1 /*
2 * Freescale UPM NAND driver.
3 *
4 * Copyright © 2007-2008 MontaVista Software, Inc.
5 *
6 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/mtd/nand_ecc.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/of_address.h>
22 #include <linux/of_platform.h>
23 #include <linux/of_gpio.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <asm/fsl_lbc.h>
27
28 #define FSL_UPM_WAIT_RUN_PATTERN 0x1
29 #define FSL_UPM_WAIT_WRITE_BYTE 0x2
30 #define FSL_UPM_WAIT_WRITE_BUFFER 0x4
31
32 struct fsl_upm_nand {
33 struct device *dev;
34 struct nand_chip chip;
35 int last_ctrl;
36 struct mtd_partition *parts;
37 struct fsl_upm upm;
38 uint8_t upm_addr_offset;
39 uint8_t upm_cmd_offset;
40 void __iomem *io_base;
41 int rnb_gpio[NAND_MAX_CHIPS];
42 uint32_t mchip_offsets[NAND_MAX_CHIPS];
43 uint32_t mchip_count;
44 uint32_t mchip_number;
45 int chip_delay;
46 uint32_t wait_flags;
47 };
48
to_fsl_upm_nand(struct mtd_info * mtdinfo)49 static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
50 {
51 return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand,
52 chip);
53 }
54
fun_chip_ready(struct mtd_info * mtd)55 static int fun_chip_ready(struct mtd_info *mtd)
56 {
57 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
58
59 if (gpio_get_value(fun->rnb_gpio[fun->mchip_number]))
60 return 1;
61
62 dev_vdbg(fun->dev, "busy\n");
63 return 0;
64 }
65
fun_wait_rnb(struct fsl_upm_nand * fun)66 static void fun_wait_rnb(struct fsl_upm_nand *fun)
67 {
68 if (fun->rnb_gpio[fun->mchip_number] >= 0) {
69 struct mtd_info *mtd = nand_to_mtd(&fun->chip);
70 int cnt = 1000000;
71
72 while (--cnt && !fun_chip_ready(mtd))
73 cpu_relax();
74 if (!cnt)
75 dev_err(fun->dev, "tired waiting for RNB\n");
76 } else {
77 ndelay(100);
78 }
79 }
80
fun_cmd_ctrl(struct mtd_info * mtd,int cmd,unsigned int ctrl)81 static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
82 {
83 struct nand_chip *chip = mtd_to_nand(mtd);
84 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
85 u32 mar;
86
87 if (!(ctrl & fun->last_ctrl)) {
88 fsl_upm_end_pattern(&fun->upm);
89
90 if (cmd == NAND_CMD_NONE)
91 return;
92
93 fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE);
94 }
95
96 if (ctrl & NAND_CTRL_CHANGE) {
97 if (ctrl & NAND_ALE)
98 fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
99 else if (ctrl & NAND_CLE)
100 fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
101 }
102
103 mar = (cmd << (32 - fun->upm.width)) |
104 fun->mchip_offsets[fun->mchip_number];
105 fsl_upm_run_pattern(&fun->upm, chip->IO_ADDR_R, mar);
106
107 if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
108 fun_wait_rnb(fun);
109 }
110
fun_select_chip(struct mtd_info * mtd,int mchip_nr)111 static void fun_select_chip(struct mtd_info *mtd, int mchip_nr)
112 {
113 struct nand_chip *chip = mtd_to_nand(mtd);
114 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
115
116 if (mchip_nr == -1) {
117 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
118 } else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) {
119 fun->mchip_number = mchip_nr;
120 chip->IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
121 chip->IO_ADDR_W = chip->IO_ADDR_R;
122 } else {
123 BUG();
124 }
125 }
126
fun_read_byte(struct mtd_info * mtd)127 static uint8_t fun_read_byte(struct mtd_info *mtd)
128 {
129 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
130
131 return in_8(fun->chip.IO_ADDR_R);
132 }
133
fun_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)134 static void fun_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
135 {
136 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
137 int i;
138
139 for (i = 0; i < len; i++)
140 buf[i] = in_8(fun->chip.IO_ADDR_R);
141 }
142
fun_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)143 static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
144 {
145 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
146 int i;
147
148 for (i = 0; i < len; i++) {
149 out_8(fun->chip.IO_ADDR_W, buf[i]);
150 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
151 fun_wait_rnb(fun);
152 }
153 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER)
154 fun_wait_rnb(fun);
155 }
156
fun_chip_init(struct fsl_upm_nand * fun,const struct device_node * upm_np,const struct resource * io_res)157 static int fun_chip_init(struct fsl_upm_nand *fun,
158 const struct device_node *upm_np,
159 const struct resource *io_res)
160 {
161 struct mtd_info *mtd = nand_to_mtd(&fun->chip);
162 int ret;
163 struct device_node *flash_np;
164
165 fun->chip.IO_ADDR_R = fun->io_base;
166 fun->chip.IO_ADDR_W = fun->io_base;
167 fun->chip.cmd_ctrl = fun_cmd_ctrl;
168 fun->chip.chip_delay = fun->chip_delay;
169 fun->chip.read_byte = fun_read_byte;
170 fun->chip.read_buf = fun_read_buf;
171 fun->chip.write_buf = fun_write_buf;
172 fun->chip.ecc.mode = NAND_ECC_SOFT;
173 fun->chip.ecc.algo = NAND_ECC_HAMMING;
174 if (fun->mchip_count > 1)
175 fun->chip.select_chip = fun_select_chip;
176
177 if (fun->rnb_gpio[0] >= 0)
178 fun->chip.dev_ready = fun_chip_ready;
179
180 mtd->dev.parent = fun->dev;
181
182 flash_np = of_get_next_child(upm_np, NULL);
183 if (!flash_np)
184 return -ENODEV;
185
186 nand_set_flash_node(&fun->chip, flash_np);
187 mtd->name = kasprintf(GFP_KERNEL, "0x%llx.%s", (u64)io_res->start,
188 flash_np->name);
189 if (!mtd->name) {
190 ret = -ENOMEM;
191 goto err;
192 }
193
194 ret = nand_scan(mtd, fun->mchip_count);
195 if (ret)
196 goto err;
197
198 ret = mtd_device_register(mtd, NULL, 0);
199 err:
200 of_node_put(flash_np);
201 if (ret)
202 kfree(mtd->name);
203 return ret;
204 }
205
fun_probe(struct platform_device * ofdev)206 static int fun_probe(struct platform_device *ofdev)
207 {
208 struct fsl_upm_nand *fun;
209 struct resource io_res;
210 const __be32 *prop;
211 int rnb_gpio;
212 int ret;
213 int size;
214 int i;
215
216 fun = kzalloc(sizeof(*fun), GFP_KERNEL);
217 if (!fun)
218 return -ENOMEM;
219
220 ret = of_address_to_resource(ofdev->dev.of_node, 0, &io_res);
221 if (ret) {
222 dev_err(&ofdev->dev, "can't get IO base\n");
223 goto err1;
224 }
225
226 ret = fsl_upm_find(io_res.start, &fun->upm);
227 if (ret) {
228 dev_err(&ofdev->dev, "can't find UPM\n");
229 goto err1;
230 }
231
232 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
233 &size);
234 if (!prop || size != sizeof(uint32_t)) {
235 dev_err(&ofdev->dev, "can't get UPM address offset\n");
236 ret = -EINVAL;
237 goto err1;
238 }
239 fun->upm_addr_offset = *prop;
240
241 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
242 if (!prop || size != sizeof(uint32_t)) {
243 dev_err(&ofdev->dev, "can't get UPM command offset\n");
244 ret = -EINVAL;
245 goto err1;
246 }
247 fun->upm_cmd_offset = *prop;
248
249 prop = of_get_property(ofdev->dev.of_node,
250 "fsl,upm-addr-line-cs-offsets", &size);
251 if (prop && (size / sizeof(uint32_t)) > 0) {
252 fun->mchip_count = size / sizeof(uint32_t);
253 if (fun->mchip_count >= NAND_MAX_CHIPS) {
254 dev_err(&ofdev->dev, "too much multiple chips\n");
255 goto err1;
256 }
257 for (i = 0; i < fun->mchip_count; i++)
258 fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
259 } else {
260 fun->mchip_count = 1;
261 }
262
263 for (i = 0; i < fun->mchip_count; i++) {
264 fun->rnb_gpio[i] = -1;
265 rnb_gpio = of_get_gpio(ofdev->dev.of_node, i);
266 if (rnb_gpio >= 0) {
267 ret = gpio_request(rnb_gpio, dev_name(&ofdev->dev));
268 if (ret) {
269 dev_err(&ofdev->dev,
270 "can't request RNB gpio #%d\n", i);
271 goto err2;
272 }
273 gpio_direction_input(rnb_gpio);
274 fun->rnb_gpio[i] = rnb_gpio;
275 } else if (rnb_gpio == -EINVAL) {
276 dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
277 goto err2;
278 }
279 }
280
281 prop = of_get_property(ofdev->dev.of_node, "chip-delay", NULL);
282 if (prop)
283 fun->chip_delay = be32_to_cpup(prop);
284 else
285 fun->chip_delay = 50;
286
287 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-wait-flags", &size);
288 if (prop && size == sizeof(uint32_t))
289 fun->wait_flags = be32_to_cpup(prop);
290 else
291 fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN |
292 FSL_UPM_WAIT_WRITE_BYTE;
293
294 fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start,
295 resource_size(&io_res));
296 if (!fun->io_base) {
297 ret = -ENOMEM;
298 goto err2;
299 }
300
301 fun->dev = &ofdev->dev;
302 fun->last_ctrl = NAND_CLE;
303
304 ret = fun_chip_init(fun, ofdev->dev.of_node, &io_res);
305 if (ret)
306 goto err2;
307
308 dev_set_drvdata(&ofdev->dev, fun);
309
310 return 0;
311 err2:
312 for (i = 0; i < fun->mchip_count; i++) {
313 if (fun->rnb_gpio[i] < 0)
314 break;
315 gpio_free(fun->rnb_gpio[i]);
316 }
317 err1:
318 kfree(fun);
319
320 return ret;
321 }
322
fun_remove(struct platform_device * ofdev)323 static int fun_remove(struct platform_device *ofdev)
324 {
325 struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
326 struct mtd_info *mtd = nand_to_mtd(&fun->chip);
327 int i;
328
329 nand_release(mtd);
330 kfree(mtd->name);
331
332 for (i = 0; i < fun->mchip_count; i++) {
333 if (fun->rnb_gpio[i] < 0)
334 break;
335 gpio_free(fun->rnb_gpio[i]);
336 }
337
338 kfree(fun);
339
340 return 0;
341 }
342
343 static const struct of_device_id of_fun_match[] = {
344 { .compatible = "fsl,upm-nand" },
345 {},
346 };
347 MODULE_DEVICE_TABLE(of, of_fun_match);
348
349 static struct platform_driver of_fun_driver = {
350 .driver = {
351 .name = "fsl,upm-nand",
352 .of_match_table = of_fun_match,
353 },
354 .probe = fun_probe,
355 .remove = fun_remove,
356 };
357
358 module_platform_driver(of_fun_driver);
359
360 MODULE_LICENSE("GPL");
361 MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
362 MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
363 "LocalBus User-Programmable Machine");
364