1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include "ice.h"
9 
10 #define ICE_RX_HDR_SIZE		256
11 
12 /**
13  * ice_unmap_and_free_tx_buf - Release a Tx buffer
14  * @ring: the ring that owns the buffer
15  * @tx_buf: the buffer to free
16  */
17 static void
ice_unmap_and_free_tx_buf(struct ice_ring * ring,struct ice_tx_buf * tx_buf)18 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
19 {
20 	if (tx_buf->skb) {
21 		dev_kfree_skb_any(tx_buf->skb);
22 		if (dma_unmap_len(tx_buf, len))
23 			dma_unmap_single(ring->dev,
24 					 dma_unmap_addr(tx_buf, dma),
25 					 dma_unmap_len(tx_buf, len),
26 					 DMA_TO_DEVICE);
27 	} else if (dma_unmap_len(tx_buf, len)) {
28 		dma_unmap_page(ring->dev,
29 			       dma_unmap_addr(tx_buf, dma),
30 			       dma_unmap_len(tx_buf, len),
31 			       DMA_TO_DEVICE);
32 	}
33 
34 	tx_buf->next_to_watch = NULL;
35 	tx_buf->skb = NULL;
36 	dma_unmap_len_set(tx_buf, len, 0);
37 	/* tx_buf must be completely set up in the transmit path */
38 }
39 
txring_txq(const struct ice_ring * ring)40 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
41 {
42 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
43 }
44 
45 /**
46  * ice_clean_tx_ring - Free any empty Tx buffers
47  * @tx_ring: ring to be cleaned
48  */
ice_clean_tx_ring(struct ice_ring * tx_ring)49 void ice_clean_tx_ring(struct ice_ring *tx_ring)
50 {
51 	unsigned long size;
52 	u16 i;
53 
54 	/* ring already cleared, nothing to do */
55 	if (!tx_ring->tx_buf)
56 		return;
57 
58 	/* Free all the Tx ring sk_bufss */
59 	for (i = 0; i < tx_ring->count; i++)
60 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
61 
62 	size = sizeof(struct ice_tx_buf) * tx_ring->count;
63 	memset(tx_ring->tx_buf, 0, size);
64 
65 	/* Zero out the descriptor ring */
66 	memset(tx_ring->desc, 0, tx_ring->size);
67 
68 	tx_ring->next_to_use = 0;
69 	tx_ring->next_to_clean = 0;
70 
71 	if (!tx_ring->netdev)
72 		return;
73 
74 	/* cleanup Tx queue statistics */
75 	netdev_tx_reset_queue(txring_txq(tx_ring));
76 }
77 
78 /**
79  * ice_free_tx_ring - Free Tx resources per queue
80  * @tx_ring: Tx descriptor ring for a specific queue
81  *
82  * Free all transmit software resources
83  */
ice_free_tx_ring(struct ice_ring * tx_ring)84 void ice_free_tx_ring(struct ice_ring *tx_ring)
85 {
86 	ice_clean_tx_ring(tx_ring);
87 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
88 	tx_ring->tx_buf = NULL;
89 
90 	if (tx_ring->desc) {
91 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
92 				   tx_ring->desc, tx_ring->dma);
93 		tx_ring->desc = NULL;
94 	}
95 }
96 
97 /**
98  * ice_clean_tx_irq - Reclaim resources after transmit completes
99  * @vsi: the VSI we care about
100  * @tx_ring: Tx ring to clean
101  * @napi_budget: Used to determine if we are in netpoll
102  *
103  * Returns true if there's any budget left (e.g. the clean is finished)
104  */
ice_clean_tx_irq(struct ice_vsi * vsi,struct ice_ring * tx_ring,int napi_budget)105 static bool ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring,
106 			     int napi_budget)
107 {
108 	unsigned int total_bytes = 0, total_pkts = 0;
109 	unsigned int budget = vsi->work_lmt;
110 	s16 i = tx_ring->next_to_clean;
111 	struct ice_tx_desc *tx_desc;
112 	struct ice_tx_buf *tx_buf;
113 
114 	tx_buf = &tx_ring->tx_buf[i];
115 	tx_desc = ICE_TX_DESC(tx_ring, i);
116 	i -= tx_ring->count;
117 
118 	do {
119 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
120 
121 		/* if next_to_watch is not set then there is no work pending */
122 		if (!eop_desc)
123 			break;
124 
125 		smp_rmb();	/* prevent any other reads prior to eop_desc */
126 
127 		/* if the descriptor isn't done, no work yet to do */
128 		if (!(eop_desc->cmd_type_offset_bsz &
129 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
130 			break;
131 
132 		/* clear next_to_watch to prevent false hangs */
133 		tx_buf->next_to_watch = NULL;
134 
135 		/* update the statistics for this packet */
136 		total_bytes += tx_buf->bytecount;
137 		total_pkts += tx_buf->gso_segs;
138 
139 		/* free the skb */
140 		napi_consume_skb(tx_buf->skb, napi_budget);
141 
142 		/* unmap skb header data */
143 		dma_unmap_single(tx_ring->dev,
144 				 dma_unmap_addr(tx_buf, dma),
145 				 dma_unmap_len(tx_buf, len),
146 				 DMA_TO_DEVICE);
147 
148 		/* clear tx_buf data */
149 		tx_buf->skb = NULL;
150 		dma_unmap_len_set(tx_buf, len, 0);
151 
152 		/* unmap remaining buffers */
153 		while (tx_desc != eop_desc) {
154 			tx_buf++;
155 			tx_desc++;
156 			i++;
157 			if (unlikely(!i)) {
158 				i -= tx_ring->count;
159 				tx_buf = tx_ring->tx_buf;
160 				tx_desc = ICE_TX_DESC(tx_ring, 0);
161 			}
162 
163 			/* unmap any remaining paged data */
164 			if (dma_unmap_len(tx_buf, len)) {
165 				dma_unmap_page(tx_ring->dev,
166 					       dma_unmap_addr(tx_buf, dma),
167 					       dma_unmap_len(tx_buf, len),
168 					       DMA_TO_DEVICE);
169 				dma_unmap_len_set(tx_buf, len, 0);
170 			}
171 		}
172 
173 		/* move us one more past the eop_desc for start of next pkt */
174 		tx_buf++;
175 		tx_desc++;
176 		i++;
177 		if (unlikely(!i)) {
178 			i -= tx_ring->count;
179 			tx_buf = tx_ring->tx_buf;
180 			tx_desc = ICE_TX_DESC(tx_ring, 0);
181 		}
182 
183 		prefetch(tx_desc);
184 
185 		/* update budget accounting */
186 		budget--;
187 	} while (likely(budget));
188 
189 	i += tx_ring->count;
190 	tx_ring->next_to_clean = i;
191 	u64_stats_update_begin(&tx_ring->syncp);
192 	tx_ring->stats.bytes += total_bytes;
193 	tx_ring->stats.pkts += total_pkts;
194 	u64_stats_update_end(&tx_ring->syncp);
195 	tx_ring->q_vector->tx.total_bytes += total_bytes;
196 	tx_ring->q_vector->tx.total_pkts += total_pkts;
197 
198 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
199 				  total_bytes);
200 
201 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
202 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
203 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
204 		/* Make sure that anybody stopping the queue after this
205 		 * sees the new next_to_clean.
206 		 */
207 		smp_mb();
208 		if (__netif_subqueue_stopped(tx_ring->netdev,
209 					     tx_ring->q_index) &&
210 		   !test_bit(__ICE_DOWN, vsi->state)) {
211 			netif_wake_subqueue(tx_ring->netdev,
212 					    tx_ring->q_index);
213 			++tx_ring->tx_stats.restart_q;
214 		}
215 	}
216 
217 	return !!budget;
218 }
219 
220 /**
221  * ice_setup_tx_ring - Allocate the Tx descriptors
222  * @tx_ring: the tx ring to set up
223  *
224  * Return 0 on success, negative on error
225  */
ice_setup_tx_ring(struct ice_ring * tx_ring)226 int ice_setup_tx_ring(struct ice_ring *tx_ring)
227 {
228 	struct device *dev = tx_ring->dev;
229 	int bi_size;
230 
231 	if (!dev)
232 		return -ENOMEM;
233 
234 	/* warn if we are about to overwrite the pointer */
235 	WARN_ON(tx_ring->tx_buf);
236 	bi_size = sizeof(struct ice_tx_buf) * tx_ring->count;
237 	tx_ring->tx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
238 	if (!tx_ring->tx_buf)
239 		return -ENOMEM;
240 
241 	/* round up to nearest 4K */
242 	tx_ring->size = tx_ring->count * sizeof(struct ice_tx_desc);
243 	tx_ring->size = ALIGN(tx_ring->size, 4096);
244 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
245 					    GFP_KERNEL);
246 	if (!tx_ring->desc) {
247 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
248 			tx_ring->size);
249 		goto err;
250 	}
251 
252 	tx_ring->next_to_use = 0;
253 	tx_ring->next_to_clean = 0;
254 	return 0;
255 
256 err:
257 	devm_kfree(dev, tx_ring->tx_buf);
258 	tx_ring->tx_buf = NULL;
259 	return -ENOMEM;
260 }
261 
262 /**
263  * ice_clean_rx_ring - Free Rx buffers
264  * @rx_ring: ring to be cleaned
265  */
ice_clean_rx_ring(struct ice_ring * rx_ring)266 void ice_clean_rx_ring(struct ice_ring *rx_ring)
267 {
268 	struct device *dev = rx_ring->dev;
269 	unsigned long size;
270 	u16 i;
271 
272 	/* ring already cleared, nothing to do */
273 	if (!rx_ring->rx_buf)
274 		return;
275 
276 	/* Free all the Rx ring sk_buffs */
277 	for (i = 0; i < rx_ring->count; i++) {
278 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
279 
280 		if (rx_buf->skb) {
281 			dev_kfree_skb(rx_buf->skb);
282 			rx_buf->skb = NULL;
283 		}
284 		if (!rx_buf->page)
285 			continue;
286 
287 		dma_unmap_page(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE);
288 		__free_pages(rx_buf->page, 0);
289 
290 		rx_buf->page = NULL;
291 		rx_buf->page_offset = 0;
292 	}
293 
294 	size = sizeof(struct ice_rx_buf) * rx_ring->count;
295 	memset(rx_ring->rx_buf, 0, size);
296 
297 	/* Zero out the descriptor ring */
298 	memset(rx_ring->desc, 0, rx_ring->size);
299 
300 	rx_ring->next_to_alloc = 0;
301 	rx_ring->next_to_clean = 0;
302 	rx_ring->next_to_use = 0;
303 }
304 
305 /**
306  * ice_free_rx_ring - Free Rx resources
307  * @rx_ring: ring to clean the resources from
308  *
309  * Free all receive software resources
310  */
ice_free_rx_ring(struct ice_ring * rx_ring)311 void ice_free_rx_ring(struct ice_ring *rx_ring)
312 {
313 	ice_clean_rx_ring(rx_ring);
314 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
315 	rx_ring->rx_buf = NULL;
316 
317 	if (rx_ring->desc) {
318 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
319 				   rx_ring->desc, rx_ring->dma);
320 		rx_ring->desc = NULL;
321 	}
322 }
323 
324 /**
325  * ice_setup_rx_ring - Allocate the Rx descriptors
326  * @rx_ring: the rx ring to set up
327  *
328  * Return 0 on success, negative on error
329  */
ice_setup_rx_ring(struct ice_ring * rx_ring)330 int ice_setup_rx_ring(struct ice_ring *rx_ring)
331 {
332 	struct device *dev = rx_ring->dev;
333 	int bi_size;
334 
335 	if (!dev)
336 		return -ENOMEM;
337 
338 	/* warn if we are about to overwrite the pointer */
339 	WARN_ON(rx_ring->rx_buf);
340 	bi_size = sizeof(struct ice_rx_buf) * rx_ring->count;
341 	rx_ring->rx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
342 	if (!rx_ring->rx_buf)
343 		return -ENOMEM;
344 
345 	/* round up to nearest 4K */
346 	rx_ring->size = rx_ring->count * sizeof(union ice_32byte_rx_desc);
347 	rx_ring->size = ALIGN(rx_ring->size, 4096);
348 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
349 					    GFP_KERNEL);
350 	if (!rx_ring->desc) {
351 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
352 			rx_ring->size);
353 		goto err;
354 	}
355 
356 	rx_ring->next_to_use = 0;
357 	rx_ring->next_to_clean = 0;
358 	return 0;
359 
360 err:
361 	devm_kfree(dev, rx_ring->rx_buf);
362 	rx_ring->rx_buf = NULL;
363 	return -ENOMEM;
364 }
365 
366 /**
367  * ice_release_rx_desc - Store the new tail and head values
368  * @rx_ring: ring to bump
369  * @val: new head index
370  */
ice_release_rx_desc(struct ice_ring * rx_ring,u32 val)371 static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
372 {
373 	rx_ring->next_to_use = val;
374 
375 	/* update next to alloc since we have filled the ring */
376 	rx_ring->next_to_alloc = val;
377 
378 	/* Force memory writes to complete before letting h/w
379 	 * know there are new descriptors to fetch.  (Only
380 	 * applicable for weak-ordered memory model archs,
381 	 * such as IA-64).
382 	 */
383 	wmb();
384 	writel(val, rx_ring->tail);
385 }
386 
387 /**
388  * ice_alloc_mapped_page - recycle or make a new page
389  * @rx_ring: ring to use
390  * @bi: rx_buf struct to modify
391  *
392  * Returns true if the page was successfully allocated or
393  * reused.
394  */
ice_alloc_mapped_page(struct ice_ring * rx_ring,struct ice_rx_buf * bi)395 static bool ice_alloc_mapped_page(struct ice_ring *rx_ring,
396 				  struct ice_rx_buf *bi)
397 {
398 	struct page *page = bi->page;
399 	dma_addr_t dma;
400 
401 	/* since we are recycling buffers we should seldom need to alloc */
402 	if (likely(page)) {
403 		rx_ring->rx_stats.page_reuse_count++;
404 		return true;
405 	}
406 
407 	/* alloc new page for storage */
408 	page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
409 	if (unlikely(!page)) {
410 		rx_ring->rx_stats.alloc_page_failed++;
411 		return false;
412 	}
413 
414 	/* map page for use */
415 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
416 
417 	/* if mapping failed free memory back to system since
418 	 * there isn't much point in holding memory we can't use
419 	 */
420 	if (dma_mapping_error(rx_ring->dev, dma)) {
421 		__free_pages(page, 0);
422 		rx_ring->rx_stats.alloc_page_failed++;
423 		return false;
424 	}
425 
426 	bi->dma = dma;
427 	bi->page = page;
428 	bi->page_offset = 0;
429 
430 	return true;
431 }
432 
433 /**
434  * ice_alloc_rx_bufs - Replace used receive buffers
435  * @rx_ring: ring to place buffers on
436  * @cleaned_count: number of buffers to replace
437  *
438  * Returns false if all allocations were successful, true if any fail
439  */
ice_alloc_rx_bufs(struct ice_ring * rx_ring,u16 cleaned_count)440 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
441 {
442 	union ice_32b_rx_flex_desc *rx_desc;
443 	u16 ntu = rx_ring->next_to_use;
444 	struct ice_rx_buf *bi;
445 
446 	/* do nothing if no valid netdev defined */
447 	if (!rx_ring->netdev || !cleaned_count)
448 		return false;
449 
450 	/* get the RX descriptor and buffer based on next_to_use */
451 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
452 	bi = &rx_ring->rx_buf[ntu];
453 
454 	do {
455 		if (!ice_alloc_mapped_page(rx_ring, bi))
456 			goto no_bufs;
457 
458 		/* Refresh the desc even if buffer_addrs didn't change
459 		 * because each write-back erases this info.
460 		 */
461 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
462 
463 		rx_desc++;
464 		bi++;
465 		ntu++;
466 		if (unlikely(ntu == rx_ring->count)) {
467 			rx_desc = ICE_RX_DESC(rx_ring, 0);
468 			bi = rx_ring->rx_buf;
469 			ntu = 0;
470 		}
471 
472 		/* clear the status bits for the next_to_use descriptor */
473 		rx_desc->wb.status_error0 = 0;
474 
475 		cleaned_count--;
476 	} while (cleaned_count);
477 
478 	if (rx_ring->next_to_use != ntu)
479 		ice_release_rx_desc(rx_ring, ntu);
480 
481 	return false;
482 
483 no_bufs:
484 	if (rx_ring->next_to_use != ntu)
485 		ice_release_rx_desc(rx_ring, ntu);
486 
487 	/* make sure to come back via polling to try again after
488 	 * allocation failure
489 	 */
490 	return true;
491 }
492 
493 /**
494  * ice_page_is_reserved - check if reuse is possible
495  * @page: page struct to check
496  */
ice_page_is_reserved(struct page * page)497 static bool ice_page_is_reserved(struct page *page)
498 {
499 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
500 }
501 
502 /**
503  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff
504  * @rx_buf: buffer containing page to add
505  * @rx_desc: descriptor containing length of buffer written by hardware
506  * @skb: sk_buf to place the data into
507  *
508  * This function will add the data contained in rx_buf->page to the skb.
509  * This is done either through a direct copy if the data in the buffer is
510  * less than the skb header size, otherwise it will just attach the page as
511  * a frag to the skb.
512  *
513  * The function will then update the page offset if necessary and return
514  * true if the buffer can be reused by the adapter.
515  */
ice_add_rx_frag(struct ice_rx_buf * rx_buf,union ice_32b_rx_flex_desc * rx_desc,struct sk_buff * skb)516 static bool ice_add_rx_frag(struct ice_rx_buf *rx_buf,
517 			    union ice_32b_rx_flex_desc *rx_desc,
518 			    struct sk_buff *skb)
519 {
520 #if (PAGE_SIZE < 8192)
521 	unsigned int truesize = ICE_RXBUF_2048;
522 #else
523 	unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
524 	unsigned int truesize;
525 #endif /* PAGE_SIZE < 8192) */
526 
527 	struct page *page;
528 	unsigned int size;
529 
530 	size = le16_to_cpu(rx_desc->wb.pkt_len) &
531 		ICE_RX_FLX_DESC_PKT_LEN_M;
532 
533 	page = rx_buf->page;
534 
535 #if (PAGE_SIZE >= 8192)
536 	truesize = ALIGN(size, L1_CACHE_BYTES);
537 #endif /* PAGE_SIZE >= 8192) */
538 
539 	/* will the data fit in the skb we allocated? if so, just
540 	 * copy it as it is pretty small anyway
541 	 */
542 	if (size <= ICE_RX_HDR_SIZE && !skb_is_nonlinear(skb)) {
543 		unsigned char *va = page_address(page) + rx_buf->page_offset;
544 
545 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
546 
547 		/* page is not reserved, we can reuse buffer as-is */
548 		if (likely(!ice_page_is_reserved(page)))
549 			return true;
550 
551 		/* this page cannot be reused so discard it */
552 		__free_pages(page, 0);
553 		return false;
554 	}
555 
556 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
557 			rx_buf->page_offset, size, truesize);
558 
559 	/* avoid re-using remote pages */
560 	if (unlikely(ice_page_is_reserved(page)))
561 		return false;
562 
563 #if (PAGE_SIZE < 8192)
564 	/* if we are only owner of page we can reuse it */
565 	if (unlikely(page_count(page) != 1))
566 		return false;
567 
568 	/* flip page offset to other buffer */
569 	rx_buf->page_offset ^= truesize;
570 #else
571 	/* move offset up to the next cache line */
572 	rx_buf->page_offset += truesize;
573 
574 	if (rx_buf->page_offset > last_offset)
575 		return false;
576 #endif /* PAGE_SIZE < 8192) */
577 
578 	/* Even if we own the page, we are not allowed to use atomic_set()
579 	 * This would break get_page_unless_zero() users.
580 	 */
581 	get_page(rx_buf->page);
582 
583 	return true;
584 }
585 
586 /**
587  * ice_reuse_rx_page - page flip buffer and store it back on the ring
588  * @rx_ring: rx descriptor ring to store buffers on
589  * @old_buf: donor buffer to have page reused
590  *
591  * Synchronizes page for reuse by the adapter
592  */
ice_reuse_rx_page(struct ice_ring * rx_ring,struct ice_rx_buf * old_buf)593 static void ice_reuse_rx_page(struct ice_ring *rx_ring,
594 			      struct ice_rx_buf *old_buf)
595 {
596 	u16 nta = rx_ring->next_to_alloc;
597 	struct ice_rx_buf *new_buf;
598 
599 	new_buf = &rx_ring->rx_buf[nta];
600 
601 	/* update, and store next to alloc */
602 	nta++;
603 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
604 
605 	/* transfer page from old buffer to new buffer */
606 	*new_buf = *old_buf;
607 }
608 
609 /**
610  * ice_fetch_rx_buf - Allocate skb and populate it
611  * @rx_ring: rx descriptor ring to transact packets on
612  * @rx_desc: descriptor containing info written by hardware
613  *
614  * This function allocates an skb on the fly, and populates it with the page
615  * data from the current receive descriptor, taking care to set up the skb
616  * correctly, as well as handling calling the page recycle function if
617  * necessary.
618  */
ice_fetch_rx_buf(struct ice_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc)619 static struct sk_buff *ice_fetch_rx_buf(struct ice_ring *rx_ring,
620 					union ice_32b_rx_flex_desc *rx_desc)
621 {
622 	struct ice_rx_buf *rx_buf;
623 	struct sk_buff *skb;
624 	struct page *page;
625 
626 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
627 	page = rx_buf->page;
628 	prefetchw(page);
629 
630 	skb = rx_buf->skb;
631 
632 	if (likely(!skb)) {
633 		u8 *page_addr = page_address(page) + rx_buf->page_offset;
634 
635 		/* prefetch first cache line of first page */
636 		prefetch(page_addr);
637 #if L1_CACHE_BYTES < 128
638 		prefetch((void *)(page_addr + L1_CACHE_BYTES));
639 #endif /* L1_CACHE_BYTES */
640 
641 		/* allocate a skb to store the frags */
642 		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
643 				       ICE_RX_HDR_SIZE,
644 				       GFP_ATOMIC | __GFP_NOWARN);
645 		if (unlikely(!skb)) {
646 			rx_ring->rx_stats.alloc_buf_failed++;
647 			return NULL;
648 		}
649 
650 		/* we will be copying header into skb->data in
651 		 * pskb_may_pull so it is in our interest to prefetch
652 		 * it now to avoid a possible cache miss
653 		 */
654 		prefetchw(skb->data);
655 
656 		skb_record_rx_queue(skb, rx_ring->q_index);
657 	} else {
658 		/* we are reusing so sync this buffer for CPU use */
659 		dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
660 					      rx_buf->page_offset,
661 					      ICE_RXBUF_2048,
662 					      DMA_FROM_DEVICE);
663 
664 		rx_buf->skb = NULL;
665 	}
666 
667 	/* pull page into skb */
668 	if (ice_add_rx_frag(rx_buf, rx_desc, skb)) {
669 		/* hand second half of page back to the ring */
670 		ice_reuse_rx_page(rx_ring, rx_buf);
671 		rx_ring->rx_stats.page_reuse_count++;
672 	} else {
673 		/* we are not reusing the buffer so unmap it */
674 		dma_unmap_page(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
675 			       DMA_FROM_DEVICE);
676 	}
677 
678 	/* clear contents of buffer_info */
679 	rx_buf->page = NULL;
680 
681 	return skb;
682 }
683 
684 /**
685  * ice_pull_tail - ice specific version of skb_pull_tail
686  * @skb: pointer to current skb being adjusted
687  *
688  * This function is an ice specific version of __pskb_pull_tail.  The
689  * main difference between this version and the original function is that
690  * this function can make several assumptions about the state of things
691  * that allow for significant optimizations versus the standard function.
692  * As a result we can do things like drop a frag and maintain an accurate
693  * truesize for the skb.
694  */
ice_pull_tail(struct sk_buff * skb)695 static void ice_pull_tail(struct sk_buff *skb)
696 {
697 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
698 	unsigned int pull_len;
699 	unsigned char *va;
700 
701 	/* it is valid to use page_address instead of kmap since we are
702 	 * working with pages allocated out of the lomem pool per
703 	 * alloc_page(GFP_ATOMIC)
704 	 */
705 	va = skb_frag_address(frag);
706 
707 	/* we need the header to contain the greater of either ETH_HLEN or
708 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
709 	 */
710 	pull_len = eth_get_headlen(va, ICE_RX_HDR_SIZE);
711 
712 	/* align pull length to size of long to optimize memcpy performance */
713 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
714 
715 	/* update all of the pointers */
716 	skb_frag_size_sub(frag, pull_len);
717 	frag->page_offset += pull_len;
718 	skb->data_len -= pull_len;
719 	skb->tail += pull_len;
720 }
721 
722 /**
723  * ice_cleanup_headers - Correct empty headers
724  * @skb: pointer to current skb being fixed
725  *
726  * Also address the case where we are pulling data in on pages only
727  * and as such no data is present in the skb header.
728  *
729  * In addition if skb is not at least 60 bytes we need to pad it so that
730  * it is large enough to qualify as a valid Ethernet frame.
731  *
732  * Returns true if an error was encountered and skb was freed.
733  */
ice_cleanup_headers(struct sk_buff * skb)734 static bool ice_cleanup_headers(struct sk_buff *skb)
735 {
736 	/* place header in linear portion of buffer */
737 	if (skb_is_nonlinear(skb))
738 		ice_pull_tail(skb);
739 
740 	/* if eth_skb_pad returns an error the skb was freed */
741 	if (eth_skb_pad(skb))
742 		return true;
743 
744 	return false;
745 }
746 
747 /**
748  * ice_test_staterr - tests bits in Rx descriptor status and error fields
749  * @rx_desc: pointer to receive descriptor (in le64 format)
750  * @stat_err_bits: value to mask
751  *
752  * This function does some fast chicanery in order to return the
753  * value of the mask which is really only used for boolean tests.
754  * The status_error_len doesn't need to be shifted because it begins
755  * at offset zero.
756  */
ice_test_staterr(union ice_32b_rx_flex_desc * rx_desc,const u16 stat_err_bits)757 static bool ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc,
758 			     const u16 stat_err_bits)
759 {
760 	return !!(rx_desc->wb.status_error0 &
761 		  cpu_to_le16(stat_err_bits));
762 }
763 
764 /**
765  * ice_is_non_eop - process handling of non-EOP buffers
766  * @rx_ring: Rx ring being processed
767  * @rx_desc: Rx descriptor for current buffer
768  * @skb: Current socket buffer containing buffer in progress
769  *
770  * This function updates next to clean.  If the buffer is an EOP buffer
771  * this function exits returning false, otherwise it will place the
772  * sk_buff in the next buffer to be chained and return true indicating
773  * that this is in fact a non-EOP buffer.
774  */
ice_is_non_eop(struct ice_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc,struct sk_buff * skb)775 static bool ice_is_non_eop(struct ice_ring *rx_ring,
776 			   union ice_32b_rx_flex_desc *rx_desc,
777 			   struct sk_buff *skb)
778 {
779 	u32 ntc = rx_ring->next_to_clean + 1;
780 
781 	/* fetch, update, and store next to clean */
782 	ntc = (ntc < rx_ring->count) ? ntc : 0;
783 	rx_ring->next_to_clean = ntc;
784 
785 	prefetch(ICE_RX_DESC(rx_ring, ntc));
786 
787 	/* if we are the last buffer then there is nothing else to do */
788 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
789 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
790 		return false;
791 
792 	/* place skb in next buffer to be received */
793 	rx_ring->rx_buf[ntc].skb = skb;
794 	rx_ring->rx_stats.non_eop_descs++;
795 
796 	return true;
797 }
798 
799 /**
800  * ice_ptype_to_htype - get a hash type
801  * @ptype: the ptype value from the descriptor
802  *
803  * Returns a hash type to be used by skb_set_hash
804  */
ice_ptype_to_htype(u8 __always_unused ptype)805 static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
806 {
807 	return PKT_HASH_TYPE_NONE;
808 }
809 
810 /**
811  * ice_rx_hash - set the hash value in the skb
812  * @rx_ring: descriptor ring
813  * @rx_desc: specific descriptor
814  * @skb: pointer to current skb
815  * @rx_ptype: the ptype value from the descriptor
816  */
817 static void
ice_rx_hash(struct ice_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)818 ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
819 	    struct sk_buff *skb, u8 rx_ptype)
820 {
821 	struct ice_32b_rx_flex_desc_nic *nic_mdid;
822 	u32 hash;
823 
824 	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
825 		return;
826 
827 	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
828 		return;
829 
830 	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
831 	hash = le32_to_cpu(nic_mdid->rss_hash);
832 	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
833 }
834 
835 /**
836  * ice_rx_csum - Indicate in skb if checksum is good
837  * @vsi: the VSI we care about
838  * @skb: skb currently being received and modified
839  * @rx_desc: the receive descriptor
840  * @ptype: the packet type decoded by hardware
841  *
842  * skb->protocol must be set before this function is called
843  */
ice_rx_csum(struct ice_vsi * vsi,struct sk_buff * skb,union ice_32b_rx_flex_desc * rx_desc,u8 ptype)844 static void ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb,
845 			union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
846 {
847 	struct ice_rx_ptype_decoded decoded;
848 	u32 rx_error, rx_status;
849 	bool ipv4, ipv6;
850 
851 	rx_status = le16_to_cpu(rx_desc->wb.status_error0);
852 	rx_error = rx_status;
853 
854 	decoded = ice_decode_rx_desc_ptype(ptype);
855 
856 	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
857 	skb->ip_summed = CHECKSUM_NONE;
858 	skb_checksum_none_assert(skb);
859 
860 	/* check if Rx checksum is enabled */
861 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
862 		return;
863 
864 	/* check if HW has decoded the packet and checksum */
865 	if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
866 		return;
867 
868 	if (!(decoded.known && decoded.outer_ip))
869 		return;
870 
871 	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
872 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
873 	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
874 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
875 
876 	if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
877 				 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
878 		goto checksum_fail;
879 	else if (ipv6 && (rx_status &
880 		 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
881 		goto checksum_fail;
882 
883 	/* check for L4 errors and handle packets that were not able to be
884 	 * checksummed due to arrival speed
885 	 */
886 	if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
887 		goto checksum_fail;
888 
889 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
890 	switch (decoded.inner_prot) {
891 	case ICE_RX_PTYPE_INNER_PROT_TCP:
892 	case ICE_RX_PTYPE_INNER_PROT_UDP:
893 	case ICE_RX_PTYPE_INNER_PROT_SCTP:
894 		skb->ip_summed = CHECKSUM_UNNECESSARY;
895 	default:
896 		break;
897 	}
898 	return;
899 
900 checksum_fail:
901 	vsi->back->hw_csum_rx_error++;
902 }
903 
904 /**
905  * ice_process_skb_fields - Populate skb header fields from Rx descriptor
906  * @rx_ring: rx descriptor ring packet is being transacted on
907  * @rx_desc: pointer to the EOP Rx descriptor
908  * @skb: pointer to current skb being populated
909  * @ptype: the packet type decoded by hardware
910  *
911  * This function checks the ring, descriptor, and packet information in
912  * order to populate the hash, checksum, VLAN, protocol, and
913  * other fields within the skb.
914  */
ice_process_skb_fields(struct ice_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc,struct sk_buff * skb,u8 ptype)915 static void ice_process_skb_fields(struct ice_ring *rx_ring,
916 				   union ice_32b_rx_flex_desc *rx_desc,
917 				   struct sk_buff *skb, u8 ptype)
918 {
919 	ice_rx_hash(rx_ring, rx_desc, skb, ptype);
920 
921 	/* modifies the skb - consumes the enet header */
922 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
923 
924 	ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype);
925 }
926 
927 /**
928  * ice_receive_skb - Send a completed packet up the stack
929  * @rx_ring: rx ring in play
930  * @skb: packet to send up
931  * @vlan_tag: vlan tag for packet
932  *
933  * This function sends the completed packet (via. skb) up the stack using
934  * gro receive functions (with/without vlan tag)
935  */
ice_receive_skb(struct ice_ring * rx_ring,struct sk_buff * skb,u16 vlan_tag)936 static void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb,
937 			    u16 vlan_tag)
938 {
939 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
940 	    (vlan_tag & VLAN_VID_MASK)) {
941 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
942 	}
943 	napi_gro_receive(&rx_ring->q_vector->napi, skb);
944 }
945 
946 /**
947  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
948  * @rx_ring: rx descriptor ring to transact packets on
949  * @budget: Total limit on number of packets to process
950  *
951  * This function provides a "bounce buffer" approach to Rx interrupt
952  * processing.  The advantage to this is that on systems that have
953  * expensive overhead for IOMMU access this provides a means of avoiding
954  * it by maintaining the mapping of the page to the system.
955  *
956  * Returns amount of work completed
957  */
ice_clean_rx_irq(struct ice_ring * rx_ring,int budget)958 static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
959 {
960 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
961 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
962 	bool failure = false;
963 
964 	/* start the loop to process RX packets bounded by 'budget' */
965 	while (likely(total_rx_pkts < (unsigned int)budget)) {
966 		union ice_32b_rx_flex_desc *rx_desc;
967 		struct sk_buff *skb;
968 		u16 stat_err_bits;
969 		u16 vlan_tag = 0;
970 		u8 rx_ptype;
971 
972 		/* return some buffers to hardware, one at a time is too slow */
973 		if (cleaned_count >= ICE_RX_BUF_WRITE) {
974 			failure = failure ||
975 				  ice_alloc_rx_bufs(rx_ring, cleaned_count);
976 			cleaned_count = 0;
977 		}
978 
979 		/* get the RX desc from RX ring based on 'next_to_clean' */
980 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
981 
982 		/* status_error_len will always be zero for unused descriptors
983 		 * because it's cleared in cleanup, and overlaps with hdr_addr
984 		 * which is always zero because packet split isn't used, if the
985 		 * hardware wrote DD then it will be non-zero
986 		 */
987 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
988 		if (!ice_test_staterr(rx_desc, stat_err_bits))
989 			break;
990 
991 		/* This memory barrier is needed to keep us from reading
992 		 * any other fields out of the rx_desc until we know the
993 		 * DD bit is set.
994 		 */
995 		dma_rmb();
996 
997 		/* allocate (if needed) and populate skb */
998 		skb = ice_fetch_rx_buf(rx_ring, rx_desc);
999 		if (!skb)
1000 			break;
1001 
1002 		cleaned_count++;
1003 
1004 		/* skip if it is NOP desc */
1005 		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1006 			continue;
1007 
1008 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1009 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1010 			dev_kfree_skb_any(skb);
1011 			continue;
1012 		}
1013 
1014 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1015 			ICE_RX_FLEX_DESC_PTYPE_M;
1016 
1017 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1018 		if (ice_test_staterr(rx_desc, stat_err_bits))
1019 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1020 
1021 		/* correct empty headers and pad skb if needed (to make valid
1022 		 * ethernet frame
1023 		 */
1024 		if (ice_cleanup_headers(skb)) {
1025 			skb = NULL;
1026 			continue;
1027 		}
1028 
1029 		/* probably a little skewed due to removing CRC */
1030 		total_rx_bytes += skb->len;
1031 
1032 		/* populate checksum, VLAN, and protocol */
1033 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1034 
1035 		/* send completed skb up the stack */
1036 		ice_receive_skb(rx_ring, skb, vlan_tag);
1037 
1038 		/* update budget accounting */
1039 		total_rx_pkts++;
1040 	}
1041 
1042 	/* update queue and vector specific stats */
1043 	u64_stats_update_begin(&rx_ring->syncp);
1044 	rx_ring->stats.pkts += total_rx_pkts;
1045 	rx_ring->stats.bytes += total_rx_bytes;
1046 	u64_stats_update_end(&rx_ring->syncp);
1047 	rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
1048 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1049 
1050 	/* guarantee a trip back through this routine if there was a failure */
1051 	return failure ? budget : (int)total_rx_pkts;
1052 }
1053 
1054 /**
1055  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1056  * @napi: napi struct with our devices info in it
1057  * @budget: amount of work driver is allowed to do this pass, in packets
1058  *
1059  * This function will clean all queues associated with a q_vector.
1060  *
1061  * Returns the amount of work done
1062  */
ice_napi_poll(struct napi_struct * napi,int budget)1063 int ice_napi_poll(struct napi_struct *napi, int budget)
1064 {
1065 	struct ice_q_vector *q_vector =
1066 				container_of(napi, struct ice_q_vector, napi);
1067 	struct ice_vsi *vsi = q_vector->vsi;
1068 	struct ice_pf *pf = vsi->back;
1069 	bool clean_complete = true;
1070 	int budget_per_ring = 0;
1071 	struct ice_ring *ring;
1072 	int work_done = 0;
1073 
1074 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1075 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1076 	 */
1077 	ice_for_each_ring(ring, q_vector->tx)
1078 		if (!ice_clean_tx_irq(vsi, ring, budget))
1079 			clean_complete = false;
1080 
1081 	/* Handle case where we are called by netpoll with a budget of 0 */
1082 	if (budget <= 0)
1083 		return budget;
1084 
1085 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1086 	 * allow the budget to go below 1 because that would exit polling early.
1087 	 */
1088 	if (q_vector->num_ring_rx)
1089 		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1090 
1091 	ice_for_each_ring(ring, q_vector->rx) {
1092 		int cleaned;
1093 
1094 		cleaned = ice_clean_rx_irq(ring, budget_per_ring);
1095 		work_done += cleaned;
1096 		/* if we clean as many as budgeted, we must not be done */
1097 		if (cleaned >= budget_per_ring)
1098 			clean_complete = false;
1099 	}
1100 
1101 	/* If work not completed, return budget and polling will return */
1102 	if (!clean_complete)
1103 		return budget;
1104 
1105 	/* Work is done so exit the polling mode and re-enable the interrupt */
1106 	napi_complete_done(napi, work_done);
1107 	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
1108 		ice_irq_dynamic_ena(&vsi->back->hw, vsi, q_vector);
1109 	return 0;
1110 }
1111 
1112 /* helper function for building cmd/type/offset */
1113 static __le64
build_ctob(u64 td_cmd,u64 td_offset,unsigned int size,u64 td_tag)1114 build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
1115 {
1116 	return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1117 			   (td_cmd    << ICE_TXD_QW1_CMD_S) |
1118 			   (td_offset << ICE_TXD_QW1_OFFSET_S) |
1119 			   ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1120 			   (td_tag    << ICE_TXD_QW1_L2TAG1_S));
1121 }
1122 
1123 /**
1124  * __ice_maybe_stop_tx - 2nd level check for tx stop conditions
1125  * @tx_ring: the ring to be checked
1126  * @size: the size buffer we want to assure is available
1127  *
1128  * Returns -EBUSY if a stop is needed, else 0
1129  */
__ice_maybe_stop_tx(struct ice_ring * tx_ring,unsigned int size)1130 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1131 {
1132 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1133 	/* Memory barrier before checking head and tail */
1134 	smp_mb();
1135 
1136 	/* Check again in a case another CPU has just made room available. */
1137 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1138 		return -EBUSY;
1139 
1140 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1141 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1142 	++tx_ring->tx_stats.restart_q;
1143 	return 0;
1144 }
1145 
1146 /**
1147  * ice_maybe_stop_tx - 1st level check for tx stop conditions
1148  * @tx_ring: the ring to be checked
1149  * @size:    the size buffer we want to assure is available
1150  *
1151  * Returns 0 if stop is not needed
1152  */
ice_maybe_stop_tx(struct ice_ring * tx_ring,unsigned int size)1153 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1154 {
1155 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1156 		return 0;
1157 	return __ice_maybe_stop_tx(tx_ring, size);
1158 }
1159 
1160 /**
1161  * ice_tx_map - Build the Tx descriptor
1162  * @tx_ring: ring to send buffer on
1163  * @first: first buffer info buffer to use
1164  * @off: pointer to struct that holds offload parameters
1165  *
1166  * This function loops over the skb data pointed to by *first
1167  * and gets a physical address for each memory location and programs
1168  * it and the length into the transmit descriptor.
1169  */
1170 static void
ice_tx_map(struct ice_ring * tx_ring,struct ice_tx_buf * first,struct ice_tx_offload_params * off)1171 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1172 	   struct ice_tx_offload_params *off)
1173 {
1174 	u64 td_offset, td_tag, td_cmd;
1175 	u16 i = tx_ring->next_to_use;
1176 	struct skb_frag_struct *frag;
1177 	unsigned int data_len, size;
1178 	struct ice_tx_desc *tx_desc;
1179 	struct ice_tx_buf *tx_buf;
1180 	struct sk_buff *skb;
1181 	dma_addr_t dma;
1182 
1183 	td_tag = off->td_l2tag1;
1184 	td_cmd = off->td_cmd;
1185 	td_offset = off->td_offset;
1186 	skb = first->skb;
1187 
1188 	data_len = skb->data_len;
1189 	size = skb_headlen(skb);
1190 
1191 	tx_desc = ICE_TX_DESC(tx_ring, i);
1192 
1193 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1194 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1195 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1196 			  ICE_TX_FLAGS_VLAN_S;
1197 	}
1198 
1199 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1200 
1201 	tx_buf = first;
1202 
1203 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1204 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1205 
1206 		if (dma_mapping_error(tx_ring->dev, dma))
1207 			goto dma_error;
1208 
1209 		/* record length, and DMA address */
1210 		dma_unmap_len_set(tx_buf, len, size);
1211 		dma_unmap_addr_set(tx_buf, dma, dma);
1212 
1213 		/* align size to end of page */
1214 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1215 		tx_desc->buf_addr = cpu_to_le64(dma);
1216 
1217 		/* account for data chunks larger than the hardware
1218 		 * can handle
1219 		 */
1220 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1221 			tx_desc->cmd_type_offset_bsz =
1222 				build_ctob(td_cmd, td_offset, max_data, td_tag);
1223 
1224 			tx_desc++;
1225 			i++;
1226 
1227 			if (i == tx_ring->count) {
1228 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1229 				i = 0;
1230 			}
1231 
1232 			dma += max_data;
1233 			size -= max_data;
1234 
1235 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1236 			tx_desc->buf_addr = cpu_to_le64(dma);
1237 		}
1238 
1239 		if (likely(!data_len))
1240 			break;
1241 
1242 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1243 							  size, td_tag);
1244 
1245 		tx_desc++;
1246 		i++;
1247 
1248 		if (i == tx_ring->count) {
1249 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1250 			i = 0;
1251 		}
1252 
1253 		size = skb_frag_size(frag);
1254 		data_len -= size;
1255 
1256 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1257 				       DMA_TO_DEVICE);
1258 
1259 		tx_buf = &tx_ring->tx_buf[i];
1260 	}
1261 
1262 	/* record bytecount for BQL */
1263 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1264 
1265 	/* record SW timestamp if HW timestamp is not available */
1266 	skb_tx_timestamp(first->skb);
1267 
1268 	i++;
1269 	if (i == tx_ring->count)
1270 		i = 0;
1271 
1272 	/* write last descriptor with RS and EOP bits */
1273 	td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1274 	tx_desc->cmd_type_offset_bsz =
1275 			build_ctob(td_cmd, td_offset, size, td_tag);
1276 
1277 	/* Force memory writes to complete before letting h/w know there
1278 	 * are new descriptors to fetch.
1279 	 *
1280 	 * We also use this memory barrier to make certain all of the
1281 	 * status bits have been updated before next_to_watch is written.
1282 	 */
1283 	wmb();
1284 
1285 	/* set next_to_watch value indicating a packet is present */
1286 	first->next_to_watch = tx_desc;
1287 
1288 	tx_ring->next_to_use = i;
1289 
1290 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1291 
1292 	/* notify HW of packet */
1293 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1294 		writel(i, tx_ring->tail);
1295 
1296 		/* we need this if more than one processor can write to our tail
1297 		 * at a time, it synchronizes IO on IA64/Altix systems
1298 		 */
1299 		mmiowb();
1300 	}
1301 
1302 	return;
1303 
1304 dma_error:
1305 	/* clear dma mappings for failed tx_buf map */
1306 	for (;;) {
1307 		tx_buf = &tx_ring->tx_buf[i];
1308 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1309 		if (tx_buf == first)
1310 			break;
1311 		if (i == 0)
1312 			i = tx_ring->count;
1313 		i--;
1314 	}
1315 
1316 	tx_ring->next_to_use = i;
1317 }
1318 
1319 /**
1320  * ice_tx_csum - Enable Tx checksum offloads
1321  * @first: pointer to the first descriptor
1322  * @off: pointer to struct that holds offload parameters
1323  *
1324  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1325  */
1326 static
ice_tx_csum(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1327 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1328 {
1329 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1330 	struct sk_buff *skb = first->skb;
1331 	union {
1332 		struct iphdr *v4;
1333 		struct ipv6hdr *v6;
1334 		unsigned char *hdr;
1335 	} ip;
1336 	union {
1337 		struct tcphdr *tcp;
1338 		unsigned char *hdr;
1339 	} l4;
1340 	__be16 frag_off, protocol;
1341 	unsigned char *exthdr;
1342 	u32 offset, cmd = 0;
1343 	u8 l4_proto = 0;
1344 
1345 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1346 		return 0;
1347 
1348 	ip.hdr = skb_network_header(skb);
1349 	l4.hdr = skb_transport_header(skb);
1350 
1351 	/* compute outer L2 header size */
1352 	l2_len = ip.hdr - skb->data;
1353 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1354 
1355 	if (skb->encapsulation)
1356 		return -1;
1357 
1358 	/* Enable IP checksum offloads */
1359 	protocol = vlan_get_protocol(skb);
1360 	if (protocol == htons(ETH_P_IP)) {
1361 		l4_proto = ip.v4->protocol;
1362 		/* the stack computes the IP header already, the only time we
1363 		 * need the hardware to recompute it is in the case of TSO.
1364 		 */
1365 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1366 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1367 		else
1368 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1369 
1370 	} else if (protocol == htons(ETH_P_IPV6)) {
1371 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1372 		exthdr = ip.hdr + sizeof(*ip.v6);
1373 		l4_proto = ip.v6->nexthdr;
1374 		if (l4.hdr != exthdr)
1375 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1376 					 &frag_off);
1377 	} else {
1378 		return -1;
1379 	}
1380 
1381 	/* compute inner L3 header size */
1382 	l3_len = l4.hdr - ip.hdr;
1383 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1384 
1385 	/* Enable L4 checksum offloads */
1386 	switch (l4_proto) {
1387 	case IPPROTO_TCP:
1388 		/* enable checksum offloads */
1389 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1390 		l4_len = l4.tcp->doff;
1391 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1392 		break;
1393 	case IPPROTO_UDP:
1394 		/* enable UDP checksum offload */
1395 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1396 		l4_len = (sizeof(struct udphdr) >> 2);
1397 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1398 		break;
1399 	case IPPROTO_SCTP:
1400 	default:
1401 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1402 			return -1;
1403 		skb_checksum_help(skb);
1404 		return 0;
1405 	}
1406 
1407 	off->td_cmd |= cmd;
1408 	off->td_offset |= offset;
1409 	return 1;
1410 }
1411 
1412 /**
1413  * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1414  * @tx_ring: ring to send buffer on
1415  * @first: pointer to struct ice_tx_buf
1416  *
1417  * Checks the skb and set up correspondingly several generic transmit flags
1418  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1419  *
1420  * Returns error code indicate the frame should be dropped upon error and the
1421  * otherwise returns 0 to indicate the flags has been set properly.
1422  */
1423 static int
ice_tx_prepare_vlan_flags(struct ice_ring * tx_ring,struct ice_tx_buf * first)1424 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1425 {
1426 	struct sk_buff *skb = first->skb;
1427 	__be16 protocol = skb->protocol;
1428 
1429 	if (protocol == htons(ETH_P_8021Q) &&
1430 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1431 		/* when HW VLAN acceleration is turned off by the user the
1432 		 * stack sets the protocol to 8021q so that the driver
1433 		 * can take any steps required to support the SW only
1434 		 * VLAN handling. In our case the driver doesn't need
1435 		 * to take any further steps so just set the protocol
1436 		 * to the encapsulated ethertype.
1437 		 */
1438 		skb->protocol = vlan_get_protocol(skb);
1439 		goto out;
1440 	}
1441 
1442 	/* if we have a HW VLAN tag being added, default to the HW one */
1443 	if (skb_vlan_tag_present(skb)) {
1444 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1445 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1446 	} else if (protocol == htons(ETH_P_8021Q)) {
1447 		struct vlan_hdr *vhdr, _vhdr;
1448 
1449 		/* for SW VLAN, check the next protocol and store the tag */
1450 		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1451 							     sizeof(_vhdr),
1452 							     &_vhdr);
1453 		if (!vhdr)
1454 			return -EINVAL;
1455 
1456 		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1457 				   ICE_TX_FLAGS_VLAN_S;
1458 		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1459 	}
1460 
1461 out:
1462 	return 0;
1463 }
1464 
1465 /**
1466  * ice_tso - computes mss and TSO length to prepare for TSO
1467  * @first: pointer to struct ice_tx_buf
1468  * @off: pointer to struct that holds offload parameters
1469  *
1470  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1471  */
1472 static
ice_tso(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1473 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1474 {
1475 	struct sk_buff *skb = first->skb;
1476 	union {
1477 		struct iphdr *v4;
1478 		struct ipv6hdr *v6;
1479 		unsigned char *hdr;
1480 	} ip;
1481 	union {
1482 		struct tcphdr *tcp;
1483 		unsigned char *hdr;
1484 	} l4;
1485 	u64 cd_mss, cd_tso_len;
1486 	u32 paylen, l4_start;
1487 	int err;
1488 
1489 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1490 		return 0;
1491 
1492 	if (!skb_is_gso(skb))
1493 		return 0;
1494 
1495 	err = skb_cow_head(skb, 0);
1496 	if (err < 0)
1497 		return err;
1498 
1499 	ip.hdr = skb_network_header(skb);
1500 	l4.hdr = skb_transport_header(skb);
1501 
1502 	/* initialize outer IP header fields */
1503 	if (ip.v4->version == 4) {
1504 		ip.v4->tot_len = 0;
1505 		ip.v4->check = 0;
1506 	} else {
1507 		ip.v6->payload_len = 0;
1508 	}
1509 
1510 	/* determine offset of transport header */
1511 	l4_start = l4.hdr - skb->data;
1512 
1513 	/* remove payload length from checksum */
1514 	paylen = skb->len - l4_start;
1515 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1516 
1517 	/* compute length of segmentation header */
1518 	off->header_len = (l4.tcp->doff * 4) + l4_start;
1519 
1520 	/* update gso_segs and bytecount */
1521 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1522 	first->bytecount = (first->gso_segs - 1) * off->header_len;
1523 
1524 	cd_tso_len = skb->len - off->header_len;
1525 	cd_mss = skb_shinfo(skb)->gso_size;
1526 
1527 	/* record cdesc_qw1 with TSO parameters */
1528 	off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX |
1529 			 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1530 			 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1531 			 (cd_mss << ICE_TXD_CTX_QW1_MSS_S);
1532 	first->tx_flags |= ICE_TX_FLAGS_TSO;
1533 	return 1;
1534 }
1535 
1536 /**
1537  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1538  * @size: transmit request size in bytes
1539  *
1540  * Due to hardware alignment restrictions (4K alignment), we need to
1541  * assume that we can have no more than 12K of data per descriptor, even
1542  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1543  * Thus, we need to divide by 12K. But division is slow! Instead,
1544  * we decompose the operation into shifts and one relatively cheap
1545  * multiply operation.
1546  *
1547  * To divide by 12K, we first divide by 4K, then divide by 3:
1548  *     To divide by 4K, shift right by 12 bits
1549  *     To divide by 3, multiply by 85, then divide by 256
1550  *     (Divide by 256 is done by shifting right by 8 bits)
1551  * Finally, we add one to round up. Because 256 isn't an exact multiple of
1552  * 3, we'll underestimate near each multiple of 12K. This is actually more
1553  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1554  * segment.  For our purposes this is accurate out to 1M which is orders of
1555  * magnitude greater than our largest possible GSO size.
1556  *
1557  * This would then be implemented as:
1558  *     return (((size >> 12) * 85) >> 8) + 1;
1559  *
1560  * Since multiplication and division are commutative, we can reorder
1561  * operations into:
1562  *     return ((size * 85) >> 20) + 1;
1563  */
ice_txd_use_count(unsigned int size)1564 static unsigned int ice_txd_use_count(unsigned int size)
1565 {
1566 	return ((size * 85) >> 20) + 1;
1567 }
1568 
1569 /**
1570  * ice_xmit_desc_count - calculate number of tx descriptors needed
1571  * @skb: send buffer
1572  *
1573  * Returns number of data descriptors needed for this skb.
1574  */
ice_xmit_desc_count(struct sk_buff * skb)1575 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
1576 {
1577 	const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1578 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1579 	unsigned int count = 0, size = skb_headlen(skb);
1580 
1581 	for (;;) {
1582 		count += ice_txd_use_count(size);
1583 
1584 		if (!nr_frags--)
1585 			break;
1586 
1587 		size = skb_frag_size(frag++);
1588 	}
1589 
1590 	return count;
1591 }
1592 
1593 /**
1594  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
1595  * @skb: send buffer
1596  *
1597  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
1598  * and so we need to figure out the cases where we need to linearize the skb.
1599  *
1600  * For TSO we need to count the TSO header and segment payload separately.
1601  * As such we need to check cases where we have 7 fragments or more as we
1602  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1603  * the segment payload in the first descriptor, and another 7 for the
1604  * fragments.
1605  */
__ice_chk_linearize(struct sk_buff * skb)1606 static bool __ice_chk_linearize(struct sk_buff *skb)
1607 {
1608 	const struct skb_frag_struct *frag, *stale;
1609 	int nr_frags, sum;
1610 
1611 	/* no need to check if number of frags is less than 7 */
1612 	nr_frags = skb_shinfo(skb)->nr_frags;
1613 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
1614 		return false;
1615 
1616 	/* We need to walk through the list and validate that each group
1617 	 * of 6 fragments totals at least gso_size.
1618 	 */
1619 	nr_frags -= ICE_MAX_BUF_TXD - 2;
1620 	frag = &skb_shinfo(skb)->frags[0];
1621 
1622 	/* Initialize size to the negative value of gso_size minus 1.  We
1623 	 * use this as the worst case scenerio in which the frag ahead
1624 	 * of us only provides one byte which is why we are limited to 6
1625 	 * descriptors for a single transmit as the header and previous
1626 	 * fragment are already consuming 2 descriptors.
1627 	 */
1628 	sum = 1 - skb_shinfo(skb)->gso_size;
1629 
1630 	/* Add size of frags 0 through 4 to create our initial sum */
1631 	sum += skb_frag_size(frag++);
1632 	sum += skb_frag_size(frag++);
1633 	sum += skb_frag_size(frag++);
1634 	sum += skb_frag_size(frag++);
1635 	sum += skb_frag_size(frag++);
1636 
1637 	/* Walk through fragments adding latest fragment, testing it, and
1638 	 * then removing stale fragments from the sum.
1639 	 */
1640 	stale = &skb_shinfo(skb)->frags[0];
1641 	for (;;) {
1642 		sum += skb_frag_size(frag++);
1643 
1644 		/* if sum is negative we failed to make sufficient progress */
1645 		if (sum < 0)
1646 			return true;
1647 
1648 		if (!nr_frags--)
1649 			break;
1650 
1651 		sum -= skb_frag_size(stale++);
1652 	}
1653 
1654 	return false;
1655 }
1656 
1657 /**
1658  * ice_chk_linearize - Check if there are more than 8 fragments per packet
1659  * @skb:      send buffer
1660  * @count:    number of buffers used
1661  *
1662  * Note: Our HW can't scatter-gather more than 8 fragments to build
1663  * a packet on the wire and so we need to figure out the cases where we
1664  * need to linearize the skb.
1665  */
ice_chk_linearize(struct sk_buff * skb,unsigned int count)1666 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
1667 {
1668 	/* Both TSO and single send will work if count is less than 8 */
1669 	if (likely(count < ICE_MAX_BUF_TXD))
1670 		return false;
1671 
1672 	if (skb_is_gso(skb))
1673 		return __ice_chk_linearize(skb);
1674 
1675 	/* we can support up to 8 data buffers for a single send */
1676 	return count != ICE_MAX_BUF_TXD;
1677 }
1678 
1679 /**
1680  * ice_xmit_frame_ring - Sends buffer on Tx ring
1681  * @skb: send buffer
1682  * @tx_ring: ring to send buffer on
1683  *
1684  * Returns NETDEV_TX_OK if sent, else an error code
1685  */
1686 static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff * skb,struct ice_ring * tx_ring)1687 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
1688 {
1689 	struct ice_tx_offload_params offload = { 0 };
1690 	struct ice_tx_buf *first;
1691 	unsigned int count;
1692 	int tso, csum;
1693 
1694 	count = ice_xmit_desc_count(skb);
1695 	if (ice_chk_linearize(skb, count)) {
1696 		if (__skb_linearize(skb))
1697 			goto out_drop;
1698 		count = ice_txd_use_count(skb->len);
1699 		tx_ring->tx_stats.tx_linearize++;
1700 	}
1701 
1702 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
1703 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
1704 	 *       + 4 desc gap to avoid the cache line where head is,
1705 	 *       + 1 desc for context descriptor,
1706 	 * otherwise try next time
1707 	 */
1708 	if (ice_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1709 		tx_ring->tx_stats.tx_busy++;
1710 		return NETDEV_TX_BUSY;
1711 	}
1712 
1713 	offload.tx_ring = tx_ring;
1714 
1715 	/* record the location of the first descriptor for this packet */
1716 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
1717 	first->skb = skb;
1718 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1719 	first->gso_segs = 1;
1720 	first->tx_flags = 0;
1721 
1722 	/* prepare the VLAN tagging flags for Tx */
1723 	if (ice_tx_prepare_vlan_flags(tx_ring, first))
1724 		goto out_drop;
1725 
1726 	/* set up TSO offload */
1727 	tso = ice_tso(first, &offload);
1728 	if (tso < 0)
1729 		goto out_drop;
1730 
1731 	/* always set up Tx checksum offload */
1732 	csum = ice_tx_csum(first, &offload);
1733 	if (csum < 0)
1734 		goto out_drop;
1735 
1736 	if (tso || offload.cd_tunnel_params) {
1737 		struct ice_tx_ctx_desc *cdesc;
1738 		int i = tx_ring->next_to_use;
1739 
1740 		/* grab the next descriptor */
1741 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
1742 		i++;
1743 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1744 
1745 		/* setup context descriptor */
1746 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
1747 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
1748 		cdesc->rsvd = cpu_to_le16(0);
1749 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
1750 	}
1751 
1752 	ice_tx_map(tx_ring, first, &offload);
1753 	return NETDEV_TX_OK;
1754 
1755 out_drop:
1756 	dev_kfree_skb_any(skb);
1757 	return NETDEV_TX_OK;
1758 }
1759 
1760 /**
1761  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
1762  * @skb: send buffer
1763  * @netdev: network interface device structure
1764  *
1765  * Returns NETDEV_TX_OK if sent, else an error code
1766  */
ice_start_xmit(struct sk_buff * skb,struct net_device * netdev)1767 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1768 {
1769 	struct ice_netdev_priv *np = netdev_priv(netdev);
1770 	struct ice_vsi *vsi = np->vsi;
1771 	struct ice_ring *tx_ring;
1772 
1773 	tx_ring = vsi->tx_rings[skb->queue_mapping];
1774 
1775 	/* hardware can't handle really short frames, hardware padding works
1776 	 * beyond this point
1777 	 */
1778 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
1779 		return NETDEV_TX_OK;
1780 
1781 	return ice_xmit_frame_ring(skb, tx_ring);
1782 }
1783