1 /*
2 * Copyright © 2004-2008 Simtec Electronics
3 * http://armlinux.simtec.co.uk/
4 * Ben Dooks <ben@simtec.co.uk>
5 *
6 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #define pr_fmt(fmt) "nand-s3c2410: " fmt
24
25 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
26 #define DEBUG
27 #endif
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/io.h>
34 #include <linux/ioport.h>
35 #include <linux/platform_device.h>
36 #include <linux/delay.h>
37 #include <linux/err.h>
38 #include <linux/slab.h>
39 #include <linux/clk.h>
40 #include <linux/cpufreq.h>
41 #include <linux/of.h>
42 #include <linux/of_device.h>
43
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/rawnand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/partitions.h>
48
49 #include <linux/platform_data/mtd-nand-s3c2410.h>
50
51 #define S3C2410_NFREG(x) (x)
52
53 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
54 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
55 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
56 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
57 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
58 #define S3C2410_NFECC S3C2410_NFREG(0x14)
59 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
60 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
61 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
62 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
63 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
64 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
65 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
66 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
67 #define S3C2410_NFCONF_EN (1<<15)
68 #define S3C2410_NFCONF_INITECC (1<<12)
69 #define S3C2410_NFCONF_nFCE (1<<11)
70 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
71 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
72 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
73 #define S3C2410_NFSTAT_BUSY (1<<0)
74 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
75 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
76 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
77 #define S3C2440_NFCONT_INITECC (1<<4)
78 #define S3C2440_NFCONT_nFCE (1<<1)
79 #define S3C2440_NFCONT_ENABLE (1<<0)
80 #define S3C2440_NFSTAT_READY (1<<0)
81 #define S3C2412_NFCONF_NANDBOOT (1<<31)
82 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
83 #define S3C2412_NFCONT_nFCE0 (1<<1)
84 #define S3C2412_NFSTAT_READY (1<<0)
85
86 /* new oob placement block for use with hardware ecc generation
87 */
s3c2410_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)88 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
89 struct mtd_oob_region *oobregion)
90 {
91 if (section)
92 return -ERANGE;
93
94 oobregion->offset = 0;
95 oobregion->length = 3;
96
97 return 0;
98 }
99
s3c2410_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)100 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
101 struct mtd_oob_region *oobregion)
102 {
103 if (section)
104 return -ERANGE;
105
106 oobregion->offset = 8;
107 oobregion->length = 8;
108
109 return 0;
110 }
111
112 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
113 .ecc = s3c2410_ooblayout_ecc,
114 .free = s3c2410_ooblayout_free,
115 };
116
117 /* controller and mtd information */
118
119 struct s3c2410_nand_info;
120
121 /**
122 * struct s3c2410_nand_mtd - driver MTD structure
123 * @mtd: The MTD instance to pass to the MTD layer.
124 * @chip: The NAND chip information.
125 * @set: The platform information supplied for this set of NAND chips.
126 * @info: Link back to the hardware information.
127 */
128 struct s3c2410_nand_mtd {
129 struct nand_chip chip;
130 struct s3c2410_nand_set *set;
131 struct s3c2410_nand_info *info;
132 };
133
134 enum s3c_cpu_type {
135 TYPE_S3C2410,
136 TYPE_S3C2412,
137 TYPE_S3C2440,
138 };
139
140 enum s3c_nand_clk_state {
141 CLOCK_DISABLE = 0,
142 CLOCK_ENABLE,
143 CLOCK_SUSPEND,
144 };
145
146 /* overview of the s3c2410 nand state */
147
148 /**
149 * struct s3c2410_nand_info - NAND controller state.
150 * @mtds: An array of MTD instances on this controoler.
151 * @platform: The platform data for this board.
152 * @device: The platform device we bound to.
153 * @clk: The clock resource for this controller.
154 * @regs: The area mapped for the hardware registers.
155 * @sel_reg: Pointer to the register controlling the NAND selection.
156 * @sel_bit: The bit in @sel_reg to select the NAND chip.
157 * @mtd_count: The number of MTDs created from this controller.
158 * @save_sel: The contents of @sel_reg to be saved over suspend.
159 * @clk_rate: The clock rate from @clk.
160 * @clk_state: The current clock state.
161 * @cpu_type: The exact type of this controller.
162 */
163 struct s3c2410_nand_info {
164 /* mtd info */
165 struct nand_controller controller;
166 struct s3c2410_nand_mtd *mtds;
167 struct s3c2410_platform_nand *platform;
168
169 /* device info */
170 struct device *device;
171 struct clk *clk;
172 void __iomem *regs;
173 void __iomem *sel_reg;
174 int sel_bit;
175 int mtd_count;
176 unsigned long save_sel;
177 unsigned long clk_rate;
178 enum s3c_nand_clk_state clk_state;
179
180 enum s3c_cpu_type cpu_type;
181
182 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
183 struct notifier_block freq_transition;
184 #endif
185 };
186
187 struct s3c24XX_nand_devtype_data {
188 enum s3c_cpu_type type;
189 };
190
191 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
192 .type = TYPE_S3C2410,
193 };
194
195 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
196 .type = TYPE_S3C2412,
197 };
198
199 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
200 .type = TYPE_S3C2440,
201 };
202
203 /* conversion functions */
204
s3c2410_nand_mtd_toours(struct mtd_info * mtd)205 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
206 {
207 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
208 chip);
209 }
210
s3c2410_nand_mtd_toinfo(struct mtd_info * mtd)211 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
212 {
213 return s3c2410_nand_mtd_toours(mtd)->info;
214 }
215
to_nand_info(struct platform_device * dev)216 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
217 {
218 return platform_get_drvdata(dev);
219 }
220
to_nand_plat(struct platform_device * dev)221 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
222 {
223 return dev_get_platdata(&dev->dev);
224 }
225
allow_clk_suspend(struct s3c2410_nand_info * info)226 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
227 {
228 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
229 return 1;
230 #else
231 return 0;
232 #endif
233 }
234
235 /**
236 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
237 * @info: The controller instance.
238 * @new_state: State to which clock should be set.
239 */
s3c2410_nand_clk_set_state(struct s3c2410_nand_info * info,enum s3c_nand_clk_state new_state)240 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
241 enum s3c_nand_clk_state new_state)
242 {
243 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
244 return;
245
246 if (info->clk_state == CLOCK_ENABLE) {
247 if (new_state != CLOCK_ENABLE)
248 clk_disable_unprepare(info->clk);
249 } else {
250 if (new_state == CLOCK_ENABLE)
251 clk_prepare_enable(info->clk);
252 }
253
254 info->clk_state = new_state;
255 }
256
257 /* timing calculations */
258
259 #define NS_IN_KHZ 1000000
260
261 /**
262 * s3c_nand_calc_rate - calculate timing data.
263 * @wanted: The cycle time in nanoseconds.
264 * @clk: The clock rate in kHz.
265 * @max: The maximum divider value.
266 *
267 * Calculate the timing value from the given parameters.
268 */
s3c_nand_calc_rate(int wanted,unsigned long clk,int max)269 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
270 {
271 int result;
272
273 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
274
275 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
276
277 if (result > max) {
278 pr_err("%d ns is too big for current clock rate %ld\n",
279 wanted, clk);
280 return -1;
281 }
282
283 if (result < 1)
284 result = 1;
285
286 return result;
287 }
288
289 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
290
291 /* controller setup */
292
293 /**
294 * s3c2410_nand_setrate - setup controller timing information.
295 * @info: The controller instance.
296 *
297 * Given the information supplied by the platform, calculate and set
298 * the necessary timing registers in the hardware to generate the
299 * necessary timing cycles to the hardware.
300 */
s3c2410_nand_setrate(struct s3c2410_nand_info * info)301 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
302 {
303 struct s3c2410_platform_nand *plat = info->platform;
304 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
305 int tacls, twrph0, twrph1;
306 unsigned long clkrate = clk_get_rate(info->clk);
307 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
308 unsigned long flags;
309
310 /* calculate the timing information for the controller */
311
312 info->clk_rate = clkrate;
313 clkrate /= 1000; /* turn clock into kHz for ease of use */
314
315 if (plat != NULL) {
316 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
317 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
318 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
319 } else {
320 /* default timings */
321 tacls = tacls_max;
322 twrph0 = 8;
323 twrph1 = 8;
324 }
325
326 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
327 dev_err(info->device, "cannot get suitable timings\n");
328 return -EINVAL;
329 }
330
331 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
332 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
333 twrph1, to_ns(twrph1, clkrate));
334
335 switch (info->cpu_type) {
336 case TYPE_S3C2410:
337 mask = (S3C2410_NFCONF_TACLS(3) |
338 S3C2410_NFCONF_TWRPH0(7) |
339 S3C2410_NFCONF_TWRPH1(7));
340 set = S3C2410_NFCONF_EN;
341 set |= S3C2410_NFCONF_TACLS(tacls - 1);
342 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
343 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
344 break;
345
346 case TYPE_S3C2440:
347 case TYPE_S3C2412:
348 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
349 S3C2440_NFCONF_TWRPH0(7) |
350 S3C2440_NFCONF_TWRPH1(7));
351
352 set = S3C2440_NFCONF_TACLS(tacls - 1);
353 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
354 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
355 break;
356
357 default:
358 BUG();
359 }
360
361 local_irq_save(flags);
362
363 cfg = readl(info->regs + S3C2410_NFCONF);
364 cfg &= ~mask;
365 cfg |= set;
366 writel(cfg, info->regs + S3C2410_NFCONF);
367
368 local_irq_restore(flags);
369
370 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
371
372 return 0;
373 }
374
375 /**
376 * s3c2410_nand_inithw - basic hardware initialisation
377 * @info: The hardware state.
378 *
379 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
380 * to setup the hardware access speeds and set the controller to be enabled.
381 */
s3c2410_nand_inithw(struct s3c2410_nand_info * info)382 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
383 {
384 int ret;
385
386 ret = s3c2410_nand_setrate(info);
387 if (ret < 0)
388 return ret;
389
390 switch (info->cpu_type) {
391 case TYPE_S3C2410:
392 default:
393 break;
394
395 case TYPE_S3C2440:
396 case TYPE_S3C2412:
397 /* enable the controller and de-assert nFCE */
398
399 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
400 }
401
402 return 0;
403 }
404
405 /**
406 * s3c2410_nand_select_chip - select the given nand chip
407 * @mtd: The MTD instance for this chip.
408 * @chip: The chip number.
409 *
410 * This is called by the MTD layer to either select a given chip for the
411 * @mtd instance, or to indicate that the access has finished and the
412 * chip can be de-selected.
413 *
414 * The routine ensures that the nFCE line is correctly setup, and any
415 * platform specific selection code is called to route nFCE to the specific
416 * chip.
417 */
s3c2410_nand_select_chip(struct mtd_info * mtd,int chip)418 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
419 {
420 struct s3c2410_nand_info *info;
421 struct s3c2410_nand_mtd *nmtd;
422 struct nand_chip *this = mtd_to_nand(mtd);
423 unsigned long cur;
424
425 nmtd = nand_get_controller_data(this);
426 info = nmtd->info;
427
428 if (chip != -1)
429 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
430
431 cur = readl(info->sel_reg);
432
433 if (chip == -1) {
434 cur |= info->sel_bit;
435 } else {
436 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
437 dev_err(info->device, "invalid chip %d\n", chip);
438 return;
439 }
440
441 if (info->platform != NULL) {
442 if (info->platform->select_chip != NULL)
443 (info->platform->select_chip) (nmtd->set, chip);
444 }
445
446 cur &= ~info->sel_bit;
447 }
448
449 writel(cur, info->sel_reg);
450
451 if (chip == -1)
452 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
453 }
454
455 /* s3c2410_nand_hwcontrol
456 *
457 * Issue command and address cycles to the chip
458 */
459
s3c2410_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)460 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
461 unsigned int ctrl)
462 {
463 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
464
465 if (cmd == NAND_CMD_NONE)
466 return;
467
468 if (ctrl & NAND_CLE)
469 writeb(cmd, info->regs + S3C2410_NFCMD);
470 else
471 writeb(cmd, info->regs + S3C2410_NFADDR);
472 }
473
474 /* command and control functions */
475
s3c2440_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)476 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
477 unsigned int ctrl)
478 {
479 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
480
481 if (cmd == NAND_CMD_NONE)
482 return;
483
484 if (ctrl & NAND_CLE)
485 writeb(cmd, info->regs + S3C2440_NFCMD);
486 else
487 writeb(cmd, info->regs + S3C2440_NFADDR);
488 }
489
490 /* s3c2410_nand_devready()
491 *
492 * returns 0 if the nand is busy, 1 if it is ready
493 */
494
s3c2410_nand_devready(struct mtd_info * mtd)495 static int s3c2410_nand_devready(struct mtd_info *mtd)
496 {
497 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
498 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
499 }
500
s3c2440_nand_devready(struct mtd_info * mtd)501 static int s3c2440_nand_devready(struct mtd_info *mtd)
502 {
503 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
504 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
505 }
506
s3c2412_nand_devready(struct mtd_info * mtd)507 static int s3c2412_nand_devready(struct mtd_info *mtd)
508 {
509 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
510 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
511 }
512
513 /* ECC handling functions */
514
s3c2410_nand_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)515 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
516 u_char *read_ecc, u_char *calc_ecc)
517 {
518 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
519 unsigned int diff0, diff1, diff2;
520 unsigned int bit, byte;
521
522 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
523
524 diff0 = read_ecc[0] ^ calc_ecc[0];
525 diff1 = read_ecc[1] ^ calc_ecc[1];
526 diff2 = read_ecc[2] ^ calc_ecc[2];
527
528 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
529 __func__, 3, read_ecc, 3, calc_ecc,
530 diff0, diff1, diff2);
531
532 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
533 return 0; /* ECC is ok */
534
535 /* sometimes people do not think about using the ECC, so check
536 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
537 * the error, on the assumption that this is an un-eccd page.
538 */
539 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
540 && info->platform->ignore_unset_ecc)
541 return 0;
542
543 /* Can we correct this ECC (ie, one row and column change).
544 * Note, this is similar to the 256 error code on smartmedia */
545
546 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
547 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
548 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
549 /* calculate the bit position of the error */
550
551 bit = ((diff2 >> 3) & 1) |
552 ((diff2 >> 4) & 2) |
553 ((diff2 >> 5) & 4);
554
555 /* calculate the byte position of the error */
556
557 byte = ((diff2 << 7) & 0x100) |
558 ((diff1 << 0) & 0x80) |
559 ((diff1 << 1) & 0x40) |
560 ((diff1 << 2) & 0x20) |
561 ((diff1 << 3) & 0x10) |
562 ((diff0 >> 4) & 0x08) |
563 ((diff0 >> 3) & 0x04) |
564 ((diff0 >> 2) & 0x02) |
565 ((diff0 >> 1) & 0x01);
566
567 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
568 bit, byte);
569
570 dat[byte] ^= (1 << bit);
571 return 1;
572 }
573
574 /* if there is only one bit difference in the ECC, then
575 * one of only a row or column parity has changed, which
576 * means the error is most probably in the ECC itself */
577
578 diff0 |= (diff1 << 8);
579 diff0 |= (diff2 << 16);
580
581 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
582 if ((diff0 & (diff0 - 1)) == 0)
583 return 1;
584
585 return -1;
586 }
587
588 /* ECC functions
589 *
590 * These allow the s3c2410 and s3c2440 to use the controller's ECC
591 * generator block to ECC the data as it passes through]
592 */
593
s3c2410_nand_enable_hwecc(struct mtd_info * mtd,int mode)594 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
595 {
596 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
597 unsigned long ctrl;
598
599 ctrl = readl(info->regs + S3C2410_NFCONF);
600 ctrl |= S3C2410_NFCONF_INITECC;
601 writel(ctrl, info->regs + S3C2410_NFCONF);
602 }
603
s3c2412_nand_enable_hwecc(struct mtd_info * mtd,int mode)604 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
605 {
606 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
607 unsigned long ctrl;
608
609 ctrl = readl(info->regs + S3C2440_NFCONT);
610 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
611 info->regs + S3C2440_NFCONT);
612 }
613
s3c2440_nand_enable_hwecc(struct mtd_info * mtd,int mode)614 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
615 {
616 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
617 unsigned long ctrl;
618
619 ctrl = readl(info->regs + S3C2440_NFCONT);
620 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
621 }
622
s3c2410_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)623 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
624 u_char *ecc_code)
625 {
626 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
627
628 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
629 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
630 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
631
632 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
633
634 return 0;
635 }
636
s3c2412_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)637 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
638 u_char *ecc_code)
639 {
640 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
641 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
642
643 ecc_code[0] = ecc;
644 ecc_code[1] = ecc >> 8;
645 ecc_code[2] = ecc >> 16;
646
647 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
648
649 return 0;
650 }
651
s3c2440_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)652 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
653 u_char *ecc_code)
654 {
655 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
656 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
657
658 ecc_code[0] = ecc;
659 ecc_code[1] = ecc >> 8;
660 ecc_code[2] = ecc >> 16;
661
662 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
663
664 return 0;
665 }
666
667 /* over-ride the standard functions for a little more speed. We can
668 * use read/write block to move the data buffers to/from the controller
669 */
670
s3c2410_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)671 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
672 {
673 struct nand_chip *this = mtd_to_nand(mtd);
674 readsb(this->IO_ADDR_R, buf, len);
675 }
676
s3c2440_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)677 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
678 {
679 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
680
681 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
682
683 /* cleanup if we've got less than a word to do */
684 if (len & 3) {
685 buf += len & ~3;
686
687 for (; len & 3; len--)
688 *buf++ = readb(info->regs + S3C2440_NFDATA);
689 }
690 }
691
s3c2410_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)692 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
693 int len)
694 {
695 struct nand_chip *this = mtd_to_nand(mtd);
696 writesb(this->IO_ADDR_W, buf, len);
697 }
698
s3c2440_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)699 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
700 int len)
701 {
702 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
703
704 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
705
706 /* cleanup any fractional write */
707 if (len & 3) {
708 buf += len & ~3;
709
710 for (; len & 3; len--, buf++)
711 writeb(*buf, info->regs + S3C2440_NFDATA);
712 }
713 }
714
715 /* cpufreq driver support */
716
717 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
718
s3c2410_nand_cpufreq_transition(struct notifier_block * nb,unsigned long val,void * data)719 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
720 unsigned long val, void *data)
721 {
722 struct s3c2410_nand_info *info;
723 unsigned long newclk;
724
725 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
726 newclk = clk_get_rate(info->clk);
727
728 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
729 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
730 s3c2410_nand_setrate(info);
731 }
732
733 return 0;
734 }
735
s3c2410_nand_cpufreq_register(struct s3c2410_nand_info * info)736 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
737 {
738 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
739
740 return cpufreq_register_notifier(&info->freq_transition,
741 CPUFREQ_TRANSITION_NOTIFIER);
742 }
743
744 static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info * info)745 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
746 {
747 cpufreq_unregister_notifier(&info->freq_transition,
748 CPUFREQ_TRANSITION_NOTIFIER);
749 }
750
751 #else
s3c2410_nand_cpufreq_register(struct s3c2410_nand_info * info)752 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
753 {
754 return 0;
755 }
756
757 static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info * info)758 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
759 {
760 }
761 #endif
762
763 /* device management functions */
764
s3c24xx_nand_remove(struct platform_device * pdev)765 static int s3c24xx_nand_remove(struct platform_device *pdev)
766 {
767 struct s3c2410_nand_info *info = to_nand_info(pdev);
768
769 if (info == NULL)
770 return 0;
771
772 s3c2410_nand_cpufreq_deregister(info);
773
774 /* Release all our mtds and their partitions, then go through
775 * freeing the resources used
776 */
777
778 if (info->mtds != NULL) {
779 struct s3c2410_nand_mtd *ptr = info->mtds;
780 int mtdno;
781
782 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
783 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
784 nand_release(nand_to_mtd(&ptr->chip));
785 }
786 }
787
788 /* free the common resources */
789
790 if (!IS_ERR(info->clk))
791 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
792
793 return 0;
794 }
795
s3c2410_nand_add_partition(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * mtd,struct s3c2410_nand_set * set)796 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
797 struct s3c2410_nand_mtd *mtd,
798 struct s3c2410_nand_set *set)
799 {
800 if (set) {
801 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
802
803 mtdinfo->name = set->name;
804
805 return mtd_device_register(mtdinfo, set->partitions,
806 set->nr_partitions);
807 }
808
809 return -ENODEV;
810 }
811
s3c2410_nand_setup_data_interface(struct mtd_info * mtd,int csline,const struct nand_data_interface * conf)812 static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
813 const struct nand_data_interface *conf)
814 {
815 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
816 struct s3c2410_platform_nand *pdata = info->platform;
817 const struct nand_sdr_timings *timings;
818 int tacls;
819
820 timings = nand_get_sdr_timings(conf);
821 if (IS_ERR(timings))
822 return -ENOTSUPP;
823
824 tacls = timings->tCLS_min - timings->tWP_min;
825 if (tacls < 0)
826 tacls = 0;
827
828 pdata->tacls = DIV_ROUND_UP(tacls, 1000);
829 pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
830 pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
831
832 return s3c2410_nand_setrate(info);
833 }
834
835 /**
836 * s3c2410_nand_init_chip - initialise a single instance of an chip
837 * @info: The base NAND controller the chip is on.
838 * @nmtd: The new controller MTD instance to fill in.
839 * @set: The information passed from the board specific platform data.
840 *
841 * Initialise the given @nmtd from the information in @info and @set. This
842 * readies the structure for use with the MTD layer functions by ensuring
843 * all pointers are setup and the necessary control routines selected.
844 */
s3c2410_nand_init_chip(struct s3c2410_nand_info * info,struct s3c2410_nand_mtd * nmtd,struct s3c2410_nand_set * set)845 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
846 struct s3c2410_nand_mtd *nmtd,
847 struct s3c2410_nand_set *set)
848 {
849 struct device_node *np = info->device->of_node;
850 struct nand_chip *chip = &nmtd->chip;
851 void __iomem *regs = info->regs;
852
853 nand_set_flash_node(chip, set->of_node);
854
855 chip->write_buf = s3c2410_nand_write_buf;
856 chip->read_buf = s3c2410_nand_read_buf;
857 chip->select_chip = s3c2410_nand_select_chip;
858 chip->chip_delay = 50;
859 nand_set_controller_data(chip, nmtd);
860 chip->options = set->options;
861 chip->controller = &info->controller;
862
863 /*
864 * let's keep behavior unchanged for legacy boards booting via pdata and
865 * auto-detect timings only when booting with a device tree.
866 */
867 if (np)
868 chip->setup_data_interface = s3c2410_nand_setup_data_interface;
869
870 switch (info->cpu_type) {
871 case TYPE_S3C2410:
872 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
873 info->sel_reg = regs + S3C2410_NFCONF;
874 info->sel_bit = S3C2410_NFCONF_nFCE;
875 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
876 chip->dev_ready = s3c2410_nand_devready;
877 break;
878
879 case TYPE_S3C2440:
880 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
881 info->sel_reg = regs + S3C2440_NFCONT;
882 info->sel_bit = S3C2440_NFCONT_nFCE;
883 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
884 chip->dev_ready = s3c2440_nand_devready;
885 chip->read_buf = s3c2440_nand_read_buf;
886 chip->write_buf = s3c2440_nand_write_buf;
887 break;
888
889 case TYPE_S3C2412:
890 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
891 info->sel_reg = regs + S3C2440_NFCONT;
892 info->sel_bit = S3C2412_NFCONT_nFCE0;
893 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
894 chip->dev_ready = s3c2412_nand_devready;
895
896 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
897 dev_info(info->device, "System booted from NAND\n");
898
899 break;
900 }
901
902 chip->IO_ADDR_R = chip->IO_ADDR_W;
903
904 nmtd->info = info;
905 nmtd->set = set;
906
907 chip->ecc.mode = info->platform->ecc_mode;
908
909 /*
910 * If you use u-boot BBT creation code, specifying this flag will
911 * let the kernel fish out the BBT from the NAND.
912 */
913 if (set->flash_bbt)
914 chip->bbt_options |= NAND_BBT_USE_FLASH;
915 }
916
917 /**
918 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
919 * @chip: The NAND chip
920 *
921 * This hook is called by the core after the identification of the NAND chip,
922 * once the relevant per-chip information is up to date.. This call ensure that
923 * we update the internal state accordingly.
924 *
925 * The internal state is currently limited to the ECC state information.
926 */
s3c2410_nand_attach_chip(struct nand_chip * chip)927 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
928 {
929 struct mtd_info *mtd = nand_to_mtd(chip);
930 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
931
932 switch (chip->ecc.mode) {
933
934 case NAND_ECC_NONE:
935 dev_info(info->device, "ECC disabled\n");
936 break;
937
938 case NAND_ECC_SOFT:
939 /*
940 * This driver expects Hamming based ECC when ecc_mode is set
941 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
942 * avoid adding an extra ecc_algo field to
943 * s3c2410_platform_nand.
944 */
945 chip->ecc.algo = NAND_ECC_HAMMING;
946 dev_info(info->device, "soft ECC\n");
947 break;
948
949 case NAND_ECC_HW:
950 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
951 chip->ecc.correct = s3c2410_nand_correct_data;
952 chip->ecc.strength = 1;
953
954 switch (info->cpu_type) {
955 case TYPE_S3C2410:
956 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
957 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
958 break;
959
960 case TYPE_S3C2412:
961 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
962 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
963 break;
964
965 case TYPE_S3C2440:
966 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
967 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
968 break;
969 }
970
971 dev_dbg(info->device, "chip %p => page shift %d\n",
972 chip, chip->page_shift);
973
974 /* change the behaviour depending on whether we are using
975 * the large or small page nand device */
976 if (chip->page_shift > 10) {
977 chip->ecc.size = 256;
978 chip->ecc.bytes = 3;
979 } else {
980 chip->ecc.size = 512;
981 chip->ecc.bytes = 3;
982 mtd_set_ooblayout(nand_to_mtd(chip),
983 &s3c2410_ooblayout_ops);
984 }
985
986 dev_info(info->device, "hardware ECC\n");
987 break;
988
989 default:
990 dev_err(info->device, "invalid ECC mode!\n");
991 return -EINVAL;
992 }
993
994 if (chip->bbt_options & NAND_BBT_USE_FLASH)
995 chip->options |= NAND_SKIP_BBTSCAN;
996
997 return 0;
998 }
999
1000 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1001 .attach_chip = s3c2410_nand_attach_chip,
1002 };
1003
1004 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1005 {
1006 .compatible = "samsung,s3c2410-nand",
1007 .data = &s3c2410_nand_devtype_data,
1008 }, {
1009 /* also compatible with s3c6400 */
1010 .compatible = "samsung,s3c2412-nand",
1011 .data = &s3c2412_nand_devtype_data,
1012 }, {
1013 .compatible = "samsung,s3c2440-nand",
1014 .data = &s3c2440_nand_devtype_data,
1015 },
1016 { /* sentinel */ }
1017 };
1018 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1019
s3c24xx_nand_probe_dt(struct platform_device * pdev)1020 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1021 {
1022 const struct s3c24XX_nand_devtype_data *devtype_data;
1023 struct s3c2410_platform_nand *pdata;
1024 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1025 struct device_node *np = pdev->dev.of_node, *child;
1026 struct s3c2410_nand_set *sets;
1027
1028 devtype_data = of_device_get_match_data(&pdev->dev);
1029 if (!devtype_data)
1030 return -ENODEV;
1031
1032 info->cpu_type = devtype_data->type;
1033
1034 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1035 if (!pdata)
1036 return -ENOMEM;
1037
1038 pdev->dev.platform_data = pdata;
1039
1040 pdata->nr_sets = of_get_child_count(np);
1041 if (!pdata->nr_sets)
1042 return 0;
1043
1044 sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1045 GFP_KERNEL);
1046 if (!sets)
1047 return -ENOMEM;
1048
1049 pdata->sets = sets;
1050
1051 for_each_available_child_of_node(np, child) {
1052 sets->name = (char *)child->name;
1053 sets->of_node = child;
1054 sets->nr_chips = 1;
1055
1056 of_node_get(child);
1057
1058 sets++;
1059 }
1060
1061 return 0;
1062 }
1063
s3c24xx_nand_probe_pdata(struct platform_device * pdev)1064 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1065 {
1066 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1067
1068 info->cpu_type = platform_get_device_id(pdev)->driver_data;
1069
1070 return 0;
1071 }
1072
1073 /* s3c24xx_nand_probe
1074 *
1075 * called by device layer when it finds a device matching
1076 * one our driver can handled. This code checks to see if
1077 * it can allocate all necessary resources then calls the
1078 * nand layer to look for devices
1079 */
s3c24xx_nand_probe(struct platform_device * pdev)1080 static int s3c24xx_nand_probe(struct platform_device *pdev)
1081 {
1082 struct s3c2410_platform_nand *plat;
1083 struct s3c2410_nand_info *info;
1084 struct s3c2410_nand_mtd *nmtd;
1085 struct s3c2410_nand_set *sets;
1086 struct resource *res;
1087 int err = 0;
1088 int size;
1089 int nr_sets;
1090 int setno;
1091
1092 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1093 if (info == NULL) {
1094 err = -ENOMEM;
1095 goto exit_error;
1096 }
1097
1098 platform_set_drvdata(pdev, info);
1099
1100 nand_controller_init(&info->controller);
1101 info->controller.ops = &s3c24xx_nand_controller_ops;
1102
1103 /* get the clock source and enable it */
1104
1105 info->clk = devm_clk_get(&pdev->dev, "nand");
1106 if (IS_ERR(info->clk)) {
1107 dev_err(&pdev->dev, "failed to get clock\n");
1108 err = -ENOENT;
1109 goto exit_error;
1110 }
1111
1112 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1113
1114 if (pdev->dev.of_node)
1115 err = s3c24xx_nand_probe_dt(pdev);
1116 else
1117 err = s3c24xx_nand_probe_pdata(pdev);
1118
1119 if (err)
1120 goto exit_error;
1121
1122 plat = to_nand_plat(pdev);
1123
1124 /* allocate and map the resource */
1125
1126 /* currently we assume we have the one resource */
1127 res = pdev->resource;
1128 size = resource_size(res);
1129
1130 info->device = &pdev->dev;
1131 info->platform = plat;
1132
1133 info->regs = devm_ioremap_resource(&pdev->dev, res);
1134 if (IS_ERR(info->regs)) {
1135 err = PTR_ERR(info->regs);
1136 goto exit_error;
1137 }
1138
1139 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1140
1141 if (!plat->sets || plat->nr_sets < 1) {
1142 err = -EINVAL;
1143 goto exit_error;
1144 }
1145
1146 sets = plat->sets;
1147 nr_sets = plat->nr_sets;
1148
1149 info->mtd_count = nr_sets;
1150
1151 /* allocate our information */
1152
1153 size = nr_sets * sizeof(*info->mtds);
1154 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1155 if (info->mtds == NULL) {
1156 err = -ENOMEM;
1157 goto exit_error;
1158 }
1159
1160 /* initialise all possible chips */
1161
1162 nmtd = info->mtds;
1163
1164 for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1165 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1166
1167 pr_debug("initialising set %d (%p, info %p)\n",
1168 setno, nmtd, info);
1169
1170 mtd->dev.parent = &pdev->dev;
1171 s3c2410_nand_init_chip(info, nmtd, sets);
1172
1173 err = nand_scan(mtd, sets ? sets->nr_chips : 1);
1174 if (err)
1175 goto exit_error;
1176
1177 s3c2410_nand_add_partition(info, nmtd, sets);
1178 }
1179
1180 /* initialise the hardware */
1181 err = s3c2410_nand_inithw(info);
1182 if (err != 0)
1183 goto exit_error;
1184
1185 err = s3c2410_nand_cpufreq_register(info);
1186 if (err < 0) {
1187 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1188 goto exit_error;
1189 }
1190
1191 if (allow_clk_suspend(info)) {
1192 dev_info(&pdev->dev, "clock idle support enabled\n");
1193 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1194 }
1195
1196 return 0;
1197
1198 exit_error:
1199 s3c24xx_nand_remove(pdev);
1200
1201 if (err == 0)
1202 err = -EINVAL;
1203 return err;
1204 }
1205
1206 /* PM Support */
1207 #ifdef CONFIG_PM
1208
s3c24xx_nand_suspend(struct platform_device * dev,pm_message_t pm)1209 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1210 {
1211 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1212
1213 if (info) {
1214 info->save_sel = readl(info->sel_reg);
1215
1216 /* For the moment, we must ensure nFCE is high during
1217 * the time we are suspended. This really should be
1218 * handled by suspending the MTDs we are using, but
1219 * that is currently not the case. */
1220
1221 writel(info->save_sel | info->sel_bit, info->sel_reg);
1222
1223 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1224 }
1225
1226 return 0;
1227 }
1228
s3c24xx_nand_resume(struct platform_device * dev)1229 static int s3c24xx_nand_resume(struct platform_device *dev)
1230 {
1231 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1232 unsigned long sel;
1233
1234 if (info) {
1235 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1236 s3c2410_nand_inithw(info);
1237
1238 /* Restore the state of the nFCE line. */
1239
1240 sel = readl(info->sel_reg);
1241 sel &= ~info->sel_bit;
1242 sel |= info->save_sel & info->sel_bit;
1243 writel(sel, info->sel_reg);
1244
1245 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1246 }
1247
1248 return 0;
1249 }
1250
1251 #else
1252 #define s3c24xx_nand_suspend NULL
1253 #define s3c24xx_nand_resume NULL
1254 #endif
1255
1256 /* driver device registration */
1257
1258 static const struct platform_device_id s3c24xx_driver_ids[] = {
1259 {
1260 .name = "s3c2410-nand",
1261 .driver_data = TYPE_S3C2410,
1262 }, {
1263 .name = "s3c2440-nand",
1264 .driver_data = TYPE_S3C2440,
1265 }, {
1266 .name = "s3c2412-nand",
1267 .driver_data = TYPE_S3C2412,
1268 }, {
1269 .name = "s3c6400-nand",
1270 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1271 },
1272 { }
1273 };
1274
1275 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1276
1277 static struct platform_driver s3c24xx_nand_driver = {
1278 .probe = s3c24xx_nand_probe,
1279 .remove = s3c24xx_nand_remove,
1280 .suspend = s3c24xx_nand_suspend,
1281 .resume = s3c24xx_nand_resume,
1282 .id_table = s3c24xx_driver_ids,
1283 .driver = {
1284 .name = "s3c24xx-nand",
1285 .of_match_table = s3c24xx_nand_dt_ids,
1286 },
1287 };
1288
1289 module_platform_driver(s3c24xx_nand_driver);
1290
1291 MODULE_LICENSE("GPL");
1292 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1293 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1294