1 /*
2 * Broadcom Starfighter 2 DSA switch CFP support
3 *
4 * Copyright (C) 2016, Broadcom
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12 #include <linux/list.h>
13 #include <linux/ethtool.h>
14 #include <linux/if_ether.h>
15 #include <linux/in.h>
16 #include <linux/netdevice.h>
17 #include <net/dsa.h>
18 #include <linux/bitmap.h>
19
20 #include "bcm_sf2.h"
21 #include "bcm_sf2_regs.h"
22
23 struct cfp_udf_slice_layout {
24 u8 slices[UDFS_PER_SLICE];
25 u32 mask_value;
26 u32 base_offset;
27 };
28
29 struct cfp_udf_layout {
30 struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
31 };
32
33 static const u8 zero_slice[UDFS_PER_SLICE] = { };
34
35 /* UDF slices layout for a TCPv4/UDPv4 specification */
36 static const struct cfp_udf_layout udf_tcpip4_layout = {
37 .udfs = {
38 [1] = {
39 .slices = {
40 /* End of L2, byte offset 12, src IP[0:15] */
41 CFG_UDF_EOL2 | 6,
42 /* End of L2, byte offset 14, src IP[16:31] */
43 CFG_UDF_EOL2 | 7,
44 /* End of L2, byte offset 16, dst IP[0:15] */
45 CFG_UDF_EOL2 | 8,
46 /* End of L2, byte offset 18, dst IP[16:31] */
47 CFG_UDF_EOL2 | 9,
48 /* End of L3, byte offset 0, src port */
49 CFG_UDF_EOL3 | 0,
50 /* End of L3, byte offset 2, dst port */
51 CFG_UDF_EOL3 | 1,
52 0, 0, 0
53 },
54 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
55 .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
56 },
57 },
58 };
59
60 /* UDF slices layout for a TCPv6/UDPv6 specification */
61 static const struct cfp_udf_layout udf_tcpip6_layout = {
62 .udfs = {
63 [0] = {
64 .slices = {
65 /* End of L2, byte offset 8, src IP[0:15] */
66 CFG_UDF_EOL2 | 4,
67 /* End of L2, byte offset 10, src IP[16:31] */
68 CFG_UDF_EOL2 | 5,
69 /* End of L2, byte offset 12, src IP[32:47] */
70 CFG_UDF_EOL2 | 6,
71 /* End of L2, byte offset 14, src IP[48:63] */
72 CFG_UDF_EOL2 | 7,
73 /* End of L2, byte offset 16, src IP[64:79] */
74 CFG_UDF_EOL2 | 8,
75 /* End of L2, byte offset 18, src IP[80:95] */
76 CFG_UDF_EOL2 | 9,
77 /* End of L2, byte offset 20, src IP[96:111] */
78 CFG_UDF_EOL2 | 10,
79 /* End of L2, byte offset 22, src IP[112:127] */
80 CFG_UDF_EOL2 | 11,
81 /* End of L3, byte offset 0, src port */
82 CFG_UDF_EOL3 | 0,
83 },
84 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
85 .base_offset = CORE_UDF_0_B_0_8_PORT_0,
86 },
87 [3] = {
88 .slices = {
89 /* End of L2, byte offset 24, dst IP[0:15] */
90 CFG_UDF_EOL2 | 12,
91 /* End of L2, byte offset 26, dst IP[16:31] */
92 CFG_UDF_EOL2 | 13,
93 /* End of L2, byte offset 28, dst IP[32:47] */
94 CFG_UDF_EOL2 | 14,
95 /* End of L2, byte offset 30, dst IP[48:63] */
96 CFG_UDF_EOL2 | 15,
97 /* End of L2, byte offset 32, dst IP[64:79] */
98 CFG_UDF_EOL2 | 16,
99 /* End of L2, byte offset 34, dst IP[80:95] */
100 CFG_UDF_EOL2 | 17,
101 /* End of L2, byte offset 36, dst IP[96:111] */
102 CFG_UDF_EOL2 | 18,
103 /* End of L2, byte offset 38, dst IP[112:127] */
104 CFG_UDF_EOL2 | 19,
105 /* End of L3, byte offset 2, dst port */
106 CFG_UDF_EOL3 | 1,
107 },
108 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
109 .base_offset = CORE_UDF_0_D_0_11_PORT_0,
110 },
111 },
112 };
113
bcm_sf2_get_num_udf_slices(const u8 * layout)114 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
115 {
116 unsigned int i, count = 0;
117
118 for (i = 0; i < UDFS_PER_SLICE; i++) {
119 if (layout[i] != 0)
120 count++;
121 }
122
123 return count;
124 }
125
udf_upper_bits(unsigned int num_udf)126 static inline u32 udf_upper_bits(unsigned int num_udf)
127 {
128 return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
129 }
130
udf_lower_bits(unsigned int num_udf)131 static inline u32 udf_lower_bits(unsigned int num_udf)
132 {
133 return (u8)GENMASK(num_udf - 1, 0);
134 }
135
bcm_sf2_get_slice_number(const struct cfp_udf_layout * l,unsigned int start)136 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
137 unsigned int start)
138 {
139 const struct cfp_udf_slice_layout *slice_layout;
140 unsigned int slice_idx;
141
142 for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
143 slice_layout = &l->udfs[slice_idx];
144 if (memcmp(slice_layout->slices, zero_slice,
145 sizeof(zero_slice)))
146 break;
147 }
148
149 return slice_idx;
150 }
151
bcm_sf2_cfp_udf_set(struct bcm_sf2_priv * priv,const struct cfp_udf_layout * layout,unsigned int slice_num)152 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
153 const struct cfp_udf_layout *layout,
154 unsigned int slice_num)
155 {
156 u32 offset = layout->udfs[slice_num].base_offset;
157 unsigned int i;
158
159 for (i = 0; i < UDFS_PER_SLICE; i++)
160 core_writel(priv, layout->udfs[slice_num].slices[i],
161 offset + i * 4);
162 }
163
bcm_sf2_cfp_op(struct bcm_sf2_priv * priv,unsigned int op)164 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
165 {
166 unsigned int timeout = 1000;
167 u32 reg;
168
169 reg = core_readl(priv, CORE_CFP_ACC);
170 reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
171 reg |= OP_STR_DONE | op;
172 core_writel(priv, reg, CORE_CFP_ACC);
173
174 do {
175 reg = core_readl(priv, CORE_CFP_ACC);
176 if (!(reg & OP_STR_DONE))
177 break;
178
179 cpu_relax();
180 } while (timeout--);
181
182 if (!timeout)
183 return -ETIMEDOUT;
184
185 return 0;
186 }
187
bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv * priv,unsigned int addr)188 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
189 unsigned int addr)
190 {
191 u32 reg;
192
193 WARN_ON(addr >= priv->num_cfp_rules);
194
195 reg = core_readl(priv, CORE_CFP_ACC);
196 reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
197 reg |= addr << XCESS_ADDR_SHIFT;
198 core_writel(priv, reg, CORE_CFP_ACC);
199 }
200
bcm_sf2_cfp_rule_size(struct bcm_sf2_priv * priv)201 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
202 {
203 /* Entry #0 is reserved */
204 return priv->num_cfp_rules - 1;
205 }
206
bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv * priv,unsigned int rule_index,unsigned int port_num,unsigned int queue_num,bool fwd_map_change)207 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
208 unsigned int rule_index,
209 unsigned int port_num,
210 unsigned int queue_num,
211 bool fwd_map_change)
212 {
213 int ret;
214 u32 reg;
215
216 /* Replace ARL derived destination with DST_MAP derived, define
217 * which port and queue this should be forwarded to.
218 */
219 if (fwd_map_change)
220 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
221 BIT(port_num + DST_MAP_IB_SHIFT) |
222 CHANGE_TC | queue_num << NEW_TC_SHIFT;
223 else
224 reg = 0;
225
226 core_writel(priv, reg, CORE_ACT_POL_DATA0);
227
228 /* Set classification ID that needs to be put in Broadcom tag */
229 core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
230
231 core_writel(priv, 0, CORE_ACT_POL_DATA2);
232
233 /* Configure policer RAM now */
234 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
235 if (ret) {
236 pr_err("Policer entry at %d failed\n", rule_index);
237 return ret;
238 }
239
240 /* Disable the policer */
241 core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
242
243 /* Now the rate meter */
244 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
245 if (ret) {
246 pr_err("Meter entry at %d failed\n", rule_index);
247 return ret;
248 }
249
250 return 0;
251 }
252
bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv * priv,struct ethtool_tcpip4_spec * v4_spec,unsigned int slice_num,bool mask)253 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
254 struct ethtool_tcpip4_spec *v4_spec,
255 unsigned int slice_num,
256 bool mask)
257 {
258 u32 reg, offset;
259
260 /* C-Tag [31:24]
261 * UDF_n_A8 [23:8]
262 * UDF_n_A7 [7:0]
263 */
264 reg = 0;
265 if (mask)
266 offset = CORE_CFP_MASK_PORT(4);
267 else
268 offset = CORE_CFP_DATA_PORT(4);
269 core_writel(priv, reg, offset);
270
271 /* UDF_n_A7 [31:24]
272 * UDF_n_A6 [23:8]
273 * UDF_n_A5 [7:0]
274 */
275 reg = be16_to_cpu(v4_spec->pdst) >> 8;
276 if (mask)
277 offset = CORE_CFP_MASK_PORT(3);
278 else
279 offset = CORE_CFP_DATA_PORT(3);
280 core_writel(priv, reg, offset);
281
282 /* UDF_n_A5 [31:24]
283 * UDF_n_A4 [23:8]
284 * UDF_n_A3 [7:0]
285 */
286 reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
287 (u32)be16_to_cpu(v4_spec->psrc) << 8 |
288 (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
289 if (mask)
290 offset = CORE_CFP_MASK_PORT(2);
291 else
292 offset = CORE_CFP_DATA_PORT(2);
293 core_writel(priv, reg, offset);
294
295 /* UDF_n_A3 [31:24]
296 * UDF_n_A2 [23:8]
297 * UDF_n_A1 [7:0]
298 */
299 reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
300 (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
301 (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
302 if (mask)
303 offset = CORE_CFP_MASK_PORT(1);
304 else
305 offset = CORE_CFP_DATA_PORT(1);
306 core_writel(priv, reg, offset);
307
308 /* UDF_n_A1 [31:24]
309 * UDF_n_A0 [23:8]
310 * Reserved [7:4]
311 * Slice ID [3:2]
312 * Slice valid [1:0]
313 */
314 reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
315 (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
316 SLICE_NUM(slice_num) | SLICE_VALID;
317 if (mask)
318 offset = CORE_CFP_MASK_PORT(0);
319 else
320 offset = CORE_CFP_DATA_PORT(0);
321 core_writel(priv, reg, offset);
322 }
323
bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv * priv,int port,unsigned int port_num,unsigned int queue_num,struct ethtool_rx_flow_spec * fs)324 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
325 unsigned int port_num,
326 unsigned int queue_num,
327 struct ethtool_rx_flow_spec *fs)
328 {
329 struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
330 const struct cfp_udf_layout *layout;
331 unsigned int slice_num, rule_index;
332 u8 ip_proto, ip_frag;
333 u8 num_udf;
334 u32 reg;
335 int ret;
336
337 switch (fs->flow_type & ~FLOW_EXT) {
338 case TCP_V4_FLOW:
339 ip_proto = IPPROTO_TCP;
340 v4_spec = &fs->h_u.tcp_ip4_spec;
341 v4_m_spec = &fs->m_u.tcp_ip4_spec;
342 break;
343 case UDP_V4_FLOW:
344 ip_proto = IPPROTO_UDP;
345 v4_spec = &fs->h_u.udp_ip4_spec;
346 v4_m_spec = &fs->m_u.udp_ip4_spec;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
353
354 /* Locate the first rule available */
355 if (fs->location == RX_CLS_LOC_ANY)
356 rule_index = find_first_zero_bit(priv->cfp.used,
357 priv->num_cfp_rules);
358 else
359 rule_index = fs->location;
360
361 if (rule_index > bcm_sf2_cfp_rule_size(priv))
362 return -ENOSPC;
363
364 layout = &udf_tcpip4_layout;
365 /* We only use one UDF slice for now */
366 slice_num = bcm_sf2_get_slice_number(layout, 0);
367 if (slice_num == UDF_NUM_SLICES)
368 return -EINVAL;
369
370 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
371
372 /* Apply the UDF layout for this filter */
373 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
374
375 /* Apply to all packets received through this port */
376 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
377
378 /* Source port map match */
379 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
380
381 /* S-Tag status [31:30]
382 * C-Tag status [29:28]
383 * L2 framing [27:26]
384 * L3 framing [25:24]
385 * IP ToS [23:16]
386 * IP proto [15:08]
387 * IP Fragm [7]
388 * Non 1st frag [6]
389 * IP Authen [5]
390 * TTL range [4:3]
391 * PPPoE session [2]
392 * Reserved [1]
393 * UDF_Valid[8] [0]
394 */
395 core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
396 ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
397 udf_upper_bits(num_udf),
398 CORE_CFP_DATA_PORT(6));
399
400 /* Mask with the specific layout for IPv4 packets */
401 core_writel(priv, layout->udfs[slice_num].mask_value |
402 udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
403
404 /* UDF_Valid[7:0] [31:24]
405 * S-Tag [23:8]
406 * C-Tag [7:0]
407 */
408 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
409
410 /* Mask all but valid UDFs */
411 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
412
413 /* Program the match and the mask */
414 bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
415 bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
416
417 /* Insert into TCAM now */
418 bcm_sf2_cfp_rule_addr_set(priv, rule_index);
419
420 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
421 if (ret) {
422 pr_err("TCAM entry at addr %d failed\n", rule_index);
423 return ret;
424 }
425
426 /* Insert into Action and policer RAMs now */
427 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
428 queue_num, true);
429 if (ret)
430 return ret;
431
432 /* Turn on CFP for this rule now */
433 reg = core_readl(priv, CORE_CFP_CTL_REG);
434 reg |= BIT(port);
435 core_writel(priv, reg, CORE_CFP_CTL_REG);
436
437 /* Flag the rule as being used and return it */
438 set_bit(rule_index, priv->cfp.used);
439 set_bit(rule_index, priv->cfp.unique);
440 fs->location = rule_index;
441
442 return 0;
443 }
444
bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv * priv,const __be32 * ip6_addr,const __be16 port,unsigned int slice_num,bool mask)445 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
446 const __be32 *ip6_addr, const __be16 port,
447 unsigned int slice_num,
448 bool mask)
449 {
450 u32 reg, tmp, val, offset;
451
452 /* C-Tag [31:24]
453 * UDF_n_B8 [23:8] (port)
454 * UDF_n_B7 (upper) [7:0] (addr[15:8])
455 */
456 reg = be32_to_cpu(ip6_addr[3]);
457 val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
458 if (mask)
459 offset = CORE_CFP_MASK_PORT(4);
460 else
461 offset = CORE_CFP_DATA_PORT(4);
462 core_writel(priv, val, offset);
463
464 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
465 * UDF_n_B6 [23:8] (addr[31:16])
466 * UDF_n_B5 (upper) [7:0] (addr[47:40])
467 */
468 tmp = be32_to_cpu(ip6_addr[2]);
469 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
470 ((tmp >> 8) & 0xff);
471 if (mask)
472 offset = CORE_CFP_MASK_PORT(3);
473 else
474 offset = CORE_CFP_DATA_PORT(3);
475 core_writel(priv, val, offset);
476
477 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
478 * UDF_n_B4 [23:8] (addr[63:48])
479 * UDF_n_B3 (upper) [7:0] (addr[79:72])
480 */
481 reg = be32_to_cpu(ip6_addr[1]);
482 val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
483 ((reg >> 8) & 0xff);
484 if (mask)
485 offset = CORE_CFP_MASK_PORT(2);
486 else
487 offset = CORE_CFP_DATA_PORT(2);
488 core_writel(priv, val, offset);
489
490 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
491 * UDF_n_B2 [23:8] (addr[95:80])
492 * UDF_n_B1 (upper) [7:0] (addr[111:104])
493 */
494 tmp = be32_to_cpu(ip6_addr[0]);
495 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
496 ((tmp >> 8) & 0xff);
497 if (mask)
498 offset = CORE_CFP_MASK_PORT(1);
499 else
500 offset = CORE_CFP_DATA_PORT(1);
501 core_writel(priv, val, offset);
502
503 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
504 * UDF_n_B0 [23:8] (addr[127:112])
505 * Reserved [7:4]
506 * Slice ID [3:2]
507 * Slice valid [1:0]
508 */
509 reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
510 SLICE_NUM(slice_num) | SLICE_VALID;
511 if (mask)
512 offset = CORE_CFP_MASK_PORT(0);
513 else
514 offset = CORE_CFP_DATA_PORT(0);
515 core_writel(priv, reg, offset);
516 }
517
bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv * priv,int port,unsigned int port_num,unsigned int queue_num,struct ethtool_rx_flow_spec * fs)518 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
519 unsigned int port_num,
520 unsigned int queue_num,
521 struct ethtool_rx_flow_spec *fs)
522 {
523 struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
524 unsigned int slice_num, rule_index[2];
525 const struct cfp_udf_layout *layout;
526 u8 ip_proto, ip_frag;
527 int ret = 0;
528 u8 num_udf;
529 u32 reg;
530
531 switch (fs->flow_type & ~FLOW_EXT) {
532 case TCP_V6_FLOW:
533 ip_proto = IPPROTO_TCP;
534 v6_spec = &fs->h_u.tcp_ip6_spec;
535 v6_m_spec = &fs->m_u.tcp_ip6_spec;
536 break;
537 case UDP_V6_FLOW:
538 ip_proto = IPPROTO_UDP;
539 v6_spec = &fs->h_u.udp_ip6_spec;
540 v6_m_spec = &fs->m_u.udp_ip6_spec;
541 break;
542 default:
543 return -EINVAL;
544 }
545
546 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
547
548 layout = &udf_tcpip6_layout;
549 slice_num = bcm_sf2_get_slice_number(layout, 0);
550 if (slice_num == UDF_NUM_SLICES)
551 return -EINVAL;
552
553 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
554
555 /* Negotiate two indexes, one for the second half which we are chained
556 * from, which is what we will return to user-space, and a second one
557 * which is used to store its first half. That first half does not
558 * allow any choice of placement, so it just needs to find the next
559 * available bit. We return the second half as fs->location because
560 * that helps with the rule lookup later on since the second half is
561 * chained from its first half, we can easily identify IPv6 CFP rules
562 * by looking whether they carry a CHAIN_ID.
563 *
564 * We also want the second half to have a lower rule_index than its
565 * first half because the HW search is by incrementing addresses.
566 */
567 if (fs->location == RX_CLS_LOC_ANY)
568 rule_index[1] = find_first_zero_bit(priv->cfp.used,
569 priv->num_cfp_rules);
570 else
571 rule_index[1] = fs->location;
572 if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
573 return -ENOSPC;
574
575 /* Flag it as used (cleared on error path) such that we can immediately
576 * obtain a second one to chain from.
577 */
578 set_bit(rule_index[1], priv->cfp.used);
579
580 rule_index[0] = find_first_zero_bit(priv->cfp.used,
581 priv->num_cfp_rules);
582 if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
583 ret = -ENOSPC;
584 goto out_err;
585 }
586
587 /* Apply the UDF layout for this filter */
588 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
589
590 /* Apply to all packets received through this port */
591 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
592
593 /* Source port map match */
594 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
595
596 /* S-Tag status [31:30]
597 * C-Tag status [29:28]
598 * L2 framing [27:26]
599 * L3 framing [25:24]
600 * IP ToS [23:16]
601 * IP proto [15:08]
602 * IP Fragm [7]
603 * Non 1st frag [6]
604 * IP Authen [5]
605 * TTL range [4:3]
606 * PPPoE session [2]
607 * Reserved [1]
608 * UDF_Valid[8] [0]
609 */
610 reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
611 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
612 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
613
614 /* Mask with the specific layout for IPv6 packets including
615 * UDF_Valid[8]
616 */
617 reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
618 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
619
620 /* UDF_Valid[7:0] [31:24]
621 * S-Tag [23:8]
622 * C-Tag [7:0]
623 */
624 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
625
626 /* Mask all but valid UDFs */
627 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
628
629 /* Slice the IPv6 source address and port */
630 bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
631 slice_num, false);
632 bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
633 SLICE_NUM_MASK, true);
634
635 /* Insert into TCAM now because we need to insert a second rule */
636 bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
637
638 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
639 if (ret) {
640 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
641 goto out_err;
642 }
643
644 /* Insert into Action and policer RAMs now */
645 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
646 queue_num, false);
647 if (ret)
648 goto out_err;
649
650 /* Now deal with the second slice to chain this rule */
651 slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
652 if (slice_num == UDF_NUM_SLICES) {
653 ret = -EINVAL;
654 goto out_err;
655 }
656
657 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
658
659 /* Apply the UDF layout for this filter */
660 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
661
662 /* Chained rule, source port match is coming from the rule we are
663 * chained from.
664 */
665 core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
666 core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
667
668 /*
669 * CHAIN ID [31:24] chain to previous slice
670 * Reserved [23:20]
671 * UDF_Valid[11:8] [19:16]
672 * UDF_Valid[7:0] [15:8]
673 * UDF_n_D11 [7:0]
674 */
675 reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
676 udf_lower_bits(num_udf) << 8;
677 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
678
679 /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
680 reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
681 udf_lower_bits(num_udf) << 8;
682 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
683
684 /* Don't care */
685 core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
686
687 /* Mask all */
688 core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
689
690 bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
691 false);
692 bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
693 SLICE_NUM_MASK, true);
694
695 /* Insert into TCAM now */
696 bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
697
698 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
699 if (ret) {
700 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
701 goto out_err;
702 }
703
704 /* Insert into Action and policer RAMs now, set chain ID to
705 * the one we are chained to
706 */
707 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
708 queue_num, true);
709 if (ret)
710 goto out_err;
711
712 /* Turn on CFP for this rule now */
713 reg = core_readl(priv, CORE_CFP_CTL_REG);
714 reg |= BIT(port);
715 core_writel(priv, reg, CORE_CFP_CTL_REG);
716
717 /* Flag the second half rule as being used now, return it as the
718 * location, and flag it as unique while dumping rules
719 */
720 set_bit(rule_index[0], priv->cfp.used);
721 set_bit(rule_index[1], priv->cfp.unique);
722 fs->location = rule_index[1];
723
724 return ret;
725
726 out_err:
727 clear_bit(rule_index[1], priv->cfp.used);
728 return ret;
729 }
730
bcm_sf2_cfp_rule_set(struct dsa_switch * ds,int port,struct ethtool_rx_flow_spec * fs)731 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
732 struct ethtool_rx_flow_spec *fs)
733 {
734 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
735 s8 cpu_port = ds->ports[port].cpu_dp->index;
736 __u64 ring_cookie = fs->ring_cookie;
737 unsigned int queue_num, port_num;
738 int ret = -EINVAL;
739
740 /* Check for unsupported extensions */
741 if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
742 fs->m_ext.data[1]))
743 return -EINVAL;
744
745 if (fs->location != RX_CLS_LOC_ANY &&
746 test_bit(fs->location, priv->cfp.used))
747 return -EBUSY;
748
749 if (fs->location != RX_CLS_LOC_ANY &&
750 fs->location > bcm_sf2_cfp_rule_size(priv))
751 return -EINVAL;
752
753 /* This rule is a Wake-on-LAN filter and we must specifically
754 * target the CPU port in order for it to be working.
755 */
756 if (ring_cookie == RX_CLS_FLOW_WAKE)
757 ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
758
759 /* We do not support discarding packets, check that the
760 * destination port is enabled and that we are within the
761 * number of ports supported by the switch
762 */
763 port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
764
765 if (ring_cookie == RX_CLS_FLOW_DISC ||
766 !(dsa_is_user_port(ds, port_num) ||
767 dsa_is_cpu_port(ds, port_num)) ||
768 port_num >= priv->hw_params.num_ports)
769 return -EINVAL;
770 /*
771 * We have a small oddity where Port 6 just does not have a
772 * valid bit here (so we substract by one).
773 */
774 queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
775 if (port_num >= 7)
776 port_num -= 1;
777
778 switch (fs->flow_type & ~FLOW_EXT) {
779 case TCP_V4_FLOW:
780 case UDP_V4_FLOW:
781 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
782 queue_num, fs);
783 break;
784 case TCP_V6_FLOW:
785 case UDP_V6_FLOW:
786 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
787 queue_num, fs);
788 break;
789 default:
790 break;
791 }
792
793 return ret;
794 }
795
bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv * priv,int port,u32 loc,u32 * next_loc)796 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
797 u32 loc, u32 *next_loc)
798 {
799 int ret;
800 u32 reg;
801
802 /* Indicate which rule we want to read */
803 bcm_sf2_cfp_rule_addr_set(priv, loc);
804
805 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
806 if (ret)
807 return ret;
808
809 /* Check if this is possibly an IPv6 rule that would
810 * indicate we need to delete its companion rule
811 * as well
812 */
813 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
814 if (next_loc)
815 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
816
817 /* Clear its valid bits */
818 reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
819 reg &= ~SLICE_VALID;
820 core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
821
822 /* Write back this entry into the TCAM now */
823 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
824 if (ret)
825 return ret;
826
827 clear_bit(loc, priv->cfp.used);
828 clear_bit(loc, priv->cfp.unique);
829
830 return 0;
831 }
832
bcm_sf2_cfp_rule_del(struct bcm_sf2_priv * priv,int port,u32 loc)833 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
834 u32 loc)
835 {
836 u32 next_loc = 0;
837 int ret;
838
839 /* Refuse deleting unused rules, and those that are not unique since
840 * that could leave IPv6 rules with one of the chained rule in the
841 * table.
842 */
843 if (!test_bit(loc, priv->cfp.unique) || loc == 0)
844 return -EINVAL;
845
846 ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
847 if (ret)
848 return ret;
849
850 /* If this was an IPv6 rule, delete is companion rule too */
851 if (next_loc)
852 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
853
854 return ret;
855 }
856
bcm_sf2_invert_masks(struct ethtool_rx_flow_spec * flow)857 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
858 {
859 unsigned int i;
860
861 for (i = 0; i < sizeof(flow->m_u); i++)
862 flow->m_u.hdata[i] ^= 0xff;
863
864 flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
865 flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
866 flow->m_ext.data[0] ^= cpu_to_be32(~0);
867 flow->m_ext.data[1] ^= cpu_to_be32(~0);
868 }
869
bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv * priv,struct ethtool_tcpip4_spec * v4_spec,bool mask)870 static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
871 struct ethtool_tcpip4_spec *v4_spec,
872 bool mask)
873 {
874 u32 reg, offset, ipv4;
875 u16 src_dst_port;
876
877 if (mask)
878 offset = CORE_CFP_MASK_PORT(3);
879 else
880 offset = CORE_CFP_DATA_PORT(3);
881
882 reg = core_readl(priv, offset);
883 /* src port [15:8] */
884 src_dst_port = reg << 8;
885
886 if (mask)
887 offset = CORE_CFP_MASK_PORT(2);
888 else
889 offset = CORE_CFP_DATA_PORT(2);
890
891 reg = core_readl(priv, offset);
892 /* src port [7:0] */
893 src_dst_port |= (reg >> 24);
894
895 v4_spec->pdst = cpu_to_be16(src_dst_port);
896 v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
897
898 /* IPv4 dst [15:8] */
899 ipv4 = (reg & 0xff) << 8;
900
901 if (mask)
902 offset = CORE_CFP_MASK_PORT(1);
903 else
904 offset = CORE_CFP_DATA_PORT(1);
905
906 reg = core_readl(priv, offset);
907 /* IPv4 dst [31:16] */
908 ipv4 |= ((reg >> 8) & 0xffff) << 16;
909 /* IPv4 dst [7:0] */
910 ipv4 |= (reg >> 24) & 0xff;
911 v4_spec->ip4dst = cpu_to_be32(ipv4);
912
913 /* IPv4 src [15:8] */
914 ipv4 = (reg & 0xff) << 8;
915
916 if (mask)
917 offset = CORE_CFP_MASK_PORT(0);
918 else
919 offset = CORE_CFP_DATA_PORT(0);
920 reg = core_readl(priv, offset);
921
922 /* Once the TCAM is programmed, the mask reflects the slice number
923 * being matched, don't bother checking it when reading back the
924 * mask spec
925 */
926 if (!mask && !(reg & SLICE_VALID))
927 return -EINVAL;
928
929 /* IPv4 src [7:0] */
930 ipv4 |= (reg >> 24) & 0xff;
931 /* IPv4 src [31:16] */
932 ipv4 |= ((reg >> 8) & 0xffff) << 16;
933 v4_spec->ip4src = cpu_to_be32(ipv4);
934
935 return 0;
936 }
937
bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv * priv,int port,struct ethtool_rx_flow_spec * fs)938 static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
939 struct ethtool_rx_flow_spec *fs)
940 {
941 struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
942 u32 reg;
943 int ret;
944
945 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
946
947 switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
948 case IPPROTO_TCP:
949 fs->flow_type = TCP_V4_FLOW;
950 v4_spec = &fs->h_u.tcp_ip4_spec;
951 v4_m_spec = &fs->m_u.tcp_ip4_spec;
952 break;
953 case IPPROTO_UDP:
954 fs->flow_type = UDP_V4_FLOW;
955 v4_spec = &fs->h_u.udp_ip4_spec;
956 v4_m_spec = &fs->m_u.udp_ip4_spec;
957 break;
958 default:
959 return -EINVAL;
960 }
961
962 fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
963 v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
964
965 ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
966 if (ret)
967 return ret;
968
969 return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
970 }
971
bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv * priv,__be32 * ip6_addr,__be16 * port,bool mask)972 static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
973 __be32 *ip6_addr, __be16 *port,
974 bool mask)
975 {
976 u32 reg, tmp, offset;
977
978 /* C-Tag [31:24]
979 * UDF_n_B8 [23:8] (port)
980 * UDF_n_B7 (upper) [7:0] (addr[15:8])
981 */
982 if (mask)
983 offset = CORE_CFP_MASK_PORT(4);
984 else
985 offset = CORE_CFP_DATA_PORT(4);
986 reg = core_readl(priv, offset);
987 *port = cpu_to_be32(reg) >> 8;
988 tmp = (u32)(reg & 0xff) << 8;
989
990 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
991 * UDF_n_B6 [23:8] (addr[31:16])
992 * UDF_n_B5 (upper) [7:0] (addr[47:40])
993 */
994 if (mask)
995 offset = CORE_CFP_MASK_PORT(3);
996 else
997 offset = CORE_CFP_DATA_PORT(3);
998 reg = core_readl(priv, offset);
999 tmp |= (reg >> 24) & 0xff;
1000 tmp |= (u32)((reg >> 8) << 16);
1001 ip6_addr[3] = cpu_to_be32(tmp);
1002 tmp = (u32)(reg & 0xff) << 8;
1003
1004 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
1005 * UDF_n_B4 [23:8] (addr[63:48])
1006 * UDF_n_B3 (upper) [7:0] (addr[79:72])
1007 */
1008 if (mask)
1009 offset = CORE_CFP_MASK_PORT(2);
1010 else
1011 offset = CORE_CFP_DATA_PORT(2);
1012 reg = core_readl(priv, offset);
1013 tmp |= (reg >> 24) & 0xff;
1014 tmp |= (u32)((reg >> 8) << 16);
1015 ip6_addr[2] = cpu_to_be32(tmp);
1016 tmp = (u32)(reg & 0xff) << 8;
1017
1018 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
1019 * UDF_n_B2 [23:8] (addr[95:80])
1020 * UDF_n_B1 (upper) [7:0] (addr[111:104])
1021 */
1022 if (mask)
1023 offset = CORE_CFP_MASK_PORT(1);
1024 else
1025 offset = CORE_CFP_DATA_PORT(1);
1026 reg = core_readl(priv, offset);
1027 tmp |= (reg >> 24) & 0xff;
1028 tmp |= (u32)((reg >> 8) << 16);
1029 ip6_addr[1] = cpu_to_be32(tmp);
1030 tmp = (u32)(reg & 0xff) << 8;
1031
1032 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
1033 * UDF_n_B0 [23:8] (addr[127:112])
1034 * Reserved [7:4]
1035 * Slice ID [3:2]
1036 * Slice valid [1:0]
1037 */
1038 if (mask)
1039 offset = CORE_CFP_MASK_PORT(0);
1040 else
1041 offset = CORE_CFP_DATA_PORT(0);
1042 reg = core_readl(priv, offset);
1043 tmp |= (reg >> 24) & 0xff;
1044 tmp |= (u32)((reg >> 8) << 16);
1045 ip6_addr[0] = cpu_to_be32(tmp);
1046
1047 if (!mask && !(reg & SLICE_VALID))
1048 return -EINVAL;
1049
1050 return 0;
1051 }
1052
bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv * priv,int port,struct ethtool_rx_flow_spec * fs,u32 next_loc)1053 static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
1054 struct ethtool_rx_flow_spec *fs,
1055 u32 next_loc)
1056 {
1057 struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
1058 u32 reg;
1059 int ret;
1060
1061 /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
1062 * assuming tcp_ip6_spec here being an union.
1063 */
1064 v6_spec = &fs->h_u.tcp_ip6_spec;
1065 v6_m_spec = &fs->m_u.tcp_ip6_spec;
1066
1067 /* Read the second half first */
1068 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1069 false);
1070 if (ret)
1071 return ret;
1072
1073 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
1074 &v6_m_spec->pdst, true);
1075 if (ret)
1076 return ret;
1077
1078 /* Read last to avoid next entry clobbering the results during search
1079 * operations. We would not have the port enabled for this rule, so
1080 * don't bother checking it.
1081 */
1082 (void)core_readl(priv, CORE_CFP_DATA_PORT(7));
1083
1084 /* The slice number is valid, so read the rule we are chained from now
1085 * which is our first half.
1086 */
1087 bcm_sf2_cfp_rule_addr_set(priv, next_loc);
1088 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1089 if (ret)
1090 return ret;
1091
1092 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1093
1094 switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
1095 case IPPROTO_TCP:
1096 fs->flow_type = TCP_V6_FLOW;
1097 break;
1098 case IPPROTO_UDP:
1099 fs->flow_type = UDP_V6_FLOW;
1100 break;
1101 default:
1102 return -EINVAL;
1103 }
1104
1105 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
1106 false);
1107 if (ret)
1108 return ret;
1109
1110 return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
1111 &v6_m_spec->psrc, true);
1112 }
1113
bcm_sf2_cfp_rule_get(struct bcm_sf2_priv * priv,int port,struct ethtool_rxnfc * nfc)1114 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1115 struct ethtool_rxnfc *nfc)
1116 {
1117 u32 reg, ipv4_or_chain_id;
1118 unsigned int queue_num;
1119 int ret;
1120
1121 bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1122
1123 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
1124 if (ret)
1125 return ret;
1126
1127 reg = core_readl(priv, CORE_ACT_POL_DATA0);
1128
1129 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1130 if (ret)
1131 return ret;
1132
1133 /* Extract the destination port */
1134 nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
1135 DST_MAP_IB_MASK) - 1;
1136
1137 /* There is no Port 6, so we compensate for that here */
1138 if (nfc->fs.ring_cookie >= 6)
1139 nfc->fs.ring_cookie++;
1140 nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1141
1142 /* Extract the destination queue */
1143 queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
1144 nfc->fs.ring_cookie += queue_num;
1145
1146 /* Extract the L3_FRAMING or CHAIN_ID */
1147 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1148
1149 /* With IPv6 rules this would contain a non-zero chain ID since
1150 * we reserve entry 0 and it cannot be used. So if we read 0 here
1151 * this means an IPv4 rule.
1152 */
1153 ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
1154 if (ipv4_or_chain_id == 0)
1155 ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
1156 else
1157 ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
1158 ipv4_or_chain_id);
1159 if (ret)
1160 return ret;
1161
1162 /* Read last to avoid next entry clobbering the results during search
1163 * operations
1164 */
1165 reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
1166 if (!(reg & 1 << port))
1167 return -EINVAL;
1168
1169 bcm_sf2_invert_masks(&nfc->fs);
1170
1171 /* Put the TCAM size here */
1172 nfc->data = bcm_sf2_cfp_rule_size(priv);
1173
1174 return 0;
1175 }
1176
1177 /* We implement the search doing a TCAM search operation */
bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv * priv,int port,struct ethtool_rxnfc * nfc,u32 * rule_locs)1178 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1179 int port, struct ethtool_rxnfc *nfc,
1180 u32 *rule_locs)
1181 {
1182 unsigned int index = 1, rules_cnt = 0;
1183
1184 for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1185 rule_locs[rules_cnt] = index;
1186 rules_cnt++;
1187 }
1188
1189 /* Put the TCAM size here */
1190 nfc->data = bcm_sf2_cfp_rule_size(priv);
1191 nfc->rule_cnt = rules_cnt;
1192
1193 return 0;
1194 }
1195
bcm_sf2_get_rxnfc(struct dsa_switch * ds,int port,struct ethtool_rxnfc * nfc,u32 * rule_locs)1196 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1197 struct ethtool_rxnfc *nfc, u32 *rule_locs)
1198 {
1199 struct net_device *p = ds->ports[port].cpu_dp->master;
1200 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1201 int ret = 0;
1202
1203 mutex_lock(&priv->cfp.lock);
1204
1205 switch (nfc->cmd) {
1206 case ETHTOOL_GRXCLSRLCNT:
1207 /* Subtract the default, unusable rule */
1208 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1209 priv->num_cfp_rules) - 1;
1210 /* We support specifying rule locations */
1211 nfc->data |= RX_CLS_LOC_SPECIAL;
1212 break;
1213 case ETHTOOL_GRXCLSRULE:
1214 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1215 break;
1216 case ETHTOOL_GRXCLSRLALL:
1217 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1218 break;
1219 default:
1220 ret = -EOPNOTSUPP;
1221 break;
1222 }
1223
1224 mutex_unlock(&priv->cfp.lock);
1225
1226 if (ret)
1227 return ret;
1228
1229 /* Pass up the commands to the attached master network device */
1230 if (p->ethtool_ops->get_rxnfc) {
1231 ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1232 if (ret == -EOPNOTSUPP)
1233 ret = 0;
1234 }
1235
1236 return ret;
1237 }
1238
bcm_sf2_set_rxnfc(struct dsa_switch * ds,int port,struct ethtool_rxnfc * nfc)1239 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1240 struct ethtool_rxnfc *nfc)
1241 {
1242 struct net_device *p = ds->ports[port].cpu_dp->master;
1243 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1244 int ret = 0;
1245
1246 mutex_lock(&priv->cfp.lock);
1247
1248 switch (nfc->cmd) {
1249 case ETHTOOL_SRXCLSRLINS:
1250 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1251 break;
1252
1253 case ETHTOOL_SRXCLSRLDEL:
1254 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1255 break;
1256 default:
1257 ret = -EOPNOTSUPP;
1258 break;
1259 }
1260
1261 mutex_unlock(&priv->cfp.lock);
1262
1263 if (ret)
1264 return ret;
1265
1266 /* Pass up the commands to the attached master network device.
1267 * This can fail, so rollback the operation if we need to.
1268 */
1269 if (p->ethtool_ops->set_rxnfc) {
1270 ret = p->ethtool_ops->set_rxnfc(p, nfc);
1271 if (ret && ret != -EOPNOTSUPP) {
1272 mutex_lock(&priv->cfp.lock);
1273 bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1274 mutex_unlock(&priv->cfp.lock);
1275 } else {
1276 ret = 0;
1277 }
1278 }
1279
1280 return ret;
1281 }
1282
bcm_sf2_cfp_rst(struct bcm_sf2_priv * priv)1283 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1284 {
1285 unsigned int timeout = 1000;
1286 u32 reg;
1287
1288 reg = core_readl(priv, CORE_CFP_ACC);
1289 reg |= TCAM_RESET;
1290 core_writel(priv, reg, CORE_CFP_ACC);
1291
1292 do {
1293 reg = core_readl(priv, CORE_CFP_ACC);
1294 if (!(reg & TCAM_RESET))
1295 break;
1296
1297 cpu_relax();
1298 } while (timeout--);
1299
1300 if (!timeout)
1301 return -ETIMEDOUT;
1302
1303 return 0;
1304 }
1305