1 /*
2  * ASPEED Static Memory Controller driver
3  *
4  * Copyright (c) 2015-2016, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/bug.h>
13 #include <linux/device.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/mtd/spi-nor.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/sizes.h>
23 #include <linux/sysfs.h>
24 
25 #define DEVICE_NAME	"aspeed-smc"
26 
27 /*
28  * The driver only support SPI flash
29  */
30 enum aspeed_smc_flash_type {
31 	smc_type_nor  = 0,
32 	smc_type_nand = 1,
33 	smc_type_spi  = 2,
34 };
35 
36 struct aspeed_smc_chip;
37 
38 struct aspeed_smc_info {
39 	u32 maxsize;		/* maximum size of chip window */
40 	u8 nce;			/* number of chip enables */
41 	bool hastype;		/* flash type field exists in config reg */
42 	u8 we0;			/* shift for write enable bit for CE0 */
43 	u8 ctl0;		/* offset in regs of ctl for CE0 */
44 
45 	void (*set_4b)(struct aspeed_smc_chip *chip);
46 };
47 
48 static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
49 static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
50 
51 static const struct aspeed_smc_info fmc_2400_info = {
52 	.maxsize = 64 * 1024 * 1024,
53 	.nce = 5,
54 	.hastype = true,
55 	.we0 = 16,
56 	.ctl0 = 0x10,
57 	.set_4b = aspeed_smc_chip_set_4b,
58 };
59 
60 static const struct aspeed_smc_info spi_2400_info = {
61 	.maxsize = 64 * 1024 * 1024,
62 	.nce = 1,
63 	.hastype = false,
64 	.we0 = 0,
65 	.ctl0 = 0x04,
66 	.set_4b = aspeed_smc_chip_set_4b_spi_2400,
67 };
68 
69 static const struct aspeed_smc_info fmc_2500_info = {
70 	.maxsize = 256 * 1024 * 1024,
71 	.nce = 3,
72 	.hastype = true,
73 	.we0 = 16,
74 	.ctl0 = 0x10,
75 	.set_4b = aspeed_smc_chip_set_4b,
76 };
77 
78 static const struct aspeed_smc_info spi_2500_info = {
79 	.maxsize = 128 * 1024 * 1024,
80 	.nce = 2,
81 	.hastype = false,
82 	.we0 = 16,
83 	.ctl0 = 0x10,
84 	.set_4b = aspeed_smc_chip_set_4b,
85 };
86 
87 enum aspeed_smc_ctl_reg_value {
88 	smc_base,		/* base value without mode for other commands */
89 	smc_read,		/* command reg for (maybe fast) reads */
90 	smc_write,		/* command reg for writes */
91 	smc_max,
92 };
93 
94 struct aspeed_smc_controller;
95 
96 struct aspeed_smc_chip {
97 	int cs;
98 	struct aspeed_smc_controller *controller;
99 	void __iomem *ctl;			/* control register */
100 	void __iomem *ahb_base;			/* base of chip window */
101 	u32 ahb_window_size;			/* chip mapping window size */
102 	u32 ctl_val[smc_max];			/* control settings */
103 	enum aspeed_smc_flash_type type;	/* what type of flash */
104 	struct spi_nor nor;
105 };
106 
107 struct aspeed_smc_controller {
108 	struct device *dev;
109 
110 	struct mutex mutex;			/* controller access mutex */
111 	const struct aspeed_smc_info *info;	/* type info of controller */
112 	void __iomem *regs;			/* controller registers */
113 	void __iomem *ahb_base;			/* per-chip windows resource */
114 	u32 ahb_window_size;			/* full mapping window size */
115 
116 	struct aspeed_smc_chip *chips[0];	/* pointers to attached chips */
117 };
118 
119 /*
120  * SPI Flash Configuration Register (AST2500 SPI)
121  *     or
122  * Type setting Register (AST2500 FMC).
123  * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
124  * driver does not support it.
125  */
126 #define CONFIG_REG			0x0
127 #define CONFIG_DISABLE_LEGACY		BIT(31) /* 1 */
128 
129 #define CONFIG_CE2_WRITE		BIT(18)
130 #define CONFIG_CE1_WRITE		BIT(17)
131 #define CONFIG_CE0_WRITE		BIT(16)
132 
133 #define CONFIG_CE2_TYPE			BIT(4) /* AST2500 FMC only */
134 #define CONFIG_CE1_TYPE			BIT(2) /* AST2500 FMC only */
135 #define CONFIG_CE0_TYPE			BIT(0) /* AST2500 FMC only */
136 
137 /*
138  * CE Control Register
139  */
140 #define CE_CONTROL_REG			0x4
141 
142 /*
143  * CEx Control Register
144  */
145 #define CONTROL_AAF_MODE		BIT(31)
146 #define CONTROL_IO_MODE_MASK		GENMASK(30, 28)
147 #define CONTROL_IO_DUAL_DATA		BIT(29)
148 #define CONTROL_IO_DUAL_ADDR_DATA	(BIT(29) | BIT(28))
149 #define CONTROL_IO_QUAD_DATA		BIT(30)
150 #define CONTROL_IO_QUAD_ADDR_DATA	(BIT(30) | BIT(28))
151 #define CONTROL_CE_INACTIVE_SHIFT	24
152 #define CONTROL_CE_INACTIVE_MASK	GENMASK(27, \
153 					CONTROL_CE_INACTIVE_SHIFT)
154 /* 0 = 16T ... 15 = 1T   T=HCLK */
155 #define CONTROL_COMMAND_SHIFT		16
156 #define CONTROL_DUMMY_COMMAND_OUT	BIT(15)
157 #define CONTROL_IO_DUMMY_HI		BIT(14)
158 #define CONTROL_IO_DUMMY_HI_SHIFT	14
159 #define CONTROL_CLK_DIV4		BIT(13) /* others */
160 #define CONTROL_IO_ADDRESS_4B		BIT(13) /* AST2400 SPI */
161 #define CONTROL_RW_MERGE		BIT(12)
162 #define CONTROL_IO_DUMMY_LO_SHIFT	6
163 #define CONTROL_IO_DUMMY_LO		GENMASK(7, \
164 						CONTROL_IO_DUMMY_LO_SHIFT)
165 #define CONTROL_IO_DUMMY_MASK		(CONTROL_IO_DUMMY_HI | \
166 					 CONTROL_IO_DUMMY_LO)
167 #define CONTROL_IO_DUMMY_SET(dummy)				 \
168 	(((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
169 	 (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
170 
171 #define CONTROL_CLOCK_FREQ_SEL_SHIFT	8
172 #define CONTROL_CLOCK_FREQ_SEL_MASK	GENMASK(11, \
173 						CONTROL_CLOCK_FREQ_SEL_SHIFT)
174 #define CONTROL_LSB_FIRST		BIT(5)
175 #define CONTROL_CLOCK_MODE_3		BIT(4)
176 #define CONTROL_IN_DUAL_DATA		BIT(3)
177 #define CONTROL_CE_STOP_ACTIVE_CONTROL	BIT(2)
178 #define CONTROL_COMMAND_MODE_MASK	GENMASK(1, 0)
179 #define CONTROL_COMMAND_MODE_NORMAL	0
180 #define CONTROL_COMMAND_MODE_FREAD	1
181 #define CONTROL_COMMAND_MODE_WRITE	2
182 #define CONTROL_COMMAND_MODE_USER	3
183 
184 #define CONTROL_KEEP_MASK						\
185 	(CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
186 	 CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
187 
188 /*
189  * The Segment Register uses a 8MB unit to encode the start address
190  * and the end address of the mapping window of a flash SPI slave :
191  *
192  *        | byte 1 | byte 2 | byte 3 | byte 4 |
193  *        +--------+--------+--------+--------+
194  *        |  end   |  start |   0    |   0    |
195  */
196 #define SEGMENT_ADDR_REG0		0x30
197 #define SEGMENT_ADDR_START(_r)		((((_r) >> 16) & 0xFF) << 23)
198 #define SEGMENT_ADDR_END(_r)		((((_r) >> 24) & 0xFF) << 23)
199 #define SEGMENT_ADDR_VALUE(start, end)					\
200 	(((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
201 #define SEGMENT_ADDR_REG(controller, cs)	\
202 	((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)
203 
204 /*
205  * In user mode all data bytes read or written to the chip decode address
206  * range are transferred to or from the SPI bus. The range is treated as a
207  * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
208  * to its size. The address within the multiple 8kB range is ignored when
209  * sending bytes to the SPI bus.
210  *
211  * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
212  * memcpy_toio on little endian targets use the optimized memcpy routines
213  * that were designed for well behavied memory storage. These routines
214  * have a stutter if the source and destination are not both word aligned,
215  * once with a duplicate access to the source after aligning to the
216  * destination to a word boundary, and again with a duplicate access to
217  * the source when the final byte count is not word aligned.
218  *
219  * When writing or reading the fifo this stutter discards data or sends
220  * too much data to the fifo and can not be used by this driver.
221  *
222  * While the low level io string routines that implement the insl family do
223  * the desired accesses and memory increments, the cross architecture io
224  * macros make them essentially impossible to use on a memory mapped address
225  * instead of a a token from the call to iomap of an io port.
226  *
227  * These fifo routines use readl and friends to a constant io port and update
228  * the memory buffer pointer and count via explicit code. The final updates
229  * to len are optimistically suppressed.
230  */
aspeed_smc_read_from_ahb(void * buf,void __iomem * src,size_t len)231 static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
232 {
233 	size_t offset = 0;
234 
235 	if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
236 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
237 		ioread32_rep(src, buf, len >> 2);
238 		offset = len & ~0x3;
239 		len -= offset;
240 	}
241 	ioread8_rep(src, (u8 *)buf + offset, len);
242 	return 0;
243 }
244 
aspeed_smc_write_to_ahb(void __iomem * dst,const void * buf,size_t len)245 static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
246 				   size_t len)
247 {
248 	size_t offset = 0;
249 
250 	if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
251 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
252 		iowrite32_rep(dst, buf, len >> 2);
253 		offset = len & ~0x3;
254 		len -= offset;
255 	}
256 	iowrite8_rep(dst, (const u8 *)buf + offset, len);
257 	return 0;
258 }
259 
aspeed_smc_chip_write_bit(struct aspeed_smc_chip * chip)260 static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
261 {
262 	return BIT(chip->controller->info->we0 + chip->cs);
263 }
264 
aspeed_smc_chip_check_config(struct aspeed_smc_chip * chip)265 static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
266 {
267 	struct aspeed_smc_controller *controller = chip->controller;
268 	u32 reg;
269 
270 	reg = readl(controller->regs + CONFIG_REG);
271 
272 	if (reg & aspeed_smc_chip_write_bit(chip))
273 		return;
274 
275 	dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
276 		controller->regs + CONFIG_REG, reg);
277 	reg |= aspeed_smc_chip_write_bit(chip);
278 	writel(reg, controller->regs + CONFIG_REG);
279 }
280 
aspeed_smc_start_user(struct spi_nor * nor)281 static void aspeed_smc_start_user(struct spi_nor *nor)
282 {
283 	struct aspeed_smc_chip *chip = nor->priv;
284 	u32 ctl = chip->ctl_val[smc_base];
285 
286 	/*
287 	 * When the chip is controlled in user mode, we need write
288 	 * access to send the opcodes to it. So check the config.
289 	 */
290 	aspeed_smc_chip_check_config(chip);
291 
292 	ctl |= CONTROL_COMMAND_MODE_USER |
293 		CONTROL_CE_STOP_ACTIVE_CONTROL;
294 	writel(ctl, chip->ctl);
295 
296 	ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
297 	writel(ctl, chip->ctl);
298 }
299 
aspeed_smc_stop_user(struct spi_nor * nor)300 static void aspeed_smc_stop_user(struct spi_nor *nor)
301 {
302 	struct aspeed_smc_chip *chip = nor->priv;
303 
304 	u32 ctl = chip->ctl_val[smc_read];
305 	u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
306 		CONTROL_CE_STOP_ACTIVE_CONTROL;
307 
308 	writel(ctl2, chip->ctl);	/* stop user CE control */
309 	writel(ctl, chip->ctl);		/* default to fread or read mode */
310 }
311 
aspeed_smc_prep(struct spi_nor * nor,enum spi_nor_ops ops)312 static int aspeed_smc_prep(struct spi_nor *nor, enum spi_nor_ops ops)
313 {
314 	struct aspeed_smc_chip *chip = nor->priv;
315 
316 	mutex_lock(&chip->controller->mutex);
317 	return 0;
318 }
319 
aspeed_smc_unprep(struct spi_nor * nor,enum spi_nor_ops ops)320 static void aspeed_smc_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
321 {
322 	struct aspeed_smc_chip *chip = nor->priv;
323 
324 	mutex_unlock(&chip->controller->mutex);
325 }
326 
aspeed_smc_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)327 static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
328 {
329 	struct aspeed_smc_chip *chip = nor->priv;
330 
331 	aspeed_smc_start_user(nor);
332 	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
333 	aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
334 	aspeed_smc_stop_user(nor);
335 	return 0;
336 }
337 
aspeed_smc_write_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)338 static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
339 				int len)
340 {
341 	struct aspeed_smc_chip *chip = nor->priv;
342 
343 	aspeed_smc_start_user(nor);
344 	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
345 	aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
346 	aspeed_smc_stop_user(nor);
347 	return 0;
348 }
349 
aspeed_smc_send_cmd_addr(struct spi_nor * nor,u8 cmd,u32 addr)350 static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
351 {
352 	struct aspeed_smc_chip *chip = nor->priv;
353 	__be32 temp;
354 	u32 cmdaddr;
355 
356 	switch (nor->addr_width) {
357 	default:
358 		WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
359 			  nor->addr_width);
360 		/* FALLTHROUGH */
361 	case 3:
362 		cmdaddr = addr & 0xFFFFFF;
363 		cmdaddr |= cmd << 24;
364 
365 		temp = cpu_to_be32(cmdaddr);
366 		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
367 		break;
368 	case 4:
369 		temp = cpu_to_be32(addr);
370 		aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
371 		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
372 		break;
373 	}
374 }
375 
aspeed_smc_read_user(struct spi_nor * nor,loff_t from,size_t len,u_char * read_buf)376 static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
377 				    size_t len, u_char *read_buf)
378 {
379 	struct aspeed_smc_chip *chip = nor->priv;
380 	int i;
381 	u8 dummy = 0xFF;
382 
383 	aspeed_smc_start_user(nor);
384 	aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
385 	for (i = 0; i < chip->nor.read_dummy / 8; i++)
386 		aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
387 
388 	aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
389 	aspeed_smc_stop_user(nor);
390 	return len;
391 }
392 
aspeed_smc_write_user(struct spi_nor * nor,loff_t to,size_t len,const u_char * write_buf)393 static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
394 				     size_t len, const u_char *write_buf)
395 {
396 	struct aspeed_smc_chip *chip = nor->priv;
397 
398 	aspeed_smc_start_user(nor);
399 	aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
400 	aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
401 	aspeed_smc_stop_user(nor);
402 	return len;
403 }
404 
aspeed_smc_unregister(struct aspeed_smc_controller * controller)405 static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
406 {
407 	struct aspeed_smc_chip *chip;
408 	int n;
409 
410 	for (n = 0; n < controller->info->nce; n++) {
411 		chip = controller->chips[n];
412 		if (chip)
413 			mtd_device_unregister(&chip->nor.mtd);
414 	}
415 
416 	return 0;
417 }
418 
aspeed_smc_remove(struct platform_device * dev)419 static int aspeed_smc_remove(struct platform_device *dev)
420 {
421 	return aspeed_smc_unregister(platform_get_drvdata(dev));
422 }
423 
424 static const struct of_device_id aspeed_smc_matches[] = {
425 	{ .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
426 	{ .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
427 	{ .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
428 	{ .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
429 	{ }
430 };
431 MODULE_DEVICE_TABLE(of, aspeed_smc_matches);
432 
433 /*
434  * Each chip has a mapping window defined by a segment address
435  * register defining a start and an end address on the AHB bus. These
436  * addresses can be configured to fit the chip size and offer a
437  * contiguous memory region across chips. For the moment, we only
438  * check that each chip segment is valid.
439  */
aspeed_smc_chip_base(struct aspeed_smc_chip * chip,struct resource * res)440 static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
441 					  struct resource *res)
442 {
443 	struct aspeed_smc_controller *controller = chip->controller;
444 	u32 offset = 0;
445 	u32 reg;
446 
447 	if (controller->info->nce > 1) {
448 		reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));
449 
450 		if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
451 			return NULL;
452 
453 		offset = SEGMENT_ADDR_START(reg) - res->start;
454 	}
455 
456 	return controller->ahb_base + offset;
457 }
458 
aspeed_smc_ahb_base_phy(struct aspeed_smc_controller * controller)459 static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
460 {
461 	u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));
462 
463 	return SEGMENT_ADDR_START(seg0_val);
464 }
465 
chip_set_segment(struct aspeed_smc_chip * chip,u32 cs,u32 start,u32 size)466 static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
467 			    u32 size)
468 {
469 	struct aspeed_smc_controller *controller = chip->controller;
470 	void __iomem *seg_reg;
471 	u32 seg_oldval, seg_newval, ahb_base_phy, end;
472 
473 	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
474 
475 	seg_reg = SEGMENT_ADDR_REG(controller, cs);
476 	seg_oldval = readl(seg_reg);
477 
478 	/*
479 	 * If the chip size is not specified, use the default segment
480 	 * size, but take into account the possible overlap with the
481 	 * previous segment
482 	 */
483 	if (!size)
484 		size = SEGMENT_ADDR_END(seg_oldval) - start;
485 
486 	/*
487 	 * The segment cannot exceed the maximum window size of the
488 	 * controller.
489 	 */
490 	if (start + size > ahb_base_phy + controller->ahb_window_size) {
491 		size = ahb_base_phy + controller->ahb_window_size - start;
492 		dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
493 			 cs, size >> 20);
494 	}
495 
496 	end = start + size;
497 	seg_newval = SEGMENT_ADDR_VALUE(start, end);
498 	writel(seg_newval, seg_reg);
499 
500 	/*
501 	 * Restore default value if something goes wrong. The chip
502 	 * might have set some bogus value and we would loose access
503 	 * to the chip.
504 	 */
505 	if (seg_newval != readl(seg_reg)) {
506 		dev_err(chip->nor.dev, "CE%d window invalid", cs);
507 		writel(seg_oldval, seg_reg);
508 		start = SEGMENT_ADDR_START(seg_oldval);
509 		end = SEGMENT_ADDR_END(seg_oldval);
510 		size = end - start;
511 	}
512 
513 	dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
514 		 cs, start, end, size >> 20);
515 
516 	return size;
517 }
518 
519 /*
520  * The segment register defines the mapping window on the AHB bus and
521  * it needs to be configured depending on the chip size. The segment
522  * register of the following CE also needs to be tuned in order to
523  * provide a contiguous window across multiple chips.
524  *
525  * This is expected to be called in increasing CE order
526  */
aspeed_smc_chip_set_segment(struct aspeed_smc_chip * chip)527 static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
528 {
529 	struct aspeed_smc_controller *controller = chip->controller;
530 	u32 ahb_base_phy, start;
531 	u32 size = chip->nor.mtd.size;
532 
533 	/*
534 	 * Each controller has a chip size limit for direct memory
535 	 * access
536 	 */
537 	if (size > controller->info->maxsize)
538 		size = controller->info->maxsize;
539 
540 	/*
541 	 * The AST2400 SPI controller only handles one chip and does
542 	 * not have segment registers. Let's use the chip size for the
543 	 * AHB window.
544 	 */
545 	if (controller->info == &spi_2400_info)
546 		goto out;
547 
548 	/*
549 	 * The AST2500 SPI controller has a HW bug when the CE0 chip
550 	 * size reaches 128MB. Enforce a size limit of 120MB to
551 	 * prevent the controller from using bogus settings in the
552 	 * segment register.
553 	 */
554 	if (chip->cs == 0 && controller->info == &spi_2500_info &&
555 	    size == SZ_128M) {
556 		size = 120 << 20;
557 		dev_info(chip->nor.dev,
558 			 "CE%d window resized to %dMB (AST2500 HW quirk)",
559 			 chip->cs, size >> 20);
560 	}
561 
562 	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
563 
564 	/*
565 	 * As a start address for the current segment, use the default
566 	 * start address if we are handling CE0 or use the previous
567 	 * segment ending address
568 	 */
569 	if (chip->cs) {
570 		u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));
571 
572 		start = SEGMENT_ADDR_END(prev);
573 	} else {
574 		start = ahb_base_phy;
575 	}
576 
577 	size = chip_set_segment(chip, chip->cs, start, size);
578 
579 	/* Update chip base address on the AHB bus */
580 	chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);
581 
582 	/*
583 	 * Now, make sure the next segment does not overlap with the
584 	 * current one we just configured, even if there is no
585 	 * available chip. That could break access in Command Mode.
586 	 */
587 	if (chip->cs < controller->info->nce - 1)
588 		chip_set_segment(chip, chip->cs + 1, start + size, 0);
589 
590 out:
591 	if (size < chip->nor.mtd.size)
592 		dev_warn(chip->nor.dev,
593 			 "CE%d window too small for chip %dMB",
594 			 chip->cs, (u32)chip->nor.mtd.size >> 20);
595 
596 	return size;
597 }
598 
aspeed_smc_chip_enable_write(struct aspeed_smc_chip * chip)599 static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
600 {
601 	struct aspeed_smc_controller *controller = chip->controller;
602 	u32 reg;
603 
604 	reg = readl(controller->regs + CONFIG_REG);
605 
606 	reg |= aspeed_smc_chip_write_bit(chip);
607 	writel(reg, controller->regs + CONFIG_REG);
608 }
609 
aspeed_smc_chip_set_type(struct aspeed_smc_chip * chip,int type)610 static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
611 {
612 	struct aspeed_smc_controller *controller = chip->controller;
613 	u32 reg;
614 
615 	chip->type = type;
616 
617 	reg = readl(controller->regs + CONFIG_REG);
618 	reg &= ~(3 << (chip->cs * 2));
619 	reg |= chip->type << (chip->cs * 2);
620 	writel(reg, controller->regs + CONFIG_REG);
621 }
622 
623 /*
624  * The first chip of the AST2500 FMC flash controller is strapped by
625  * hardware, or autodetected, but other chips need to be set. Enforce
626  * the 4B setting for all chips.
627  */
aspeed_smc_chip_set_4b(struct aspeed_smc_chip * chip)628 static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
629 {
630 	struct aspeed_smc_controller *controller = chip->controller;
631 	u32 reg;
632 
633 	reg = readl(controller->regs + CE_CONTROL_REG);
634 	reg |= 1 << chip->cs;
635 	writel(reg, controller->regs + CE_CONTROL_REG);
636 }
637 
638 /*
639  * The AST2400 SPI flash controller does not have a CE Control
640  * register. It uses the CE0 control register to set 4Byte mode at the
641  * controller level.
642  */
aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip * chip)643 static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
644 {
645 	chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
646 	chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
647 }
648 
aspeed_smc_chip_setup_init(struct aspeed_smc_chip * chip,struct resource * res)649 static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
650 				      struct resource *res)
651 {
652 	struct aspeed_smc_controller *controller = chip->controller;
653 	const struct aspeed_smc_info *info = controller->info;
654 	u32 reg, base_reg;
655 
656 	/*
657 	 * Always turn on the write enable bit to allow opcodes to be
658 	 * sent in user mode.
659 	 */
660 	aspeed_smc_chip_enable_write(chip);
661 
662 	/* The driver only supports SPI type flash */
663 	if (info->hastype)
664 		aspeed_smc_chip_set_type(chip, smc_type_spi);
665 
666 	/*
667 	 * Configure chip base address in memory
668 	 */
669 	chip->ahb_base = aspeed_smc_chip_base(chip, res);
670 	if (!chip->ahb_base) {
671 		dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
672 		return -EINVAL;
673 	}
674 
675 	/*
676 	 * Get value of the inherited control register. U-Boot usually
677 	 * does some timing calibration on the FMC chip, so it's good
678 	 * to keep them. In the future, we should handle calibration
679 	 * from Linux.
680 	 */
681 	reg = readl(chip->ctl);
682 	dev_dbg(controller->dev, "control register: %08x\n", reg);
683 
684 	base_reg = reg & CONTROL_KEEP_MASK;
685 	if (base_reg != reg) {
686 		dev_dbg(controller->dev,
687 			"control register changed to: %08x\n",
688 			base_reg);
689 	}
690 	chip->ctl_val[smc_base] = base_reg;
691 
692 	/*
693 	 * Retain the prior value of the control register as the
694 	 * default if it was normal access mode. Otherwise start with
695 	 * the sanitized base value set to read mode.
696 	 */
697 	if ((reg & CONTROL_COMMAND_MODE_MASK) ==
698 	    CONTROL_COMMAND_MODE_NORMAL)
699 		chip->ctl_val[smc_read] = reg;
700 	else
701 		chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
702 			CONTROL_COMMAND_MODE_NORMAL;
703 
704 	dev_dbg(controller->dev, "default control register: %08x\n",
705 		chip->ctl_val[smc_read]);
706 	return 0;
707 }
708 
aspeed_smc_chip_setup_finish(struct aspeed_smc_chip * chip)709 static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
710 {
711 	struct aspeed_smc_controller *controller = chip->controller;
712 	const struct aspeed_smc_info *info = controller->info;
713 	u32 cmd;
714 
715 	if (chip->nor.addr_width == 4 && info->set_4b)
716 		info->set_4b(chip);
717 
718 	/* This is for direct AHB access when using Command Mode. */
719 	chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);
720 
721 	/*
722 	 * base mode has not been optimized yet. use it for writes.
723 	 */
724 	chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
725 		chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
726 		CONTROL_COMMAND_MODE_WRITE;
727 
728 	dev_dbg(controller->dev, "write control register: %08x\n",
729 		chip->ctl_val[smc_write]);
730 
731 	/*
732 	 * TODO: Adjust clocks if fast read is supported and interpret
733 	 * SPI-NOR flags to adjust controller settings.
734 	 */
735 	if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
736 		if (chip->nor.read_dummy == 0)
737 			cmd = CONTROL_COMMAND_MODE_NORMAL;
738 		else
739 			cmd = CONTROL_COMMAND_MODE_FREAD;
740 	} else {
741 		dev_err(chip->nor.dev, "unsupported SPI read mode\n");
742 		return -EINVAL;
743 	}
744 
745 	chip->ctl_val[smc_read] |= cmd |
746 		CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
747 
748 	dev_dbg(controller->dev, "base control register: %08x\n",
749 		chip->ctl_val[smc_read]);
750 	return 0;
751 }
752 
aspeed_smc_setup_flash(struct aspeed_smc_controller * controller,struct device_node * np,struct resource * r)753 static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
754 				  struct device_node *np, struct resource *r)
755 {
756 	const struct spi_nor_hwcaps hwcaps = {
757 		.mask = SNOR_HWCAPS_READ |
758 			SNOR_HWCAPS_READ_FAST |
759 			SNOR_HWCAPS_PP,
760 	};
761 	const struct aspeed_smc_info *info = controller->info;
762 	struct device *dev = controller->dev;
763 	struct device_node *child;
764 	unsigned int cs;
765 	int ret = -ENODEV;
766 
767 	for_each_available_child_of_node(np, child) {
768 		struct aspeed_smc_chip *chip;
769 		struct spi_nor *nor;
770 		struct mtd_info *mtd;
771 
772 		/* This driver does not support NAND or NOR flash devices. */
773 		if (!of_device_is_compatible(child, "jedec,spi-nor"))
774 			continue;
775 
776 		ret = of_property_read_u32(child, "reg", &cs);
777 		if (ret) {
778 			dev_err(dev, "Couldn't not read chip select.\n");
779 			break;
780 		}
781 
782 		if (cs >= info->nce) {
783 			dev_err(dev, "Chip select %d out of range.\n",
784 				cs);
785 			ret = -ERANGE;
786 			break;
787 		}
788 
789 		if (controller->chips[cs]) {
790 			dev_err(dev, "Chip select %d already in use by %s\n",
791 				cs, dev_name(controller->chips[cs]->nor.dev));
792 			ret = -EBUSY;
793 			break;
794 		}
795 
796 		chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
797 		if (!chip) {
798 			ret = -ENOMEM;
799 			break;
800 		}
801 
802 		chip->controller = controller;
803 		chip->ctl = controller->regs + info->ctl0 + cs * 4;
804 		chip->cs = cs;
805 
806 		nor = &chip->nor;
807 		mtd = &nor->mtd;
808 
809 		nor->dev = dev;
810 		nor->priv = chip;
811 		spi_nor_set_flash_node(nor, child);
812 		nor->read = aspeed_smc_read_user;
813 		nor->write = aspeed_smc_write_user;
814 		nor->read_reg = aspeed_smc_read_reg;
815 		nor->write_reg = aspeed_smc_write_reg;
816 		nor->prepare = aspeed_smc_prep;
817 		nor->unprepare = aspeed_smc_unprep;
818 
819 		ret = aspeed_smc_chip_setup_init(chip, r);
820 		if (ret)
821 			break;
822 
823 		/*
824 		 * TODO: Add support for Dual and Quad SPI protocols
825 		 * attach when board support is present as determined
826 		 * by of property.
827 		 */
828 		ret = spi_nor_scan(nor, NULL, &hwcaps);
829 		if (ret)
830 			break;
831 
832 		ret = aspeed_smc_chip_setup_finish(chip);
833 		if (ret)
834 			break;
835 
836 		ret = mtd_device_register(mtd, NULL, 0);
837 		if (ret)
838 			break;
839 
840 		controller->chips[cs] = chip;
841 	}
842 
843 	if (ret)
844 		aspeed_smc_unregister(controller);
845 
846 	return ret;
847 }
848 
aspeed_smc_probe(struct platform_device * pdev)849 static int aspeed_smc_probe(struct platform_device *pdev)
850 {
851 	struct device_node *np = pdev->dev.of_node;
852 	struct device *dev = &pdev->dev;
853 	struct aspeed_smc_controller *controller;
854 	const struct of_device_id *match;
855 	const struct aspeed_smc_info *info;
856 	struct resource *res;
857 	int ret;
858 
859 	match = of_match_device(aspeed_smc_matches, &pdev->dev);
860 	if (!match || !match->data)
861 		return -ENODEV;
862 	info = match->data;
863 
864 	controller = devm_kzalloc(&pdev->dev,
865 				  struct_size(controller, chips, info->nce),
866 				  GFP_KERNEL);
867 	if (!controller)
868 		return -ENOMEM;
869 	controller->info = info;
870 	controller->dev = dev;
871 
872 	mutex_init(&controller->mutex);
873 	platform_set_drvdata(pdev, controller);
874 
875 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
876 	controller->regs = devm_ioremap_resource(dev, res);
877 	if (IS_ERR(controller->regs))
878 		return PTR_ERR(controller->regs);
879 
880 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
881 	controller->ahb_base = devm_ioremap_resource(dev, res);
882 	if (IS_ERR(controller->ahb_base))
883 		return PTR_ERR(controller->ahb_base);
884 
885 	controller->ahb_window_size = resource_size(res);
886 
887 	ret = aspeed_smc_setup_flash(controller, np, res);
888 	if (ret)
889 		dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
890 
891 	return ret;
892 }
893 
894 static struct platform_driver aspeed_smc_driver = {
895 	.probe = aspeed_smc_probe,
896 	.remove = aspeed_smc_remove,
897 	.driver = {
898 		.name = DEVICE_NAME,
899 		.of_match_table = aspeed_smc_matches,
900 	}
901 };
902 
903 module_platform_driver(aspeed_smc_driver);
904 
905 MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
906 MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
907 MODULE_LICENSE("GPL v2");
908