1 /*
2 * Microchip switch driver main logic
3 *
4 * Copyright (C) 2017
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/gpio.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
30
31 #include "ksz_priv.h"
32
33 static const struct {
34 int index;
35 char string[ETH_GSTRING_LEN];
36 } mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
37 { 0x00, "rx_hi" },
38 { 0x01, "rx_undersize" },
39 { 0x02, "rx_fragments" },
40 { 0x03, "rx_oversize" },
41 { 0x04, "rx_jabbers" },
42 { 0x05, "rx_symbol_err" },
43 { 0x06, "rx_crc_err" },
44 { 0x07, "rx_align_err" },
45 { 0x08, "rx_mac_ctrl" },
46 { 0x09, "rx_pause" },
47 { 0x0A, "rx_bcast" },
48 { 0x0B, "rx_mcast" },
49 { 0x0C, "rx_ucast" },
50 { 0x0D, "rx_64_or_less" },
51 { 0x0E, "rx_65_127" },
52 { 0x0F, "rx_128_255" },
53 { 0x10, "rx_256_511" },
54 { 0x11, "rx_512_1023" },
55 { 0x12, "rx_1024_1522" },
56 { 0x13, "rx_1523_2000" },
57 { 0x14, "rx_2001" },
58 { 0x15, "tx_hi" },
59 { 0x16, "tx_late_col" },
60 { 0x17, "tx_pause" },
61 { 0x18, "tx_bcast" },
62 { 0x19, "tx_mcast" },
63 { 0x1A, "tx_ucast" },
64 { 0x1B, "tx_deferred" },
65 { 0x1C, "tx_total_col" },
66 { 0x1D, "tx_exc_col" },
67 { 0x1E, "tx_single_col" },
68 { 0x1F, "tx_mult_col" },
69 { 0x80, "rx_total" },
70 { 0x81, "tx_total" },
71 { 0x82, "rx_discards" },
72 { 0x83, "tx_discards" },
73 };
74
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)75 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
76 {
77 u8 data;
78
79 ksz_read8(dev, addr, &data);
80 if (set)
81 data |= bits;
82 else
83 data &= ~bits;
84 ksz_write8(dev, addr, data);
85 }
86
ksz_cfg32(struct ksz_device * dev,u32 addr,u32 bits,bool set)87 static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
88 {
89 u32 data;
90
91 ksz_read32(dev, addr, &data);
92 if (set)
93 data |= bits;
94 else
95 data &= ~bits;
96 ksz_write32(dev, addr, data);
97 }
98
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)99 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
100 bool set)
101 {
102 u32 addr;
103 u8 data;
104
105 addr = PORT_CTRL_ADDR(port, offset);
106 ksz_read8(dev, addr, &data);
107
108 if (set)
109 data |= bits;
110 else
111 data &= ~bits;
112
113 ksz_write8(dev, addr, data);
114 }
115
ksz_port_cfg32(struct ksz_device * dev,int port,int offset,u32 bits,bool set)116 static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
117 u32 bits, bool set)
118 {
119 u32 addr;
120 u32 data;
121
122 addr = PORT_CTRL_ADDR(port, offset);
123 ksz_read32(dev, addr, &data);
124
125 if (set)
126 data |= bits;
127 else
128 data &= ~bits;
129
130 ksz_write32(dev, addr, data);
131 }
132
wait_vlan_ctrl_ready(struct ksz_device * dev,u32 waiton,int timeout)133 static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
134 {
135 u8 data;
136
137 do {
138 ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
139 if (!(data & waiton))
140 break;
141 usleep_range(1, 10);
142 } while (timeout-- > 0);
143
144 if (timeout <= 0)
145 return -ETIMEDOUT;
146
147 return 0;
148 }
149
get_vlan_table(struct dsa_switch * ds,u16 vid,u32 * vlan_table)150 static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
151 {
152 struct ksz_device *dev = ds->priv;
153 int ret;
154
155 mutex_lock(&dev->vlan_mutex);
156
157 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
158 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
159
160 /* wait to be cleared */
161 ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
162 if (ret < 0) {
163 dev_dbg(dev->dev, "Failed to read vlan table\n");
164 goto exit;
165 }
166
167 ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
168 ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
169 ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
170
171 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
172
173 exit:
174 mutex_unlock(&dev->vlan_mutex);
175
176 return ret;
177 }
178
set_vlan_table(struct dsa_switch * ds,u16 vid,u32 * vlan_table)179 static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
180 {
181 struct ksz_device *dev = ds->priv;
182 int ret;
183
184 mutex_lock(&dev->vlan_mutex);
185
186 ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
187 ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
188 ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
189
190 ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
191 ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
192
193 /* wait to be cleared */
194 ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
195 if (ret < 0) {
196 dev_dbg(dev->dev, "Failed to write vlan table\n");
197 goto exit;
198 }
199
200 ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
201
202 /* update vlan cache table */
203 dev->vlan_cache[vid].table[0] = vlan_table[0];
204 dev->vlan_cache[vid].table[1] = vlan_table[1];
205 dev->vlan_cache[vid].table[2] = vlan_table[2];
206
207 exit:
208 mutex_unlock(&dev->vlan_mutex);
209
210 return ret;
211 }
212
read_table(struct dsa_switch * ds,u32 * table)213 static void read_table(struct dsa_switch *ds, u32 *table)
214 {
215 struct ksz_device *dev = ds->priv;
216
217 ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
218 ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
219 ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
220 ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
221 }
222
write_table(struct dsa_switch * ds,u32 * table)223 static void write_table(struct dsa_switch *ds, u32 *table)
224 {
225 struct ksz_device *dev = ds->priv;
226
227 ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
228 ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
229 ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
230 ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
231 }
232
wait_alu_ready(struct ksz_device * dev,u32 waiton,int timeout)233 static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
234 {
235 u32 data;
236
237 do {
238 ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
239 if (!(data & waiton))
240 break;
241 usleep_range(1, 10);
242 } while (timeout-- > 0);
243
244 if (timeout <= 0)
245 return -ETIMEDOUT;
246
247 return 0;
248 }
249
wait_alu_sta_ready(struct ksz_device * dev,u32 waiton,int timeout)250 static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
251 {
252 u32 data;
253
254 do {
255 ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
256 if (!(data & waiton))
257 break;
258 usleep_range(1, 10);
259 } while (timeout-- > 0);
260
261 if (timeout <= 0)
262 return -ETIMEDOUT;
263
264 return 0;
265 }
266
ksz_reset_switch(struct dsa_switch * ds)267 static int ksz_reset_switch(struct dsa_switch *ds)
268 {
269 struct ksz_device *dev = ds->priv;
270 u8 data8;
271 u16 data16;
272 u32 data32;
273
274 /* reset switch */
275 ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
276
277 /* turn off SPI DO Edge select */
278 ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
279 data8 &= ~SPI_AUTO_EDGE_DETECTION;
280 ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
281
282 /* default configuration */
283 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
284 data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
285 SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
286 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
287
288 /* disable interrupts */
289 ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
290 ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
291 ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
292
293 /* set broadcast storm protection 10% rate */
294 ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
295 data16 &= ~BROADCAST_STORM_RATE;
296 data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
297 ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
298
299 return 0;
300 }
301
port_setup(struct ksz_device * dev,int port,bool cpu_port)302 static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
303 {
304 u8 data8;
305 u16 data16;
306
307 /* enable tag tail for host port */
308 if (cpu_port)
309 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
310 true);
311
312 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
313
314 /* set back pressure */
315 ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
316
317 /* set flow control */
318 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
319 PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
320
321 /* enable broadcast storm limit */
322 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
323
324 /* disable DiffServ priority */
325 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
326
327 /* replace priority */
328 ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
329 false);
330 ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
331 MTI_PVID_REPLACE, false);
332
333 /* enable 802.1p priority */
334 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
335
336 /* configure MAC to 1G & RGMII mode */
337 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
338 data8 |= PORT_RGMII_ID_EG_ENABLE;
339 data8 &= ~PORT_MII_NOT_1GBIT;
340 data8 &= ~PORT_MII_SEL_M;
341 data8 |= PORT_RGMII_SEL;
342 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
343
344 /* clear pending interrupts */
345 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
346 }
347
ksz_config_cpu_port(struct dsa_switch * ds)348 static void ksz_config_cpu_port(struct dsa_switch *ds)
349 {
350 struct ksz_device *dev = ds->priv;
351 int i;
352
353 ds->num_ports = dev->port_cnt;
354
355 for (i = 0; i < ds->num_ports; i++) {
356 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
357 dev->cpu_port = i;
358
359 /* enable cpu port */
360 port_setup(dev, i, true);
361 }
362 }
363 }
364
ksz_setup(struct dsa_switch * ds)365 static int ksz_setup(struct dsa_switch *ds)
366 {
367 struct ksz_device *dev = ds->priv;
368 int ret = 0;
369
370 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
371 dev->num_vlans, GFP_KERNEL);
372 if (!dev->vlan_cache)
373 return -ENOMEM;
374
375 ret = ksz_reset_switch(ds);
376 if (ret) {
377 dev_err(ds->dev, "failed to reset switch\n");
378 return ret;
379 }
380
381 /* accept packet up to 2000bytes */
382 ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
383
384 ksz_config_cpu_port(ds);
385
386 ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
387
388 /* queue based egress rate limit */
389 ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
390
391 /* start switch */
392 ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
393
394 return 0;
395 }
396
ksz_get_tag_protocol(struct dsa_switch * ds,int port)397 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
398 int port)
399 {
400 return DSA_TAG_PROTO_KSZ;
401 }
402
ksz_phy_read16(struct dsa_switch * ds,int addr,int reg)403 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
404 {
405 struct ksz_device *dev = ds->priv;
406 u16 val = 0;
407
408 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
409
410 return val;
411 }
412
ksz_phy_write16(struct dsa_switch * ds,int addr,int reg,u16 val)413 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
414 {
415 struct ksz_device *dev = ds->priv;
416
417 ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
418
419 return 0;
420 }
421
ksz_enable_port(struct dsa_switch * ds,int port,struct phy_device * phy)422 static int ksz_enable_port(struct dsa_switch *ds, int port,
423 struct phy_device *phy)
424 {
425 struct ksz_device *dev = ds->priv;
426
427 /* setup slave port */
428 port_setup(dev, port, false);
429
430 return 0;
431 }
432
ksz_disable_port(struct dsa_switch * ds,int port,struct phy_device * phy)433 static void ksz_disable_port(struct dsa_switch *ds, int port,
434 struct phy_device *phy)
435 {
436 struct ksz_device *dev = ds->priv;
437
438 /* there is no port disable */
439 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
440 }
441
ksz_sset_count(struct dsa_switch * ds,int port,int sset)442 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
443 {
444 if (sset != ETH_SS_STATS)
445 return 0;
446
447 return TOTAL_SWITCH_COUNTER_NUM;
448 }
449
ksz_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * buf)450 static void ksz_get_strings(struct dsa_switch *ds, int port,
451 u32 stringset, uint8_t *buf)
452 {
453 int i;
454
455 if (stringset != ETH_SS_STATS)
456 return;
457
458 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
459 memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
460 ETH_GSTRING_LEN);
461 }
462 }
463
ksz_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * buf)464 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
465 uint64_t *buf)
466 {
467 struct ksz_device *dev = ds->priv;
468 int i;
469 u32 data;
470 int timeout;
471
472 mutex_lock(&dev->stats_mutex);
473
474 for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
475 data = MIB_COUNTER_READ;
476 data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
477 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
478
479 timeout = 1000;
480 do {
481 ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
482 &data);
483 usleep_range(1, 10);
484 if (!(data & MIB_COUNTER_READ))
485 break;
486 } while (timeout-- > 0);
487
488 /* failed to read MIB. get out of loop */
489 if (!timeout) {
490 dev_dbg(dev->dev, "Failed to get MIB\n");
491 break;
492 }
493
494 /* count resets upon read */
495 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
496
497 dev->mib_value[i] += (uint64_t)data;
498 buf[i] = dev->mib_value[i];
499 }
500
501 mutex_unlock(&dev->stats_mutex);
502 }
503
ksz_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)504 static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
505 {
506 struct ksz_device *dev = ds->priv;
507 u8 data;
508
509 ksz_pread8(dev, port, P_STP_CTRL, &data);
510 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
511
512 switch (state) {
513 case BR_STATE_DISABLED:
514 data |= PORT_LEARN_DISABLE;
515 break;
516 case BR_STATE_LISTENING:
517 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
518 break;
519 case BR_STATE_LEARNING:
520 data |= PORT_RX_ENABLE;
521 break;
522 case BR_STATE_FORWARDING:
523 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
524 break;
525 case BR_STATE_BLOCKING:
526 data |= PORT_LEARN_DISABLE;
527 break;
528 default:
529 dev_err(ds->dev, "invalid STP state: %d\n", state);
530 return;
531 }
532
533 ksz_pwrite8(dev, port, P_STP_CTRL, data);
534 }
535
ksz_port_fast_age(struct dsa_switch * ds,int port)536 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
537 {
538 struct ksz_device *dev = ds->priv;
539 u8 data8;
540
541 ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
542 data8 |= SW_FAST_AGING;
543 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
544
545 data8 &= ~SW_FAST_AGING;
546 ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
547 }
548
ksz_port_vlan_filtering(struct dsa_switch * ds,int port,bool flag)549 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
550 {
551 struct ksz_device *dev = ds->priv;
552
553 if (flag) {
554 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
555 PORT_VLAN_LOOKUP_VID_0, true);
556 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
557 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
558 } else {
559 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
560 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
561 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
562 PORT_VLAN_LOOKUP_VID_0, false);
563 }
564
565 return 0;
566 }
567
ksz_port_vlan_prepare(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)568 static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
569 const struct switchdev_obj_port_vlan *vlan)
570 {
571 /* nothing needed */
572
573 return 0;
574 }
575
ksz_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)576 static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
577 const struct switchdev_obj_port_vlan *vlan)
578 {
579 struct ksz_device *dev = ds->priv;
580 u32 vlan_table[3];
581 u16 vid;
582 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
583
584 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
585 if (get_vlan_table(ds, vid, vlan_table)) {
586 dev_dbg(dev->dev, "Failed to get vlan table\n");
587 return;
588 }
589
590 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
591 if (untagged)
592 vlan_table[1] |= BIT(port);
593 else
594 vlan_table[1] &= ~BIT(port);
595 vlan_table[1] &= ~(BIT(dev->cpu_port));
596
597 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
598
599 if (set_vlan_table(ds, vid, vlan_table)) {
600 dev_dbg(dev->dev, "Failed to set vlan table\n");
601 return;
602 }
603
604 /* change PVID */
605 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
606 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
607 }
608 }
609
ksz_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)610 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
611 const struct switchdev_obj_port_vlan *vlan)
612 {
613 struct ksz_device *dev = ds->priv;
614 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
615 u32 vlan_table[3];
616 u16 vid;
617 u16 pvid;
618
619 ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
620 pvid = pvid & 0xFFF;
621
622 for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
623 if (get_vlan_table(ds, vid, vlan_table)) {
624 dev_dbg(dev->dev, "Failed to get vlan table\n");
625 return -ETIMEDOUT;
626 }
627
628 vlan_table[2] &= ~BIT(port);
629
630 if (pvid == vid)
631 pvid = 1;
632
633 if (untagged)
634 vlan_table[1] &= ~BIT(port);
635
636 if (set_vlan_table(ds, vid, vlan_table)) {
637 dev_dbg(dev->dev, "Failed to set vlan table\n");
638 return -ETIMEDOUT;
639 }
640 }
641
642 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
643
644 return 0;
645 }
646
647 struct alu_struct {
648 /* entry 1 */
649 u8 is_static:1;
650 u8 is_src_filter:1;
651 u8 is_dst_filter:1;
652 u8 prio_age:3;
653 u32 _reserv_0_1:23;
654 u8 mstp:3;
655 /* entry 2 */
656 u8 is_override:1;
657 u8 is_use_fid:1;
658 u32 _reserv_1_1:23;
659 u8 port_forward:7;
660 /* entry 3 & 4*/
661 u32 _reserv_2_1:9;
662 u8 fid:7;
663 u8 mac[ETH_ALEN];
664 };
665
ksz_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)666 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
667 const unsigned char *addr, u16 vid)
668 {
669 struct ksz_device *dev = ds->priv;
670 u32 alu_table[4];
671 u32 data;
672 int ret = 0;
673
674 mutex_lock(&dev->alu_mutex);
675
676 /* find any entry with mac & vid */
677 data = vid << ALU_FID_INDEX_S;
678 data |= ((addr[0] << 8) | addr[1]);
679 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
680
681 data = ((addr[2] << 24) | (addr[3] << 16));
682 data |= ((addr[4] << 8) | addr[5]);
683 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
684
685 /* start read operation */
686 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
687
688 /* wait to be finished */
689 ret = wait_alu_ready(dev, ALU_START, 1000);
690 if (ret < 0) {
691 dev_dbg(dev->dev, "Failed to read ALU\n");
692 goto exit;
693 }
694
695 /* read ALU entry */
696 read_table(ds, alu_table);
697
698 /* update ALU entry */
699 alu_table[0] = ALU_V_STATIC_VALID;
700 alu_table[1] |= BIT(port);
701 if (vid)
702 alu_table[1] |= ALU_V_USE_FID;
703 alu_table[2] = (vid << ALU_V_FID_S);
704 alu_table[2] |= ((addr[0] << 8) | addr[1]);
705 alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
706 alu_table[3] |= ((addr[4] << 8) | addr[5]);
707
708 write_table(ds, alu_table);
709
710 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
711
712 /* wait to be finished */
713 ret = wait_alu_ready(dev, ALU_START, 1000);
714 if (ret < 0)
715 dev_dbg(dev->dev, "Failed to write ALU\n");
716
717 exit:
718 mutex_unlock(&dev->alu_mutex);
719
720 return ret;
721 }
722
ksz_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)723 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
724 const unsigned char *addr, u16 vid)
725 {
726 struct ksz_device *dev = ds->priv;
727 u32 alu_table[4];
728 u32 data;
729 int ret = 0;
730
731 mutex_lock(&dev->alu_mutex);
732
733 /* read any entry with mac & vid */
734 data = vid << ALU_FID_INDEX_S;
735 data |= ((addr[0] << 8) | addr[1]);
736 ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
737
738 data = ((addr[2] << 24) | (addr[3] << 16));
739 data |= ((addr[4] << 8) | addr[5]);
740 ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
741
742 /* start read operation */
743 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
744
745 /* wait to be finished */
746 ret = wait_alu_ready(dev, ALU_START, 1000);
747 if (ret < 0) {
748 dev_dbg(dev->dev, "Failed to read ALU\n");
749 goto exit;
750 }
751
752 ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
753 if (alu_table[0] & ALU_V_STATIC_VALID) {
754 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
755 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
756 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
757
758 /* clear forwarding port */
759 alu_table[2] &= ~BIT(port);
760
761 /* if there is no port to forward, clear table */
762 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
763 alu_table[0] = 0;
764 alu_table[1] = 0;
765 alu_table[2] = 0;
766 alu_table[3] = 0;
767 }
768 } else {
769 alu_table[0] = 0;
770 alu_table[1] = 0;
771 alu_table[2] = 0;
772 alu_table[3] = 0;
773 }
774
775 write_table(ds, alu_table);
776
777 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
778
779 /* wait to be finished */
780 ret = wait_alu_ready(dev, ALU_START, 1000);
781 if (ret < 0)
782 dev_dbg(dev->dev, "Failed to write ALU\n");
783
784 exit:
785 mutex_unlock(&dev->alu_mutex);
786
787 return ret;
788 }
789
convert_alu(struct alu_struct * alu,u32 * alu_table)790 static void convert_alu(struct alu_struct *alu, u32 *alu_table)
791 {
792 alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
793 alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
794 alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
795 alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
796 ALU_V_PRIO_AGE_CNT_M;
797 alu->mstp = alu_table[0] & ALU_V_MSTP_M;
798
799 alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
800 alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
801 alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
802
803 alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
804
805 alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
806 alu->mac[1] = alu_table[2] & 0xFF;
807 alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
808 alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
809 alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
810 alu->mac[5] = alu_table[3] & 0xFF;
811 }
812
ksz_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)813 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
814 dsa_fdb_dump_cb_t *cb, void *data)
815 {
816 struct ksz_device *dev = ds->priv;
817 int ret = 0;
818 u32 ksz_data;
819 u32 alu_table[4];
820 struct alu_struct alu;
821 int timeout;
822
823 mutex_lock(&dev->alu_mutex);
824
825 /* start ALU search */
826 ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
827
828 do {
829 timeout = 1000;
830 do {
831 ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
832 if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
833 break;
834 usleep_range(1, 10);
835 } while (timeout-- > 0);
836
837 if (!timeout) {
838 dev_dbg(dev->dev, "Failed to search ALU\n");
839 ret = -ETIMEDOUT;
840 goto exit;
841 }
842
843 /* read ALU table */
844 read_table(ds, alu_table);
845
846 convert_alu(&alu, alu_table);
847
848 if (alu.port_forward & BIT(port)) {
849 ret = cb(alu.mac, alu.fid, alu.is_static, data);
850 if (ret)
851 goto exit;
852 }
853 } while (ksz_data & ALU_START);
854
855 exit:
856
857 /* stop ALU search */
858 ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
859
860 mutex_unlock(&dev->alu_mutex);
861
862 return ret;
863 }
864
ksz_port_mdb_prepare(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb)865 static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
866 const struct switchdev_obj_port_mdb *mdb)
867 {
868 /* nothing to do */
869 return 0;
870 }
871
ksz_port_mdb_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb)872 static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
873 const struct switchdev_obj_port_mdb *mdb)
874 {
875 struct ksz_device *dev = ds->priv;
876 u32 static_table[4];
877 u32 data;
878 int index;
879 u32 mac_hi, mac_lo;
880
881 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
882 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
883 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
884
885 mutex_lock(&dev->alu_mutex);
886
887 for (index = 0; index < dev->num_statics; index++) {
888 /* find empty slot first */
889 data = (index << ALU_STAT_INDEX_S) |
890 ALU_STAT_READ | ALU_STAT_START;
891 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
892
893 /* wait to be finished */
894 if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
895 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
896 goto exit;
897 }
898
899 /* read ALU static table */
900 read_table(ds, static_table);
901
902 if (static_table[0] & ALU_V_STATIC_VALID) {
903 /* check this has same vid & mac address */
904 if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
905 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
906 (static_table[3] == mac_lo)) {
907 /* found matching one */
908 break;
909 }
910 } else {
911 /* found empty one */
912 break;
913 }
914 }
915
916 /* no available entry */
917 if (index == dev->num_statics)
918 goto exit;
919
920 /* add entry */
921 static_table[0] = ALU_V_STATIC_VALID;
922 static_table[1] |= BIT(port);
923 if (mdb->vid)
924 static_table[1] |= ALU_V_USE_FID;
925 static_table[2] = (mdb->vid << ALU_V_FID_S);
926 static_table[2] |= mac_hi;
927 static_table[3] = mac_lo;
928
929 write_table(ds, static_table);
930
931 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
932 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
933
934 /* wait to be finished */
935 if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
936 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
937
938 exit:
939 mutex_unlock(&dev->alu_mutex);
940 }
941
ksz_port_mdb_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb)942 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
943 const struct switchdev_obj_port_mdb *mdb)
944 {
945 struct ksz_device *dev = ds->priv;
946 u32 static_table[4];
947 u32 data;
948 int index;
949 int ret = 0;
950 u32 mac_hi, mac_lo;
951
952 mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
953 mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
954 mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
955
956 mutex_lock(&dev->alu_mutex);
957
958 for (index = 0; index < dev->num_statics; index++) {
959 /* find empty slot first */
960 data = (index << ALU_STAT_INDEX_S) |
961 ALU_STAT_READ | ALU_STAT_START;
962 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
963
964 /* wait to be finished */
965 ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
966 if (ret < 0) {
967 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
968 goto exit;
969 }
970
971 /* read ALU static table */
972 read_table(ds, static_table);
973
974 if (static_table[0] & ALU_V_STATIC_VALID) {
975 /* check this has same vid & mac address */
976
977 if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
978 ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
979 (static_table[3] == mac_lo)) {
980 /* found matching one */
981 break;
982 }
983 }
984 }
985
986 /* no available entry */
987 if (index == dev->num_statics) {
988 ret = -EINVAL;
989 goto exit;
990 }
991
992 /* clear port */
993 static_table[1] &= ~BIT(port);
994
995 if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
996 /* delete entry */
997 static_table[0] = 0;
998 static_table[1] = 0;
999 static_table[2] = 0;
1000 static_table[3] = 0;
1001 }
1002
1003 write_table(ds, static_table);
1004
1005 data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
1006 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1007
1008 /* wait to be finished */
1009 ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1010 if (ret < 0)
1011 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1012
1013 exit:
1014 mutex_unlock(&dev->alu_mutex);
1015
1016 return ret;
1017 }
1018
ksz_port_mirror_add(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress)1019 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1020 struct dsa_mall_mirror_tc_entry *mirror,
1021 bool ingress)
1022 {
1023 struct ksz_device *dev = ds->priv;
1024
1025 if (ingress)
1026 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1027 else
1028 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1029
1030 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1031
1032 /* configure mirror port */
1033 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1034 PORT_MIRROR_SNIFFER, true);
1035
1036 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1037
1038 return 0;
1039 }
1040
ksz_port_mirror_del(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror)1041 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1042 struct dsa_mall_mirror_tc_entry *mirror)
1043 {
1044 struct ksz_device *dev = ds->priv;
1045 u8 data;
1046
1047 if (mirror->ingress)
1048 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1049 else
1050 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1051
1052 ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1053
1054 if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1055 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1056 PORT_MIRROR_SNIFFER, false);
1057 }
1058
1059 static const struct dsa_switch_ops ksz_switch_ops = {
1060 .get_tag_protocol = ksz_get_tag_protocol,
1061 .setup = ksz_setup,
1062 .phy_read = ksz_phy_read16,
1063 .phy_write = ksz_phy_write16,
1064 .port_enable = ksz_enable_port,
1065 .port_disable = ksz_disable_port,
1066 .get_strings = ksz_get_strings,
1067 .get_ethtool_stats = ksz_get_ethtool_stats,
1068 .get_sset_count = ksz_sset_count,
1069 .port_stp_state_set = ksz_port_stp_state_set,
1070 .port_fast_age = ksz_port_fast_age,
1071 .port_vlan_filtering = ksz_port_vlan_filtering,
1072 .port_vlan_prepare = ksz_port_vlan_prepare,
1073 .port_vlan_add = ksz_port_vlan_add,
1074 .port_vlan_del = ksz_port_vlan_del,
1075 .port_fdb_dump = ksz_port_fdb_dump,
1076 .port_fdb_add = ksz_port_fdb_add,
1077 .port_fdb_del = ksz_port_fdb_del,
1078 .port_mdb_prepare = ksz_port_mdb_prepare,
1079 .port_mdb_add = ksz_port_mdb_add,
1080 .port_mdb_del = ksz_port_mdb_del,
1081 .port_mirror_add = ksz_port_mirror_add,
1082 .port_mirror_del = ksz_port_mirror_del,
1083 };
1084
1085 struct ksz_chip_data {
1086 u32 chip_id;
1087 const char *dev_name;
1088 int num_vlans;
1089 int num_alus;
1090 int num_statics;
1091 int cpu_ports;
1092 int port_cnt;
1093 };
1094
1095 static const struct ksz_chip_data ksz_switch_chips[] = {
1096 {
1097 .chip_id = 0x00947700,
1098 .dev_name = "KSZ9477",
1099 .num_vlans = 4096,
1100 .num_alus = 4096,
1101 .num_statics = 16,
1102 .cpu_ports = 0x7F, /* can be configured as cpu port */
1103 .port_cnt = 7, /* total physical port count */
1104 },
1105 {
1106 .chip_id = 0x00989700,
1107 .dev_name = "KSZ9897",
1108 .num_vlans = 4096,
1109 .num_alus = 4096,
1110 .num_statics = 16,
1111 .cpu_ports = 0x7F, /* can be configured as cpu port */
1112 .port_cnt = 7, /* total physical port count */
1113 },
1114 };
1115
ksz_switch_init(struct ksz_device * dev)1116 static int ksz_switch_init(struct ksz_device *dev)
1117 {
1118 int i;
1119
1120 mutex_init(&dev->reg_mutex);
1121 mutex_init(&dev->stats_mutex);
1122 mutex_init(&dev->alu_mutex);
1123 mutex_init(&dev->vlan_mutex);
1124
1125 dev->ds->ops = &ksz_switch_ops;
1126
1127 for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1128 const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1129
1130 if (dev->chip_id == chip->chip_id) {
1131 dev->name = chip->dev_name;
1132 dev->num_vlans = chip->num_vlans;
1133 dev->num_alus = chip->num_alus;
1134 dev->num_statics = chip->num_statics;
1135 dev->port_cnt = chip->port_cnt;
1136 dev->cpu_ports = chip->cpu_ports;
1137
1138 break;
1139 }
1140 }
1141
1142 /* no switch found */
1143 if (!dev->port_cnt)
1144 return -ENODEV;
1145
1146 return 0;
1147 }
1148
ksz_switch_alloc(struct device * base,const struct ksz_io_ops * ops,void * priv)1149 struct ksz_device *ksz_switch_alloc(struct device *base,
1150 const struct ksz_io_ops *ops,
1151 void *priv)
1152 {
1153 struct dsa_switch *ds;
1154 struct ksz_device *swdev;
1155
1156 ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1157 if (!ds)
1158 return NULL;
1159
1160 swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1161 if (!swdev)
1162 return NULL;
1163
1164 ds->priv = swdev;
1165 swdev->dev = base;
1166
1167 swdev->ds = ds;
1168 swdev->priv = priv;
1169 swdev->ops = ops;
1170
1171 return swdev;
1172 }
1173 EXPORT_SYMBOL(ksz_switch_alloc);
1174
ksz_switch_detect(struct ksz_device * dev)1175 int ksz_switch_detect(struct ksz_device *dev)
1176 {
1177 u8 data8;
1178 u32 id32;
1179 int ret;
1180
1181 /* turn off SPI DO Edge select */
1182 ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1183 if (ret)
1184 return ret;
1185
1186 data8 &= ~SPI_AUTO_EDGE_DETECTION;
1187 ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1188 if (ret)
1189 return ret;
1190
1191 /* read chip id */
1192 ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1193 if (ret)
1194 return ret;
1195
1196 dev->chip_id = id32;
1197
1198 return 0;
1199 }
1200 EXPORT_SYMBOL(ksz_switch_detect);
1201
ksz_switch_register(struct ksz_device * dev)1202 int ksz_switch_register(struct ksz_device *dev)
1203 {
1204 int ret;
1205
1206 if (dev->pdata)
1207 dev->chip_id = dev->pdata->chip_id;
1208
1209 if (ksz_switch_detect(dev))
1210 return -EINVAL;
1211
1212 ret = ksz_switch_init(dev);
1213 if (ret)
1214 return ret;
1215
1216 return dsa_register_switch(dev->ds);
1217 }
1218 EXPORT_SYMBOL(ksz_switch_register);
1219
ksz_switch_remove(struct ksz_device * dev)1220 void ksz_switch_remove(struct ksz_device *dev)
1221 {
1222 dsa_unregister_switch(dev->ds);
1223 }
1224 EXPORT_SYMBOL(ksz_switch_remove);
1225
1226 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1227 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1228 MODULE_LICENSE("GPL");
1229