1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2 *
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
18 *
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
56
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63 * using trace events only need to #include <trace/events/sched.h>
64 */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76 #define FM_FD_STAT_RX_ERRORS \
77 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
78 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
80 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81 FM_FD_ERR_PRS_HDR_ERR)
82
83 #define FM_FD_STAT_TX_ERRORS \
84 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89 NETIF_MSG_IFDOWN)
90
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93 * The size in bytes of the ingress tail-drop threshold on FMan ports.
94 * Traffic piling up above this value will be rejected by QMan and discarded
95 * by FMan.
96 */
97
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103 * The size in bytes of the egress Congestion State notification threshold on
104 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106 * and the larger the frame size, the more acute the problem.
107 * So we have to find a balance between these factors:
108 * - avoiding the device staying congested for a prolonged time (risking
109 * the netdev watchdog to fire - see also the tx_timeout module param);
110 * - affecting performance of protocols such as TCP, which otherwise
111 * behave well under the congestion notification mechanism;
112 * - preventing the Tx cores from tightly-looping (as if the congestion
113 * threshold was too low to be effective);
114 * - running out of memory if the CS threshold is set too high.
115 */
116
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119 * 10G ports, range 0x1000 .. 0x10000000
120 */
121
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL 127
124
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT 16
127
128 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
129 #define DPAA_SGT_SIZE 256
130
131 /* Values for the L3R field of the FM Parse Results
132 */
133 /* L3 Type field: First IP Present IPv4 */
134 #define FM_L3_PARSE_RESULT_IPV4 0x8000
135 /* L3 Type field: First IP Present IPv6 */
136 #define FM_L3_PARSE_RESULT_IPV6 0x4000
137 /* Values for the L4R field of the FM Parse Results */
138 /* L4 Type field: UDP */
139 #define FM_L4_PARSE_RESULT_UDP 0x40
140 /* L4 Type field: TCP */
141 #define FM_L4_PARSE_RESULT_TCP 0x20
142
143 /* FD status field indicating whether the FM Parser has attempted to validate
144 * the L4 csum of the frame.
145 * Note that having this bit set doesn't necessarily imply that the checksum
146 * is valid. One would have to check the parse results to find that out.
147 */
148 #define FM_FD_STAT_L4CV 0x00000004
149
150 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
151 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
152
153 #define FSL_DPAA_BPID_INV 0xff
154 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128
155 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80
156
157 #define DPAA_TX_PRIV_DATA_SIZE 16
158 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
159 #define DPAA_TIME_STAMP_SIZE 8
160 #define DPAA_HASH_RESULTS_SIZE 8
161 #define DPAA_RX_PRIV_DATA_SIZE (u16)(DPAA_TX_PRIV_DATA_SIZE + \
162 dpaa_rx_extra_headroom)
163
164 #define DPAA_ETH_PCD_RXQ_NUM 128
165
166 #define DPAA_ENQUEUE_RETRIES 100000
167
168 enum port_type {RX, TX};
169
170 struct fm_port_fqs {
171 struct dpaa_fq *tx_defq;
172 struct dpaa_fq *tx_errq;
173 struct dpaa_fq *rx_defq;
174 struct dpaa_fq *rx_errq;
175 struct dpaa_fq *rx_pcdq;
176 };
177
178 /* All the dpa bps in use at any moment */
179 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
180
181 /* The raw buffer size must be cacheline aligned */
182 #define DPAA_BP_RAW_SIZE 4096
183 /* When using more than one buffer pool, the raw sizes are as follows:
184 * 1 bp: 4KB
185 * 2 bp: 2KB, 4KB
186 * 3 bp: 1KB, 2KB, 4KB
187 * 4 bp: 1KB, 2KB, 4KB, 8KB
188 */
bpool_buffer_raw_size(u8 index,u8 cnt)189 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
190 {
191 size_t res = DPAA_BP_RAW_SIZE / 4;
192 u8 i;
193
194 for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
195 res *= 2;
196 return res;
197 }
198
199 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
200 * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
201 * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
202 * half-page-aligned buffers, so we reserve some more space for start-of-buffer
203 * alignment.
204 */
205 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
206
207 static int dpaa_max_frm;
208
209 static int dpaa_rx_extra_headroom;
210
211 #define dpaa_get_max_mtu() \
212 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
213
dpaa_netdev_init(struct net_device * net_dev,const struct net_device_ops * dpaa_ops,u16 tx_timeout)214 static int dpaa_netdev_init(struct net_device *net_dev,
215 const struct net_device_ops *dpaa_ops,
216 u16 tx_timeout)
217 {
218 struct dpaa_priv *priv = netdev_priv(net_dev);
219 struct device *dev = net_dev->dev.parent;
220 struct dpaa_percpu_priv *percpu_priv;
221 const u8 *mac_addr;
222 int i, err;
223
224 /* Although we access another CPU's private data here
225 * we do it at initialization so it is safe
226 */
227 for_each_possible_cpu(i) {
228 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
229 percpu_priv->net_dev = net_dev;
230 }
231
232 net_dev->netdev_ops = dpaa_ops;
233 mac_addr = priv->mac_dev->addr;
234
235 net_dev->mem_start = priv->mac_dev->res->start;
236 net_dev->mem_end = priv->mac_dev->res->end;
237
238 net_dev->min_mtu = ETH_MIN_MTU;
239 net_dev->max_mtu = dpaa_get_max_mtu();
240
241 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
242 NETIF_F_LLTX | NETIF_F_RXHASH);
243
244 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
245 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
246 * For conformity, we'll still declare GSO explicitly.
247 */
248 net_dev->features |= NETIF_F_GSO;
249 net_dev->features |= NETIF_F_RXCSUM;
250
251 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
252 /* we do not want shared skbs on TX */
253 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
254
255 net_dev->features |= net_dev->hw_features;
256 net_dev->vlan_features = net_dev->features;
257
258 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
259 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
260
261 net_dev->ethtool_ops = &dpaa_ethtool_ops;
262
263 net_dev->needed_headroom = priv->tx_headroom;
264 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
265
266 /* start without the RUNNING flag, phylib controls it later */
267 netif_carrier_off(net_dev);
268
269 err = register_netdev(net_dev);
270 if (err < 0) {
271 dev_err(dev, "register_netdev() = %d\n", err);
272 return err;
273 }
274
275 return 0;
276 }
277
dpaa_stop(struct net_device * net_dev)278 static int dpaa_stop(struct net_device *net_dev)
279 {
280 struct mac_device *mac_dev;
281 struct dpaa_priv *priv;
282 int i, err, error;
283
284 priv = netdev_priv(net_dev);
285 mac_dev = priv->mac_dev;
286
287 netif_tx_stop_all_queues(net_dev);
288 /* Allow the Fman (Tx) port to process in-flight frames before we
289 * try switching it off.
290 */
291 usleep_range(5000, 10000);
292
293 err = mac_dev->stop(mac_dev);
294 if (err < 0)
295 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
296 err);
297
298 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
299 error = fman_port_disable(mac_dev->port[i]);
300 if (error)
301 err = error;
302 }
303
304 if (net_dev->phydev)
305 phy_disconnect(net_dev->phydev);
306 net_dev->phydev = NULL;
307
308 return err;
309 }
310
dpaa_tx_timeout(struct net_device * net_dev)311 static void dpaa_tx_timeout(struct net_device *net_dev)
312 {
313 struct dpaa_percpu_priv *percpu_priv;
314 const struct dpaa_priv *priv;
315
316 priv = netdev_priv(net_dev);
317 percpu_priv = this_cpu_ptr(priv->percpu_priv);
318
319 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
320 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
321
322 percpu_priv->stats.tx_errors++;
323 }
324
325 /* Calculates the statistics for the given device by adding the statistics
326 * collected by each CPU.
327 */
dpaa_get_stats64(struct net_device * net_dev,struct rtnl_link_stats64 * s)328 static void dpaa_get_stats64(struct net_device *net_dev,
329 struct rtnl_link_stats64 *s)
330 {
331 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
332 struct dpaa_priv *priv = netdev_priv(net_dev);
333 struct dpaa_percpu_priv *percpu_priv;
334 u64 *netstats = (u64 *)s;
335 u64 *cpustats;
336 int i, j;
337
338 for_each_possible_cpu(i) {
339 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
340
341 cpustats = (u64 *)&percpu_priv->stats;
342
343 /* add stats from all CPUs */
344 for (j = 0; j < numstats; j++)
345 netstats[j] += cpustats[j];
346 }
347 }
348
dpaa_setup_tc(struct net_device * net_dev,enum tc_setup_type type,void * type_data)349 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
350 void *type_data)
351 {
352 struct dpaa_priv *priv = netdev_priv(net_dev);
353 struct tc_mqprio_qopt *mqprio = type_data;
354 u8 num_tc;
355 int i;
356
357 if (type != TC_SETUP_QDISC_MQPRIO)
358 return -EOPNOTSUPP;
359
360 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
361 num_tc = mqprio->num_tc;
362
363 if (num_tc == priv->num_tc)
364 return 0;
365
366 if (!num_tc) {
367 netdev_reset_tc(net_dev);
368 goto out;
369 }
370
371 if (num_tc > DPAA_TC_NUM) {
372 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
373 DPAA_TC_NUM);
374 return -EINVAL;
375 }
376
377 netdev_set_num_tc(net_dev, num_tc);
378
379 for (i = 0; i < num_tc; i++)
380 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
381 i * DPAA_TC_TXQ_NUM);
382
383 out:
384 priv->num_tc = num_tc ? : 1;
385 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
386 return 0;
387 }
388
dpaa_mac_dev_get(struct platform_device * pdev)389 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
390 {
391 struct dpaa_eth_data *eth_data;
392 struct device *dpaa_dev;
393 struct mac_device *mac_dev;
394
395 dpaa_dev = &pdev->dev;
396 eth_data = dpaa_dev->platform_data;
397 if (!eth_data) {
398 dev_err(dpaa_dev, "eth_data missing\n");
399 return ERR_PTR(-ENODEV);
400 }
401 mac_dev = eth_data->mac_dev;
402 if (!mac_dev) {
403 dev_err(dpaa_dev, "mac_dev missing\n");
404 return ERR_PTR(-EINVAL);
405 }
406
407 return mac_dev;
408 }
409
dpaa_set_mac_address(struct net_device * net_dev,void * addr)410 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
411 {
412 const struct dpaa_priv *priv;
413 struct mac_device *mac_dev;
414 struct sockaddr old_addr;
415 int err;
416
417 priv = netdev_priv(net_dev);
418
419 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
420
421 err = eth_mac_addr(net_dev, addr);
422 if (err < 0) {
423 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
424 return err;
425 }
426
427 mac_dev = priv->mac_dev;
428
429 err = mac_dev->change_addr(mac_dev->fman_mac,
430 (enet_addr_t *)net_dev->dev_addr);
431 if (err < 0) {
432 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
433 err);
434 /* reverting to previous address */
435 eth_mac_addr(net_dev, &old_addr);
436
437 return err;
438 }
439
440 return 0;
441 }
442
dpaa_set_rx_mode(struct net_device * net_dev)443 static void dpaa_set_rx_mode(struct net_device *net_dev)
444 {
445 const struct dpaa_priv *priv;
446 int err;
447
448 priv = netdev_priv(net_dev);
449
450 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
451 priv->mac_dev->promisc = !priv->mac_dev->promisc;
452 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
453 priv->mac_dev->promisc);
454 if (err < 0)
455 netif_err(priv, drv, net_dev,
456 "mac_dev->set_promisc() = %d\n",
457 err);
458 }
459
460 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
461 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
462 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
463 priv->mac_dev->allmulti);
464 if (err < 0)
465 netif_err(priv, drv, net_dev,
466 "mac_dev->set_allmulti() = %d\n",
467 err);
468 }
469
470 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
471 if (err < 0)
472 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
473 err);
474 }
475
dpaa_bpid2pool(int bpid)476 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
477 {
478 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
479 return NULL;
480
481 return dpaa_bp_array[bpid];
482 }
483
484 /* checks if this bpool is already allocated */
dpaa_bpid2pool_use(int bpid)485 static bool dpaa_bpid2pool_use(int bpid)
486 {
487 if (dpaa_bpid2pool(bpid)) {
488 atomic_inc(&dpaa_bp_array[bpid]->refs);
489 return true;
490 }
491
492 return false;
493 }
494
495 /* called only once per bpid by dpaa_bp_alloc_pool() */
dpaa_bpid2pool_map(int bpid,struct dpaa_bp * dpaa_bp)496 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
497 {
498 dpaa_bp_array[bpid] = dpaa_bp;
499 atomic_set(&dpaa_bp->refs, 1);
500 }
501
dpaa_bp_alloc_pool(struct dpaa_bp * dpaa_bp)502 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
503 {
504 int err;
505
506 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
507 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
508 __func__);
509 return -EINVAL;
510 }
511
512 /* If the pool is already specified, we only create one per bpid */
513 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
514 dpaa_bpid2pool_use(dpaa_bp->bpid))
515 return 0;
516
517 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
518 dpaa_bp->pool = bman_new_pool();
519 if (!dpaa_bp->pool) {
520 pr_err("%s: bman_new_pool() failed\n",
521 __func__);
522 return -ENODEV;
523 }
524
525 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
526 }
527
528 if (dpaa_bp->seed_cb) {
529 err = dpaa_bp->seed_cb(dpaa_bp);
530 if (err)
531 goto pool_seed_failed;
532 }
533
534 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
535
536 return 0;
537
538 pool_seed_failed:
539 pr_err("%s: pool seeding failed\n", __func__);
540 bman_free_pool(dpaa_bp->pool);
541
542 return err;
543 }
544
545 /* remove and free all the buffers from the given buffer pool */
dpaa_bp_drain(struct dpaa_bp * bp)546 static void dpaa_bp_drain(struct dpaa_bp *bp)
547 {
548 u8 num = 8;
549 int ret;
550
551 do {
552 struct bm_buffer bmb[8];
553 int i;
554
555 ret = bman_acquire(bp->pool, bmb, num);
556 if (ret < 0) {
557 if (num == 8) {
558 /* we have less than 8 buffers left;
559 * drain them one by one
560 */
561 num = 1;
562 ret = 1;
563 continue;
564 } else {
565 /* Pool is fully drained */
566 break;
567 }
568 }
569
570 if (bp->free_buf_cb)
571 for (i = 0; i < num; i++)
572 bp->free_buf_cb(bp, &bmb[i]);
573 } while (ret > 0);
574 }
575
dpaa_bp_free(struct dpaa_bp * dpaa_bp)576 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
577 {
578 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
579
580 /* the mapping between bpid and dpaa_bp is done very late in the
581 * allocation procedure; if something failed before the mapping, the bp
582 * was not configured, therefore we don't need the below instructions
583 */
584 if (!bp)
585 return;
586
587 if (!atomic_dec_and_test(&bp->refs))
588 return;
589
590 if (bp->free_buf_cb)
591 dpaa_bp_drain(bp);
592
593 dpaa_bp_array[bp->bpid] = NULL;
594 bman_free_pool(bp->pool);
595 }
596
dpaa_bps_free(struct dpaa_priv * priv)597 static void dpaa_bps_free(struct dpaa_priv *priv)
598 {
599 int i;
600
601 for (i = 0; i < DPAA_BPS_NUM; i++)
602 dpaa_bp_free(priv->dpaa_bps[i]);
603 }
604
605 /* Use multiple WQs for FQ assignment:
606 * - Tx Confirmation queues go to WQ1.
607 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
608 * to be scheduled, in case there are many more FQs in WQ6).
609 * - Rx Default goes to WQ6.
610 * - Tx queues go to different WQs depending on their priority. Equal
611 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
612 * WQ0 (highest priority).
613 * This ensures that Tx-confirmed buffers are timely released. In particular,
614 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
615 * are greatly outnumbered by other FQs in the system, while
616 * dequeue scheduling is round-robin.
617 */
dpaa_assign_wq(struct dpaa_fq * fq,int idx)618 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
619 {
620 switch (fq->fq_type) {
621 case FQ_TYPE_TX_CONFIRM:
622 case FQ_TYPE_TX_CONF_MQ:
623 fq->wq = 1;
624 break;
625 case FQ_TYPE_RX_ERROR:
626 case FQ_TYPE_TX_ERROR:
627 fq->wq = 5;
628 break;
629 case FQ_TYPE_RX_DEFAULT:
630 case FQ_TYPE_RX_PCD:
631 fq->wq = 6;
632 break;
633 case FQ_TYPE_TX:
634 switch (idx / DPAA_TC_TXQ_NUM) {
635 case 0:
636 /* Low priority (best effort) */
637 fq->wq = 6;
638 break;
639 case 1:
640 /* Medium priority */
641 fq->wq = 2;
642 break;
643 case 2:
644 /* High priority */
645 fq->wq = 1;
646 break;
647 case 3:
648 /* Very high priority */
649 fq->wq = 0;
650 break;
651 default:
652 WARN(1, "Too many TX FQs: more than %d!\n",
653 DPAA_ETH_TXQ_NUM);
654 }
655 break;
656 default:
657 WARN(1, "Invalid FQ type %d for FQID %d!\n",
658 fq->fq_type, fq->fqid);
659 }
660 }
661
dpaa_fq_alloc(struct device * dev,u32 start,u32 count,struct list_head * list,enum dpaa_fq_type fq_type)662 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
663 u32 start, u32 count,
664 struct list_head *list,
665 enum dpaa_fq_type fq_type)
666 {
667 struct dpaa_fq *dpaa_fq;
668 int i;
669
670 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
671 GFP_KERNEL);
672 if (!dpaa_fq)
673 return NULL;
674
675 for (i = 0; i < count; i++) {
676 dpaa_fq[i].fq_type = fq_type;
677 dpaa_fq[i].fqid = start ? start + i : 0;
678 list_add_tail(&dpaa_fq[i].list, list);
679 }
680
681 for (i = 0; i < count; i++)
682 dpaa_assign_wq(dpaa_fq + i, i);
683
684 return dpaa_fq;
685 }
686
dpaa_alloc_all_fqs(struct device * dev,struct list_head * list,struct fm_port_fqs * port_fqs)687 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
688 struct fm_port_fqs *port_fqs)
689 {
690 struct dpaa_fq *dpaa_fq;
691 u32 fq_base, fq_base_aligned, i;
692
693 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
694 if (!dpaa_fq)
695 goto fq_alloc_failed;
696
697 port_fqs->rx_errq = &dpaa_fq[0];
698
699 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
700 if (!dpaa_fq)
701 goto fq_alloc_failed;
702
703 port_fqs->rx_defq = &dpaa_fq[0];
704
705 /* the PCD FQIDs range needs to be aligned for correct operation */
706 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
707 goto fq_alloc_failed;
708
709 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
710
711 for (i = fq_base; i < fq_base_aligned; i++)
712 qman_release_fqid(i);
713
714 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
715 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
716 qman_release_fqid(i);
717
718 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
719 list, FQ_TYPE_RX_PCD);
720 if (!dpaa_fq)
721 goto fq_alloc_failed;
722
723 port_fqs->rx_pcdq = &dpaa_fq[0];
724
725 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
726 goto fq_alloc_failed;
727
728 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
729 if (!dpaa_fq)
730 goto fq_alloc_failed;
731
732 port_fqs->tx_errq = &dpaa_fq[0];
733
734 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
735 if (!dpaa_fq)
736 goto fq_alloc_failed;
737
738 port_fqs->tx_defq = &dpaa_fq[0];
739
740 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
741 goto fq_alloc_failed;
742
743 return 0;
744
745 fq_alloc_failed:
746 dev_err(dev, "dpaa_fq_alloc() failed\n");
747 return -ENOMEM;
748 }
749
750 static u32 rx_pool_channel;
751 static DEFINE_SPINLOCK(rx_pool_channel_init);
752
dpaa_get_channel(void)753 static int dpaa_get_channel(void)
754 {
755 spin_lock(&rx_pool_channel_init);
756 if (!rx_pool_channel) {
757 u32 pool;
758 int ret;
759
760 ret = qman_alloc_pool(&pool);
761
762 if (!ret)
763 rx_pool_channel = pool;
764 }
765 spin_unlock(&rx_pool_channel_init);
766 if (!rx_pool_channel)
767 return -ENOMEM;
768 return rx_pool_channel;
769 }
770
dpaa_release_channel(void)771 static void dpaa_release_channel(void)
772 {
773 qman_release_pool(rx_pool_channel);
774 }
775
dpaa_eth_add_channel(u16 channel)776 static void dpaa_eth_add_channel(u16 channel)
777 {
778 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
779 const cpumask_t *cpus = qman_affine_cpus();
780 struct qman_portal *portal;
781 int cpu;
782
783 for_each_cpu(cpu, cpus) {
784 portal = qman_get_affine_portal(cpu);
785 qman_p_static_dequeue_add(portal, pool);
786 }
787 }
788
789 /* Congestion group state change notification callback.
790 * Stops the device's egress queues while they are congested and
791 * wakes them upon exiting congested state.
792 * Also updates some CGR-related stats.
793 */
dpaa_eth_cgscn(struct qman_portal * qm,struct qman_cgr * cgr,int congested)794 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
795 int congested)
796 {
797 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
798 struct dpaa_priv, cgr_data.cgr);
799
800 if (congested) {
801 priv->cgr_data.congestion_start_jiffies = jiffies;
802 netif_tx_stop_all_queues(priv->net_dev);
803 priv->cgr_data.cgr_congested_count++;
804 } else {
805 priv->cgr_data.congested_jiffies +=
806 (jiffies - priv->cgr_data.congestion_start_jiffies);
807 netif_tx_wake_all_queues(priv->net_dev);
808 }
809 }
810
dpaa_eth_cgr_init(struct dpaa_priv * priv)811 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
812 {
813 struct qm_mcc_initcgr initcgr;
814 u32 cs_th;
815 int err;
816
817 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
818 if (err < 0) {
819 if (netif_msg_drv(priv))
820 pr_err("%s: Error %d allocating CGR ID\n",
821 __func__, err);
822 goto out_error;
823 }
824 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
825
826 /* Enable Congestion State Change Notifications and CS taildrop */
827 memset(&initcgr, 0, sizeof(initcgr));
828 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
829 initcgr.cgr.cscn_en = QM_CGR_EN;
830
831 /* Set different thresholds based on the MAC speed.
832 * This may turn suboptimal if the MAC is reconfigured at a speed
833 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
834 * In such cases, we ought to reconfigure the threshold, too.
835 */
836 if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
837 cs_th = DPAA_CS_THRESHOLD_10G;
838 else
839 cs_th = DPAA_CS_THRESHOLD_1G;
840 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
841
842 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
843 initcgr.cgr.cstd_en = QM_CGR_EN;
844
845 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
846 &initcgr);
847 if (err < 0) {
848 if (netif_msg_drv(priv))
849 pr_err("%s: Error %d creating CGR with ID %d\n",
850 __func__, err, priv->cgr_data.cgr.cgrid);
851 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
852 goto out_error;
853 }
854 if (netif_msg_drv(priv))
855 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
856 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
857 priv->cgr_data.cgr.chan);
858
859 out_error:
860 return err;
861 }
862
dpaa_setup_ingress(const struct dpaa_priv * priv,struct dpaa_fq * fq,const struct qman_fq * template)863 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
864 struct dpaa_fq *fq,
865 const struct qman_fq *template)
866 {
867 fq->fq_base = *template;
868 fq->net_dev = priv->net_dev;
869
870 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
871 fq->channel = priv->channel;
872 }
873
dpaa_setup_egress(const struct dpaa_priv * priv,struct dpaa_fq * fq,struct fman_port * port,const struct qman_fq * template)874 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
875 struct dpaa_fq *fq,
876 struct fman_port *port,
877 const struct qman_fq *template)
878 {
879 fq->fq_base = *template;
880 fq->net_dev = priv->net_dev;
881
882 if (port) {
883 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
884 fq->channel = (u16)fman_port_get_qman_channel_id(port);
885 } else {
886 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
887 }
888 }
889
dpaa_fq_setup(struct dpaa_priv * priv,const struct dpaa_fq_cbs * fq_cbs,struct fman_port * tx_port)890 static void dpaa_fq_setup(struct dpaa_priv *priv,
891 const struct dpaa_fq_cbs *fq_cbs,
892 struct fman_port *tx_port)
893 {
894 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
895 const cpumask_t *affine_cpus = qman_affine_cpus();
896 u16 channels[NR_CPUS];
897 struct dpaa_fq *fq;
898
899 for_each_cpu(cpu, affine_cpus)
900 channels[num_portals++] = qman_affine_channel(cpu);
901
902 if (num_portals == 0)
903 dev_err(priv->net_dev->dev.parent,
904 "No Qman software (affine) channels found");
905
906 /* Initialize each FQ in the list */
907 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
908 switch (fq->fq_type) {
909 case FQ_TYPE_RX_DEFAULT:
910 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
911 break;
912 case FQ_TYPE_RX_ERROR:
913 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
914 break;
915 case FQ_TYPE_RX_PCD:
916 if (!num_portals)
917 continue;
918 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
919 fq->channel = channels[portal_cnt++ % num_portals];
920 break;
921 case FQ_TYPE_TX:
922 dpaa_setup_egress(priv, fq, tx_port,
923 &fq_cbs->egress_ern);
924 /* If we have more Tx queues than the number of cores,
925 * just ignore the extra ones.
926 */
927 if (egress_cnt < DPAA_ETH_TXQ_NUM)
928 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
929 break;
930 case FQ_TYPE_TX_CONF_MQ:
931 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
932 /* fall through */
933 case FQ_TYPE_TX_CONFIRM:
934 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
935 break;
936 case FQ_TYPE_TX_ERROR:
937 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
938 break;
939 default:
940 dev_warn(priv->net_dev->dev.parent,
941 "Unknown FQ type detected!\n");
942 break;
943 }
944 }
945
946 /* Make sure all CPUs receive a corresponding Tx queue. */
947 while (egress_cnt < DPAA_ETH_TXQ_NUM) {
948 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
949 if (fq->fq_type != FQ_TYPE_TX)
950 continue;
951 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
952 if (egress_cnt == DPAA_ETH_TXQ_NUM)
953 break;
954 }
955 }
956 }
957
dpaa_tx_fq_to_id(const struct dpaa_priv * priv,struct qman_fq * tx_fq)958 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
959 struct qman_fq *tx_fq)
960 {
961 int i;
962
963 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
964 if (priv->egress_fqs[i] == tx_fq)
965 return i;
966
967 return -EINVAL;
968 }
969
dpaa_fq_init(struct dpaa_fq * dpaa_fq,bool td_enable)970 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
971 {
972 const struct dpaa_priv *priv;
973 struct qman_fq *confq = NULL;
974 struct qm_mcc_initfq initfq;
975 struct device *dev;
976 struct qman_fq *fq;
977 int queue_id;
978 int err;
979
980 priv = netdev_priv(dpaa_fq->net_dev);
981 dev = dpaa_fq->net_dev->dev.parent;
982
983 if (dpaa_fq->fqid == 0)
984 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
985
986 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
987
988 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
989 if (err) {
990 dev_err(dev, "qman_create_fq() failed\n");
991 return err;
992 }
993 fq = &dpaa_fq->fq_base;
994
995 if (dpaa_fq->init) {
996 memset(&initfq, 0, sizeof(initfq));
997
998 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
999 /* Note: we may get to keep an empty FQ in cache */
1000 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1001
1002 /* Try to reduce the number of portal interrupts for
1003 * Tx Confirmation FQs.
1004 */
1005 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1006 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1007
1008 /* FQ placement */
1009 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1010
1011 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1012
1013 /* Put all egress queues in a congestion group of their own.
1014 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1015 * rather than Tx - but they nonetheless account for the
1016 * memory footprint on behalf of egress traffic. We therefore
1017 * place them in the netdev's CGR, along with the Tx FQs.
1018 */
1019 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1020 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1021 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1022 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1023 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1024 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1025 /* Set a fixed overhead accounting, in an attempt to
1026 * reduce the impact of fixed-size skb shells and the
1027 * driver's needed headroom on system memory. This is
1028 * especially the case when the egress traffic is
1029 * composed of small datagrams.
1030 * Unfortunately, QMan's OAL value is capped to an
1031 * insufficient value, but even that is better than
1032 * no overhead accounting at all.
1033 */
1034 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1035 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1036 qm_fqd_set_oal(&initfq.fqd,
1037 min(sizeof(struct sk_buff) +
1038 priv->tx_headroom,
1039 (size_t)FSL_QMAN_MAX_OAL));
1040 }
1041
1042 if (td_enable) {
1043 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1044 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1045 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1046 }
1047
1048 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1049 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1050 if (queue_id >= 0)
1051 confq = priv->conf_fqs[queue_id];
1052 if (confq) {
1053 initfq.we_mask |=
1054 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1055 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1056 * A2V=1 (contextA A2 field is valid)
1057 * A0V=1 (contextA A0 field is valid)
1058 * B0V=1 (contextB field is valid)
1059 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1060 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1061 */
1062 qm_fqd_context_a_set64(&initfq.fqd,
1063 0x1e00000080000000ULL);
1064 }
1065 }
1066
1067 /* Put all the ingress queues in our "ingress CGR". */
1068 if (priv->use_ingress_cgr &&
1069 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1070 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1071 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1072 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1073 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1074 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1075 /* Set a fixed overhead accounting, just like for the
1076 * egress CGR.
1077 */
1078 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1079 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1080 qm_fqd_set_oal(&initfq.fqd,
1081 min(sizeof(struct sk_buff) +
1082 priv->tx_headroom,
1083 (size_t)FSL_QMAN_MAX_OAL));
1084 }
1085
1086 /* Initialization common to all ingress queues */
1087 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1088 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1089 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1090 QM_FQCTRL_CTXASTASHING);
1091 initfq.fqd.context_a.stashing.exclusive =
1092 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1093 QM_STASHING_EXCL_ANNOTATION;
1094 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1095 DIV_ROUND_UP(sizeof(struct qman_fq),
1096 64));
1097 }
1098
1099 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1100 if (err < 0) {
1101 dev_err(dev, "qman_init_fq(%u) = %d\n",
1102 qman_fq_fqid(fq), err);
1103 qman_destroy_fq(fq);
1104 return err;
1105 }
1106 }
1107
1108 dpaa_fq->fqid = qman_fq_fqid(fq);
1109
1110 return 0;
1111 }
1112
dpaa_fq_free_entry(struct device * dev,struct qman_fq * fq)1113 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1114 {
1115 const struct dpaa_priv *priv;
1116 struct dpaa_fq *dpaa_fq;
1117 int err, error;
1118
1119 err = 0;
1120
1121 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1122 priv = netdev_priv(dpaa_fq->net_dev);
1123
1124 if (dpaa_fq->init) {
1125 err = qman_retire_fq(fq, NULL);
1126 if (err < 0 && netif_msg_drv(priv))
1127 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1128 qman_fq_fqid(fq), err);
1129
1130 error = qman_oos_fq(fq);
1131 if (error < 0 && netif_msg_drv(priv)) {
1132 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1133 qman_fq_fqid(fq), error);
1134 if (err >= 0)
1135 err = error;
1136 }
1137 }
1138
1139 qman_destroy_fq(fq);
1140 list_del(&dpaa_fq->list);
1141
1142 return err;
1143 }
1144
dpaa_fq_free(struct device * dev,struct list_head * list)1145 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1146 {
1147 struct dpaa_fq *dpaa_fq, *tmp;
1148 int err, error;
1149
1150 err = 0;
1151 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1152 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1153 if (error < 0 && err >= 0)
1154 err = error;
1155 }
1156
1157 return err;
1158 }
1159
dpaa_eth_init_tx_port(struct fman_port * port,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_buffer_layout * buf_layout)1160 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1161 struct dpaa_fq *defq,
1162 struct dpaa_buffer_layout *buf_layout)
1163 {
1164 struct fman_buffer_prefix_content buf_prefix_content;
1165 struct fman_port_params params;
1166 int err;
1167
1168 memset(¶ms, 0, sizeof(params));
1169 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1170
1171 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1172 buf_prefix_content.pass_prs_result = true;
1173 buf_prefix_content.pass_hash_result = true;
1174 buf_prefix_content.pass_time_stamp = true;
1175 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1176
1177 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1178 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1179
1180 err = fman_port_config(port, ¶ms);
1181 if (err) {
1182 pr_err("%s: fman_port_config failed\n", __func__);
1183 return err;
1184 }
1185
1186 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1187 if (err) {
1188 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1189 __func__);
1190 return err;
1191 }
1192
1193 err = fman_port_init(port);
1194 if (err)
1195 pr_err("%s: fm_port_init failed\n", __func__);
1196
1197 return err;
1198 }
1199
dpaa_eth_init_rx_port(struct fman_port * port,struct dpaa_bp ** bps,size_t count,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_fq * pcdq,struct dpaa_buffer_layout * buf_layout)1200 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1201 size_t count, struct dpaa_fq *errq,
1202 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1203 struct dpaa_buffer_layout *buf_layout)
1204 {
1205 struct fman_buffer_prefix_content buf_prefix_content;
1206 struct fman_port_rx_params *rx_p;
1207 struct fman_port_params params;
1208 int i, err;
1209
1210 memset(¶ms, 0, sizeof(params));
1211 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1212
1213 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1214 buf_prefix_content.pass_prs_result = true;
1215 buf_prefix_content.pass_hash_result = true;
1216 buf_prefix_content.pass_time_stamp = true;
1217 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1218
1219 rx_p = ¶ms.specific_params.rx_params;
1220 rx_p->err_fqid = errq->fqid;
1221 rx_p->dflt_fqid = defq->fqid;
1222 if (pcdq) {
1223 rx_p->pcd_base_fqid = pcdq->fqid;
1224 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1225 }
1226
1227 count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1228 rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1229 for (i = 0; i < count; i++) {
1230 rx_p->ext_buf_pools.ext_buf_pool[i].id = bps[i]->bpid;
1231 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1232 }
1233
1234 err = fman_port_config(port, ¶ms);
1235 if (err) {
1236 pr_err("%s: fman_port_config failed\n", __func__);
1237 return err;
1238 }
1239
1240 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1241 if (err) {
1242 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1243 __func__);
1244 return err;
1245 }
1246
1247 err = fman_port_init(port);
1248 if (err)
1249 pr_err("%s: fm_port_init failed\n", __func__);
1250
1251 return err;
1252 }
1253
dpaa_eth_init_ports(struct mac_device * mac_dev,struct dpaa_bp ** bps,size_t count,struct fm_port_fqs * port_fqs,struct dpaa_buffer_layout * buf_layout,struct device * dev)1254 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1255 struct dpaa_bp **bps, size_t count,
1256 struct fm_port_fqs *port_fqs,
1257 struct dpaa_buffer_layout *buf_layout,
1258 struct device *dev)
1259 {
1260 struct fman_port *rxport = mac_dev->port[RX];
1261 struct fman_port *txport = mac_dev->port[TX];
1262 int err;
1263
1264 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1265 port_fqs->tx_defq, &buf_layout[TX]);
1266 if (err)
1267 return err;
1268
1269 err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1270 port_fqs->rx_defq, port_fqs->rx_pcdq,
1271 &buf_layout[RX]);
1272
1273 return err;
1274 }
1275
dpaa_bman_release(const struct dpaa_bp * dpaa_bp,struct bm_buffer * bmb,int cnt)1276 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1277 struct bm_buffer *bmb, int cnt)
1278 {
1279 int err;
1280
1281 err = bman_release(dpaa_bp->pool, bmb, cnt);
1282 /* Should never occur, address anyway to avoid leaking the buffers */
1283 if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1284 while (cnt-- > 0)
1285 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1286
1287 return cnt;
1288 }
1289
dpaa_release_sgt_members(struct qm_sg_entry * sgt)1290 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1291 {
1292 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1293 struct dpaa_bp *dpaa_bp;
1294 int i = 0, j;
1295
1296 memset(bmb, 0, sizeof(bmb));
1297
1298 do {
1299 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1300 if (!dpaa_bp)
1301 return;
1302
1303 j = 0;
1304 do {
1305 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1306
1307 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1308
1309 j++; i++;
1310 } while (j < ARRAY_SIZE(bmb) &&
1311 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1312 sgt[i - 1].bpid == sgt[i].bpid);
1313
1314 dpaa_bman_release(dpaa_bp, bmb, j);
1315 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1316 }
1317
dpaa_fd_release(const struct net_device * net_dev,const struct qm_fd * fd)1318 static void dpaa_fd_release(const struct net_device *net_dev,
1319 const struct qm_fd *fd)
1320 {
1321 struct qm_sg_entry *sgt;
1322 struct dpaa_bp *dpaa_bp;
1323 struct bm_buffer bmb;
1324 dma_addr_t addr;
1325 void *vaddr;
1326
1327 bmb.data = 0;
1328 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1329
1330 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1331 if (!dpaa_bp)
1332 return;
1333
1334 if (qm_fd_get_format(fd) == qm_fd_sg) {
1335 vaddr = phys_to_virt(qm_fd_addr(fd));
1336 sgt = vaddr + qm_fd_get_offset(fd);
1337
1338 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1339 DMA_FROM_DEVICE);
1340
1341 dpaa_release_sgt_members(sgt);
1342
1343 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1344 DMA_FROM_DEVICE);
1345 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1346 dev_err(dpaa_bp->dev, "DMA mapping failed");
1347 return;
1348 }
1349 bm_buffer_set64(&bmb, addr);
1350 }
1351
1352 dpaa_bman_release(dpaa_bp, &bmb, 1);
1353 }
1354
count_ern(struct dpaa_percpu_priv * percpu_priv,const union qm_mr_entry * msg)1355 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1356 const union qm_mr_entry *msg)
1357 {
1358 switch (msg->ern.rc & QM_MR_RC_MASK) {
1359 case QM_MR_RC_CGR_TAILDROP:
1360 percpu_priv->ern_cnt.cg_tdrop++;
1361 break;
1362 case QM_MR_RC_WRED:
1363 percpu_priv->ern_cnt.wred++;
1364 break;
1365 case QM_MR_RC_ERROR:
1366 percpu_priv->ern_cnt.err_cond++;
1367 break;
1368 case QM_MR_RC_ORPWINDOW_EARLY:
1369 percpu_priv->ern_cnt.early_window++;
1370 break;
1371 case QM_MR_RC_ORPWINDOW_LATE:
1372 percpu_priv->ern_cnt.late_window++;
1373 break;
1374 case QM_MR_RC_FQ_TAILDROP:
1375 percpu_priv->ern_cnt.fq_tdrop++;
1376 break;
1377 case QM_MR_RC_ORPWINDOW_RETIRED:
1378 percpu_priv->ern_cnt.fq_retired++;
1379 break;
1380 case QM_MR_RC_ORP_ZERO:
1381 percpu_priv->ern_cnt.orp_zero++;
1382 break;
1383 }
1384 }
1385
1386 /* Turn on HW checksum computation for this outgoing frame.
1387 * If the current protocol is not something we support in this regard
1388 * (or if the stack has already computed the SW checksum), we do nothing.
1389 *
1390 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1391 * otherwise.
1392 *
1393 * Note that this function may modify the fd->cmd field and the skb data buffer
1394 * (the Parse Results area).
1395 */
dpaa_enable_tx_csum(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,char * parse_results)1396 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1397 struct sk_buff *skb,
1398 struct qm_fd *fd,
1399 char *parse_results)
1400 {
1401 struct fman_prs_result *parse_result;
1402 u16 ethertype = ntohs(skb->protocol);
1403 struct ipv6hdr *ipv6h = NULL;
1404 struct iphdr *iph;
1405 int retval = 0;
1406 u8 l4_proto;
1407
1408 if (skb->ip_summed != CHECKSUM_PARTIAL)
1409 return 0;
1410
1411 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1412 * L4 alone from the FM configuration anyway.
1413 */
1414
1415 /* Fill in some fields of the Parse Results array, so the FMan
1416 * can find them as if they came from the FMan Parser.
1417 */
1418 parse_result = (struct fman_prs_result *)parse_results;
1419
1420 /* If we're dealing with VLAN, get the real Ethernet type */
1421 if (ethertype == ETH_P_8021Q) {
1422 /* We can't always assume the MAC header is set correctly
1423 * by the stack, so reset to beginning of skb->data
1424 */
1425 skb_reset_mac_header(skb);
1426 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1427 }
1428
1429 /* Fill in the relevant L3 parse result fields
1430 * and read the L4 protocol type
1431 */
1432 switch (ethertype) {
1433 case ETH_P_IP:
1434 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1435 iph = ip_hdr(skb);
1436 WARN_ON(!iph);
1437 l4_proto = iph->protocol;
1438 break;
1439 case ETH_P_IPV6:
1440 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1441 ipv6h = ipv6_hdr(skb);
1442 WARN_ON(!ipv6h);
1443 l4_proto = ipv6h->nexthdr;
1444 break;
1445 default:
1446 /* We shouldn't even be here */
1447 if (net_ratelimit())
1448 netif_alert(priv, tx_err, priv->net_dev,
1449 "Can't compute HW csum for L3 proto 0x%x\n",
1450 ntohs(skb->protocol));
1451 retval = -EIO;
1452 goto return_error;
1453 }
1454
1455 /* Fill in the relevant L4 parse result fields */
1456 switch (l4_proto) {
1457 case IPPROTO_UDP:
1458 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1459 break;
1460 case IPPROTO_TCP:
1461 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1462 break;
1463 default:
1464 if (net_ratelimit())
1465 netif_alert(priv, tx_err, priv->net_dev,
1466 "Can't compute HW csum for L4 proto 0x%x\n",
1467 l4_proto);
1468 retval = -EIO;
1469 goto return_error;
1470 }
1471
1472 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1473 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1474 parse_result->l4_off = (u8)skb_transport_offset(skb);
1475
1476 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1477 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1478
1479 /* On P1023 and similar platforms fd->cmd interpretation could
1480 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1481 * is not set so we do not need to check; in the future, if/when
1482 * using context_a we need to check this bit
1483 */
1484
1485 return_error:
1486 return retval;
1487 }
1488
dpaa_bp_add_8_bufs(const struct dpaa_bp * dpaa_bp)1489 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1490 {
1491 struct device *dev = dpaa_bp->dev;
1492 struct bm_buffer bmb[8];
1493 dma_addr_t addr;
1494 void *new_buf;
1495 u8 i;
1496
1497 for (i = 0; i < 8; i++) {
1498 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1499 if (unlikely(!new_buf)) {
1500 dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1501 dpaa_bp->raw_size);
1502 goto release_previous_buffs;
1503 }
1504 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1505
1506 addr = dma_map_single(dev, new_buf,
1507 dpaa_bp->size, DMA_FROM_DEVICE);
1508 if (unlikely(dma_mapping_error(dev, addr))) {
1509 dev_err(dpaa_bp->dev, "DMA map failed");
1510 goto release_previous_buffs;
1511 }
1512
1513 bmb[i].data = 0;
1514 bm_buffer_set64(&bmb[i], addr);
1515 }
1516
1517 release_bufs:
1518 return dpaa_bman_release(dpaa_bp, bmb, i);
1519
1520 release_previous_buffs:
1521 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1522
1523 bm_buffer_set64(&bmb[i], 0);
1524 /* Avoid releasing a completely null buffer; bman_release() requires
1525 * at least one buffer.
1526 */
1527 if (likely(i))
1528 goto release_bufs;
1529
1530 return 0;
1531 }
1532
dpaa_bp_seed(struct dpaa_bp * dpaa_bp)1533 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1534 {
1535 int i;
1536
1537 /* Give each CPU an allotment of "config_count" buffers */
1538 for_each_possible_cpu(i) {
1539 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1540 int j;
1541
1542 /* Although we access another CPU's counters here
1543 * we do it at boot time so it is safe
1544 */
1545 for (j = 0; j < dpaa_bp->config_count; j += 8)
1546 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1547 }
1548 return 0;
1549 }
1550
1551 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1552 * REFILL_THRESHOLD.
1553 */
dpaa_eth_refill_bpool(struct dpaa_bp * dpaa_bp,int * countptr)1554 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1555 {
1556 int count = *countptr;
1557 int new_bufs;
1558
1559 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1560 do {
1561 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1562 if (unlikely(!new_bufs)) {
1563 /* Avoid looping forever if we've temporarily
1564 * run out of memory. We'll try again at the
1565 * next NAPI cycle.
1566 */
1567 break;
1568 }
1569 count += new_bufs;
1570 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1571
1572 *countptr = count;
1573 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1574 return -ENOMEM;
1575 }
1576
1577 return 0;
1578 }
1579
dpaa_eth_refill_bpools(struct dpaa_priv * priv)1580 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1581 {
1582 struct dpaa_bp *dpaa_bp;
1583 int *countptr;
1584 int res, i;
1585
1586 for (i = 0; i < DPAA_BPS_NUM; i++) {
1587 dpaa_bp = priv->dpaa_bps[i];
1588 if (!dpaa_bp)
1589 return -EINVAL;
1590 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1591 res = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1592 if (res)
1593 return res;
1594 }
1595 return 0;
1596 }
1597
1598 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1599 * either contiguous frames or scatter/gather ones.
1600 * Skb freeing is not handled here.
1601 *
1602 * This function may be called on error paths in the Tx function, so guard
1603 * against cases when not all fd relevant fields were filled in.
1604 *
1605 * Return the skb backpointer, since for S/G frames the buffer containing it
1606 * gets freed here.
1607 */
dpaa_cleanup_tx_fd(const struct dpaa_priv * priv,const struct qm_fd * fd)1608 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1609 const struct qm_fd *fd)
1610 {
1611 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1612 struct device *dev = priv->net_dev->dev.parent;
1613 struct skb_shared_hwtstamps shhwtstamps;
1614 dma_addr_t addr = qm_fd_addr(fd);
1615 const struct qm_sg_entry *sgt;
1616 struct sk_buff **skbh, *skb;
1617 int nr_frags, i;
1618 u64 ns;
1619
1620 skbh = (struct sk_buff **)phys_to_virt(addr);
1621 skb = *skbh;
1622
1623 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1624 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1625
1626 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], (void *)skbh,
1627 &ns)) {
1628 shhwtstamps.hwtstamp = ns_to_ktime(ns);
1629 skb_tstamp_tx(skb, &shhwtstamps);
1630 } else {
1631 dev_warn(dev, "fman_port_get_tstamp failed!\n");
1632 }
1633 }
1634
1635 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1636 nr_frags = skb_shinfo(skb)->nr_frags;
1637 dma_unmap_single(dev, addr,
1638 qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1639 dma_dir);
1640
1641 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1642 * it's from lowmem.
1643 */
1644 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1645
1646 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1647 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1648 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1649
1650 /* remaining pages were mapped with skb_frag_dma_map() */
1651 for (i = 1; i < nr_frags; i++) {
1652 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1653
1654 dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1655 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1656 }
1657
1658 /* Free the page frag that we allocated on Tx */
1659 skb_free_frag(phys_to_virt(addr));
1660 } else {
1661 dma_unmap_single(dev, addr,
1662 skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1663 }
1664
1665 return skb;
1666 }
1667
rx_csum_offload(const struct dpaa_priv * priv,const struct qm_fd * fd)1668 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1669 {
1670 /* The parser has run and performed L4 checksum validation.
1671 * We know there were no parser errors (and implicitly no
1672 * L4 csum error), otherwise we wouldn't be here.
1673 */
1674 if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1675 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1676 return CHECKSUM_UNNECESSARY;
1677
1678 /* We're here because either the parser didn't run or the L4 checksum
1679 * was not verified. This may include the case of a UDP frame with
1680 * checksum zero or an L4 proto other than TCP/UDP
1681 */
1682 return CHECKSUM_NONE;
1683 }
1684
1685 /* Build a linear skb around the received buffer.
1686 * We are guaranteed there is enough room at the end of the data buffer to
1687 * accommodate the shared info area of the skb.
1688 */
contig_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1689 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1690 const struct qm_fd *fd)
1691 {
1692 ssize_t fd_off = qm_fd_get_offset(fd);
1693 dma_addr_t addr = qm_fd_addr(fd);
1694 struct dpaa_bp *dpaa_bp;
1695 struct sk_buff *skb;
1696 void *vaddr;
1697
1698 vaddr = phys_to_virt(addr);
1699 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1700
1701 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1702 if (!dpaa_bp)
1703 goto free_buffer;
1704
1705 skb = build_skb(vaddr, dpaa_bp->size +
1706 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1707 if (unlikely(!skb)) {
1708 WARN_ONCE(1, "Build skb failure on Rx\n");
1709 goto free_buffer;
1710 }
1711 WARN_ON(fd_off != priv->rx_headroom);
1712 skb_reserve(skb, fd_off);
1713 skb_put(skb, qm_fd_get_length(fd));
1714
1715 skb->ip_summed = rx_csum_offload(priv, fd);
1716
1717 return skb;
1718
1719 free_buffer:
1720 skb_free_frag(vaddr);
1721 return NULL;
1722 }
1723
1724 /* Build an skb with the data of the first S/G entry in the linear portion and
1725 * the rest of the frame as skb fragments.
1726 *
1727 * The page fragment holding the S/G Table is recycled here.
1728 */
sg_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1729 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1730 const struct qm_fd *fd)
1731 {
1732 ssize_t fd_off = qm_fd_get_offset(fd);
1733 dma_addr_t addr = qm_fd_addr(fd);
1734 const struct qm_sg_entry *sgt;
1735 struct page *page, *head_page;
1736 struct dpaa_bp *dpaa_bp;
1737 void *vaddr, *sg_vaddr;
1738 int frag_off, frag_len;
1739 struct sk_buff *skb;
1740 dma_addr_t sg_addr;
1741 int page_offset;
1742 unsigned int sz;
1743 int *count_ptr;
1744 int i;
1745
1746 vaddr = phys_to_virt(addr);
1747 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1748
1749 /* Iterate through the SGT entries and add data buffers to the skb */
1750 sgt = vaddr + fd_off;
1751 skb = NULL;
1752 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1753 /* Extension bit is not supported */
1754 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1755
1756 sg_addr = qm_sg_addr(&sgt[i]);
1757 sg_vaddr = phys_to_virt(sg_addr);
1758 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1759 SMP_CACHE_BYTES));
1760
1761 /* We may use multiple Rx pools */
1762 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1763 if (!dpaa_bp)
1764 goto free_buffers;
1765
1766 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1767 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1768 DMA_FROM_DEVICE);
1769 if (!skb) {
1770 sz = dpaa_bp->size +
1771 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1772 skb = build_skb(sg_vaddr, sz);
1773 if (WARN_ON(unlikely(!skb)))
1774 goto free_buffers;
1775
1776 skb->ip_summed = rx_csum_offload(priv, fd);
1777
1778 /* Make sure forwarded skbs will have enough space
1779 * on Tx, if extra headers are added.
1780 */
1781 WARN_ON(fd_off != priv->rx_headroom);
1782 skb_reserve(skb, fd_off);
1783 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1784 } else {
1785 /* Not the first S/G entry; all data from buffer will
1786 * be added in an skb fragment; fragment index is offset
1787 * by one since first S/G entry was incorporated in the
1788 * linear part of the skb.
1789 *
1790 * Caution: 'page' may be a tail page.
1791 */
1792 page = virt_to_page(sg_vaddr);
1793 head_page = virt_to_head_page(sg_vaddr);
1794
1795 /* Compute offset in (possibly tail) page */
1796 page_offset = ((unsigned long)sg_vaddr &
1797 (PAGE_SIZE - 1)) +
1798 (page_address(page) - page_address(head_page));
1799 /* page_offset only refers to the beginning of sgt[i];
1800 * but the buffer itself may have an internal offset.
1801 */
1802 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1803 frag_len = qm_sg_entry_get_len(&sgt[i]);
1804 /* skb_add_rx_frag() does no checking on the page; if
1805 * we pass it a tail page, we'll end up with
1806 * bad page accounting and eventually with segafults.
1807 */
1808 skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1809 frag_len, dpaa_bp->size);
1810 }
1811 /* Update the pool count for the current {cpu x bpool} */
1812 (*count_ptr)--;
1813
1814 if (qm_sg_entry_is_final(&sgt[i]))
1815 break;
1816 }
1817 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1818
1819 /* free the SG table buffer */
1820 skb_free_frag(vaddr);
1821
1822 return skb;
1823
1824 free_buffers:
1825 /* compensate sw bpool counter changes */
1826 for (i--; i >= 0; i--) {
1827 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1828 if (dpaa_bp) {
1829 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1830 (*count_ptr)++;
1831 }
1832 }
1833 /* free all the SG entries */
1834 for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1835 sg_addr = qm_sg_addr(&sgt[i]);
1836 sg_vaddr = phys_to_virt(sg_addr);
1837 skb_free_frag(sg_vaddr);
1838 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1839 if (dpaa_bp) {
1840 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1841 (*count_ptr)--;
1842 }
1843
1844 if (qm_sg_entry_is_final(&sgt[i]))
1845 break;
1846 }
1847 /* free the SGT fragment */
1848 skb_free_frag(vaddr);
1849
1850 return NULL;
1851 }
1852
skb_to_contig_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,int * offset)1853 static int skb_to_contig_fd(struct dpaa_priv *priv,
1854 struct sk_buff *skb, struct qm_fd *fd,
1855 int *offset)
1856 {
1857 struct net_device *net_dev = priv->net_dev;
1858 struct device *dev = net_dev->dev.parent;
1859 enum dma_data_direction dma_dir;
1860 unsigned char *buffer_start;
1861 struct sk_buff **skbh;
1862 dma_addr_t addr;
1863 int err;
1864
1865 /* We are guaranteed to have at least tx_headroom bytes
1866 * available, so just use that for offset.
1867 */
1868 fd->bpid = FSL_DPAA_BPID_INV;
1869 buffer_start = skb->data - priv->tx_headroom;
1870 dma_dir = DMA_TO_DEVICE;
1871
1872 skbh = (struct sk_buff **)buffer_start;
1873 *skbh = skb;
1874
1875 /* Enable L3/L4 hardware checksum computation.
1876 *
1877 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1878 * need to write into the skb.
1879 */
1880 err = dpaa_enable_tx_csum(priv, skb, fd,
1881 ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1882 if (unlikely(err < 0)) {
1883 if (net_ratelimit())
1884 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1885 err);
1886 return err;
1887 }
1888
1889 /* Fill in the rest of the FD fields */
1890 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1891 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1892
1893 /* Map the entire buffer size that may be seen by FMan, but no more */
1894 addr = dma_map_single(dev, skbh,
1895 skb_tail_pointer(skb) - buffer_start, dma_dir);
1896 if (unlikely(dma_mapping_error(dev, addr))) {
1897 if (net_ratelimit())
1898 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1899 return -EINVAL;
1900 }
1901 qm_fd_addr_set64(fd, addr);
1902
1903 return 0;
1904 }
1905
skb_to_sg_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd)1906 static int skb_to_sg_fd(struct dpaa_priv *priv,
1907 struct sk_buff *skb, struct qm_fd *fd)
1908 {
1909 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1910 const int nr_frags = skb_shinfo(skb)->nr_frags;
1911 struct net_device *net_dev = priv->net_dev;
1912 struct device *dev = net_dev->dev.parent;
1913 struct qm_sg_entry *sgt;
1914 struct sk_buff **skbh;
1915 int i, j, err, sz;
1916 void *buffer_start;
1917 skb_frag_t *frag;
1918 dma_addr_t addr;
1919 size_t frag_len;
1920 void *sgt_buf;
1921
1922 /* get a page frag to store the SGTable */
1923 sz = SKB_DATA_ALIGN(priv->tx_headroom + DPAA_SGT_SIZE);
1924 sgt_buf = netdev_alloc_frag(sz);
1925 if (unlikely(!sgt_buf)) {
1926 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1927 sz);
1928 return -ENOMEM;
1929 }
1930
1931 /* Enable L3/L4 hardware checksum computation.
1932 *
1933 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1934 * need to write into the skb.
1935 */
1936 err = dpaa_enable_tx_csum(priv, skb, fd,
1937 sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1938 if (unlikely(err < 0)) {
1939 if (net_ratelimit())
1940 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1941 err);
1942 goto csum_failed;
1943 }
1944
1945 /* SGT[0] is used by the linear part */
1946 sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1947 frag_len = skb_headlen(skb);
1948 qm_sg_entry_set_len(&sgt[0], frag_len);
1949 sgt[0].bpid = FSL_DPAA_BPID_INV;
1950 sgt[0].offset = 0;
1951 addr = dma_map_single(dev, skb->data,
1952 skb_headlen(skb), dma_dir);
1953 if (unlikely(dma_mapping_error(dev, addr))) {
1954 dev_err(dev, "DMA mapping failed");
1955 err = -EINVAL;
1956 goto sg0_map_failed;
1957 }
1958 qm_sg_entry_set64(&sgt[0], addr);
1959
1960 /* populate the rest of SGT entries */
1961 for (i = 0; i < nr_frags; i++) {
1962 frag = &skb_shinfo(skb)->frags[i];
1963 frag_len = frag->size;
1964 WARN_ON(!skb_frag_page(frag));
1965 addr = skb_frag_dma_map(dev, frag, 0,
1966 frag_len, dma_dir);
1967 if (unlikely(dma_mapping_error(dev, addr))) {
1968 dev_err(dev, "DMA mapping failed");
1969 err = -EINVAL;
1970 goto sg_map_failed;
1971 }
1972
1973 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
1974 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
1975 sgt[i + 1].offset = 0;
1976
1977 /* keep the offset in the address */
1978 qm_sg_entry_set64(&sgt[i + 1], addr);
1979 }
1980
1981 /* Set the final bit in the last used entry of the SGT */
1982 qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
1983
1984 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1985
1986 /* DMA map the SGT page */
1987 buffer_start = (void *)sgt - priv->tx_headroom;
1988 skbh = (struct sk_buff **)buffer_start;
1989 *skbh = skb;
1990
1991 addr = dma_map_single(dev, buffer_start,
1992 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
1993 if (unlikely(dma_mapping_error(dev, addr))) {
1994 dev_err(dev, "DMA mapping failed");
1995 err = -EINVAL;
1996 goto sgt_map_failed;
1997 }
1998
1999 fd->bpid = FSL_DPAA_BPID_INV;
2000 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2001 qm_fd_addr_set64(fd, addr);
2002
2003 return 0;
2004
2005 sgt_map_failed:
2006 sg_map_failed:
2007 for (j = 0; j < i; j++)
2008 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
2009 qm_sg_entry_get_len(&sgt[j]), dma_dir);
2010 sg0_map_failed:
2011 csum_failed:
2012 skb_free_frag(sgt_buf);
2013
2014 return err;
2015 }
2016
dpaa_xmit(struct dpaa_priv * priv,struct rtnl_link_stats64 * percpu_stats,int queue,struct qm_fd * fd)2017 static inline int dpaa_xmit(struct dpaa_priv *priv,
2018 struct rtnl_link_stats64 *percpu_stats,
2019 int queue,
2020 struct qm_fd *fd)
2021 {
2022 struct qman_fq *egress_fq;
2023 int err, i;
2024
2025 egress_fq = priv->egress_fqs[queue];
2026 if (fd->bpid == FSL_DPAA_BPID_INV)
2027 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2028
2029 /* Trace this Tx fd */
2030 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2031
2032 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2033 err = qman_enqueue(egress_fq, fd);
2034 if (err != -EBUSY)
2035 break;
2036 }
2037
2038 if (unlikely(err < 0)) {
2039 percpu_stats->tx_fifo_errors++;
2040 return err;
2041 }
2042
2043 percpu_stats->tx_packets++;
2044 percpu_stats->tx_bytes += qm_fd_get_length(fd);
2045
2046 return 0;
2047 }
2048
dpaa_start_xmit(struct sk_buff * skb,struct net_device * net_dev)2049 static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2050 {
2051 const int queue_mapping = skb_get_queue_mapping(skb);
2052 bool nonlinear = skb_is_nonlinear(skb);
2053 struct rtnl_link_stats64 *percpu_stats;
2054 struct dpaa_percpu_priv *percpu_priv;
2055 struct dpaa_priv *priv;
2056 struct qm_fd fd;
2057 int offset = 0;
2058 int err = 0;
2059
2060 priv = netdev_priv(net_dev);
2061 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2062 percpu_stats = &percpu_priv->stats;
2063
2064 qm_fd_clear_fd(&fd);
2065
2066 if (!nonlinear) {
2067 /* We're going to store the skb backpointer at the beginning
2068 * of the data buffer, so we need a privately owned skb
2069 *
2070 * We've made sure skb is not shared in dev->priv_flags,
2071 * we need to verify the skb head is not cloned
2072 */
2073 if (skb_cow_head(skb, priv->tx_headroom))
2074 goto enomem;
2075
2076 WARN_ON(skb_is_nonlinear(skb));
2077 }
2078
2079 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2080 * make sure we don't feed FMan with more fragments than it supports.
2081 */
2082 if (unlikely(nonlinear &&
2083 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2084 /* If the egress skb contains more fragments than we support
2085 * we have no choice but to linearize it ourselves.
2086 */
2087 if (__skb_linearize(skb))
2088 goto enomem;
2089
2090 nonlinear = skb_is_nonlinear(skb);
2091 }
2092
2093 if (nonlinear) {
2094 /* Just create a S/G fd based on the skb */
2095 err = skb_to_sg_fd(priv, skb, &fd);
2096 percpu_priv->tx_frag_skbuffs++;
2097 } else {
2098 /* Create a contig FD from this skb */
2099 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2100 }
2101 if (unlikely(err < 0))
2102 goto skb_to_fd_failed;
2103
2104 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2105 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2106 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2107 }
2108
2109 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2110 return NETDEV_TX_OK;
2111
2112 dpaa_cleanup_tx_fd(priv, &fd);
2113 skb_to_fd_failed:
2114 enomem:
2115 percpu_stats->tx_errors++;
2116 dev_kfree_skb(skb);
2117 return NETDEV_TX_OK;
2118 }
2119
dpaa_rx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2120 static void dpaa_rx_error(struct net_device *net_dev,
2121 const struct dpaa_priv *priv,
2122 struct dpaa_percpu_priv *percpu_priv,
2123 const struct qm_fd *fd,
2124 u32 fqid)
2125 {
2126 if (net_ratelimit())
2127 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2128 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2129
2130 percpu_priv->stats.rx_errors++;
2131
2132 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2133 percpu_priv->rx_errors.dme++;
2134 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2135 percpu_priv->rx_errors.fpe++;
2136 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2137 percpu_priv->rx_errors.fse++;
2138 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2139 percpu_priv->rx_errors.phe++;
2140
2141 dpaa_fd_release(net_dev, fd);
2142 }
2143
dpaa_tx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2144 static void dpaa_tx_error(struct net_device *net_dev,
2145 const struct dpaa_priv *priv,
2146 struct dpaa_percpu_priv *percpu_priv,
2147 const struct qm_fd *fd,
2148 u32 fqid)
2149 {
2150 struct sk_buff *skb;
2151
2152 if (net_ratelimit())
2153 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2154 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2155
2156 percpu_priv->stats.tx_errors++;
2157
2158 skb = dpaa_cleanup_tx_fd(priv, fd);
2159 dev_kfree_skb(skb);
2160 }
2161
dpaa_eth_poll(struct napi_struct * napi,int budget)2162 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2163 {
2164 struct dpaa_napi_portal *np =
2165 container_of(napi, struct dpaa_napi_portal, napi);
2166
2167 int cleaned = qman_p_poll_dqrr(np->p, budget);
2168
2169 if (cleaned < budget) {
2170 napi_complete_done(napi, cleaned);
2171 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2172
2173 } else if (np->down) {
2174 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2175 }
2176
2177 return cleaned;
2178 }
2179
dpaa_tx_conf(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2180 static void dpaa_tx_conf(struct net_device *net_dev,
2181 const struct dpaa_priv *priv,
2182 struct dpaa_percpu_priv *percpu_priv,
2183 const struct qm_fd *fd,
2184 u32 fqid)
2185 {
2186 struct sk_buff *skb;
2187
2188 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2189 if (net_ratelimit())
2190 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2191 be32_to_cpu(fd->status) &
2192 FM_FD_STAT_TX_ERRORS);
2193
2194 percpu_priv->stats.tx_errors++;
2195 }
2196
2197 percpu_priv->tx_confirm++;
2198
2199 skb = dpaa_cleanup_tx_fd(priv, fd);
2200
2201 consume_skb(skb);
2202 }
2203
dpaa_eth_napi_schedule(struct dpaa_percpu_priv * percpu_priv,struct qman_portal * portal)2204 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2205 struct qman_portal *portal)
2206 {
2207 if (unlikely(in_irq() || !in_serving_softirq())) {
2208 /* Disable QMan IRQ and invoke NAPI */
2209 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2210
2211 percpu_priv->np.p = portal;
2212 napi_schedule(&percpu_priv->np.napi);
2213 percpu_priv->in_interrupt++;
2214 return 1;
2215 }
2216 return 0;
2217 }
2218
rx_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq)2219 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2220 struct qman_fq *fq,
2221 const struct qm_dqrr_entry *dq)
2222 {
2223 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2224 struct dpaa_percpu_priv *percpu_priv;
2225 struct net_device *net_dev;
2226 struct dpaa_bp *dpaa_bp;
2227 struct dpaa_priv *priv;
2228
2229 net_dev = dpaa_fq->net_dev;
2230 priv = netdev_priv(net_dev);
2231 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2232 if (!dpaa_bp)
2233 return qman_cb_dqrr_consume;
2234
2235 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2236
2237 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2238 return qman_cb_dqrr_stop;
2239
2240 dpaa_eth_refill_bpools(priv);
2241 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2242
2243 return qman_cb_dqrr_consume;
2244 }
2245
rx_default_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq)2246 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2247 struct qman_fq *fq,
2248 const struct qm_dqrr_entry *dq)
2249 {
2250 struct skb_shared_hwtstamps *shhwtstamps;
2251 struct rtnl_link_stats64 *percpu_stats;
2252 struct dpaa_percpu_priv *percpu_priv;
2253 const struct qm_fd *fd = &dq->fd;
2254 dma_addr_t addr = qm_fd_addr(fd);
2255 enum qm_fd_format fd_format;
2256 struct net_device *net_dev;
2257 u32 fd_status, hash_offset;
2258 struct dpaa_bp *dpaa_bp;
2259 struct dpaa_priv *priv;
2260 unsigned int skb_len;
2261 struct sk_buff *skb;
2262 int *count_ptr;
2263 void *vaddr;
2264 u64 ns;
2265
2266 fd_status = be32_to_cpu(fd->status);
2267 fd_format = qm_fd_get_format(fd);
2268 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2269 priv = netdev_priv(net_dev);
2270 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2271 if (!dpaa_bp)
2272 return qman_cb_dqrr_consume;
2273
2274 /* Trace the Rx fd */
2275 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2276
2277 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2278 percpu_stats = &percpu_priv->stats;
2279
2280 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2281 return qman_cb_dqrr_stop;
2282
2283 /* Make sure we didn't run out of buffers */
2284 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2285 /* Unable to refill the buffer pool due to insufficient
2286 * system memory. Just release the frame back into the pool,
2287 * otherwise we'll soon end up with an empty buffer pool.
2288 */
2289 dpaa_fd_release(net_dev, &dq->fd);
2290 return qman_cb_dqrr_consume;
2291 }
2292
2293 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2294 if (net_ratelimit())
2295 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2296 fd_status & FM_FD_STAT_RX_ERRORS);
2297
2298 percpu_stats->rx_errors++;
2299 dpaa_fd_release(net_dev, fd);
2300 return qman_cb_dqrr_consume;
2301 }
2302
2303 dpaa_bp = dpaa_bpid2pool(fd->bpid);
2304 if (!dpaa_bp)
2305 return qman_cb_dqrr_consume;
2306
2307 dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2308
2309 /* prefetch the first 64 bytes of the frame or the SGT start */
2310 vaddr = phys_to_virt(addr);
2311 prefetch(vaddr + qm_fd_get_offset(fd));
2312
2313 /* The only FD types that we may receive are contig and S/G */
2314 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2315
2316 /* Account for either the contig buffer or the SGT buffer (depending on
2317 * which case we were in) having been removed from the pool.
2318 */
2319 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2320 (*count_ptr)--;
2321
2322 if (likely(fd_format == qm_fd_contig))
2323 skb = contig_fd_to_skb(priv, fd);
2324 else
2325 skb = sg_fd_to_skb(priv, fd);
2326 if (!skb)
2327 return qman_cb_dqrr_consume;
2328
2329 if (priv->rx_tstamp) {
2330 shhwtstamps = skb_hwtstamps(skb);
2331 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2332
2333 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2334 shhwtstamps->hwtstamp = ns_to_ktime(ns);
2335 else
2336 dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n");
2337 }
2338
2339 skb->protocol = eth_type_trans(skb, net_dev);
2340
2341 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2342 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2343 &hash_offset)) {
2344 enum pkt_hash_types type;
2345
2346 /* if L4 exists, it was used in the hash generation */
2347 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2348 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2349 skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2350 type);
2351 }
2352
2353 skb_len = skb->len;
2354
2355 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2356 percpu_stats->rx_dropped++;
2357 return qman_cb_dqrr_consume;
2358 }
2359
2360 percpu_stats->rx_packets++;
2361 percpu_stats->rx_bytes += skb_len;
2362
2363 return qman_cb_dqrr_consume;
2364 }
2365
conf_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq)2366 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2367 struct qman_fq *fq,
2368 const struct qm_dqrr_entry *dq)
2369 {
2370 struct dpaa_percpu_priv *percpu_priv;
2371 struct net_device *net_dev;
2372 struct dpaa_priv *priv;
2373
2374 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2375 priv = netdev_priv(net_dev);
2376
2377 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2378
2379 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2380 return qman_cb_dqrr_stop;
2381
2382 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2383
2384 return qman_cb_dqrr_consume;
2385 }
2386
conf_dflt_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq)2387 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2388 struct qman_fq *fq,
2389 const struct qm_dqrr_entry *dq)
2390 {
2391 struct dpaa_percpu_priv *percpu_priv;
2392 struct net_device *net_dev;
2393 struct dpaa_priv *priv;
2394
2395 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2396 priv = netdev_priv(net_dev);
2397
2398 /* Trace the fd */
2399 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2400
2401 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2402
2403 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2404 return qman_cb_dqrr_stop;
2405
2406 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2407
2408 return qman_cb_dqrr_consume;
2409 }
2410
egress_ern(struct qman_portal * portal,struct qman_fq * fq,const union qm_mr_entry * msg)2411 static void egress_ern(struct qman_portal *portal,
2412 struct qman_fq *fq,
2413 const union qm_mr_entry *msg)
2414 {
2415 const struct qm_fd *fd = &msg->ern.fd;
2416 struct dpaa_percpu_priv *percpu_priv;
2417 const struct dpaa_priv *priv;
2418 struct net_device *net_dev;
2419 struct sk_buff *skb;
2420
2421 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2422 priv = netdev_priv(net_dev);
2423 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2424
2425 percpu_priv->stats.tx_dropped++;
2426 percpu_priv->stats.tx_fifo_errors++;
2427 count_ern(percpu_priv, msg);
2428
2429 skb = dpaa_cleanup_tx_fd(priv, fd);
2430 dev_kfree_skb_any(skb);
2431 }
2432
2433 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2434 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2435 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2436 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2437 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2438 .egress_ern = { .cb = { .ern = egress_ern } }
2439 };
2440
dpaa_eth_napi_enable(struct dpaa_priv * priv)2441 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2442 {
2443 struct dpaa_percpu_priv *percpu_priv;
2444 int i;
2445
2446 for_each_possible_cpu(i) {
2447 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2448
2449 percpu_priv->np.down = 0;
2450 napi_enable(&percpu_priv->np.napi);
2451 }
2452 }
2453
dpaa_eth_napi_disable(struct dpaa_priv * priv)2454 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2455 {
2456 struct dpaa_percpu_priv *percpu_priv;
2457 int i;
2458
2459 for_each_possible_cpu(i) {
2460 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2461
2462 percpu_priv->np.down = 1;
2463 napi_disable(&percpu_priv->np.napi);
2464 }
2465 }
2466
dpaa_adjust_link(struct net_device * net_dev)2467 static void dpaa_adjust_link(struct net_device *net_dev)
2468 {
2469 struct mac_device *mac_dev;
2470 struct dpaa_priv *priv;
2471
2472 priv = netdev_priv(net_dev);
2473 mac_dev = priv->mac_dev;
2474 mac_dev->adjust_link(mac_dev);
2475 }
2476
dpaa_phy_init(struct net_device * net_dev)2477 static int dpaa_phy_init(struct net_device *net_dev)
2478 {
2479 struct mac_device *mac_dev;
2480 struct phy_device *phy_dev;
2481 struct dpaa_priv *priv;
2482
2483 priv = netdev_priv(net_dev);
2484 mac_dev = priv->mac_dev;
2485
2486 phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2487 &dpaa_adjust_link, 0,
2488 mac_dev->phy_if);
2489 if (!phy_dev) {
2490 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2491 return -ENODEV;
2492 }
2493
2494 /* Remove any features not supported by the controller */
2495 phy_dev->supported &= mac_dev->if_support;
2496 phy_dev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2497 phy_dev->advertising = phy_dev->supported;
2498
2499 mac_dev->phy_dev = phy_dev;
2500 net_dev->phydev = phy_dev;
2501
2502 return 0;
2503 }
2504
dpaa_open(struct net_device * net_dev)2505 static int dpaa_open(struct net_device *net_dev)
2506 {
2507 struct mac_device *mac_dev;
2508 struct dpaa_priv *priv;
2509 int err, i;
2510
2511 priv = netdev_priv(net_dev);
2512 mac_dev = priv->mac_dev;
2513 dpaa_eth_napi_enable(priv);
2514
2515 err = dpaa_phy_init(net_dev);
2516 if (err)
2517 goto phy_init_failed;
2518
2519 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2520 err = fman_port_enable(mac_dev->port[i]);
2521 if (err)
2522 goto mac_start_failed;
2523 }
2524
2525 err = priv->mac_dev->start(mac_dev);
2526 if (err < 0) {
2527 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2528 goto mac_start_failed;
2529 }
2530
2531 netif_tx_start_all_queues(net_dev);
2532
2533 return 0;
2534
2535 mac_start_failed:
2536 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2537 fman_port_disable(mac_dev->port[i]);
2538
2539 phy_init_failed:
2540 dpaa_eth_napi_disable(priv);
2541
2542 return err;
2543 }
2544
dpaa_eth_stop(struct net_device * net_dev)2545 static int dpaa_eth_stop(struct net_device *net_dev)
2546 {
2547 struct dpaa_priv *priv;
2548 int err;
2549
2550 err = dpaa_stop(net_dev);
2551
2552 priv = netdev_priv(net_dev);
2553 dpaa_eth_napi_disable(priv);
2554
2555 return err;
2556 }
2557
dpaa_ts_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2558 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2559 {
2560 struct dpaa_priv *priv = netdev_priv(dev);
2561 struct hwtstamp_config config;
2562
2563 if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
2564 return -EFAULT;
2565
2566 switch (config.tx_type) {
2567 case HWTSTAMP_TX_OFF:
2568 /* Couldn't disable rx/tx timestamping separately.
2569 * Do nothing here.
2570 */
2571 priv->tx_tstamp = false;
2572 break;
2573 case HWTSTAMP_TX_ON:
2574 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2575 priv->tx_tstamp = true;
2576 break;
2577 default:
2578 return -ERANGE;
2579 }
2580
2581 if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
2582 /* Couldn't disable rx/tx timestamping separately.
2583 * Do nothing here.
2584 */
2585 priv->rx_tstamp = false;
2586 } else {
2587 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2588 priv->rx_tstamp = true;
2589 /* TS is set for all frame types, not only those requested */
2590 config.rx_filter = HWTSTAMP_FILTER_ALL;
2591 }
2592
2593 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
2594 -EFAULT : 0;
2595 }
2596
dpaa_ioctl(struct net_device * net_dev,struct ifreq * rq,int cmd)2597 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2598 {
2599 int ret = -EINVAL;
2600
2601 if (cmd == SIOCGMIIREG) {
2602 if (net_dev->phydev)
2603 return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2604 }
2605
2606 if (cmd == SIOCSHWTSTAMP)
2607 return dpaa_ts_ioctl(net_dev, rq, cmd);
2608
2609 return ret;
2610 }
2611
2612 static const struct net_device_ops dpaa_ops = {
2613 .ndo_open = dpaa_open,
2614 .ndo_start_xmit = dpaa_start_xmit,
2615 .ndo_stop = dpaa_eth_stop,
2616 .ndo_tx_timeout = dpaa_tx_timeout,
2617 .ndo_get_stats64 = dpaa_get_stats64,
2618 .ndo_set_mac_address = dpaa_set_mac_address,
2619 .ndo_validate_addr = eth_validate_addr,
2620 .ndo_set_rx_mode = dpaa_set_rx_mode,
2621 .ndo_do_ioctl = dpaa_ioctl,
2622 .ndo_setup_tc = dpaa_setup_tc,
2623 };
2624
dpaa_napi_add(struct net_device * net_dev)2625 static int dpaa_napi_add(struct net_device *net_dev)
2626 {
2627 struct dpaa_priv *priv = netdev_priv(net_dev);
2628 struct dpaa_percpu_priv *percpu_priv;
2629 int cpu;
2630
2631 for_each_possible_cpu(cpu) {
2632 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2633
2634 netif_napi_add(net_dev, &percpu_priv->np.napi,
2635 dpaa_eth_poll, NAPI_POLL_WEIGHT);
2636 }
2637
2638 return 0;
2639 }
2640
dpaa_napi_del(struct net_device * net_dev)2641 static void dpaa_napi_del(struct net_device *net_dev)
2642 {
2643 struct dpaa_priv *priv = netdev_priv(net_dev);
2644 struct dpaa_percpu_priv *percpu_priv;
2645 int cpu;
2646
2647 for_each_possible_cpu(cpu) {
2648 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2649
2650 netif_napi_del(&percpu_priv->np.napi);
2651 }
2652 }
2653
dpaa_bp_free_pf(const struct dpaa_bp * bp,struct bm_buffer * bmb)2654 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2655 struct bm_buffer *bmb)
2656 {
2657 dma_addr_t addr = bm_buf_addr(bmb);
2658
2659 dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2660
2661 skb_free_frag(phys_to_virt(addr));
2662 }
2663
2664 /* Alloc the dpaa_bp struct and configure default values */
dpaa_bp_alloc(struct device * dev)2665 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2666 {
2667 struct dpaa_bp *dpaa_bp;
2668
2669 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2670 if (!dpaa_bp)
2671 return ERR_PTR(-ENOMEM);
2672
2673 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2674 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2675 if (!dpaa_bp->percpu_count)
2676 return ERR_PTR(-ENOMEM);
2677
2678 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2679
2680 dpaa_bp->seed_cb = dpaa_bp_seed;
2681 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2682
2683 return dpaa_bp;
2684 }
2685
2686 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2687 * We won't be sending congestion notifications to FMan; for now, we just use
2688 * this CGR to generate enqueue rejections to FMan in order to drop the frames
2689 * before they reach our ingress queues and eat up memory.
2690 */
dpaa_ingress_cgr_init(struct dpaa_priv * priv)2691 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2692 {
2693 struct qm_mcc_initcgr initcgr;
2694 u32 cs_th;
2695 int err;
2696
2697 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2698 if (err < 0) {
2699 if (netif_msg_drv(priv))
2700 pr_err("Error %d allocating CGR ID\n", err);
2701 goto out_error;
2702 }
2703
2704 /* Enable CS TD, but disable Congestion State Change Notifications. */
2705 memset(&initcgr, 0, sizeof(initcgr));
2706 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2707 initcgr.cgr.cscn_en = QM_CGR_EN;
2708 cs_th = DPAA_INGRESS_CS_THRESHOLD;
2709 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2710
2711 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2712 initcgr.cgr.cstd_en = QM_CGR_EN;
2713
2714 /* This CGR will be associated with the SWP affined to the current CPU.
2715 * However, we'll place all our ingress FQs in it.
2716 */
2717 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2718 &initcgr);
2719 if (err < 0) {
2720 if (netif_msg_drv(priv))
2721 pr_err("Error %d creating ingress CGR with ID %d\n",
2722 err, priv->ingress_cgr.cgrid);
2723 qman_release_cgrid(priv->ingress_cgr.cgrid);
2724 goto out_error;
2725 }
2726 if (netif_msg_drv(priv))
2727 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2728 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2729
2730 priv->use_ingress_cgr = true;
2731
2732 out_error:
2733 return err;
2734 }
2735
2736 static const struct of_device_id dpaa_match[];
2737
dpaa_get_headroom(struct dpaa_buffer_layout * bl)2738 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2739 {
2740 u16 headroom;
2741
2742 /* The frame headroom must accommodate:
2743 * - the driver private data area
2744 * - parse results, hash results, timestamp if selected
2745 * If either hash results or time stamp are selected, both will
2746 * be copied to/from the frame headroom, as TS is located between PR and
2747 * HR in the IC and IC copy size has a granularity of 16bytes
2748 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2749 *
2750 * Also make sure the headroom is a multiple of data_align bytes
2751 */
2752 headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2753 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2754
2755 return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2756 DPAA_FD_DATA_ALIGNMENT) :
2757 headroom;
2758 }
2759
dpaa_eth_probe(struct platform_device * pdev)2760 static int dpaa_eth_probe(struct platform_device *pdev)
2761 {
2762 struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2763 struct net_device *net_dev = NULL;
2764 struct dpaa_fq *dpaa_fq, *tmp;
2765 struct dpaa_priv *priv = NULL;
2766 struct fm_port_fqs port_fqs;
2767 struct mac_device *mac_dev;
2768 int err = 0, i, channel;
2769 struct device *dev;
2770
2771 /* device used for DMA mapping */
2772 dev = pdev->dev.parent;
2773 err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2774 if (err) {
2775 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2776 return err;
2777 }
2778
2779 /* Allocate this early, so we can store relevant information in
2780 * the private area
2781 */
2782 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2783 if (!net_dev) {
2784 dev_err(dev, "alloc_etherdev_mq() failed\n");
2785 return -ENOMEM;
2786 }
2787
2788 /* Do this here, so we can be verbose early */
2789 SET_NETDEV_DEV(net_dev, dev);
2790 dev_set_drvdata(dev, net_dev);
2791
2792 priv = netdev_priv(net_dev);
2793 priv->net_dev = net_dev;
2794
2795 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2796
2797 mac_dev = dpaa_mac_dev_get(pdev);
2798 if (IS_ERR(mac_dev)) {
2799 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2800 err = PTR_ERR(mac_dev);
2801 goto free_netdev;
2802 }
2803
2804 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2805 * we choose conservatively and let the user explicitly set a higher
2806 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2807 * in the same LAN.
2808 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2809 * start with the maximum allowed.
2810 */
2811 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2812
2813 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2814 net_dev->mtu);
2815
2816 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2817 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2818
2819 /* bp init */
2820 for (i = 0; i < DPAA_BPS_NUM; i++) {
2821 dpaa_bps[i] = dpaa_bp_alloc(dev);
2822 if (IS_ERR(dpaa_bps[i])) {
2823 err = PTR_ERR(dpaa_bps[i]);
2824 goto free_dpaa_bps;
2825 }
2826 /* the raw size of the buffers used for reception */
2827 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2828 /* avoid runtime computations by keeping the usable size here */
2829 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2830 dpaa_bps[i]->dev = dev;
2831
2832 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2833 if (err < 0)
2834 goto free_dpaa_bps;
2835 priv->dpaa_bps[i] = dpaa_bps[i];
2836 }
2837
2838 INIT_LIST_HEAD(&priv->dpaa_fq_list);
2839
2840 memset(&port_fqs, 0, sizeof(port_fqs));
2841
2842 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2843 if (err < 0) {
2844 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2845 goto free_dpaa_bps;
2846 }
2847
2848 priv->mac_dev = mac_dev;
2849
2850 channel = dpaa_get_channel();
2851 if (channel < 0) {
2852 dev_err(dev, "dpaa_get_channel() failed\n");
2853 err = channel;
2854 goto free_dpaa_bps;
2855 }
2856
2857 priv->channel = (u16)channel;
2858
2859 /* Walk the CPUs with affine portals
2860 * and add this pool channel to each's dequeue mask.
2861 */
2862 dpaa_eth_add_channel(priv->channel);
2863
2864 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2865
2866 /* Create a congestion group for this netdev, with
2867 * dynamically-allocated CGR ID.
2868 * Must be executed after probing the MAC, but before
2869 * assigning the egress FQs to the CGRs.
2870 */
2871 err = dpaa_eth_cgr_init(priv);
2872 if (err < 0) {
2873 dev_err(dev, "Error initializing CGR\n");
2874 goto free_dpaa_bps;
2875 }
2876
2877 err = dpaa_ingress_cgr_init(priv);
2878 if (err < 0) {
2879 dev_err(dev, "Error initializing ingress CGR\n");
2880 goto delete_egress_cgr;
2881 }
2882
2883 /* Add the FQs to the interface, and make them active */
2884 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2885 err = dpaa_fq_init(dpaa_fq, false);
2886 if (err < 0)
2887 goto free_dpaa_fqs;
2888 }
2889
2890 priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2891 priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2892
2893 /* All real interfaces need their ports initialized */
2894 err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2895 &priv->buf_layout[0], dev);
2896 if (err)
2897 goto free_dpaa_fqs;
2898
2899 /* Rx traffic distribution based on keygen hashing defaults to on */
2900 priv->keygen_in_use = true;
2901
2902 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2903 if (!priv->percpu_priv) {
2904 dev_err(dev, "devm_alloc_percpu() failed\n");
2905 err = -ENOMEM;
2906 goto free_dpaa_fqs;
2907 }
2908
2909 priv->num_tc = 1;
2910 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2911
2912 /* Initialize NAPI */
2913 err = dpaa_napi_add(net_dev);
2914 if (err < 0)
2915 goto delete_dpaa_napi;
2916
2917 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2918 if (err < 0)
2919 goto delete_dpaa_napi;
2920
2921 dpaa_eth_sysfs_init(&net_dev->dev);
2922
2923 netif_info(priv, probe, net_dev, "Probed interface %s\n",
2924 net_dev->name);
2925
2926 return 0;
2927
2928 delete_dpaa_napi:
2929 dpaa_napi_del(net_dev);
2930 free_dpaa_fqs:
2931 dpaa_fq_free(dev, &priv->dpaa_fq_list);
2932 qman_delete_cgr_safe(&priv->ingress_cgr);
2933 qman_release_cgrid(priv->ingress_cgr.cgrid);
2934 delete_egress_cgr:
2935 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2936 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2937 free_dpaa_bps:
2938 dpaa_bps_free(priv);
2939 free_netdev:
2940 dev_set_drvdata(dev, NULL);
2941 free_netdev(net_dev);
2942
2943 return err;
2944 }
2945
dpaa_remove(struct platform_device * pdev)2946 static int dpaa_remove(struct platform_device *pdev)
2947 {
2948 struct net_device *net_dev;
2949 struct dpaa_priv *priv;
2950 struct device *dev;
2951 int err;
2952
2953 dev = pdev->dev.parent;
2954 net_dev = dev_get_drvdata(dev);
2955
2956 priv = netdev_priv(net_dev);
2957
2958 dpaa_eth_sysfs_remove(dev);
2959
2960 dev_set_drvdata(dev, NULL);
2961 unregister_netdev(net_dev);
2962
2963 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2964
2965 qman_delete_cgr_safe(&priv->ingress_cgr);
2966 qman_release_cgrid(priv->ingress_cgr.cgrid);
2967 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2968 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2969
2970 dpaa_napi_del(net_dev);
2971
2972 dpaa_bps_free(priv);
2973
2974 free_netdev(net_dev);
2975
2976 return err;
2977 }
2978
2979 static const struct platform_device_id dpaa_devtype[] = {
2980 {
2981 .name = "dpaa-ethernet",
2982 .driver_data = 0,
2983 }, {
2984 }
2985 };
2986 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2987
2988 static struct platform_driver dpaa_driver = {
2989 .driver = {
2990 .name = KBUILD_MODNAME,
2991 },
2992 .id_table = dpaa_devtype,
2993 .probe = dpaa_eth_probe,
2994 .remove = dpaa_remove
2995 };
2996
dpaa_load(void)2997 static int __init dpaa_load(void)
2998 {
2999 int err;
3000
3001 pr_debug("FSL DPAA Ethernet driver\n");
3002
3003 /* initialize dpaa_eth mirror values */
3004 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3005 dpaa_max_frm = fman_get_max_frm();
3006
3007 err = platform_driver_register(&dpaa_driver);
3008 if (err < 0)
3009 pr_err("Error, platform_driver_register() = %d\n", err);
3010
3011 return err;
3012 }
3013 module_init(dpaa_load);
3014
dpaa_unload(void)3015 static void __exit dpaa_unload(void)
3016 {
3017 platform_driver_unregister(&dpaa_driver);
3018
3019 /* Only one channel is used and needs to be released after all
3020 * interfaces are removed
3021 */
3022 dpaa_release_channel();
3023 }
3024 module_exit(dpaa_unload);
3025
3026 MODULE_LICENSE("Dual BSD/GPL");
3027 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3028