1 /* Altera Triple-Speed Ethernet MAC driver
2 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
3 *
4 * Contributors:
5 * Dalon Westergreen
6 * Thomas Chou
7 * Ian Abbott
8 * Yuriy Kozlov
9 * Tobias Klauser
10 * Andriy Smolskyy
11 * Roman Bulgakov
12 * Dmytro Mytarchuk
13 * Matthew Gerlach
14 *
15 * Original driver contributed by SLS.
16 * Major updates contributed by GlobalLogic
17 *
18 * This program is free software; you can redistribute it and/or modify it
19 * under the terms and conditions of the GNU General Public License,
20 * version 2, as published by the Free Software Foundation.
21 *
22 * This program is distributed in the hope it will be useful, but WITHOUT
23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
25 * more details.
26 *
27 * You should have received a copy of the GNU General Public License along with
28 * this program. If not, see <http://www.gnu.org/licenses/>.
29 */
30
31 #include <linux/atomic.h>
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/if_vlan.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/mii.h>
41 #include <linux/netdevice.h>
42 #include <linux/of_device.h>
43 #include <linux/of_mdio.h>
44 #include <linux/of_net.h>
45 #include <linux/of_platform.h>
46 #include <linux/phy.h>
47 #include <linux/platform_device.h>
48 #include <linux/skbuff.h>
49 #include <asm/cacheflush.h>
50
51 #include "altera_utils.h"
52 #include "altera_tse.h"
53 #include "altera_sgdma.h"
54 #include "altera_msgdma.h"
55
56 static atomic_t instance_count = ATOMIC_INIT(~0);
57 /* Module parameters */
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61
62 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
63 NETIF_MSG_LINK | NETIF_MSG_IFUP |
64 NETIF_MSG_IFDOWN);
65
66 #define RX_DESCRIPTORS 64
67 static int dma_rx_num = RX_DESCRIPTORS;
68 module_param(dma_rx_num, int, 0644);
69 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
70
71 #define TX_DESCRIPTORS 64
72 static int dma_tx_num = TX_DESCRIPTORS;
73 module_param(dma_tx_num, int, 0644);
74 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
75
76
77 #define POLL_PHY (-1)
78
79 /* Make sure DMA buffer size is larger than the max frame size
80 * plus some alignment offset and a VLAN header. If the max frame size is
81 * 1518, a VLAN header would be additional 4 bytes and additional
82 * headroom for alignment is 2 bytes, 2048 is just fine.
83 */
84 #define ALTERA_RXDMABUFFER_SIZE 2048
85
86 /* Allow network stack to resume queueing packets after we've
87 * finished transmitting at least 1/4 of the packets in the queue.
88 */
89 #define TSE_TX_THRESH(x) (x->tx_ring_size / 4)
90
91 #define TXQUEUESTOP_THRESHHOLD 2
92
93 static const struct of_device_id altera_tse_ids[];
94
tse_tx_avail(struct altera_tse_private * priv)95 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
96 {
97 return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
98 }
99
100 /* PCS Register read/write functions
101 */
sgmii_pcs_read(struct altera_tse_private * priv,int regnum)102 static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum)
103 {
104 return csrrd32(priv->mac_dev,
105 tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff;
106 }
107
sgmii_pcs_write(struct altera_tse_private * priv,int regnum,u16 value)108 static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum,
109 u16 value)
110 {
111 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4);
112 }
113
114 /* Check PCS scratch memory */
sgmii_pcs_scratch_test(struct altera_tse_private * priv,u16 value)115 static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value)
116 {
117 sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value);
118 return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value);
119 }
120
121 /* MDIO specific functions
122 */
altera_tse_mdio_read(struct mii_bus * bus,int mii_id,int regnum)123 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
124 {
125 struct net_device *ndev = bus->priv;
126 struct altera_tse_private *priv = netdev_priv(ndev);
127
128 /* set MDIO address */
129 csrwr32((mii_id & 0x1f), priv->mac_dev,
130 tse_csroffs(mdio_phy1_addr));
131
132 /* get the data */
133 return csrrd32(priv->mac_dev,
134 tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
135 }
136
altera_tse_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)137 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
138 u16 value)
139 {
140 struct net_device *ndev = bus->priv;
141 struct altera_tse_private *priv = netdev_priv(ndev);
142
143 /* set MDIO address */
144 csrwr32((mii_id & 0x1f), priv->mac_dev,
145 tse_csroffs(mdio_phy1_addr));
146
147 /* write the data */
148 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
149 return 0;
150 }
151
altera_tse_mdio_create(struct net_device * dev,unsigned int id)152 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
153 {
154 struct altera_tse_private *priv = netdev_priv(dev);
155 int ret;
156 struct device_node *mdio_node = NULL;
157 struct mii_bus *mdio = NULL;
158 struct device_node *child_node = NULL;
159
160 for_each_child_of_node(priv->device->of_node, child_node) {
161 if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
162 mdio_node = child_node;
163 break;
164 }
165 }
166
167 if (mdio_node) {
168 netdev_dbg(dev, "FOUND MDIO subnode\n");
169 } else {
170 netdev_dbg(dev, "NO MDIO subnode\n");
171 return 0;
172 }
173
174 mdio = mdiobus_alloc();
175 if (mdio == NULL) {
176 netdev_err(dev, "Error allocating MDIO bus\n");
177 return -ENOMEM;
178 }
179
180 mdio->name = ALTERA_TSE_RESOURCE_NAME;
181 mdio->read = &altera_tse_mdio_read;
182 mdio->write = &altera_tse_mdio_write;
183 snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
184
185 mdio->priv = dev;
186 mdio->parent = priv->device;
187
188 ret = of_mdiobus_register(mdio, mdio_node);
189 if (ret != 0) {
190 netdev_err(dev, "Cannot register MDIO bus %s\n",
191 mdio->id);
192 goto out_free_mdio;
193 }
194
195 if (netif_msg_drv(priv))
196 netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
197
198 priv->mdio = mdio;
199 return 0;
200 out_free_mdio:
201 mdiobus_free(mdio);
202 mdio = NULL;
203 return ret;
204 }
205
altera_tse_mdio_destroy(struct net_device * dev)206 static void altera_tse_mdio_destroy(struct net_device *dev)
207 {
208 struct altera_tse_private *priv = netdev_priv(dev);
209
210 if (priv->mdio == NULL)
211 return;
212
213 if (netif_msg_drv(priv))
214 netdev_info(dev, "MDIO bus %s: removed\n",
215 priv->mdio->id);
216
217 mdiobus_unregister(priv->mdio);
218 mdiobus_free(priv->mdio);
219 priv->mdio = NULL;
220 }
221
tse_init_rx_buffer(struct altera_tse_private * priv,struct tse_buffer * rxbuffer,int len)222 static int tse_init_rx_buffer(struct altera_tse_private *priv,
223 struct tse_buffer *rxbuffer, int len)
224 {
225 rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
226 if (!rxbuffer->skb)
227 return -ENOMEM;
228
229 rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
230 len,
231 DMA_FROM_DEVICE);
232
233 if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
234 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
235 dev_kfree_skb_any(rxbuffer->skb);
236 return -EINVAL;
237 }
238 rxbuffer->dma_addr &= (dma_addr_t)~3;
239 rxbuffer->len = len;
240 return 0;
241 }
242
tse_free_rx_buffer(struct altera_tse_private * priv,struct tse_buffer * rxbuffer)243 static void tse_free_rx_buffer(struct altera_tse_private *priv,
244 struct tse_buffer *rxbuffer)
245 {
246 struct sk_buff *skb = rxbuffer->skb;
247 dma_addr_t dma_addr = rxbuffer->dma_addr;
248
249 if (skb != NULL) {
250 if (dma_addr)
251 dma_unmap_single(priv->device, dma_addr,
252 rxbuffer->len,
253 DMA_FROM_DEVICE);
254 dev_kfree_skb_any(skb);
255 rxbuffer->skb = NULL;
256 rxbuffer->dma_addr = 0;
257 }
258 }
259
260 /* Unmap and free Tx buffer resources
261 */
tse_free_tx_buffer(struct altera_tse_private * priv,struct tse_buffer * buffer)262 static void tse_free_tx_buffer(struct altera_tse_private *priv,
263 struct tse_buffer *buffer)
264 {
265 if (buffer->dma_addr) {
266 if (buffer->mapped_as_page)
267 dma_unmap_page(priv->device, buffer->dma_addr,
268 buffer->len, DMA_TO_DEVICE);
269 else
270 dma_unmap_single(priv->device, buffer->dma_addr,
271 buffer->len, DMA_TO_DEVICE);
272 buffer->dma_addr = 0;
273 }
274 if (buffer->skb) {
275 dev_kfree_skb_any(buffer->skb);
276 buffer->skb = NULL;
277 }
278 }
279
alloc_init_skbufs(struct altera_tse_private * priv)280 static int alloc_init_skbufs(struct altera_tse_private *priv)
281 {
282 unsigned int rx_descs = priv->rx_ring_size;
283 unsigned int tx_descs = priv->tx_ring_size;
284 int ret = -ENOMEM;
285 int i;
286
287 /* Create Rx ring buffer */
288 priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
289 GFP_KERNEL);
290 if (!priv->rx_ring)
291 goto err_rx_ring;
292
293 /* Create Tx ring buffer */
294 priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
295 GFP_KERNEL);
296 if (!priv->tx_ring)
297 goto err_tx_ring;
298
299 priv->tx_cons = 0;
300 priv->tx_prod = 0;
301
302 /* Init Rx ring */
303 for (i = 0; i < rx_descs; i++) {
304 ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
305 priv->rx_dma_buf_sz);
306 if (ret)
307 goto err_init_rx_buffers;
308 }
309
310 priv->rx_cons = 0;
311 priv->rx_prod = 0;
312
313 return 0;
314 err_init_rx_buffers:
315 while (--i >= 0)
316 tse_free_rx_buffer(priv, &priv->rx_ring[i]);
317 kfree(priv->tx_ring);
318 err_tx_ring:
319 kfree(priv->rx_ring);
320 err_rx_ring:
321 return ret;
322 }
323
free_skbufs(struct net_device * dev)324 static void free_skbufs(struct net_device *dev)
325 {
326 struct altera_tse_private *priv = netdev_priv(dev);
327 unsigned int rx_descs = priv->rx_ring_size;
328 unsigned int tx_descs = priv->tx_ring_size;
329 int i;
330
331 /* Release the DMA TX/RX socket buffers */
332 for (i = 0; i < rx_descs; i++)
333 tse_free_rx_buffer(priv, &priv->rx_ring[i]);
334 for (i = 0; i < tx_descs; i++)
335 tse_free_tx_buffer(priv, &priv->tx_ring[i]);
336
337
338 kfree(priv->tx_ring);
339 }
340
341 /* Reallocate the skb for the reception process
342 */
tse_rx_refill(struct altera_tse_private * priv)343 static inline void tse_rx_refill(struct altera_tse_private *priv)
344 {
345 unsigned int rxsize = priv->rx_ring_size;
346 unsigned int entry;
347 int ret;
348
349 for (; priv->rx_cons - priv->rx_prod > 0;
350 priv->rx_prod++) {
351 entry = priv->rx_prod % rxsize;
352 if (likely(priv->rx_ring[entry].skb == NULL)) {
353 ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
354 priv->rx_dma_buf_sz);
355 if (unlikely(ret != 0))
356 break;
357 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
358 }
359 }
360 }
361
362 /* Pull out the VLAN tag and fix up the packet
363 */
tse_rx_vlan(struct net_device * dev,struct sk_buff * skb)364 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
365 {
366 struct ethhdr *eth_hdr;
367 u16 vid;
368 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
369 !__vlan_get_tag(skb, &vid)) {
370 eth_hdr = (struct ethhdr *)skb->data;
371 memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
372 skb_pull(skb, VLAN_HLEN);
373 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
374 }
375 }
376
377 /* Receive a packet: retrieve and pass over to upper levels
378 */
tse_rx(struct altera_tse_private * priv,int limit)379 static int tse_rx(struct altera_tse_private *priv, int limit)
380 {
381 unsigned int count = 0;
382 unsigned int next_entry;
383 struct sk_buff *skb;
384 unsigned int entry = priv->rx_cons % priv->rx_ring_size;
385 u32 rxstatus;
386 u16 pktlength;
387 u16 pktstatus;
388
389 /* Check for count < limit first as get_rx_status is changing
390 * the response-fifo so we must process the next packet
391 * after calling get_rx_status if a response is pending.
392 * (reading the last byte of the response pops the value from the fifo.)
393 */
394 while ((count < limit) &&
395 ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
396 pktstatus = rxstatus >> 16;
397 pktlength = rxstatus & 0xffff;
398
399 if ((pktstatus & 0xFF) || (pktlength == 0))
400 netdev_err(priv->dev,
401 "RCV pktstatus %08X pktlength %08X\n",
402 pktstatus, pktlength);
403
404 /* DMA trasfer from TSE starts with 2 aditional bytes for
405 * IP payload alignment. Status returned by get_rx_status()
406 * contains DMA transfer length. Packet is 2 bytes shorter.
407 */
408 pktlength -= 2;
409
410 count++;
411 next_entry = (++priv->rx_cons) % priv->rx_ring_size;
412
413 skb = priv->rx_ring[entry].skb;
414 if (unlikely(!skb)) {
415 netdev_err(priv->dev,
416 "%s: Inconsistent Rx descriptor chain\n",
417 __func__);
418 priv->dev->stats.rx_dropped++;
419 break;
420 }
421 priv->rx_ring[entry].skb = NULL;
422
423 skb_put(skb, pktlength);
424
425 dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
426 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
427
428 if (netif_msg_pktdata(priv)) {
429 netdev_info(priv->dev, "frame received %d bytes\n",
430 pktlength);
431 print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
432 16, 1, skb->data, pktlength, true);
433 }
434
435 tse_rx_vlan(priv->dev, skb);
436
437 skb->protocol = eth_type_trans(skb, priv->dev);
438 skb_checksum_none_assert(skb);
439
440 napi_gro_receive(&priv->napi, skb);
441
442 priv->dev->stats.rx_packets++;
443 priv->dev->stats.rx_bytes += pktlength;
444
445 entry = next_entry;
446
447 tse_rx_refill(priv);
448 }
449
450 return count;
451 }
452
453 /* Reclaim resources after transmission completes
454 */
tse_tx_complete(struct altera_tse_private * priv)455 static int tse_tx_complete(struct altera_tse_private *priv)
456 {
457 unsigned int txsize = priv->tx_ring_size;
458 u32 ready;
459 unsigned int entry;
460 struct tse_buffer *tx_buff;
461 int txcomplete = 0;
462
463 spin_lock(&priv->tx_lock);
464
465 ready = priv->dmaops->tx_completions(priv);
466
467 /* Free sent buffers */
468 while (ready && (priv->tx_cons != priv->tx_prod)) {
469 entry = priv->tx_cons % txsize;
470 tx_buff = &priv->tx_ring[entry];
471
472 if (netif_msg_tx_done(priv))
473 netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
474 __func__, priv->tx_prod, priv->tx_cons);
475
476 if (likely(tx_buff->skb))
477 priv->dev->stats.tx_packets++;
478
479 tse_free_tx_buffer(priv, tx_buff);
480 priv->tx_cons++;
481
482 txcomplete++;
483 ready--;
484 }
485
486 if (unlikely(netif_queue_stopped(priv->dev) &&
487 tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
488 if (netif_queue_stopped(priv->dev) &&
489 tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
490 if (netif_msg_tx_done(priv))
491 netdev_dbg(priv->dev, "%s: restart transmit\n",
492 __func__);
493 netif_wake_queue(priv->dev);
494 }
495 }
496
497 spin_unlock(&priv->tx_lock);
498 return txcomplete;
499 }
500
501 /* NAPI polling function
502 */
tse_poll(struct napi_struct * napi,int budget)503 static int tse_poll(struct napi_struct *napi, int budget)
504 {
505 struct altera_tse_private *priv =
506 container_of(napi, struct altera_tse_private, napi);
507 int rxcomplete = 0;
508 unsigned long int flags;
509
510 tse_tx_complete(priv);
511
512 rxcomplete = tse_rx(priv, budget);
513
514 if (rxcomplete < budget) {
515
516 napi_complete_done(napi, rxcomplete);
517
518 netdev_dbg(priv->dev,
519 "NAPI Complete, did %d packets with budget %d\n",
520 rxcomplete, budget);
521
522 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
523 priv->dmaops->enable_rxirq(priv);
524 priv->dmaops->enable_txirq(priv);
525 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
526 }
527 return rxcomplete;
528 }
529
530 /* DMA TX & RX FIFO interrupt routing
531 */
altera_isr(int irq,void * dev_id)532 static irqreturn_t altera_isr(int irq, void *dev_id)
533 {
534 struct net_device *dev = dev_id;
535 struct altera_tse_private *priv;
536
537 if (unlikely(!dev)) {
538 pr_err("%s: invalid dev pointer\n", __func__);
539 return IRQ_NONE;
540 }
541 priv = netdev_priv(dev);
542
543 spin_lock(&priv->rxdma_irq_lock);
544 /* reset IRQs */
545 priv->dmaops->clear_rxirq(priv);
546 priv->dmaops->clear_txirq(priv);
547 spin_unlock(&priv->rxdma_irq_lock);
548
549 if (likely(napi_schedule_prep(&priv->napi))) {
550 spin_lock(&priv->rxdma_irq_lock);
551 priv->dmaops->disable_rxirq(priv);
552 priv->dmaops->disable_txirq(priv);
553 spin_unlock(&priv->rxdma_irq_lock);
554 __napi_schedule(&priv->napi);
555 }
556
557
558 return IRQ_HANDLED;
559 }
560
561 /* Transmit a packet (called by the kernel). Dispatches
562 * either the SGDMA method for transmitting or the
563 * MSGDMA method, assumes no scatter/gather support,
564 * implying an assumption that there's only one
565 * physically contiguous fragment starting at
566 * skb->data, for length of skb_headlen(skb).
567 */
tse_start_xmit(struct sk_buff * skb,struct net_device * dev)568 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
569 {
570 struct altera_tse_private *priv = netdev_priv(dev);
571 unsigned int txsize = priv->tx_ring_size;
572 unsigned int entry;
573 struct tse_buffer *buffer = NULL;
574 int nfrags = skb_shinfo(skb)->nr_frags;
575 unsigned int nopaged_len = skb_headlen(skb);
576 enum netdev_tx ret = NETDEV_TX_OK;
577 dma_addr_t dma_addr;
578
579 spin_lock_bh(&priv->tx_lock);
580
581 if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
582 if (!netif_queue_stopped(dev)) {
583 netif_stop_queue(dev);
584 /* This is a hard error, log it. */
585 netdev_err(priv->dev,
586 "%s: Tx list full when queue awake\n",
587 __func__);
588 }
589 ret = NETDEV_TX_BUSY;
590 goto out;
591 }
592
593 /* Map the first skb fragment */
594 entry = priv->tx_prod % txsize;
595 buffer = &priv->tx_ring[entry];
596
597 dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
598 DMA_TO_DEVICE);
599 if (dma_mapping_error(priv->device, dma_addr)) {
600 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
601 ret = NETDEV_TX_OK;
602 goto out;
603 }
604
605 buffer->skb = skb;
606 buffer->dma_addr = dma_addr;
607 buffer->len = nopaged_len;
608
609 priv->dmaops->tx_buffer(priv, buffer);
610
611 skb_tx_timestamp(skb);
612
613 priv->tx_prod++;
614 dev->stats.tx_bytes += skb->len;
615
616 if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
617 if (netif_msg_hw(priv))
618 netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
619 __func__);
620 netif_stop_queue(dev);
621 }
622
623 out:
624 spin_unlock_bh(&priv->tx_lock);
625
626 return ret;
627 }
628
629 /* Called every time the controller might need to be made
630 * aware of new link state. The PHY code conveys this
631 * information through variables in the phydev structure, and this
632 * function converts those variables into the appropriate
633 * register values, and can bring down the device if needed.
634 */
altera_tse_adjust_link(struct net_device * dev)635 static void altera_tse_adjust_link(struct net_device *dev)
636 {
637 struct altera_tse_private *priv = netdev_priv(dev);
638 struct phy_device *phydev = dev->phydev;
639 int new_state = 0;
640
641 /* only change config if there is a link */
642 spin_lock(&priv->mac_cfg_lock);
643 if (phydev->link) {
644 /* Read old config */
645 u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
646
647 /* Check duplex */
648 if (phydev->duplex != priv->oldduplex) {
649 new_state = 1;
650 if (!(phydev->duplex))
651 cfg_reg |= MAC_CMDCFG_HD_ENA;
652 else
653 cfg_reg &= ~MAC_CMDCFG_HD_ENA;
654
655 netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
656 dev->name, phydev->duplex);
657
658 priv->oldduplex = phydev->duplex;
659 }
660
661 /* Check speed */
662 if (phydev->speed != priv->oldspeed) {
663 new_state = 1;
664 switch (phydev->speed) {
665 case 1000:
666 cfg_reg |= MAC_CMDCFG_ETH_SPEED;
667 cfg_reg &= ~MAC_CMDCFG_ENA_10;
668 break;
669 case 100:
670 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
671 cfg_reg &= ~MAC_CMDCFG_ENA_10;
672 break;
673 case 10:
674 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
675 cfg_reg |= MAC_CMDCFG_ENA_10;
676 break;
677 default:
678 if (netif_msg_link(priv))
679 netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
680 phydev->speed);
681 break;
682 }
683 priv->oldspeed = phydev->speed;
684 }
685 iowrite32(cfg_reg, &priv->mac_dev->command_config);
686
687 if (!priv->oldlink) {
688 new_state = 1;
689 priv->oldlink = 1;
690 }
691 } else if (priv->oldlink) {
692 new_state = 1;
693 priv->oldlink = 0;
694 priv->oldspeed = 0;
695 priv->oldduplex = -1;
696 }
697
698 if (new_state && netif_msg_link(priv))
699 phy_print_status(phydev);
700
701 spin_unlock(&priv->mac_cfg_lock);
702 }
connect_local_phy(struct net_device * dev)703 static struct phy_device *connect_local_phy(struct net_device *dev)
704 {
705 struct altera_tse_private *priv = netdev_priv(dev);
706 struct phy_device *phydev = NULL;
707 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
708
709 if (priv->phy_addr != POLL_PHY) {
710 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
711 priv->mdio->id, priv->phy_addr);
712
713 netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
714
715 phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
716 priv->phy_iface);
717 if (IS_ERR(phydev))
718 netdev_err(dev, "Could not attach to PHY\n");
719
720 } else {
721 int ret;
722 phydev = phy_find_first(priv->mdio);
723 if (phydev == NULL) {
724 netdev_err(dev, "No PHY found\n");
725 return phydev;
726 }
727
728 ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
729 priv->phy_iface);
730 if (ret != 0) {
731 netdev_err(dev, "Could not attach to PHY\n");
732 phydev = NULL;
733 }
734 }
735 return phydev;
736 }
737
altera_tse_phy_get_addr_mdio_create(struct net_device * dev)738 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
739 {
740 struct altera_tse_private *priv = netdev_priv(dev);
741 struct device_node *np = priv->device->of_node;
742 int ret = 0;
743
744 priv->phy_iface = of_get_phy_mode(np);
745
746 /* Avoid get phy addr and create mdio if no phy is present */
747 if (!priv->phy_iface)
748 return 0;
749
750 /* try to get PHY address from device tree, use PHY autodetection if
751 * no valid address is given
752 */
753
754 if (of_property_read_u32(priv->device->of_node, "phy-addr",
755 &priv->phy_addr)) {
756 priv->phy_addr = POLL_PHY;
757 }
758
759 if (!((priv->phy_addr == POLL_PHY) ||
760 ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
761 netdev_err(dev, "invalid phy-addr specified %d\n",
762 priv->phy_addr);
763 return -ENODEV;
764 }
765
766 /* Create/attach to MDIO bus */
767 ret = altera_tse_mdio_create(dev,
768 atomic_add_return(1, &instance_count));
769
770 if (ret)
771 return -ENODEV;
772
773 return 0;
774 }
775
776 /* Initialize driver's PHY state, and attach to the PHY
777 */
init_phy(struct net_device * dev)778 static int init_phy(struct net_device *dev)
779 {
780 struct altera_tse_private *priv = netdev_priv(dev);
781 struct phy_device *phydev;
782 struct device_node *phynode;
783 bool fixed_link = false;
784 int rc = 0;
785
786 /* Avoid init phy in case of no phy present */
787 if (!priv->phy_iface)
788 return 0;
789
790 priv->oldlink = 0;
791 priv->oldspeed = 0;
792 priv->oldduplex = -1;
793
794 phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
795
796 if (!phynode) {
797 /* check if a fixed-link is defined in device-tree */
798 if (of_phy_is_fixed_link(priv->device->of_node)) {
799 rc = of_phy_register_fixed_link(priv->device->of_node);
800 if (rc < 0) {
801 netdev_err(dev, "cannot register fixed PHY\n");
802 return rc;
803 }
804
805 /* In the case of a fixed PHY, the DT node associated
806 * to the PHY is the Ethernet MAC DT node.
807 */
808 phynode = of_node_get(priv->device->of_node);
809 fixed_link = true;
810
811 netdev_dbg(dev, "fixed-link detected\n");
812 phydev = of_phy_connect(dev, phynode,
813 &altera_tse_adjust_link,
814 0, priv->phy_iface);
815 } else {
816 netdev_dbg(dev, "no phy-handle found\n");
817 if (!priv->mdio) {
818 netdev_err(dev, "No phy-handle nor local mdio specified\n");
819 return -ENODEV;
820 }
821 phydev = connect_local_phy(dev);
822 }
823 } else {
824 netdev_dbg(dev, "phy-handle found\n");
825 phydev = of_phy_connect(dev, phynode,
826 &altera_tse_adjust_link, 0, priv->phy_iface);
827 }
828 of_node_put(phynode);
829
830 if (!phydev) {
831 netdev_err(dev, "Could not find the PHY\n");
832 if (fixed_link)
833 of_phy_deregister_fixed_link(priv->device->of_node);
834 return -ENODEV;
835 }
836
837 /* Stop Advertising 1000BASE Capability if interface is not GMII
838 * Note: Checkpatch throws CHECKs for the camel case defines below,
839 * it's ok to ignore.
840 */
841 if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
842 (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
843 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
844 SUPPORTED_1000baseT_Full);
845
846 /* Broken HW is sometimes missing the pull-up resistor on the
847 * MDIO line, which results in reads to non-existent devices returning
848 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
849 * device as well. If a fixed-link is used the phy_id is always 0.
850 * Note: phydev->phy_id is the result of reading the UID PHY registers.
851 */
852 if ((phydev->phy_id == 0) && !fixed_link) {
853 netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
854 phy_disconnect(phydev);
855 return -ENODEV;
856 }
857
858 netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
859 phydev->mdio.addr, phydev->phy_id, phydev->link);
860
861 return 0;
862 }
863
tse_update_mac_addr(struct altera_tse_private * priv,u8 * addr)864 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
865 {
866 u32 msb;
867 u32 lsb;
868
869 msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
870 lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
871
872 /* Set primary MAC address */
873 csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
874 csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
875 }
876
877 /* MAC software reset.
878 * When reset is triggered, the MAC function completes the current
879 * transmission or reception, and subsequently disables the transmit and
880 * receive logic, flushes the receive FIFO buffer, and resets the statistics
881 * counters.
882 */
reset_mac(struct altera_tse_private * priv)883 static int reset_mac(struct altera_tse_private *priv)
884 {
885 int counter;
886 u32 dat;
887
888 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
889 dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
890 dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
891 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
892
893 counter = 0;
894 while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
895 if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
896 MAC_CMDCFG_SW_RESET))
897 break;
898 udelay(1);
899 }
900
901 if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
902 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
903 dat &= ~MAC_CMDCFG_SW_RESET;
904 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
905 return -1;
906 }
907 return 0;
908 }
909
910 /* Initialize MAC core registers
911 */
init_mac(struct altera_tse_private * priv)912 static int init_mac(struct altera_tse_private *priv)
913 {
914 unsigned int cmd = 0;
915 u32 frm_length;
916
917 /* Setup Rx FIFO */
918 csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
919 priv->mac_dev, tse_csroffs(rx_section_empty));
920
921 csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
922 tse_csroffs(rx_section_full));
923
924 csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
925 tse_csroffs(rx_almost_empty));
926
927 csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
928 tse_csroffs(rx_almost_full));
929
930 /* Setup Tx FIFO */
931 csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
932 priv->mac_dev, tse_csroffs(tx_section_empty));
933
934 csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
935 tse_csroffs(tx_section_full));
936
937 csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
938 tse_csroffs(tx_almost_empty));
939
940 csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
941 tse_csroffs(tx_almost_full));
942
943 /* MAC Address Configuration */
944 tse_update_mac_addr(priv, priv->dev->dev_addr);
945
946 /* MAC Function Configuration */
947 frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
948 csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
949
950 csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
951 tse_csroffs(tx_ipg_length));
952
953 /* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
954 * start address
955 */
956 tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
957 ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
958
959 tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
960 ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
961 ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
962
963 /* Set the MAC options */
964 cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
965 cmd &= ~MAC_CMDCFG_PAD_EN; /* No padding Removal on Receive */
966 cmd &= ~MAC_CMDCFG_CRC_FWD; /* CRC Removal */
967 cmd |= MAC_CMDCFG_RX_ERR_DISC; /* Automatically discard frames
968 * with CRC errors
969 */
970 cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
971 cmd &= ~MAC_CMDCFG_TX_ENA;
972 cmd &= ~MAC_CMDCFG_RX_ENA;
973
974 /* Default speed and duplex setting, full/100 */
975 cmd &= ~MAC_CMDCFG_HD_ENA;
976 cmd &= ~MAC_CMDCFG_ETH_SPEED;
977 cmd &= ~MAC_CMDCFG_ENA_10;
978
979 csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
980
981 csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
982 tse_csroffs(pause_quanta));
983
984 if (netif_msg_hw(priv))
985 dev_dbg(priv->device,
986 "MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
987
988 return 0;
989 }
990
991 /* Start/stop MAC transmission logic
992 */
tse_set_mac(struct altera_tse_private * priv,bool enable)993 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
994 {
995 u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
996
997 if (enable)
998 value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
999 else
1000 value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
1001
1002 csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
1003 }
1004
1005 /* Change the MTU
1006 */
tse_change_mtu(struct net_device * dev,int new_mtu)1007 static int tse_change_mtu(struct net_device *dev, int new_mtu)
1008 {
1009 if (netif_running(dev)) {
1010 netdev_err(dev, "must be stopped to change its MTU\n");
1011 return -EBUSY;
1012 }
1013
1014 dev->mtu = new_mtu;
1015 netdev_update_features(dev);
1016
1017 return 0;
1018 }
1019
altera_tse_set_mcfilter(struct net_device * dev)1020 static void altera_tse_set_mcfilter(struct net_device *dev)
1021 {
1022 struct altera_tse_private *priv = netdev_priv(dev);
1023 int i;
1024 struct netdev_hw_addr *ha;
1025
1026 /* clear the hash filter */
1027 for (i = 0; i < 64; i++)
1028 csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1029
1030 netdev_for_each_mc_addr(ha, dev) {
1031 unsigned int hash = 0;
1032 int mac_octet;
1033
1034 for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1035 unsigned char xor_bit = 0;
1036 unsigned char octet = ha->addr[mac_octet];
1037 unsigned int bitshift;
1038
1039 for (bitshift = 0; bitshift < 8; bitshift++)
1040 xor_bit ^= ((octet >> bitshift) & 0x01);
1041
1042 hash = (hash << 1) | xor_bit;
1043 }
1044 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1045 }
1046 }
1047
1048
altera_tse_set_mcfilterall(struct net_device * dev)1049 static void altera_tse_set_mcfilterall(struct net_device *dev)
1050 {
1051 struct altera_tse_private *priv = netdev_priv(dev);
1052 int i;
1053
1054 /* set the hash filter */
1055 for (i = 0; i < 64; i++)
1056 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1057 }
1058
1059 /* Set or clear the multicast filter for this adaptor
1060 */
tse_set_rx_mode_hashfilter(struct net_device * dev)1061 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1062 {
1063 struct altera_tse_private *priv = netdev_priv(dev);
1064
1065 spin_lock(&priv->mac_cfg_lock);
1066
1067 if (dev->flags & IFF_PROMISC)
1068 tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1069 MAC_CMDCFG_PROMIS_EN);
1070
1071 if (dev->flags & IFF_ALLMULTI)
1072 altera_tse_set_mcfilterall(dev);
1073 else
1074 altera_tse_set_mcfilter(dev);
1075
1076 spin_unlock(&priv->mac_cfg_lock);
1077 }
1078
1079 /* Set or clear the multicast filter for this adaptor
1080 */
tse_set_rx_mode(struct net_device * dev)1081 static void tse_set_rx_mode(struct net_device *dev)
1082 {
1083 struct altera_tse_private *priv = netdev_priv(dev);
1084
1085 spin_lock(&priv->mac_cfg_lock);
1086
1087 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1088 !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1089 tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1090 MAC_CMDCFG_PROMIS_EN);
1091 else
1092 tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1093 MAC_CMDCFG_PROMIS_EN);
1094
1095 spin_unlock(&priv->mac_cfg_lock);
1096 }
1097
1098 /* Initialise (if necessary) the SGMII PCS component
1099 */
init_sgmii_pcs(struct net_device * dev)1100 static int init_sgmii_pcs(struct net_device *dev)
1101 {
1102 struct altera_tse_private *priv = netdev_priv(dev);
1103 int n;
1104 unsigned int tmp_reg = 0;
1105
1106 if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII)
1107 return 0; /* Nothing to do, not in SGMII mode */
1108
1109 /* The TSE SGMII PCS block looks a little like a PHY, it is
1110 * mapped into the zeroth MDIO space of the MAC and it has
1111 * ID registers like a PHY would. Sadly this is often
1112 * configured to zeroes, so don't be surprised if it does
1113 * show 0x00000000.
1114 */
1115
1116 if (sgmii_pcs_scratch_test(priv, 0x0000) &&
1117 sgmii_pcs_scratch_test(priv, 0xffff) &&
1118 sgmii_pcs_scratch_test(priv, 0xa5a5) &&
1119 sgmii_pcs_scratch_test(priv, 0x5a5a)) {
1120 netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n",
1121 sgmii_pcs_read(priv, MII_PHYSID1),
1122 sgmii_pcs_read(priv, MII_PHYSID2));
1123 } else {
1124 netdev_err(dev, "SGMII PCS Scratch memory test failed.\n");
1125 return -ENOMEM;
1126 }
1127
1128 /* Starting on page 5-29 of the MegaCore Function User Guide
1129 * Set SGMII Link timer to 1.6ms
1130 */
1131 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40);
1132 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03);
1133
1134 /* Enable SGMII Interface and Enable SGMII Auto Negotiation */
1135 sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3);
1136
1137 /* Enable Autonegotiation */
1138 tmp_reg = sgmii_pcs_read(priv, MII_BMCR);
1139 tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE);
1140 sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1141
1142 /* Reset PCS block */
1143 tmp_reg |= BMCR_RESET;
1144 sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1145 for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) {
1146 if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) {
1147 netdev_info(dev, "SGMII PCS block initialised OK\n");
1148 return 0;
1149 }
1150 udelay(1);
1151 }
1152
1153 /* We failed to reset the block, return a timeout */
1154 netdev_err(dev, "SGMII PCS block reset failed.\n");
1155 return -ETIMEDOUT;
1156 }
1157
1158 /* Open and initialize the interface
1159 */
tse_open(struct net_device * dev)1160 static int tse_open(struct net_device *dev)
1161 {
1162 struct altera_tse_private *priv = netdev_priv(dev);
1163 int ret = 0;
1164 int i;
1165 unsigned long int flags;
1166
1167 /* Reset and configure TSE MAC and probe associated PHY */
1168 ret = priv->dmaops->init_dma(priv);
1169 if (ret != 0) {
1170 netdev_err(dev, "Cannot initialize DMA\n");
1171 goto phy_error;
1172 }
1173
1174 if (netif_msg_ifup(priv))
1175 netdev_warn(dev, "device MAC address %pM\n",
1176 dev->dev_addr);
1177
1178 if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1179 netdev_warn(dev, "TSE revision %x\n", priv->revision);
1180
1181 spin_lock(&priv->mac_cfg_lock);
1182 /* no-op if MAC not operating in SGMII mode*/
1183 ret = init_sgmii_pcs(dev);
1184 if (ret) {
1185 netdev_err(dev,
1186 "Cannot init the SGMII PCS (error: %d)\n", ret);
1187 spin_unlock(&priv->mac_cfg_lock);
1188 goto phy_error;
1189 }
1190
1191 ret = reset_mac(priv);
1192 /* Note that reset_mac will fail if the clocks are gated by the PHY
1193 * due to the PHY being put into isolation or power down mode.
1194 * This is not an error if reset fails due to no clock.
1195 */
1196 if (ret)
1197 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1198
1199 ret = init_mac(priv);
1200 spin_unlock(&priv->mac_cfg_lock);
1201 if (ret) {
1202 netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1203 goto alloc_skbuf_error;
1204 }
1205
1206 priv->dmaops->reset_dma(priv);
1207
1208 /* Create and initialize the TX/RX descriptors chains. */
1209 priv->rx_ring_size = dma_rx_num;
1210 priv->tx_ring_size = dma_tx_num;
1211 ret = alloc_init_skbufs(priv);
1212 if (ret) {
1213 netdev_err(dev, "DMA descriptors initialization failed\n");
1214 goto alloc_skbuf_error;
1215 }
1216
1217
1218 /* Register RX interrupt */
1219 ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1220 dev->name, dev);
1221 if (ret) {
1222 netdev_err(dev, "Unable to register RX interrupt %d\n",
1223 priv->rx_irq);
1224 goto init_error;
1225 }
1226
1227 /* Register TX interrupt */
1228 ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1229 dev->name, dev);
1230 if (ret) {
1231 netdev_err(dev, "Unable to register TX interrupt %d\n",
1232 priv->tx_irq);
1233 goto tx_request_irq_error;
1234 }
1235
1236 /* Enable DMA interrupts */
1237 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1238 priv->dmaops->enable_rxirq(priv);
1239 priv->dmaops->enable_txirq(priv);
1240
1241 /* Setup RX descriptor chain */
1242 for (i = 0; i < priv->rx_ring_size; i++)
1243 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1244
1245 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1246
1247 if (dev->phydev)
1248 phy_start(dev->phydev);
1249
1250 napi_enable(&priv->napi);
1251 netif_start_queue(dev);
1252
1253 priv->dmaops->start_rxdma(priv);
1254
1255 /* Start MAC Rx/Tx */
1256 spin_lock(&priv->mac_cfg_lock);
1257 tse_set_mac(priv, true);
1258 spin_unlock(&priv->mac_cfg_lock);
1259
1260 return 0;
1261
1262 tx_request_irq_error:
1263 free_irq(priv->rx_irq, dev);
1264 init_error:
1265 free_skbufs(dev);
1266 alloc_skbuf_error:
1267 phy_error:
1268 return ret;
1269 }
1270
1271 /* Stop TSE MAC interface and put the device in an inactive state
1272 */
tse_shutdown(struct net_device * dev)1273 static int tse_shutdown(struct net_device *dev)
1274 {
1275 struct altera_tse_private *priv = netdev_priv(dev);
1276 int ret;
1277 unsigned long int flags;
1278
1279 /* Stop the PHY */
1280 if (dev->phydev)
1281 phy_stop(dev->phydev);
1282
1283 netif_stop_queue(dev);
1284 napi_disable(&priv->napi);
1285
1286 /* Disable DMA interrupts */
1287 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1288 priv->dmaops->disable_rxirq(priv);
1289 priv->dmaops->disable_txirq(priv);
1290 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1291
1292 /* Free the IRQ lines */
1293 free_irq(priv->rx_irq, dev);
1294 free_irq(priv->tx_irq, dev);
1295
1296 /* disable and reset the MAC, empties fifo */
1297 spin_lock(&priv->mac_cfg_lock);
1298 spin_lock(&priv->tx_lock);
1299
1300 ret = reset_mac(priv);
1301 /* Note that reset_mac will fail if the clocks are gated by the PHY
1302 * due to the PHY being put into isolation or power down mode.
1303 * This is not an error if reset fails due to no clock.
1304 */
1305 if (ret)
1306 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1307 priv->dmaops->reset_dma(priv);
1308 free_skbufs(dev);
1309
1310 spin_unlock(&priv->tx_lock);
1311 spin_unlock(&priv->mac_cfg_lock);
1312
1313 priv->dmaops->uninit_dma(priv);
1314
1315 return 0;
1316 }
1317
1318 static struct net_device_ops altera_tse_netdev_ops = {
1319 .ndo_open = tse_open,
1320 .ndo_stop = tse_shutdown,
1321 .ndo_start_xmit = tse_start_xmit,
1322 .ndo_set_mac_address = eth_mac_addr,
1323 .ndo_set_rx_mode = tse_set_rx_mode,
1324 .ndo_change_mtu = tse_change_mtu,
1325 .ndo_validate_addr = eth_validate_addr,
1326 };
1327
request_and_map(struct platform_device * pdev,const char * name,struct resource ** res,void __iomem ** ptr)1328 static int request_and_map(struct platform_device *pdev, const char *name,
1329 struct resource **res, void __iomem **ptr)
1330 {
1331 struct resource *region;
1332 struct device *device = &pdev->dev;
1333
1334 *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1335 if (*res == NULL) {
1336 dev_err(device, "resource %s not defined\n", name);
1337 return -ENODEV;
1338 }
1339
1340 region = devm_request_mem_region(device, (*res)->start,
1341 resource_size(*res), dev_name(device));
1342 if (region == NULL) {
1343 dev_err(device, "unable to request %s\n", name);
1344 return -EBUSY;
1345 }
1346
1347 *ptr = devm_ioremap_nocache(device, region->start,
1348 resource_size(region));
1349 if (*ptr == NULL) {
1350 dev_err(device, "ioremap_nocache of %s failed!", name);
1351 return -ENOMEM;
1352 }
1353
1354 return 0;
1355 }
1356
1357 /* Probe Altera TSE MAC device
1358 */
altera_tse_probe(struct platform_device * pdev)1359 static int altera_tse_probe(struct platform_device *pdev)
1360 {
1361 struct net_device *ndev;
1362 int ret = -ENODEV;
1363 struct resource *control_port;
1364 struct resource *dma_res;
1365 struct altera_tse_private *priv;
1366 const unsigned char *macaddr;
1367 void __iomem *descmap;
1368 const struct of_device_id *of_id = NULL;
1369
1370 ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1371 if (!ndev) {
1372 dev_err(&pdev->dev, "Could not allocate network device\n");
1373 return -ENODEV;
1374 }
1375
1376 SET_NETDEV_DEV(ndev, &pdev->dev);
1377
1378 priv = netdev_priv(ndev);
1379 priv->device = &pdev->dev;
1380 priv->dev = ndev;
1381 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1382
1383 of_id = of_match_device(altera_tse_ids, &pdev->dev);
1384
1385 if (of_id)
1386 priv->dmaops = (struct altera_dmaops *)of_id->data;
1387
1388
1389 if (priv->dmaops &&
1390 priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1391 /* Get the mapped address to the SGDMA descriptor memory */
1392 ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1393 if (ret)
1394 goto err_free_netdev;
1395
1396 /* Start of that memory is for transmit descriptors */
1397 priv->tx_dma_desc = descmap;
1398
1399 /* First half is for tx descriptors, other half for tx */
1400 priv->txdescmem = resource_size(dma_res)/2;
1401
1402 priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1403
1404 priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1405 priv->txdescmem));
1406 priv->rxdescmem = resource_size(dma_res)/2;
1407 priv->rxdescmem_busaddr = dma_res->start;
1408 priv->rxdescmem_busaddr += priv->txdescmem;
1409
1410 if (upper_32_bits(priv->rxdescmem_busaddr)) {
1411 dev_dbg(priv->device,
1412 "SGDMA bus addresses greater than 32-bits\n");
1413 ret = -EINVAL;
1414 goto err_free_netdev;
1415 }
1416 if (upper_32_bits(priv->txdescmem_busaddr)) {
1417 dev_dbg(priv->device,
1418 "SGDMA bus addresses greater than 32-bits\n");
1419 ret = -EINVAL;
1420 goto err_free_netdev;
1421 }
1422 } else if (priv->dmaops &&
1423 priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1424 ret = request_and_map(pdev, "rx_resp", &dma_res,
1425 &priv->rx_dma_resp);
1426 if (ret)
1427 goto err_free_netdev;
1428
1429 ret = request_and_map(pdev, "tx_desc", &dma_res,
1430 &priv->tx_dma_desc);
1431 if (ret)
1432 goto err_free_netdev;
1433
1434 priv->txdescmem = resource_size(dma_res);
1435 priv->txdescmem_busaddr = dma_res->start;
1436
1437 ret = request_and_map(pdev, "rx_desc", &dma_res,
1438 &priv->rx_dma_desc);
1439 if (ret)
1440 goto err_free_netdev;
1441
1442 priv->rxdescmem = resource_size(dma_res);
1443 priv->rxdescmem_busaddr = dma_res->start;
1444
1445 } else {
1446 goto err_free_netdev;
1447 }
1448
1449 if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1450 dma_set_coherent_mask(priv->device,
1451 DMA_BIT_MASK(priv->dmaops->dmamask));
1452 else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1453 dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1454 else
1455 goto err_free_netdev;
1456
1457 /* MAC address space */
1458 ret = request_and_map(pdev, "control_port", &control_port,
1459 (void __iomem **)&priv->mac_dev);
1460 if (ret)
1461 goto err_free_netdev;
1462
1463 /* xSGDMA Rx Dispatcher address space */
1464 ret = request_and_map(pdev, "rx_csr", &dma_res,
1465 &priv->rx_dma_csr);
1466 if (ret)
1467 goto err_free_netdev;
1468
1469
1470 /* xSGDMA Tx Dispatcher address space */
1471 ret = request_and_map(pdev, "tx_csr", &dma_res,
1472 &priv->tx_dma_csr);
1473 if (ret)
1474 goto err_free_netdev;
1475
1476
1477 /* Rx IRQ */
1478 priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1479 if (priv->rx_irq == -ENXIO) {
1480 dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1481 ret = -ENXIO;
1482 goto err_free_netdev;
1483 }
1484
1485 /* Tx IRQ */
1486 priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1487 if (priv->tx_irq == -ENXIO) {
1488 dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1489 ret = -ENXIO;
1490 goto err_free_netdev;
1491 }
1492
1493 /* get FIFO depths from device tree */
1494 if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1495 &priv->rx_fifo_depth)) {
1496 dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1497 ret = -ENXIO;
1498 goto err_free_netdev;
1499 }
1500
1501 if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1502 &priv->tx_fifo_depth)) {
1503 dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1504 ret = -ENXIO;
1505 goto err_free_netdev;
1506 }
1507
1508 /* get hash filter settings for this instance */
1509 priv->hash_filter =
1510 of_property_read_bool(pdev->dev.of_node,
1511 "altr,has-hash-multicast-filter");
1512
1513 /* Set hash filter to not set for now until the
1514 * multicast filter receive issue is debugged
1515 */
1516 priv->hash_filter = 0;
1517
1518 /* get supplemental address settings for this instance */
1519 priv->added_unicast =
1520 of_property_read_bool(pdev->dev.of_node,
1521 "altr,has-supplementary-unicast");
1522
1523 priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1524 /* Max MTU is 1500, ETH_DATA_LEN */
1525 priv->dev->max_mtu = ETH_DATA_LEN;
1526
1527 /* Get the max mtu from the device tree. Note that the
1528 * "max-frame-size" parameter is actually max mtu. Definition
1529 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1530 */
1531 of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1532 &priv->dev->max_mtu);
1533
1534 /* The DMA buffer size already accounts for an alignment bias
1535 * to avoid unaligned access exceptions for the NIOS processor,
1536 */
1537 priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1538
1539 /* get default MAC address from device tree */
1540 macaddr = of_get_mac_address(pdev->dev.of_node);
1541 if (macaddr)
1542 ether_addr_copy(ndev->dev_addr, macaddr);
1543 else
1544 eth_hw_addr_random(ndev);
1545
1546 /* get phy addr and create mdio */
1547 ret = altera_tse_phy_get_addr_mdio_create(ndev);
1548
1549 if (ret)
1550 goto err_free_netdev;
1551
1552 /* initialize netdev */
1553 ndev->mem_start = control_port->start;
1554 ndev->mem_end = control_port->end;
1555 ndev->netdev_ops = &altera_tse_netdev_ops;
1556 altera_tse_set_ethtool_ops(ndev);
1557
1558 altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1559
1560 if (priv->hash_filter)
1561 altera_tse_netdev_ops.ndo_set_rx_mode =
1562 tse_set_rx_mode_hashfilter;
1563
1564 /* Scatter/gather IO is not supported,
1565 * so it is turned off
1566 */
1567 ndev->hw_features &= ~NETIF_F_SG;
1568 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1569
1570 /* VLAN offloading of tagging, stripping and filtering is not
1571 * supported by hardware, but driver will accommodate the
1572 * extra 4-byte VLAN tag for processing by upper layers
1573 */
1574 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1575
1576 /* setup NAPI interface */
1577 netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1578
1579 spin_lock_init(&priv->mac_cfg_lock);
1580 spin_lock_init(&priv->tx_lock);
1581 spin_lock_init(&priv->rxdma_irq_lock);
1582
1583 netif_carrier_off(ndev);
1584 ret = register_netdev(ndev);
1585 if (ret) {
1586 dev_err(&pdev->dev, "failed to register TSE net device\n");
1587 goto err_register_netdev;
1588 }
1589
1590 platform_set_drvdata(pdev, ndev);
1591
1592 priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1593
1594 if (netif_msg_probe(priv))
1595 dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1596 (priv->revision >> 8) & 0xff,
1597 priv->revision & 0xff,
1598 (unsigned long) control_port->start, priv->rx_irq,
1599 priv->tx_irq);
1600
1601 ret = init_phy(ndev);
1602 if (ret != 0) {
1603 netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1604 goto err_init_phy;
1605 }
1606 return 0;
1607
1608 err_init_phy:
1609 unregister_netdev(ndev);
1610 err_register_netdev:
1611 netif_napi_del(&priv->napi);
1612 altera_tse_mdio_destroy(ndev);
1613 err_free_netdev:
1614 free_netdev(ndev);
1615 return ret;
1616 }
1617
1618 /* Remove Altera TSE MAC device
1619 */
altera_tse_remove(struct platform_device * pdev)1620 static int altera_tse_remove(struct platform_device *pdev)
1621 {
1622 struct net_device *ndev = platform_get_drvdata(pdev);
1623 struct altera_tse_private *priv = netdev_priv(ndev);
1624
1625 if (ndev->phydev) {
1626 phy_disconnect(ndev->phydev);
1627
1628 if (of_phy_is_fixed_link(priv->device->of_node))
1629 of_phy_deregister_fixed_link(priv->device->of_node);
1630 }
1631
1632 platform_set_drvdata(pdev, NULL);
1633 altera_tse_mdio_destroy(ndev);
1634 unregister_netdev(ndev);
1635 free_netdev(ndev);
1636
1637 return 0;
1638 }
1639
1640 static const struct altera_dmaops altera_dtype_sgdma = {
1641 .altera_dtype = ALTERA_DTYPE_SGDMA,
1642 .dmamask = 32,
1643 .reset_dma = sgdma_reset,
1644 .enable_txirq = sgdma_enable_txirq,
1645 .enable_rxirq = sgdma_enable_rxirq,
1646 .disable_txirq = sgdma_disable_txirq,
1647 .disable_rxirq = sgdma_disable_rxirq,
1648 .clear_txirq = sgdma_clear_txirq,
1649 .clear_rxirq = sgdma_clear_rxirq,
1650 .tx_buffer = sgdma_tx_buffer,
1651 .tx_completions = sgdma_tx_completions,
1652 .add_rx_desc = sgdma_add_rx_desc,
1653 .get_rx_status = sgdma_rx_status,
1654 .init_dma = sgdma_initialize,
1655 .uninit_dma = sgdma_uninitialize,
1656 .start_rxdma = sgdma_start_rxdma,
1657 };
1658
1659 static const struct altera_dmaops altera_dtype_msgdma = {
1660 .altera_dtype = ALTERA_DTYPE_MSGDMA,
1661 .dmamask = 64,
1662 .reset_dma = msgdma_reset,
1663 .enable_txirq = msgdma_enable_txirq,
1664 .enable_rxirq = msgdma_enable_rxirq,
1665 .disable_txirq = msgdma_disable_txirq,
1666 .disable_rxirq = msgdma_disable_rxirq,
1667 .clear_txirq = msgdma_clear_txirq,
1668 .clear_rxirq = msgdma_clear_rxirq,
1669 .tx_buffer = msgdma_tx_buffer,
1670 .tx_completions = msgdma_tx_completions,
1671 .add_rx_desc = msgdma_add_rx_desc,
1672 .get_rx_status = msgdma_rx_status,
1673 .init_dma = msgdma_initialize,
1674 .uninit_dma = msgdma_uninitialize,
1675 .start_rxdma = msgdma_start_rxdma,
1676 };
1677
1678 static const struct of_device_id altera_tse_ids[] = {
1679 { .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1680 { .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1681 { .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1682 {},
1683 };
1684 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1685
1686 static struct platform_driver altera_tse_driver = {
1687 .probe = altera_tse_probe,
1688 .remove = altera_tse_remove,
1689 .suspend = NULL,
1690 .resume = NULL,
1691 .driver = {
1692 .name = ALTERA_TSE_RESOURCE_NAME,
1693 .of_match_table = altera_tse_ids,
1694 },
1695 };
1696
1697 module_platform_driver(altera_tse_driver);
1698
1699 MODULE_AUTHOR("Altera Corporation");
1700 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1701 MODULE_LICENSE("GPL v2");
1702