv(dev);
875 
876 	if (unlikely(!pxa168_eth_collect_events(pep, dev)))
877 		return IRQ_NONE;
878 	/* Disable interrupts */
879 	wrl(pep, INT_MASK, 0);
880 	napi_schedule(&pep->napi);
881 	return IRQ_HANDLED;
882 }
883 
pxa168_eth_recalc_skb_size(struct pxa168_eth_private * pep)884 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
885 {
886 	int skb_size;
887 
888 	/*
889 	 * Reserve 2+14 bytes for an ethernet header (the hardware
890 	 * automatically prepends 2 bytes of dummy data to each
891 	 * received packet), 16 bytes for up to four VLAN tags, and
892 	 * 4 bytes for the trailing FCS -- 36 bytes total.
893 	 */
894 	skb_size = pep->dev->mtu + 36;
895 
896 	/*
897 	 * Make sure that the skb size is a multiple of 8 bytes, as
898 	 * the lower three bits of the receive descriptor's buffer
899 	 * size field are ignored by the hardware.
900 	 */
901 	pep->skb_size = (skb_size + 7) & ~7;
902 
903 	/*
904 	 * If NET_SKB_PAD is smaller than a cache line,
905 	 * netdev_alloc_skb() will cause skb->data to be misaligned
906 	 * to a cache line boundary.  If this is the case, include
907 	 * some extra space to allow re-aligning the data area.
908 	 */
909 	pep->skb_size += SKB_DMA_REALIGN;
910 
911 }
912 
set_port_config_ext(struct pxa168_eth_private * pep)913 static int set_port_config_ext(struct pxa168_eth_private *pep)
914 {
915 	int skb_size;
916 
917 	pxa168_eth_recalc_skb_size(pep);
918 	if  (pep->skb_size <= 1518)
919 		skb_size = PCXR_MFL_1518;
920 	else if (pep->skb_size <= 1536)
921 		skb_size = PCXR_MFL_1536;
922 	else if (pep->skb_size <= 2048)
923 		skb_size = PCXR_MFL_2048;
924 	else
925 		skb_size = PCXR_MFL_64K;
926 
927 	/* Extended Port Configuration */
928 	wrl(pep, PORT_CONFIG_EXT,
929 	    PCXR_AN_SPEED_DIS |		 /* Disable HW AN */
930 	    PCXR_AN_DUPLEX_DIS |
931 	    PCXR_AN_FLOWCTL_DIS |
932 	    PCXR_2BSM |			 /* Two byte prefix aligns IP hdr */
933 	    PCXR_DSCP_EN |		 /* Enable DSCP in IP */
934 	    skb_size | PCXR_FLP |	 /* do not force link pass */
935 	    PCXR_TX_HIGH_PRI);		 /* Transmit - high priority queue */
936 
937 	return 0;
938 }
939 
pxa168_eth_adjust_link(struct net_device * dev)940 static void pxa168_eth_adjust_link(struct net_device *dev)
941 {
942 	struct pxa168_eth_private *pep = netdev_priv(dev);
943 	struct phy_device *phy = dev->phydev;
944 	u32 cfg, cfg_o = rdl(pep, PORT_CONFIG);
945 	u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT);
946 
947 	cfg = cfg_o & ~PCR_DUPLEX_FULL;
948 	cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN);
949 
950 	if (phy->interface == PHY_INTERFACE_MODE_RMII)
951 		cfgext |= PCXR_RMII_EN;
952 	if (phy->speed == SPEED_100)
953 		cfgext |= PCXR_SPEED_100;
954 	if (phy->duplex)
955 		cfg |= PCR_DUPLEX_FULL;
956 	if (!phy->pause)
957 		cfgext |= PCXR_FLOWCTL_DIS;
958 
959 	/* Bail out if there has nothing changed */
960 	if (cfg == cfg_o && cfgext == cfgext_o)
961 		return;
962 
963 	wrl(pep, PORT_CONFIG, cfg);
964 	wrl(pep, PORT_CONFIG_EXT, cfgext);
965 
966 	phy_print_status(phy);
967 }
968 
pxa168_init_phy(struct net_device * dev)969 static int pxa168_init_phy(struct net_device *dev)
970 {
971 	struct pxa168_eth_private *pep = netdev_priv(dev);
972 	struct ethtool_link_ksettings cmd;
973 	struct phy_device *phy = NULL;
974 	int err;
975 
976 	if (dev->phydev)
977 		return 0;
978 
979 	phy = mdiobus_scan(pep->smi_bus, pep->phy_addr);
980 	if (IS_ERR(phy))
981 		return PTR_ERR(phy);
982 
983 	err = phy_connect_direct(dev, phy, pxa168_eth_adjust_link,
984 				 pep->phy_intf);
985 	if (err)
986 		return err;
987 
988 	cmd.base.phy_address = pep->phy_addr;
989 	cmd.base.speed = pep->phy_speed;
990 	cmd.base.duplex = pep->phy_duplex;
991 	ethtool_convert_legacy_u32_to_link_mode(cmd.link_modes.advertising,
992 						PHY_BASIC_FEATURES);
993 	cmd.base.autoneg = AUTONEG_ENABLE;
994 
995 	if (cmd.base.speed != 0)
996 		cmd.base.autoneg = AUTONEG_DISABLE;
997 
998 	return phy_ethtool_set_link_ksettings(dev, &cmd);
999 }
1000 
pxa168_init_hw(struct pxa168_eth_private * pep)1001 static int pxa168_init_hw(struct pxa168_eth_private *pep)
1002 {
1003 	int err = 0;
1004 
1005 	/* Disable interrupts */
1006 	wrl(pep, INT_MASK, 0);
1007 	wrl(pep, INT_CAUSE, 0);
1008 	/* Write to ICR to clear interrupts. */
1009 	wrl(pep, INT_W_CLEAR, 0);
1010 	/* Abort any transmit and receive operations and put DMA
1011 	 * in idle state.
1012 	 */
1013 	abort_dma(pep);
1014 	/* Initialize address hash table */
1015 	err = init_hash_table(pep);
1016 	if (err)
1017 		return err;
1018 	/* SDMA configuration */
1019 	wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |	/* Burst size = 32 bytes */
1020 	    SDCR_RIFB |				/* Rx interrupt on frame */
1021 	    SDCR_BLMT |				/* Little endian transmit */
1022 	    SDCR_BLMR |				/* Little endian receive */
1023 	    SDCR_RC_MAX_RETRANS);		/* Max retransmit count */
1024 	/* Port Configuration */
1025 	wrl(pep, PORT_CONFIG, PCR_HS);		/* Hash size is 1/2kb */
1026 	set_port_config_ext(pep);
1027 
1028 	return err;
1029 }
1030 
rxq_init(struct net_device * dev)1031 static int rxq_init(struct net_device *dev)
1032 {
1033 	struct pxa168_eth_private *pep = netdev_priv(dev);
1034 	struct rx_desc *p_rx_desc;
1035 	int size = 0, i = 0;
1036 	int rx_desc_num = pep->rx_ring_size;
1037 
1038 	/* Allocate RX skb rings */
1039 	pep->rx_skb = kcalloc(rx_desc_num, sizeof(*pep->rx_skb), GFP_KERNEL);
1040 	if (!pep->rx_skb)
1041 		return -ENOMEM;
1042 
1043 	/* Allocate RX ring */
1044 	pep->rx_desc_count = 0;
1045 	size = pep->rx_ring_size * sizeof(struct rx_desc);
1046 	pep->rx_desc_area_size = size;
1047 	pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1048 						  &pep->rx_desc_dma,
1049 						  GFP_KERNEL);
1050 	if (!pep->p_rx_desc_area)
1051 		goto out;
1052 
1053 	/* initialize the next_desc_ptr links in the Rx descriptors ring */
1054 	p_rx_desc = pep->p_rx_desc_area;
1055 	for (i = 0; i < rx_desc_num; i++) {
1056 		p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1057 		    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1058 	}
1059 	/* Save Rx desc pointer to driver struct. */
1060 	pep->rx_curr_desc_q = 0;
1061 	pep->rx_used_desc_q = 0;
1062 	pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1063 	return 0;
1064 out:
1065 	kfree(pep->rx_skb);
1066 	return -ENOMEM;
1067 }
1068 
rxq_deinit(struct net_device * dev)1069 static void rxq_deinit(struct net_device *dev)
1070 {
1071 	struct pxa168_eth_private *pep = netdev_priv(dev);
1072 	int curr;
1073 
1074 	/* Free preallocated skb's on RX rings */
1075 	for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1076 		if (pep->rx_skb[curr]) {
1077 			dev_kfree_skb(pep->rx_skb[curr]);
1078 			pep->rx_desc_count--;
1079 		}
1080 	}
1081 	if (pep->rx_desc_count)
1082 		netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1083 			   pep->rx_desc_count);
1084 	/* Free RX ring */
1085 	if (pep->p_rx_desc_area)
1086 		dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1087 				  pep->p_rx_desc_area, pep->rx_desc_dma);
1088 	kfree(pep->rx_skb);
1089 }
1090 
txq_init(struct net_device * dev)1091 static int txq_init(struct net_device *dev)
1092 {
1093 	struct pxa168_eth_private *pep = netdev_priv(dev);
1094 	struct tx_desc *p_tx_desc;
1095 	int size = 0, i = 0;
1096 	int tx_desc_num = pep->tx_ring_size;
1097 
1098 	pep->tx_skb = kcalloc(tx_desc_num, sizeof(*pep->tx_skb), GFP_KERNEL);
1099 	if (!pep->tx_skb)
1100 		return -ENOMEM;
1101 
1102 	/* Allocate TX ring */
1103 	pep->tx_desc_count = 0;
1104 	size = pep->tx_ring_size * sizeof(struct tx_desc);
1105 	pep->tx_desc_area_size = size;
1106 	pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1107 						  &pep->tx_desc_dma,
1108 						  GFP_KERNEL);
1109 	if (!pep->p_tx_desc_area)
1110 		goto out;
1111 	/* Initialize the next_desc_ptr links in the Tx descriptors ring */
1112 	p_tx_desc = pep->p_tx_desc_area;
1113 	for (i = 0; i < tx_desc_num; i++) {
1114 		p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1115 		    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1116 	}
1117 	pep->tx_curr_desc_q = 0;
1118 	pep->tx_used_desc_q = 0;
1119 	pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1120 	return 0;
1121 out:
1122 	kfree(pep->tx_skb);
1123 	return -ENOMEM;
1124 }
1125 
txq_deinit(struct net_device * dev)1126 static void txq_deinit(struct net_device *dev)
1127 {
1128 	struct pxa168_eth_private *pep = netdev_priv(dev);
1129 
1130 	/* Free outstanding skb's on TX ring */
1131 	txq_reclaim(dev, 1);
1132 	BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1133 	/* Free TX ring */
1134 	if (pep->p_tx_desc_area)
1135 		dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1136 				  pep->p_tx_desc_area, pep->tx_desc_dma);
1137 	kfree(pep->tx_skb);
1138 }
1139 
pxa168_eth_open(struct net_device * dev)1140 static int pxa168_eth_open(struct net_device *dev)
1141 {
1142 	struct pxa168_eth_private *pep = netdev_priv(dev);
1143 	int err;
1144 
1145 	err = pxa168_init_phy(dev);
1146 	if (err)
1147 		return err;
1148 
1149 	err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1150 	if (err) {
1151 		dev_err(&dev->dev, "can't assign irq\n");
1152 		return -EAGAIN;
1153 	}
1154 	pep->rx_resource_err = 0;
1155 	err = rxq_init(dev);
1156 	if (err != 0)
1157 		goto out_free_irq;
1158 	err = txq_init(dev);
1159 	if (err != 0)
1160 		goto out_free_rx_skb;
1161 	pep->rx_used_desc_q = 0;
1162 	pep->rx_curr_desc_q = 0;
1163 
1164 	/* Fill RX ring with skb's */
1165 	rxq_refill(dev);
1166 	pep->rx_used_desc_q = 0;
1167 	pep->rx_curr_desc_q = 0;
1168 	netif_carrier_off(dev);
1169 	napi_enable(&pep->napi);
1170 	eth_port_start(dev);
1171 	return 0;
1172 out_free_rx_skb:
1173 	rxq_deinit(dev);
1174 out_free_irq:
1175 	free_irq(dev->irq, dev);
1176 	return err;
1177 }
1178 
pxa168_eth_stop(struct net_device * dev)1179 static int pxa168_eth_stop(struct net_device *dev)
1180 {
1181 	struct pxa168_eth_private *pep = netdev_priv(dev);
1182 	eth_port_reset(dev);
1183 
1184 	/* Disable interrupts */
1185 	wrl(pep, INT_MASK, 0);
1186 	wrl(pep, INT_CAUSE, 0);
1187 	/* Write to ICR to clear interrupts. */
1188 	wrl(pep, INT_W_CLEAR, 0);
1189 	napi_disable(&pep->napi);
1190 	del_timer_sync(&pep->timeout);
1191 	netif_carrier_off(dev);
1192 	free_irq(dev->irq, dev);
1193 	rxq_deinit(dev);
1194 	txq_deinit(dev);
1195 
1196 	return 0;
1197 }
1198 
pxa168_eth_change_mtu(struct net_device * dev,int mtu)1199 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1200 {
1201 	int retval;
1202 	struct pxa168_eth_private *pep = netdev_priv(dev);
1203 
1204 	dev->mtu = mtu;
1205 	retval = set_port_config_ext(pep);
1206 
1207 	if (!netif_running(dev))
1208 		return 0;
1209 
1210 	/*
1211 	 * Stop and then re-open the interface. This will allocate RX
1212 	 * skbs of the new MTU.
1213 	 * There is a possible danger that the open will not succeed,
1214 	 * due to memory being full.
1215 	 */
1216 	pxa168_eth_stop(dev);
1217 	if (pxa168_eth_open(dev)) {
1218 		dev_err(&dev->dev,
1219 			"fatal error on re-opening device after MTU change\n");
1220 	}
1221 
1222 	return 0;
1223 }
1224 
eth_alloc_tx_desc_index(struct pxa168_eth_private * pep)1225 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1226 {
1227 	int tx_desc_curr;
1228 
1229 	tx_desc_curr = pep->tx_curr_desc_q;
1230 	pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1231 	BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1232 	pep->tx_desc_count++;
1233 
1234 	return tx_desc_curr;
1235 }
1236 
pxa168_rx_poll(struct napi_struct * napi,int budget)1237 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1238 {
1239 	struct pxa168_eth_private *pep =
1240 	    container_of(napi, struct pxa168_eth_private, napi);
1241 	struct net_device *dev = pep->dev;
1242 	int work_done = 0;
1243 
1244 	/*
1245 	 * We call txq_reclaim every time since in NAPI interupts are disabled
1246 	 * and due to this we miss the TX_DONE interrupt,which is not updated in
1247 	 * interrupt status register.
1248 	 */
1249 	txq_reclaim(dev, 0);
1250 	if (netif_queue_stopped(dev)
1251 	    && pep->tx_ring_size - pep->tx_desc_count > 1) {
1252 		netif_wake_queue(dev);
1253 	}
1254 	work_done = rxq_process(dev, budget);
1255 	if (work_done < budget) {
1256 		napi_complete_done(napi, work_done);
1257 		wrl(pep, INT_MASK, ALL_INTS);
1258 	}
1259 
1260 	return work_done;
1261 }
1262 
pxa168_eth_start_xmit(struct sk_buff * skb,struct net_device * dev)1263 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1264 {
1265 	struct pxa168_eth_private *pep = netdev_priv(dev);
1266 	struct net_device_stats *stats = &dev->stats;
1267 	struct tx_desc *desc;
1268 	int tx_index;
1269 	int length;
1270 
1271 	tx_index = eth_alloc_tx_desc_index(pep);
1272 	desc = &pep->p_tx_desc_area[tx_index];
1273 	length = skb->len;
1274 	pep->tx_skb[tx_index] = skb;
1275 	desc->byte_cnt = length;
1276 	desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1277 
1278 	skb_tx_timestamp(skb);
1279 
1280 	dma_wmb();
1281 	desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1282 			TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1283 	wmb();
1284 	wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1285 
1286 	stats->tx_bytes += length;
1287 	stats->tx_packets++;
1288 	netif_trans_update(dev);
1289 	if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1290 		/* We handled the current skb, but now we are out of space.*/
1291 		netif_stop_queue(dev);
1292 	}
1293 
1294 	return NETDEV_TX_OK;
1295 }
1296 
smi_wait_ready(struct pxa168_eth_private * pep)1297 static int smi_wait_ready(struct pxa168_eth_private *pep)
1298 {
1299 	int i = 0;
1300 
1301 	/* wait for the SMI register to become available */
1302 	for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1303 		if (i == PHY_WAIT_ITERATIONS)
1304 			return -ETIMEDOUT;
1305 		msleep(10);
1306 	}
1307 
1308 	return 0;
1309 }
1310 
pxa168_smi_read(struct mii_bus * bus,int phy_addr,int regnum)1311 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1312 {
1313 	struct pxa168_eth_private *pep = bus->priv;
1314 	int i = 0;
1315 	int val;
1316 
1317 	if (smi_wait_ready(pep)) {
1318 		netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1319 		return -ETIMEDOUT;
1320 	}
1321 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1322 	/* now wait for the data to be valid */
1323 	for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1324 		if (i == PHY_WAIT_ITERATIONS) {
1325 			netdev_warn(pep->dev,
1326 				    "pxa168_eth: SMI bus read not valid\n");
1327 			return -ENODEV;
1328 		}
1329 		msleep(10);
1330 	}
1331 
1332 	return val & 0xffff;
1333 }
1334 
pxa168_smi_write(struct mii_bus * bus,int phy_addr,int regnum,u16 value)1335 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1336 			    u16 value)
1337 {
1338 	struct pxa168_eth_private *pep = bus->priv;
1339 
1340 	if (smi_wait_ready(pep)) {
1341 		netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1342 		return -ETIMEDOUT;
1343 	}
1344 
1345 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1346 	    SMI_OP_W | (value & 0xffff));
1347 
1348 	if (smi_wait_ready(pep)) {
1349 		netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1350 		return -ETIMEDOUT;
1351 	}
1352 
1353 	return 0;
1354 }
1355 
pxa168_eth_do_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1356 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1357 			       int cmd)
1358 {
1359 	if (dev->phydev)
1360 		return phy_mii_ioctl(dev->phydev, ifr, cmd);
1361 
1362 	return -EOPNOTSUPP;
1363 }
1364 
1365 #ifdef CONFIG_NET_POLL_CONTROLLER
pxa168_eth_netpoll(struct net_device * dev)1366 static void pxa168_eth_netpoll(struct net_device *dev)
1367 {
1368 	disable_irq(dev->irq);
1369 	pxa168_eth_int_handler(dev->irq, dev);
1370 	enable_irq(dev->irq);
1371 }
1372 #endif
1373 
pxa168_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1374 static void pxa168_get_drvinfo(struct net_device *dev,
1375 			       struct ethtool_drvinfo *info)
1376 {
1377 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1378 	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1379 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1380 	strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1381 }
1382 
1383 static const struct ethtool_ops pxa168_ethtool_ops = {
1384 	.get_drvinfo	= pxa168_get_drvinfo,
1385 	.nway_reset	= phy_ethtool_nway_reset,
1386 	.get_link	= ethtool_op_get_link,
1387 	.get_ts_info	= ethtool_op_get_ts_info,
1388 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1389 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1390 };
1391 
1392 static const struct net_device_ops pxa168_eth_netdev_ops = {
1393 	.ndo_open		= pxa168_eth_open,
1394 	.ndo_stop		= pxa168_eth_stop,
1395 	.ndo_start_xmit		= pxa168_eth_start_xmit,
1396 	.ndo_set_rx_mode	= pxa168_eth_set_rx_mode,
1397 	.ndo_set_mac_address	= pxa168_eth_set_mac_address,
1398 	.ndo_validate_addr	= eth_validate_addr,
1399 	.ndo_do_ioctl		= pxa168_eth_do_ioctl,
1400 	.ndo_change_mtu		= pxa168_eth_change_mtu,
1401 	.ndo_tx_timeout		= pxa168_eth_tx_timeout,
1402 #ifdef CONFIG_NET_POLL_CONTROLLER
1403 	.ndo_poll_controller    = pxa168_eth_netpoll,
1404 #endif
1405 };
1406 
pxa168_eth_probe(struct platform_device * pdev)1407 static int pxa168_eth_probe(struct platform_device *pdev)
1408 {
1409 	struct pxa168_eth_private *pep = NULL;
1410 	struct net_device *dev = NULL;
1411 	struct resource *res;
1412 	struct clk *clk;
1413 	struct device_node *np;
1414 	const unsigned char *mac_addr = NULL;
1415 	int err;
1416 
1417 	printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1418 
1419 	clk = devm_clk_get(&pdev->dev, NULL);
1420 	if (IS_ERR(clk)) {
1421 		dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1422 		return -ENODEV;
1423 	}
1424 	clk_prepare_enable(clk);
1425 
1426 	dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1427 	if (!dev) {
1428 		err = -ENOMEM;
1429 		goto err_clk;
1430 	}
1431 
1432 	platform_set_drvdata(pdev, dev);
1433 	pep = netdev_priv(dev);
1434 	pep->dev = dev;
1435 	pep->clk = clk;
1436 
1437 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1438 	pep->base = devm_ioremap_resource(&pdev->dev, res);
1439 	if (IS_ERR(pep->base)) {
1440 		err = -ENOMEM;
1441 		goto err_netdev;
1442 	}
1443 
1444 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1445 	BUG_ON(!res);
1446 	dev->irq = res->start;
1447 	dev->netdev_ops = &pxa168_eth_netdev_ops;
1448 	dev->watchdog_timeo = 2 * HZ;
1449 	dev->base_addr = 0;
1450 	dev->ethtool_ops = &pxa168_ethtool_ops;
1451 
1452 	/* MTU range: 68 - 9500 */
1453 	dev->min_mtu = ETH_MIN_MTU;
1454 	dev->max_mtu = 9500;
1455 
1456 	INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1457 
1458 	if (pdev->dev.of_node)
1459 		mac_addr = of_get_mac_address(pdev->dev.of_node);
1460 
1461 	if (mac_addr && is_valid_ether_addr(mac_addr)) {
1462 		ether_addr_copy(dev->dev_addr, mac_addr);
1463 	} else {
1464 		/* try reading the mac address, if set by the bootloader */
1465 		pxa168_eth_get_mac_address(dev, dev->dev_addr);
1466 		if (!is_valid_ether_addr(dev->dev_addr)) {
1467 			dev_info(&pdev->dev, "Using random mac address\n");
1468 			eth_hw_addr_random(dev);
1469 		}
1470 	}
1471 
1472 	pep->rx_ring_size = NUM_RX_DESCS;
1473 	pep->tx_ring_size = NUM_TX_DESCS;
1474 
1475 	pep->pd = dev_get_platdata(&pdev->dev);
1476 	if (pep->pd) {
1477 		if (pep->pd->rx_queue_size)
1478 			pep->rx_ring_size = pep->pd->rx_queue_size;
1479 
1480 		if (pep->pd->tx_queue_size)
1481 			pep->tx_ring_size = pep->pd->tx_queue_size;
1482 
1483 		pep->port_num = pep->pd->port_number;
1484 		pep->phy_addr = pep->pd->phy_addr;
1485 		pep->phy_speed = pep->pd->speed;
1486 		pep->phy_duplex = pep->pd->duplex;
1487 		pep->phy_intf = pep->pd->intf;
1488 
1489 		if (pep->pd->init)
1490 			pep->pd->init();
1491 	} else if (pdev->dev.of_node) {
1492 		of_property_read_u32(pdev->dev.of_node, "port-id",
1493 				     &pep->port_num);
1494 
1495 		np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1496 		if (!np) {
1497 			dev_err(&pdev->dev, "missing phy-handle\n");
1498 			err = -EINVAL;
1499 			goto err_netdev;
1500 		}
1501 		of_property_read_u32(np, "reg", &pep->phy_addr);
1502 		pep->phy_intf = of_get_phy_mode(pdev->dev.of_node);
1503 		of_node_put(np);
1504 	}
1505 
1506 	/* Hardware supports only 3 ports */
1507 	BUG_ON(pep->port_num > 2);
1508 	netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1509 
1510 	memset(&pep->timeout, 0, sizeof(struct timer_list));
1511 	timer_setup(&pep->timeout, rxq_refill_timer_wrapper, 0);
1512 
1513 	pep->smi_bus = mdiobus_alloc();
1514 	if (!pep->smi_bus) {
1515 		err = -ENOMEM;
1516 		goto err_netdev;
1517 	}
1518 	pep->smi_bus->priv = pep;
1519 	pep->smi_bus->name = "pxa168_eth smi";
1520 	pep->smi_bus->read = pxa168_smi_read;
1521 	pep->smi_bus->write = pxa168_smi_write;
1522 	snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1523 		pdev->name, pdev->id);
1524 	pep->smi_bus->parent = &pdev->dev;
1525 	pep->smi_bus->phy_mask = 0xffffffff;
1526 	err = mdiobus_register(pep->smi_bus);
1527 	if (err)
1528 		goto err_free_mdio;
1529 
1530 	SET_NETDEV_DEV(dev, &pdev->dev);
1531 	pxa168_init_hw(pep);
1532 	err = register_netdev(dev);
1533 	if (err)
1534 		goto err_mdiobus;
1535 	return 0;
1536 
1537 err_mdiobus:
1538 	mdiobus_unregister(pep->smi_bus);
1539 err_free_mdio:
1540 	mdiobus_free(pep->smi_bus);
1541 err_netdev:
1542 	free_netdev(dev);
1543 err_clk:
1544 	clk_disable_unprepare(clk);
1545 	return err;
1546 }
1547 
pxa168_eth_remove(struct platform_device * pdev)1548 static int pxa168_eth_remove(struct platform_device *pdev)
1549 {
1550 	struct net_device *dev = platform_get_drvdata(pdev);
1551 	struct pxa168_eth_private *pep = netdev_priv(dev);
1552 
1553 	if (pep->htpr) {
1554 		dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1555 				  pep->htpr, pep->htpr_dma);
1556 		pep->htpr = NULL;
1557 	}
1558 	if (dev->phydev)
1559 		phy_disconnect(dev->phydev);
1560 	if (pep->clk) {
1561 		clk_disable_unprepare(pep->clk);
1562 	}
1563 
1564 	mdiobus_unregister(pep->smi_bus);
1565 	mdiobus_free(pep->smi_bus);
1566 	unregister_netdev(dev);
1567 	cancel_work_sync(&pep->tx_timeout_task);
1568 	free_netdev(dev);
1569 	return 0;
1570 }
1571 
pxa168_eth_shutdown(struct platform_device * pdev)1572 static void pxa168_eth_shutdown(struct platform_device *pdev)
1573 {
1574 	struct net_device *dev = platform_get_drvdata(pdev);
1575 	eth_port_reset(dev);
1576 }
1577 
1578 #ifdef CONFIG_PM
pxa168_eth_resume(struct platform_device * pdev)1579 static int pxa168_eth_resume(struct platform_device *pdev)
1580 {
1581 	return -ENOSYS;
1582 }
1583 
pxa168_eth_suspend(struct platform_device * pdev,pm_message_t state)1584 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1585 {
1586 	return -ENOSYS;
1587 }
1588 
1589 #else
1590 #define pxa168_eth_resume NULL
1591 #define pxa168_eth_suspend NULL
1592 #endif
1593 
1594 static const struct of_device_id pxa168_eth_of_match[] = {
1595 	{ .compatible = "marvell,pxa168-eth" },
1596 	{ },
1597 };
1598 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1599 
1600 static struct platform_driver pxa168_eth_driver = {
1601 	.probe = pxa168_eth_probe,
1602 	.remove = pxa168_eth_remove,
1603 	.shutdown = pxa168_eth_shutdown,
1604 	.resume = pxa168_eth_resume,
1605 	.suspend = pxa168_eth_suspend,
1606 	.driver = {
1607 		.name		= DRIVER_NAME,
1608 		.of_match_table	= of_match_ptr(pxa168_eth_of_match),
1609 	},
1610 };
1611 
1612 module_platform_driver(pxa168_eth_driver);
1613 
1614 MODULE_LICENSE("GPL");
1615 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1616 MODULE_ALIAS("platform:pxa168_eth");
1617