1 // SPDX-License-Identifier: GPL-2.0
2 /* cavium_ptp.c - PTP 1588 clock on Cavium hardware
3 * Copyright (c) 2003-2015, 2017 Cavium, Inc.
4 */
5
6 #include <linux/device.h>
7 #include <linux/module.h>
8 #include <linux/timecounter.h>
9 #include <linux/pci.h>
10
11 #include "cavium_ptp.h"
12
13 #define DRV_NAME "Cavium PTP Driver"
14
15 #define PCI_DEVICE_ID_CAVIUM_PTP 0xA00C
16 #define PCI_DEVICE_ID_CAVIUM_RST 0xA00E
17
18 #define PCI_PTP_BAR_NO 0
19 #define PCI_RST_BAR_NO 0
20
21 #define PTP_CLOCK_CFG 0xF00ULL
22 #define PTP_CLOCK_CFG_PTP_EN BIT(0)
23 #define PTP_CLOCK_LO 0xF08ULL
24 #define PTP_CLOCK_HI 0xF10ULL
25 #define PTP_CLOCK_COMP 0xF18ULL
26
27 #define RST_BOOT 0x1600ULL
28 #define CLOCK_BASE_RATE 50000000ULL
29
ptp_cavium_clock_get(void)30 static u64 ptp_cavium_clock_get(void)
31 {
32 struct pci_dev *pdev;
33 void __iomem *base;
34 u64 ret = CLOCK_BASE_RATE * 16;
35
36 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
37 PCI_DEVICE_ID_CAVIUM_RST, NULL);
38 if (!pdev)
39 goto error;
40
41 base = pci_ioremap_bar(pdev, PCI_RST_BAR_NO);
42 if (!base)
43 goto error_put_pdev;
44
45 ret = CLOCK_BASE_RATE * ((readq(base + RST_BOOT) >> 33) & 0x3f);
46
47 iounmap(base);
48
49 error_put_pdev:
50 pci_dev_put(pdev);
51
52 error:
53 return ret;
54 }
55
cavium_ptp_get(void)56 struct cavium_ptp *cavium_ptp_get(void)
57 {
58 struct cavium_ptp *ptp;
59 struct pci_dev *pdev;
60
61 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
62 PCI_DEVICE_ID_CAVIUM_PTP, NULL);
63 if (!pdev)
64 return ERR_PTR(-ENODEV);
65
66 ptp = pci_get_drvdata(pdev);
67 if (!ptp)
68 ptp = ERR_PTR(-EPROBE_DEFER);
69 if (IS_ERR(ptp))
70 pci_dev_put(pdev);
71
72 return ptp;
73 }
74 EXPORT_SYMBOL(cavium_ptp_get);
75
cavium_ptp_put(struct cavium_ptp * ptp)76 void cavium_ptp_put(struct cavium_ptp *ptp)
77 {
78 if (!ptp)
79 return;
80 pci_dev_put(ptp->pdev);
81 }
82 EXPORT_SYMBOL(cavium_ptp_put);
83
84 /**
85 * cavium_ptp_adjfine() - Adjust ptp frequency
86 * @ptp: PTP clock info
87 * @scaled_ppm: how much to adjust by, in parts per million, but with a
88 * 16 bit binary fractional field
89 */
cavium_ptp_adjfine(struct ptp_clock_info * ptp_info,long scaled_ppm)90 static int cavium_ptp_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
91 {
92 struct cavium_ptp *clock =
93 container_of(ptp_info, struct cavium_ptp, ptp_info);
94 unsigned long flags;
95 u64 comp;
96 u64 adj;
97 bool neg_adj = false;
98
99 if (scaled_ppm < 0) {
100 neg_adj = true;
101 scaled_ppm = -scaled_ppm;
102 }
103
104 /* The hardware adds the clock compensation value to the PTP clock
105 * on every coprocessor clock cycle. Typical convention is that it
106 * represent number of nanosecond betwen each cycle. In this
107 * convention compensation value is in 64 bit fixed-point
108 * representation where upper 32 bits are number of nanoseconds
109 * and lower is fractions of nanosecond.
110 * The scaled_ppm represent the ratio in "parts per bilion" by which the
111 * compensation value should be corrected.
112 * To calculate new compenstation value we use 64bit fixed point
113 * arithmetic on following formula
114 * comp = tbase + tbase * scaled_ppm / (1M * 2^16)
115 * where tbase is the basic compensation value calculated initialy
116 * in cavium_ptp_init() -> tbase = 1/Hz. Then we use endian
117 * independent structure definition to write data to PTP register.
118 */
119 comp = ((u64)1000000000ull << 32) / clock->clock_rate;
120 adj = comp * scaled_ppm;
121 adj >>= 16;
122 adj = div_u64(adj, 1000000ull);
123 comp = neg_adj ? comp - adj : comp + adj;
124
125 spin_lock_irqsave(&clock->spin_lock, flags);
126 writeq(comp, clock->reg_base + PTP_CLOCK_COMP);
127 spin_unlock_irqrestore(&clock->spin_lock, flags);
128
129 return 0;
130 }
131
132 /**
133 * cavium_ptp_adjtime() - Adjust ptp time
134 * @ptp: PTP clock info
135 * @delta: how much to adjust by, in nanosecs
136 */
cavium_ptp_adjtime(struct ptp_clock_info * ptp_info,s64 delta)137 static int cavium_ptp_adjtime(struct ptp_clock_info *ptp_info, s64 delta)
138 {
139 struct cavium_ptp *clock =
140 container_of(ptp_info, struct cavium_ptp, ptp_info);
141 unsigned long flags;
142
143 spin_lock_irqsave(&clock->spin_lock, flags);
144 timecounter_adjtime(&clock->time_counter, delta);
145 spin_unlock_irqrestore(&clock->spin_lock, flags);
146
147 /* Sync, for network driver to get latest value */
148 smp_mb();
149
150 return 0;
151 }
152
153 /**
154 * cavium_ptp_gettime() - Get hardware clock time with adjustment
155 * @ptp: PTP clock info
156 * @ts: timespec
157 */
cavium_ptp_gettime(struct ptp_clock_info * ptp_info,struct timespec64 * ts)158 static int cavium_ptp_gettime(struct ptp_clock_info *ptp_info,
159 struct timespec64 *ts)
160 {
161 struct cavium_ptp *clock =
162 container_of(ptp_info, struct cavium_ptp, ptp_info);
163 unsigned long flags;
164 u64 nsec;
165
166 spin_lock_irqsave(&clock->spin_lock, flags);
167 nsec = timecounter_read(&clock->time_counter);
168 spin_unlock_irqrestore(&clock->spin_lock, flags);
169
170 *ts = ns_to_timespec64(nsec);
171
172 return 0;
173 }
174
175 /**
176 * cavium_ptp_settime() - Set hardware clock time. Reset adjustment
177 * @ptp: PTP clock info
178 * @ts: timespec
179 */
cavium_ptp_settime(struct ptp_clock_info * ptp_info,const struct timespec64 * ts)180 static int cavium_ptp_settime(struct ptp_clock_info *ptp_info,
181 const struct timespec64 *ts)
182 {
183 struct cavium_ptp *clock =
184 container_of(ptp_info, struct cavium_ptp, ptp_info);
185 unsigned long flags;
186 u64 nsec;
187
188 nsec = timespec64_to_ns(ts);
189
190 spin_lock_irqsave(&clock->spin_lock, flags);
191 timecounter_init(&clock->time_counter, &clock->cycle_counter, nsec);
192 spin_unlock_irqrestore(&clock->spin_lock, flags);
193
194 return 0;
195 }
196
197 /**
198 * cavium_ptp_enable() - Request to enable or disable an ancillary feature.
199 * @ptp: PTP clock info
200 * @rq: request
201 * @on: is it on
202 */
cavium_ptp_enable(struct ptp_clock_info * ptp_info,struct ptp_clock_request * rq,int on)203 static int cavium_ptp_enable(struct ptp_clock_info *ptp_info,
204 struct ptp_clock_request *rq, int on)
205 {
206 return -EOPNOTSUPP;
207 }
208
cavium_ptp_cc_read(const struct cyclecounter * cc)209 static u64 cavium_ptp_cc_read(const struct cyclecounter *cc)
210 {
211 struct cavium_ptp *clock =
212 container_of(cc, struct cavium_ptp, cycle_counter);
213
214 return readq(clock->reg_base + PTP_CLOCK_HI);
215 }
216
cavium_ptp_probe(struct pci_dev * pdev,const struct pci_device_id * ent)217 static int cavium_ptp_probe(struct pci_dev *pdev,
218 const struct pci_device_id *ent)
219 {
220 struct device *dev = &pdev->dev;
221 struct cavium_ptp *clock;
222 struct cyclecounter *cc;
223 u64 clock_cfg;
224 u64 clock_comp;
225 int err;
226
227 clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL);
228 if (!clock) {
229 err = -ENOMEM;
230 goto error;
231 }
232
233 clock->pdev = pdev;
234
235 err = pcim_enable_device(pdev);
236 if (err)
237 goto error_free;
238
239 err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev));
240 if (err)
241 goto error_free;
242
243 clock->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO];
244
245 spin_lock_init(&clock->spin_lock);
246
247 cc = &clock->cycle_counter;
248 cc->read = cavium_ptp_cc_read;
249 cc->mask = CYCLECOUNTER_MASK(64);
250 cc->mult = 1;
251 cc->shift = 0;
252
253 timecounter_init(&clock->time_counter, &clock->cycle_counter,
254 ktime_to_ns(ktime_get_real()));
255
256 clock->clock_rate = ptp_cavium_clock_get();
257
258 clock->ptp_info = (struct ptp_clock_info) {
259 .owner = THIS_MODULE,
260 .name = "ThunderX PTP",
261 .max_adj = 1000000000ull,
262 .n_ext_ts = 0,
263 .n_pins = 0,
264 .pps = 0,
265 .adjfine = cavium_ptp_adjfine,
266 .adjtime = cavium_ptp_adjtime,
267 .gettime64 = cavium_ptp_gettime,
268 .settime64 = cavium_ptp_settime,
269 .enable = cavium_ptp_enable,
270 };
271
272 clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG);
273 clock_cfg |= PTP_CLOCK_CFG_PTP_EN;
274 writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG);
275
276 clock_comp = ((u64)1000000000ull << 32) / clock->clock_rate;
277 writeq(clock_comp, clock->reg_base + PTP_CLOCK_COMP);
278
279 clock->ptp_clock = ptp_clock_register(&clock->ptp_info, dev);
280 if (!clock->ptp_clock) {
281 err = -ENODEV;
282 goto error_stop;
283 }
284 if (IS_ERR(clock->ptp_clock)) {
285 err = PTR_ERR(clock->ptp_clock);
286 goto error_stop;
287 }
288
289 pci_set_drvdata(pdev, clock);
290 return 0;
291
292 error_stop:
293 clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG);
294 clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
295 writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG);
296 pcim_iounmap_regions(pdev, 1 << PCI_PTP_BAR_NO);
297
298 error_free:
299 devm_kfree(dev, clock);
300
301 error:
302 /* For `cavium_ptp_get()` we need to differentiate between the case
303 * when the core has not tried to probe this device and the case when
304 * the probe failed. In the later case we pretend that the
305 * initialization was successful and keep the error in
306 * `dev->driver_data`.
307 */
308 pci_set_drvdata(pdev, ERR_PTR(err));
309 return 0;
310 }
311
cavium_ptp_remove(struct pci_dev * pdev)312 static void cavium_ptp_remove(struct pci_dev *pdev)
313 {
314 struct cavium_ptp *clock = pci_get_drvdata(pdev);
315 u64 clock_cfg;
316
317 if (IS_ERR_OR_NULL(clock))
318 return;
319
320 ptp_clock_unregister(clock->ptp_clock);
321
322 clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG);
323 clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
324 writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG);
325 }
326
327 static const struct pci_device_id cavium_ptp_id_table[] = {
328 { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_CAVIUM_PTP) },
329 { 0, }
330 };
331
332 static struct pci_driver cavium_ptp_driver = {
333 .name = DRV_NAME,
334 .id_table = cavium_ptp_id_table,
335 .probe = cavium_ptp_probe,
336 .remove = cavium_ptp_remove,
337 };
338
339 module_pci_driver(cavium_ptp_driver);
340
341 MODULE_DESCRIPTION(DRV_NAME);
342 MODULE_AUTHOR("Cavium Networks <support@cavium.com>");
343 MODULE_LICENSE("GPL v2");
344 MODULE_DEVICE_TABLE(pci, cavium_ptp_id_table);
345