1 /*
2 * Handles the M-Systems DiskOnChip G3 chip
3 *
4 * Copyright (C) 2011 Robert Jarzmik
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/io.h>
30 #include <linux/delay.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/bitmap.h>
34 #include <linux/bitrev.h>
35 #include <linux/bch.h>
36
37 #include <linux/debugfs.h>
38 #include <linux/seq_file.h>
39
40 #define CREATE_TRACE_POINTS
41 #include "docg3.h"
42
43 /*
44 * This driver handles the DiskOnChip G3 flash memory.
45 *
46 * As no specification is available from M-Systems/Sandisk, this drivers lacks
47 * several functions available on the chip, as :
48 * - IPL write
49 *
50 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
51 * the driver assumes a 16bits data bus.
52 *
53 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
54 * - a 1 byte Hamming code stored in the OOB for each page
55 * - a 7 bytes BCH code stored in the OOB for each page
56 * The BCH ECC is :
57 * - BCH is in GF(2^14)
58 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
59 * + 1 hamming byte)
60 * - BCH can correct up to 4 bits (t = 4)
61 * - BCH syndroms are calculated in hardware, and checked in hardware as well
62 *
63 */
64
65 static unsigned int reliable_mode;
66 module_param(reliable_mode, uint, 0);
67 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
68 "2=reliable) : MLC normal operations are in normal mode");
69
docg3_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)70 static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section,
71 struct mtd_oob_region *oobregion)
72 {
73 if (section)
74 return -ERANGE;
75
76 /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
77 oobregion->offset = 7;
78 oobregion->length = 8;
79
80 return 0;
81 }
82
docg3_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)83 static int docg3_ooblayout_free(struct mtd_info *mtd, int section,
84 struct mtd_oob_region *oobregion)
85 {
86 if (section > 1)
87 return -ERANGE;
88
89 /* free bytes: byte 0 until byte 6, byte 15 */
90 if (!section) {
91 oobregion->offset = 0;
92 oobregion->length = 7;
93 } else {
94 oobregion->offset = 15;
95 oobregion->length = 1;
96 }
97
98 return 0;
99 }
100
101 static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = {
102 .ecc = docg3_ooblayout_ecc,
103 .free = docg3_ooblayout_free,
104 };
105
doc_readb(struct docg3 * docg3,u16 reg)106 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
107 {
108 u8 val = readb(docg3->cascade->base + reg);
109
110 trace_docg3_io(0, 8, reg, (int)val);
111 return val;
112 }
113
doc_readw(struct docg3 * docg3,u16 reg)114 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
115 {
116 u16 val = readw(docg3->cascade->base + reg);
117
118 trace_docg3_io(0, 16, reg, (int)val);
119 return val;
120 }
121
doc_writeb(struct docg3 * docg3,u8 val,u16 reg)122 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
123 {
124 writeb(val, docg3->cascade->base + reg);
125 trace_docg3_io(1, 8, reg, val);
126 }
127
doc_writew(struct docg3 * docg3,u16 val,u16 reg)128 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
129 {
130 writew(val, docg3->cascade->base + reg);
131 trace_docg3_io(1, 16, reg, val);
132 }
133
doc_flash_command(struct docg3 * docg3,u8 cmd)134 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
135 {
136 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
137 }
138
doc_flash_sequence(struct docg3 * docg3,u8 seq)139 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
140 {
141 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
142 }
143
doc_flash_address(struct docg3 * docg3,u8 addr)144 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
145 {
146 doc_writeb(docg3, addr, DOC_FLASHADDRESS);
147 }
148
149 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
150
doc_register_readb(struct docg3 * docg3,int reg)151 static int doc_register_readb(struct docg3 *docg3, int reg)
152 {
153 u8 val;
154
155 doc_writew(docg3, reg, DOC_READADDRESS);
156 val = doc_readb(docg3, reg);
157 doc_vdbg("Read register %04x : %02x\n", reg, val);
158 return val;
159 }
160
doc_register_readw(struct docg3 * docg3,int reg)161 static int doc_register_readw(struct docg3 *docg3, int reg)
162 {
163 u16 val;
164
165 doc_writew(docg3, reg, DOC_READADDRESS);
166 val = doc_readw(docg3, reg);
167 doc_vdbg("Read register %04x : %04x\n", reg, val);
168 return val;
169 }
170
171 /**
172 * doc_delay - delay docg3 operations
173 * @docg3: the device
174 * @nbNOPs: the number of NOPs to issue
175 *
176 * As no specification is available, the right timings between chip commands are
177 * unknown. The only available piece of information are the observed nops on a
178 * working docg3 chip.
179 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
180 * friendlier msleep() functions or blocking mdelay().
181 */
doc_delay(struct docg3 * docg3,int nbNOPs)182 static void doc_delay(struct docg3 *docg3, int nbNOPs)
183 {
184 int i;
185
186 doc_vdbg("NOP x %d\n", nbNOPs);
187 for (i = 0; i < nbNOPs; i++)
188 doc_writeb(docg3, 0, DOC_NOP);
189 }
190
is_prot_seq_error(struct docg3 * docg3)191 static int is_prot_seq_error(struct docg3 *docg3)
192 {
193 int ctrl;
194
195 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
196 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
197 }
198
doc_is_ready(struct docg3 * docg3)199 static int doc_is_ready(struct docg3 *docg3)
200 {
201 int ctrl;
202
203 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
204 return ctrl & DOC_CTRL_FLASHREADY;
205 }
206
doc_wait_ready(struct docg3 * docg3)207 static int doc_wait_ready(struct docg3 *docg3)
208 {
209 int maxWaitCycles = 100;
210
211 do {
212 doc_delay(docg3, 4);
213 cpu_relax();
214 } while (!doc_is_ready(docg3) && maxWaitCycles--);
215 doc_delay(docg3, 2);
216 if (maxWaitCycles > 0)
217 return 0;
218 else
219 return -EIO;
220 }
221
doc_reset_seq(struct docg3 * docg3)222 static int doc_reset_seq(struct docg3 *docg3)
223 {
224 int ret;
225
226 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
227 doc_flash_sequence(docg3, DOC_SEQ_RESET);
228 doc_flash_command(docg3, DOC_CMD_RESET);
229 doc_delay(docg3, 2);
230 ret = doc_wait_ready(docg3);
231
232 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
233 return ret;
234 }
235
236 /**
237 * doc_read_data_area - Read data from data area
238 * @docg3: the device
239 * @buf: the buffer to fill in (might be NULL is dummy reads)
240 * @len: the length to read
241 * @first: first time read, DOC_READADDRESS should be set
242 *
243 * Reads bytes from flash data. Handles the single byte / even bytes reads.
244 */
doc_read_data_area(struct docg3 * docg3,void * buf,int len,int first)245 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
246 int first)
247 {
248 int i, cdr, len4;
249 u16 data16, *dst16;
250 u8 data8, *dst8;
251
252 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
253 cdr = len & 0x1;
254 len4 = len - cdr;
255
256 if (first)
257 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
258 dst16 = buf;
259 for (i = 0; i < len4; i += 2) {
260 data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
261 if (dst16) {
262 *dst16 = data16;
263 dst16++;
264 }
265 }
266
267 if (cdr) {
268 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
269 DOC_READADDRESS);
270 doc_delay(docg3, 1);
271 dst8 = (u8 *)dst16;
272 for (i = 0; i < cdr; i++) {
273 data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
274 if (dst8) {
275 *dst8 = data8;
276 dst8++;
277 }
278 }
279 }
280 }
281
282 /**
283 * doc_write_data_area - Write data into data area
284 * @docg3: the device
285 * @buf: the buffer to get input bytes from
286 * @len: the length to write
287 *
288 * Writes bytes into flash data. Handles the single byte / even bytes writes.
289 */
doc_write_data_area(struct docg3 * docg3,const void * buf,int len)290 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
291 {
292 int i, cdr, len4;
293 u16 *src16;
294 u8 *src8;
295
296 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
297 cdr = len & 0x3;
298 len4 = len - cdr;
299
300 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
301 src16 = (u16 *)buf;
302 for (i = 0; i < len4; i += 2) {
303 doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
304 src16++;
305 }
306
307 src8 = (u8 *)src16;
308 for (i = 0; i < cdr; i++) {
309 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
310 DOC_READADDRESS);
311 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
312 src8++;
313 }
314 }
315
316 /**
317 * doc_set_data_mode - Sets the flash to normal or reliable data mode
318 * @docg3: the device
319 *
320 * The reliable data mode is a bit slower than the fast mode, but less errors
321 * occur. Entering the reliable mode cannot be done without entering the fast
322 * mode first.
323 *
324 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
325 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
326 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
327 * result, which is a logical and between bytes from page 0 and page 1 (which is
328 * consistent with the fact that writing to a page is _clearing_ bits of that
329 * page).
330 */
doc_set_reliable_mode(struct docg3 * docg3)331 static void doc_set_reliable_mode(struct docg3 *docg3)
332 {
333 static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
334
335 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
336 switch (docg3->reliable) {
337 case 0:
338 break;
339 case 1:
340 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
341 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
342 break;
343 case 2:
344 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
345 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
346 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
347 break;
348 default:
349 doc_err("doc_set_reliable_mode(): invalid mode\n");
350 break;
351 }
352 doc_delay(docg3, 2);
353 }
354
355 /**
356 * doc_set_asic_mode - Set the ASIC mode
357 * @docg3: the device
358 * @mode: the mode
359 *
360 * The ASIC can work in 3 modes :
361 * - RESET: all registers are zeroed
362 * - NORMAL: receives and handles commands
363 * - POWERDOWN: minimal poweruse, flash parts shut off
364 */
doc_set_asic_mode(struct docg3 * docg3,u8 mode)365 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
366 {
367 int i;
368
369 for (i = 0; i < 12; i++)
370 doc_readb(docg3, DOC_IOSPACE_IPL);
371
372 mode |= DOC_ASICMODE_MDWREN;
373 doc_dbg("doc_set_asic_mode(%02x)\n", mode);
374 doc_writeb(docg3, mode, DOC_ASICMODE);
375 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
376 doc_delay(docg3, 1);
377 }
378
379 /**
380 * doc_set_device_id - Sets the devices id for cascaded G3 chips
381 * @docg3: the device
382 * @id: the chip to select (amongst 0, 1, 2, 3)
383 *
384 * There can be 4 cascaded G3 chips. This function selects the one which will
385 * should be the active one.
386 */
doc_set_device_id(struct docg3 * docg3,int id)387 static void doc_set_device_id(struct docg3 *docg3, int id)
388 {
389 u8 ctrl;
390
391 doc_dbg("doc_set_device_id(%d)\n", id);
392 doc_writeb(docg3, id, DOC_DEVICESELECT);
393 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
394
395 ctrl &= ~DOC_CTRL_VIOLATION;
396 ctrl |= DOC_CTRL_CE;
397 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
398 }
399
400 /**
401 * doc_set_extra_page_mode - Change flash page layout
402 * @docg3: the device
403 *
404 * Normally, the flash page is split into the data (512 bytes) and the out of
405 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
406 * leveling counters are stored. To access this last area of 4 bytes, a special
407 * mode must be input to the flash ASIC.
408 *
409 * Returns 0 if no error occurred, -EIO else.
410 */
doc_set_extra_page_mode(struct docg3 * docg3)411 static int doc_set_extra_page_mode(struct docg3 *docg3)
412 {
413 int fctrl;
414
415 doc_dbg("doc_set_extra_page_mode()\n");
416 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
417 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
418 doc_delay(docg3, 2);
419
420 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
421 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
422 return -EIO;
423 else
424 return 0;
425 }
426
427 /**
428 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
429 * @docg3: the device
430 * @sector: the sector
431 */
doc_setup_addr_sector(struct docg3 * docg3,int sector)432 static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
433 {
434 doc_delay(docg3, 1);
435 doc_flash_address(docg3, sector & 0xff);
436 doc_flash_address(docg3, (sector >> 8) & 0xff);
437 doc_flash_address(docg3, (sector >> 16) & 0xff);
438 doc_delay(docg3, 1);
439 }
440
441 /**
442 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
443 * @docg3: the device
444 * @sector: the sector
445 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
446 */
doc_setup_writeaddr_sector(struct docg3 * docg3,int sector,int ofs)447 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
448 {
449 ofs = ofs >> 2;
450 doc_delay(docg3, 1);
451 doc_flash_address(docg3, ofs & 0xff);
452 doc_flash_address(docg3, sector & 0xff);
453 doc_flash_address(docg3, (sector >> 8) & 0xff);
454 doc_flash_address(docg3, (sector >> 16) & 0xff);
455 doc_delay(docg3, 1);
456 }
457
458 /**
459 * doc_seek - Set both flash planes to the specified block, page for reading
460 * @docg3: the device
461 * @block0: the first plane block index
462 * @block1: the second plane block index
463 * @page: the page index within the block
464 * @wear: if true, read will occur on the 4 extra bytes of the wear area
465 * @ofs: offset in page to read
466 *
467 * Programs the flash even and odd planes to the specific block and page.
468 * Alternatively, programs the flash to the wear area of the specified page.
469 */
doc_read_seek(struct docg3 * docg3,int block0,int block1,int page,int wear,int ofs)470 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
471 int wear, int ofs)
472 {
473 int sector, ret = 0;
474
475 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
476 block0, block1, page, ofs, wear);
477
478 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
479 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
480 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
481 doc_delay(docg3, 2);
482 } else {
483 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
484 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
485 doc_delay(docg3, 2);
486 }
487
488 doc_set_reliable_mode(docg3);
489 if (wear)
490 ret = doc_set_extra_page_mode(docg3);
491 if (ret)
492 goto out;
493
494 doc_flash_sequence(docg3, DOC_SEQ_READ);
495 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
496 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
497 doc_setup_addr_sector(docg3, sector);
498
499 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
500 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
501 doc_setup_addr_sector(docg3, sector);
502 doc_delay(docg3, 1);
503
504 out:
505 return ret;
506 }
507
508 /**
509 * doc_write_seek - Set both flash planes to the specified block, page for writing
510 * @docg3: the device
511 * @block0: the first plane block index
512 * @block1: the second plane block index
513 * @page: the page index within the block
514 * @ofs: offset in page to write
515 *
516 * Programs the flash even and odd planes to the specific block and page.
517 * Alternatively, programs the flash to the wear area of the specified page.
518 */
doc_write_seek(struct docg3 * docg3,int block0,int block1,int page,int ofs)519 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
520 int ofs)
521 {
522 int ret = 0, sector;
523
524 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
525 block0, block1, page, ofs);
526
527 doc_set_reliable_mode(docg3);
528
529 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
530 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
531 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
532 doc_delay(docg3, 2);
533 } else {
534 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
535 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
536 doc_delay(docg3, 2);
537 }
538
539 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
540 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
541
542 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
543 doc_setup_writeaddr_sector(docg3, sector, ofs);
544
545 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
546 doc_delay(docg3, 2);
547 ret = doc_wait_ready(docg3);
548 if (ret)
549 goto out;
550
551 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
552 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
553 doc_setup_writeaddr_sector(docg3, sector, ofs);
554 doc_delay(docg3, 1);
555
556 out:
557 return ret;
558 }
559
560
561 /**
562 * doc_read_page_ecc_init - Initialize hardware ECC engine
563 * @docg3: the device
564 * @len: the number of bytes covered by the ECC (BCH covered)
565 *
566 * The function does initialize the hardware ECC engine to compute the Hamming
567 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
568 *
569 * Return 0 if succeeded, -EIO on error
570 */
doc_read_page_ecc_init(struct docg3 * docg3,int len)571 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
572 {
573 doc_writew(docg3, DOC_ECCCONF0_READ_MODE
574 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
575 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
576 DOC_ECCCONF0);
577 doc_delay(docg3, 4);
578 doc_register_readb(docg3, DOC_FLASHCONTROL);
579 return doc_wait_ready(docg3);
580 }
581
582 /**
583 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
584 * @docg3: the device
585 * @len: the number of bytes covered by the ECC (BCH covered)
586 *
587 * The function does initialize the hardware ECC engine to compute the Hamming
588 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
589 *
590 * Return 0 if succeeded, -EIO on error
591 */
doc_write_page_ecc_init(struct docg3 * docg3,int len)592 static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
593 {
594 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
595 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
596 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
597 DOC_ECCCONF0);
598 doc_delay(docg3, 4);
599 doc_register_readb(docg3, DOC_FLASHCONTROL);
600 return doc_wait_ready(docg3);
601 }
602
603 /**
604 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
605 * @docg3: the device
606 *
607 * Disables the hardware ECC generator and checker, for unchecked reads (as when
608 * reading OOB only or write status byte).
609 */
doc_ecc_disable(struct docg3 * docg3)610 static void doc_ecc_disable(struct docg3 *docg3)
611 {
612 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
613 doc_delay(docg3, 4);
614 }
615
616 /**
617 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
618 * @docg3: the device
619 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
620 *
621 * This function programs the ECC hardware to compute the hamming code on the
622 * last provided N bytes to the hardware generator.
623 */
doc_hamming_ecc_init(struct docg3 * docg3,int nb_bytes)624 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
625 {
626 u8 ecc_conf1;
627
628 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
629 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
630 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
631 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
632 }
633
634 /**
635 * doc_ecc_bch_fix_data - Fix if need be read data from flash
636 * @docg3: the device
637 * @buf: the buffer of read data (512 + 7 + 1 bytes)
638 * @hwecc: the hardware calculated ECC.
639 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
640 * area data, and calc_ecc the ECC calculated by the hardware generator.
641 *
642 * Checks if the received data matches the ECC, and if an error is detected,
643 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
644 * understands the (data, ecc, syndroms) in an inverted order in comparison to
645 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
646 * bit6 and bit 1, ...) for all ECC data.
647 *
648 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
649 * algorithm is used to decode this. However the hw operates on page
650 * data in a bit order that is the reverse of that of the bch alg,
651 * requiring that the bits be reversed on the result. Thanks to Ivan
652 * Djelic for his analysis.
653 *
654 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
655 * errors were detected and cannot be fixed.
656 */
doc_ecc_bch_fix_data(struct docg3 * docg3,void * buf,u8 * hwecc)657 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
658 {
659 u8 ecc[DOC_ECC_BCH_SIZE];
660 int errorpos[DOC_ECC_BCH_T], i, numerrs;
661
662 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
663 ecc[i] = bitrev8(hwecc[i]);
664 numerrs = decode_bch(docg3->cascade->bch, NULL,
665 DOC_ECC_BCH_COVERED_BYTES,
666 NULL, ecc, NULL, errorpos);
667 BUG_ON(numerrs == -EINVAL);
668 if (numerrs < 0)
669 goto out;
670
671 for (i = 0; i < numerrs; i++)
672 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
673 for (i = 0; i < numerrs; i++)
674 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
675 /* error is located in data, correct it */
676 change_bit(errorpos[i], buf);
677 out:
678 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
679 return numerrs;
680 }
681
682
683 /**
684 * doc_read_page_prepare - Prepares reading data from a flash page
685 * @docg3: the device
686 * @block0: the first plane block index on flash memory
687 * @block1: the second plane block index on flash memory
688 * @page: the page index in the block
689 * @offset: the offset in the page (must be a multiple of 4)
690 *
691 * Prepares the page to be read in the flash memory :
692 * - tell ASIC to map the flash pages
693 * - tell ASIC to be in read mode
694 *
695 * After a call to this method, a call to doc_read_page_finish is mandatory,
696 * to end the read cycle of the flash.
697 *
698 * Read data from a flash page. The length to be read must be between 0 and
699 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
700 * the extra bytes reading is not implemented).
701 *
702 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
703 * in two steps:
704 * - one read of 512 bytes at offset 0
705 * - one read of 512 bytes at offset 512 + 16
706 *
707 * Returns 0 if successful, -EIO if a read error occurred.
708 */
doc_read_page_prepare(struct docg3 * docg3,int block0,int block1,int page,int offset)709 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
710 int page, int offset)
711 {
712 int wear_area = 0, ret = 0;
713
714 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
715 block0, block1, page, offset);
716 if (offset >= DOC_LAYOUT_WEAR_OFFSET)
717 wear_area = 1;
718 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
719 return -EINVAL;
720
721 doc_set_device_id(docg3, docg3->device_id);
722 ret = doc_reset_seq(docg3);
723 if (ret)
724 goto err;
725
726 /* Program the flash address block and page */
727 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
728 if (ret)
729 goto err;
730
731 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
732 doc_delay(docg3, 2);
733 doc_wait_ready(docg3);
734
735 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
736 doc_delay(docg3, 1);
737 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
738 offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
739 doc_flash_address(docg3, offset >> 2);
740 doc_delay(docg3, 1);
741 doc_wait_ready(docg3);
742
743 doc_flash_command(docg3, DOC_CMD_READ_FLASH);
744
745 return 0;
746 err:
747 doc_writeb(docg3, 0, DOC_DATAEND);
748 doc_delay(docg3, 2);
749 return -EIO;
750 }
751
752 /**
753 * doc_read_page_getbytes - Reads bytes from a prepared page
754 * @docg3: the device
755 * @len: the number of bytes to be read (must be a multiple of 4)
756 * @buf: the buffer to be filled in (or NULL is forget bytes)
757 * @first: 1 if first time read, DOC_READADDRESS should be set
758 * @last_odd: 1 if last read ended up on an odd byte
759 *
760 * Reads bytes from a prepared page. There is a trickery here : if the last read
761 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
762 * planes, the first byte must be read apart. If a word (16bit) read was used,
763 * the read would return the byte of plane 2 as low *and* high endian, which
764 * will mess the read.
765 *
766 */
doc_read_page_getbytes(struct docg3 * docg3,int len,u_char * buf,int first,int last_odd)767 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
768 int first, int last_odd)
769 {
770 if (last_odd && len > 0) {
771 doc_read_data_area(docg3, buf, 1, first);
772 doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
773 } else {
774 doc_read_data_area(docg3, buf, len, first);
775 }
776 doc_delay(docg3, 2);
777 return len;
778 }
779
780 /**
781 * doc_write_page_putbytes - Writes bytes into a prepared page
782 * @docg3: the device
783 * @len: the number of bytes to be written
784 * @buf: the buffer of input bytes
785 *
786 */
doc_write_page_putbytes(struct docg3 * docg3,int len,const u_char * buf)787 static void doc_write_page_putbytes(struct docg3 *docg3, int len,
788 const u_char *buf)
789 {
790 doc_write_data_area(docg3, buf, len);
791 doc_delay(docg3, 2);
792 }
793
794 /**
795 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
796 * @docg3: the device
797 * @hwecc: the array of 7 integers where the hardware ecc will be stored
798 */
doc_get_bch_hw_ecc(struct docg3 * docg3,u8 * hwecc)799 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
800 {
801 int i;
802
803 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
804 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
805 }
806
807 /**
808 * doc_page_finish - Ends reading/writing of a flash page
809 * @docg3: the device
810 */
doc_page_finish(struct docg3 * docg3)811 static void doc_page_finish(struct docg3 *docg3)
812 {
813 doc_writeb(docg3, 0, DOC_DATAEND);
814 doc_delay(docg3, 2);
815 }
816
817 /**
818 * doc_read_page_finish - Ends reading of a flash page
819 * @docg3: the device
820 *
821 * As a side effect, resets the chip selector to 0. This ensures that after each
822 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
823 * reboot will boot on floor 0, where the IPL is.
824 */
doc_read_page_finish(struct docg3 * docg3)825 static void doc_read_page_finish(struct docg3 *docg3)
826 {
827 doc_page_finish(docg3);
828 doc_set_device_id(docg3, 0);
829 }
830
831 /**
832 * calc_block_sector - Calculate blocks, pages and ofs.
833
834 * @from: offset in flash
835 * @block0: first plane block index calculated
836 * @block1: second plane block index calculated
837 * @page: page calculated
838 * @ofs: offset in page
839 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
840 * reliable mode.
841 *
842 * The calculation is based on the reliable/normal mode. In normal mode, the 64
843 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
844 * clones, only 32 pages per block are available.
845 */
calc_block_sector(loff_t from,int * block0,int * block1,int * page,int * ofs,int reliable)846 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
847 int *ofs, int reliable)
848 {
849 uint sector, pages_biblock;
850
851 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
852 if (reliable == 1 || reliable == 2)
853 pages_biblock /= 2;
854
855 sector = from / DOC_LAYOUT_PAGE_SIZE;
856 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
857 *block1 = *block0 + 1;
858 *page = sector % pages_biblock;
859 *page /= DOC_LAYOUT_NBPLANES;
860 if (reliable == 1 || reliable == 2)
861 *page *= 2;
862 if (sector % 2)
863 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
864 else
865 *ofs = 0;
866 }
867
868 /**
869 * doc_read_oob - Read out of band bytes from flash
870 * @mtd: the device
871 * @from: the offset from first block and first page, in bytes, aligned on page
872 * size
873 * @ops: the mtd oob structure
874 *
875 * Reads flash memory OOB area of pages.
876 *
877 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
878 */
doc_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)879 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
880 struct mtd_oob_ops *ops)
881 {
882 struct docg3 *docg3 = mtd->priv;
883 int block0, block1, page, ret, skip, ofs = 0;
884 u8 *oobbuf = ops->oobbuf;
885 u8 *buf = ops->datbuf;
886 size_t len, ooblen, nbdata, nboob;
887 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
888 int max_bitflips = 0;
889
890 if (buf)
891 len = ops->len;
892 else
893 len = 0;
894 if (oobbuf)
895 ooblen = ops->ooblen;
896 else
897 ooblen = 0;
898
899 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
900 oobbuf += ops->ooboffs;
901
902 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
903 from, ops->mode, buf, len, oobbuf, ooblen);
904 if (ooblen % DOC_LAYOUT_OOB_SIZE)
905 return -EINVAL;
906
907 ops->oobretlen = 0;
908 ops->retlen = 0;
909 ret = 0;
910 skip = from % DOC_LAYOUT_PAGE_SIZE;
911 mutex_lock(&docg3->cascade->lock);
912 while (ret >= 0 && (len > 0 || ooblen > 0)) {
913 calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
914 docg3->reliable);
915 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
916 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
917 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
918 if (ret < 0)
919 goto out;
920 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
921 if (ret < 0)
922 goto err_in_read;
923 ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
924 if (ret < skip)
925 goto err_in_read;
926 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
927 if (ret < nbdata)
928 goto err_in_read;
929 doc_read_page_getbytes(docg3,
930 DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
931 NULL, 0, (skip + nbdata) % 2);
932 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
933 if (ret < nboob)
934 goto err_in_read;
935 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
936 NULL, 0, nboob % 2);
937
938 doc_get_bch_hw_ecc(docg3, hwecc);
939 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
940
941 if (nboob >= DOC_LAYOUT_OOB_SIZE) {
942 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
943 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
944 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
945 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
946 }
947 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
948 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
949
950 ret = -EIO;
951 if (is_prot_seq_error(docg3))
952 goto err_in_read;
953 ret = 0;
954 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
955 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
956 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
957 (ops->mode != MTD_OPS_RAW) &&
958 (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
959 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
960 if (ret < 0) {
961 mtd->ecc_stats.failed++;
962 ret = -EBADMSG;
963 }
964 if (ret > 0) {
965 mtd->ecc_stats.corrected += ret;
966 max_bitflips = max(max_bitflips, ret);
967 ret = max_bitflips;
968 }
969 }
970
971 doc_read_page_finish(docg3);
972 ops->retlen += nbdata;
973 ops->oobretlen += nboob;
974 buf += nbdata;
975 oobbuf += nboob;
976 len -= nbdata;
977 ooblen -= nboob;
978 from += DOC_LAYOUT_PAGE_SIZE;
979 skip = 0;
980 }
981
982 out:
983 mutex_unlock(&docg3->cascade->lock);
984 return ret;
985 err_in_read:
986 doc_read_page_finish(docg3);
987 goto out;
988 }
989
doc_reload_bbt(struct docg3 * docg3)990 static int doc_reload_bbt(struct docg3 *docg3)
991 {
992 int block = DOC_LAYOUT_BLOCK_BBT;
993 int ret = 0, nbpages, page;
994 u_char *buf = docg3->bbt;
995
996 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
997 for (page = 0; !ret && (page < nbpages); page++) {
998 ret = doc_read_page_prepare(docg3, block, block + 1,
999 page + DOC_LAYOUT_PAGE_BBT, 0);
1000 if (!ret)
1001 ret = doc_read_page_ecc_init(docg3,
1002 DOC_LAYOUT_PAGE_SIZE);
1003 if (!ret)
1004 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1005 buf, 1, 0);
1006 buf += DOC_LAYOUT_PAGE_SIZE;
1007 }
1008 doc_read_page_finish(docg3);
1009 return ret;
1010 }
1011
1012 /**
1013 * doc_block_isbad - Checks whether a block is good or not
1014 * @mtd: the device
1015 * @from: the offset to find the correct block
1016 *
1017 * Returns 1 if block is bad, 0 if block is good
1018 */
doc_block_isbad(struct mtd_info * mtd,loff_t from)1019 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1020 {
1021 struct docg3 *docg3 = mtd->priv;
1022 int block0, block1, page, ofs, is_good;
1023
1024 calc_block_sector(from, &block0, &block1, &page, &ofs,
1025 docg3->reliable);
1026 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1027 from, block0, block1, page, ofs);
1028
1029 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1030 return 0;
1031 if (block1 > docg3->max_block)
1032 return -EINVAL;
1033
1034 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1035 return !is_good;
1036 }
1037
1038 #if 0
1039 /**
1040 * doc_get_erase_count - Get block erase count
1041 * @docg3: the device
1042 * @from: the offset in which the block is.
1043 *
1044 * Get the number of times a block was erased. The number is the maximum of
1045 * erase times between first and second plane (which should be equal normally).
1046 *
1047 * Returns The number of erases, or -EINVAL or -EIO on error.
1048 */
1049 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1050 {
1051 u8 buf[DOC_LAYOUT_WEAR_SIZE];
1052 int ret, plane1_erase_count, plane2_erase_count;
1053 int block0, block1, page, ofs;
1054
1055 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1056 if (from % DOC_LAYOUT_PAGE_SIZE)
1057 return -EINVAL;
1058 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1059 if (block1 > docg3->max_block)
1060 return -EINVAL;
1061
1062 ret = doc_reset_seq(docg3);
1063 if (!ret)
1064 ret = doc_read_page_prepare(docg3, block0, block1, page,
1065 ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1066 if (!ret)
1067 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1068 buf, 1, 0);
1069 doc_read_page_finish(docg3);
1070
1071 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1072 return -EIO;
1073 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1074 | ((u8)(~buf[5]) << 16);
1075 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1076 | ((u8)(~buf[7]) << 16);
1077
1078 return max(plane1_erase_count, plane2_erase_count);
1079 }
1080 #endif
1081
1082 /**
1083 * doc_get_op_status - get erase/write operation status
1084 * @docg3: the device
1085 *
1086 * Queries the status from the chip, and returns it
1087 *
1088 * Returns the status (bits DOC_PLANES_STATUS_*)
1089 */
doc_get_op_status(struct docg3 * docg3)1090 static int doc_get_op_status(struct docg3 *docg3)
1091 {
1092 u8 status;
1093
1094 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1095 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1096 doc_delay(docg3, 5);
1097
1098 doc_ecc_disable(docg3);
1099 doc_read_data_area(docg3, &status, 1, 1);
1100 return status;
1101 }
1102
1103 /**
1104 * doc_write_erase_wait_status - wait for write or erase completion
1105 * @docg3: the device
1106 *
1107 * Wait for the chip to be ready again after erase or write operation, and check
1108 * erase/write status.
1109 *
1110 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1111 * timeout
1112 */
doc_write_erase_wait_status(struct docg3 * docg3)1113 static int doc_write_erase_wait_status(struct docg3 *docg3)
1114 {
1115 int i, status, ret = 0;
1116
1117 for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1118 msleep(20);
1119 if (!doc_is_ready(docg3)) {
1120 doc_dbg("Timeout reached and the chip is still not ready\n");
1121 ret = -EAGAIN;
1122 goto out;
1123 }
1124
1125 status = doc_get_op_status(docg3);
1126 if (status & DOC_PLANES_STATUS_FAIL) {
1127 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1128 status);
1129 ret = -EIO;
1130 }
1131
1132 out:
1133 doc_page_finish(docg3);
1134 return ret;
1135 }
1136
1137 /**
1138 * doc_erase_block - Erase a couple of blocks
1139 * @docg3: the device
1140 * @block0: the first block to erase (leftmost plane)
1141 * @block1: the second block to erase (rightmost plane)
1142 *
1143 * Erase both blocks, and return operation status
1144 *
1145 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1146 * ready for too long
1147 */
doc_erase_block(struct docg3 * docg3,int block0,int block1)1148 static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1149 {
1150 int ret, sector;
1151
1152 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1153 ret = doc_reset_seq(docg3);
1154 if (ret)
1155 return -EIO;
1156
1157 doc_set_reliable_mode(docg3);
1158 doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1159
1160 sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1161 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1162 doc_setup_addr_sector(docg3, sector);
1163 sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1164 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1165 doc_setup_addr_sector(docg3, sector);
1166 doc_delay(docg3, 1);
1167
1168 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1169 doc_delay(docg3, 2);
1170
1171 if (is_prot_seq_error(docg3)) {
1172 doc_err("Erase blocks %d,%d error\n", block0, block1);
1173 return -EIO;
1174 }
1175
1176 return doc_write_erase_wait_status(docg3);
1177 }
1178
1179 /**
1180 * doc_erase - Erase a portion of the chip
1181 * @mtd: the device
1182 * @info: the erase info
1183 *
1184 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1185 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1186 *
1187 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1188 * issue
1189 */
doc_erase(struct mtd_info * mtd,struct erase_info * info)1190 static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1191 {
1192 struct docg3 *docg3 = mtd->priv;
1193 uint64_t len;
1194 int block0, block1, page, ret = 0, ofs = 0;
1195
1196 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1197
1198 calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1199 &ofs, docg3->reliable);
1200 if (info->addr + info->len > mtd->size || page || ofs)
1201 return -EINVAL;
1202
1203 calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1204 docg3->reliable);
1205 mutex_lock(&docg3->cascade->lock);
1206 doc_set_device_id(docg3, docg3->device_id);
1207 doc_set_reliable_mode(docg3);
1208 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1209 ret = doc_erase_block(docg3, block0, block1);
1210 block0 += 2;
1211 block1 += 2;
1212 }
1213 mutex_unlock(&docg3->cascade->lock);
1214
1215 return ret;
1216 }
1217
1218 /**
1219 * doc_write_page - Write a single page to the chip
1220 * @docg3: the device
1221 * @to: the offset from first block and first page, in bytes, aligned on page
1222 * size
1223 * @buf: buffer to get bytes from
1224 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1225 * written)
1226 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1227 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1228 * remaining ones are filled with hardware Hamming and BCH
1229 * computations. Its value is not meaningfull is oob == NULL.
1230 *
1231 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1232 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1233 * BCH generator if autoecc is not null.
1234 *
1235 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1236 */
doc_write_page(struct docg3 * docg3,loff_t to,const u_char * buf,const u_char * oob,int autoecc)1237 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1238 const u_char *oob, int autoecc)
1239 {
1240 int block0, block1, page, ret, ofs = 0;
1241 u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1242
1243 doc_dbg("doc_write_page(to=%lld)\n", to);
1244 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1245
1246 doc_set_device_id(docg3, docg3->device_id);
1247 ret = doc_reset_seq(docg3);
1248 if (ret)
1249 goto err;
1250
1251 /* Program the flash address block and page */
1252 ret = doc_write_seek(docg3, block0, block1, page, ofs);
1253 if (ret)
1254 goto err;
1255
1256 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1257 doc_delay(docg3, 2);
1258 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1259
1260 if (oob && autoecc) {
1261 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1262 doc_delay(docg3, 2);
1263 oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1264
1265 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1266 doc_delay(docg3, 2);
1267 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1268 &hamming);
1269 doc_delay(docg3, 2);
1270
1271 doc_get_bch_hw_ecc(docg3, hwecc);
1272 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1273 doc_delay(docg3, 2);
1274
1275 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1276 }
1277 if (oob && !autoecc)
1278 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1279
1280 doc_delay(docg3, 2);
1281 doc_page_finish(docg3);
1282 doc_delay(docg3, 2);
1283 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1284 doc_delay(docg3, 2);
1285
1286 /*
1287 * The wait status will perform another doc_page_finish() call, but that
1288 * seems to please the docg3, so leave it.
1289 */
1290 ret = doc_write_erase_wait_status(docg3);
1291 return ret;
1292 err:
1293 doc_read_page_finish(docg3);
1294 return ret;
1295 }
1296
1297 /**
1298 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1299 * @ops: the oob operations
1300 *
1301 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1302 */
doc_guess_autoecc(struct mtd_oob_ops * ops)1303 static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1304 {
1305 int autoecc;
1306
1307 switch (ops->mode) {
1308 case MTD_OPS_PLACE_OOB:
1309 case MTD_OPS_AUTO_OOB:
1310 autoecc = 1;
1311 break;
1312 case MTD_OPS_RAW:
1313 autoecc = 0;
1314 break;
1315 default:
1316 autoecc = -EINVAL;
1317 }
1318 return autoecc;
1319 }
1320
1321 /**
1322 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1323 * @dst: the target 16 bytes OOB buffer
1324 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1325 *
1326 */
doc_fill_autooob(u8 * dst,u8 * oobsrc)1327 static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1328 {
1329 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1330 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1331 }
1332
1333 /**
1334 * doc_backup_oob - Backup OOB into docg3 structure
1335 * @docg3: the device
1336 * @to: the page offset in the chip
1337 * @ops: the OOB size and buffer
1338 *
1339 * As the docg3 should write a page with its OOB in one pass, and some userland
1340 * applications do write_oob() to setup the OOB and then write(), store the OOB
1341 * into a temporary storage. This is very dangerous, as 2 concurrent
1342 * applications could store an OOB, and then write their pages (which will
1343 * result into one having its OOB corrupted).
1344 *
1345 * The only reliable way would be for userland to call doc_write_oob() with both
1346 * the page data _and_ the OOB area.
1347 *
1348 * Returns 0 if success, -EINVAL if ops content invalid
1349 */
doc_backup_oob(struct docg3 * docg3,loff_t to,struct mtd_oob_ops * ops)1350 static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1351 struct mtd_oob_ops *ops)
1352 {
1353 int ooblen = ops->ooblen, autoecc;
1354
1355 if (ooblen != DOC_LAYOUT_OOB_SIZE)
1356 return -EINVAL;
1357 autoecc = doc_guess_autoecc(ops);
1358 if (autoecc < 0)
1359 return autoecc;
1360
1361 docg3->oob_write_ofs = to;
1362 docg3->oob_autoecc = autoecc;
1363 if (ops->mode == MTD_OPS_AUTO_OOB) {
1364 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1365 ops->oobretlen = 8;
1366 } else {
1367 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1368 ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1369 }
1370 return 0;
1371 }
1372
1373 /**
1374 * doc_write_oob - Write out of band bytes to flash
1375 * @mtd: the device
1376 * @ofs: the offset from first block and first page, in bytes, aligned on page
1377 * size
1378 * @ops: the mtd oob structure
1379 *
1380 * Either write OOB data into a temporary buffer, for the subsequent write
1381 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1382 * as well, issue the page write.
1383 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1384 * still be filled in if asked for).
1385 *
1386 * Returns 0 is successful, EINVAL if length is not 14 bytes
1387 */
doc_write_oob(struct mtd_info * mtd,loff_t ofs,struct mtd_oob_ops * ops)1388 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1389 struct mtd_oob_ops *ops)
1390 {
1391 struct docg3 *docg3 = mtd->priv;
1392 int ret, autoecc, oobdelta;
1393 u8 *oobbuf = ops->oobbuf;
1394 u8 *buf = ops->datbuf;
1395 size_t len, ooblen;
1396 u8 oob[DOC_LAYOUT_OOB_SIZE];
1397
1398 if (buf)
1399 len = ops->len;
1400 else
1401 len = 0;
1402 if (oobbuf)
1403 ooblen = ops->ooblen;
1404 else
1405 ooblen = 0;
1406
1407 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1408 oobbuf += ops->ooboffs;
1409
1410 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1411 ofs, ops->mode, buf, len, oobbuf, ooblen);
1412 switch (ops->mode) {
1413 case MTD_OPS_PLACE_OOB:
1414 case MTD_OPS_RAW:
1415 oobdelta = mtd->oobsize;
1416 break;
1417 case MTD_OPS_AUTO_OOB:
1418 oobdelta = mtd->oobavail;
1419 break;
1420 default:
1421 return -EINVAL;
1422 }
1423 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1424 (ofs % DOC_LAYOUT_PAGE_SIZE))
1425 return -EINVAL;
1426 if (len && ooblen &&
1427 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1428 return -EINVAL;
1429
1430 ops->oobretlen = 0;
1431 ops->retlen = 0;
1432 ret = 0;
1433 if (len == 0 && ooblen == 0)
1434 return -EINVAL;
1435 if (len == 0 && ooblen > 0)
1436 return doc_backup_oob(docg3, ofs, ops);
1437
1438 autoecc = doc_guess_autoecc(ops);
1439 if (autoecc < 0)
1440 return autoecc;
1441
1442 mutex_lock(&docg3->cascade->lock);
1443 while (!ret && len > 0) {
1444 memset(oob, 0, sizeof(oob));
1445 if (ofs == docg3->oob_write_ofs)
1446 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1447 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1448 doc_fill_autooob(oob, oobbuf);
1449 else if (ooblen > 0)
1450 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1451 ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1452
1453 ofs += DOC_LAYOUT_PAGE_SIZE;
1454 len -= DOC_LAYOUT_PAGE_SIZE;
1455 buf += DOC_LAYOUT_PAGE_SIZE;
1456 if (ooblen) {
1457 oobbuf += oobdelta;
1458 ooblen -= oobdelta;
1459 ops->oobretlen += oobdelta;
1460 }
1461 ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1462 }
1463
1464 doc_set_device_id(docg3, 0);
1465 mutex_unlock(&docg3->cascade->lock);
1466 return ret;
1467 }
1468
sysfs_dev2docg3(struct device * dev,struct device_attribute * attr)1469 static struct docg3 *sysfs_dev2docg3(struct device *dev,
1470 struct device_attribute *attr)
1471 {
1472 int floor;
1473 struct mtd_info **docg3_floors = dev_get_drvdata(dev);
1474
1475 floor = attr->attr.name[1] - '0';
1476 if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1477 return NULL;
1478 else
1479 return docg3_floors[floor]->priv;
1480 }
1481
dps0_is_key_locked(struct device * dev,struct device_attribute * attr,char * buf)1482 static ssize_t dps0_is_key_locked(struct device *dev,
1483 struct device_attribute *attr, char *buf)
1484 {
1485 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1486 int dps0;
1487
1488 mutex_lock(&docg3->cascade->lock);
1489 doc_set_device_id(docg3, docg3->device_id);
1490 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1491 doc_set_device_id(docg3, 0);
1492 mutex_unlock(&docg3->cascade->lock);
1493
1494 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1495 }
1496
dps1_is_key_locked(struct device * dev,struct device_attribute * attr,char * buf)1497 static ssize_t dps1_is_key_locked(struct device *dev,
1498 struct device_attribute *attr, char *buf)
1499 {
1500 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1501 int dps1;
1502
1503 mutex_lock(&docg3->cascade->lock);
1504 doc_set_device_id(docg3, docg3->device_id);
1505 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1506 doc_set_device_id(docg3, 0);
1507 mutex_unlock(&docg3->cascade->lock);
1508
1509 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1510 }
1511
dps0_insert_key(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1512 static ssize_t dps0_insert_key(struct device *dev,
1513 struct device_attribute *attr,
1514 const char *buf, size_t count)
1515 {
1516 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1517 int i;
1518
1519 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1520 return -EINVAL;
1521
1522 mutex_lock(&docg3->cascade->lock);
1523 doc_set_device_id(docg3, docg3->device_id);
1524 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1525 doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1526 doc_set_device_id(docg3, 0);
1527 mutex_unlock(&docg3->cascade->lock);
1528 return count;
1529 }
1530
dps1_insert_key(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1531 static ssize_t dps1_insert_key(struct device *dev,
1532 struct device_attribute *attr,
1533 const char *buf, size_t count)
1534 {
1535 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1536 int i;
1537
1538 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1539 return -EINVAL;
1540
1541 mutex_lock(&docg3->cascade->lock);
1542 doc_set_device_id(docg3, docg3->device_id);
1543 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1544 doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1545 doc_set_device_id(docg3, 0);
1546 mutex_unlock(&docg3->cascade->lock);
1547 return count;
1548 }
1549
1550 #define FLOOR_SYSFS(id) { \
1551 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1552 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1553 __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1554 __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1555 }
1556
1557 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1558 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1559 };
1560
doc_register_sysfs(struct platform_device * pdev,struct docg3_cascade * cascade)1561 static int doc_register_sysfs(struct platform_device *pdev,
1562 struct docg3_cascade *cascade)
1563 {
1564 struct device *dev = &pdev->dev;
1565 int floor;
1566 int ret;
1567 int i;
1568
1569 for (floor = 0;
1570 floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1571 floor++) {
1572 for (i = 0; i < 4; i++) {
1573 ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1574 if (ret)
1575 goto remove_files;
1576 }
1577 }
1578
1579 return 0;
1580
1581 remove_files:
1582 do {
1583 while (--i >= 0)
1584 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1585 i = 4;
1586 } while (--floor >= 0);
1587
1588 return ret;
1589 }
1590
doc_unregister_sysfs(struct platform_device * pdev,struct docg3_cascade * cascade)1591 static void doc_unregister_sysfs(struct platform_device *pdev,
1592 struct docg3_cascade *cascade)
1593 {
1594 struct device *dev = &pdev->dev;
1595 int floor, i;
1596
1597 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1598 floor++)
1599 for (i = 0; i < 4; i++)
1600 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1601 }
1602
1603 /*
1604 * Debug sysfs entries
1605 */
dbg_flashctrl_show(struct seq_file * s,void * p)1606 static int dbg_flashctrl_show(struct seq_file *s, void *p)
1607 {
1608 struct docg3 *docg3 = (struct docg3 *)s->private;
1609
1610 u8 fctrl;
1611
1612 mutex_lock(&docg3->cascade->lock);
1613 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1614 mutex_unlock(&docg3->cascade->lock);
1615
1616 seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1617 fctrl,
1618 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1619 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1620 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1621 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1622 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1623
1624 return 0;
1625 }
1626 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1627
dbg_asicmode_show(struct seq_file * s,void * p)1628 static int dbg_asicmode_show(struct seq_file *s, void *p)
1629 {
1630 struct docg3 *docg3 = (struct docg3 *)s->private;
1631
1632 int pctrl, mode;
1633
1634 mutex_lock(&docg3->cascade->lock);
1635 pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1636 mode = pctrl & 0x03;
1637 mutex_unlock(&docg3->cascade->lock);
1638
1639 seq_printf(s,
1640 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1641 pctrl,
1642 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1643 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1644 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1645 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1646 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1647 mode >> 1, mode & 0x1);
1648
1649 switch (mode) {
1650 case DOC_ASICMODE_RESET:
1651 seq_puts(s, "reset");
1652 break;
1653 case DOC_ASICMODE_NORMAL:
1654 seq_puts(s, "normal");
1655 break;
1656 case DOC_ASICMODE_POWERDOWN:
1657 seq_puts(s, "powerdown");
1658 break;
1659 }
1660 seq_puts(s, ")\n");
1661 return 0;
1662 }
1663 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1664
dbg_device_id_show(struct seq_file * s,void * p)1665 static int dbg_device_id_show(struct seq_file *s, void *p)
1666 {
1667 struct docg3 *docg3 = (struct docg3 *)s->private;
1668 int id;
1669
1670 mutex_lock(&docg3->cascade->lock);
1671 id = doc_register_readb(docg3, DOC_DEVICESELECT);
1672 mutex_unlock(&docg3->cascade->lock);
1673
1674 seq_printf(s, "DeviceId = %d\n", id);
1675 return 0;
1676 }
1677 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1678
dbg_protection_show(struct seq_file * s,void * p)1679 static int dbg_protection_show(struct seq_file *s, void *p)
1680 {
1681 struct docg3 *docg3 = (struct docg3 *)s->private;
1682 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1683
1684 mutex_lock(&docg3->cascade->lock);
1685 protect = doc_register_readb(docg3, DOC_PROTECTION);
1686 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1687 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1688 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1689 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1690 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1691 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1692 mutex_unlock(&docg3->cascade->lock);
1693
1694 seq_printf(s, "Protection = 0x%02x (", protect);
1695 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1696 seq_puts(s, "FOUNDRY_OTP_LOCK,");
1697 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1698 seq_puts(s, "CUSTOMER_OTP_LOCK,");
1699 if (protect & DOC_PROTECT_LOCK_INPUT)
1700 seq_puts(s, "LOCK_INPUT,");
1701 if (protect & DOC_PROTECT_STICKY_LOCK)
1702 seq_puts(s, "STICKY_LOCK,");
1703 if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1704 seq_puts(s, "PROTECTION ON,");
1705 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1706 seq_puts(s, "IPL_DOWNLOAD_LOCK,");
1707 if (protect & DOC_PROTECT_PROTECTION_ERROR)
1708 seq_puts(s, "PROTECT_ERR,");
1709 else
1710 seq_puts(s, "NO_PROTECT_ERR");
1711 seq_puts(s, ")\n");
1712
1713 seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1714 dps0, dps0_low, dps0_high,
1715 !!(dps0 & DOC_DPS_OTP_PROTECTED),
1716 !!(dps0 & DOC_DPS_READ_PROTECTED),
1717 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1718 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1719 !!(dps0 & DOC_DPS_KEY_OK));
1720 seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1721 dps1, dps1_low, dps1_high,
1722 !!(dps1 & DOC_DPS_OTP_PROTECTED),
1723 !!(dps1 & DOC_DPS_READ_PROTECTED),
1724 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1725 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1726 !!(dps1 & DOC_DPS_KEY_OK));
1727 return 0;
1728 }
1729 DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1730
doc_dbg_register(struct mtd_info * floor)1731 static void __init doc_dbg_register(struct mtd_info *floor)
1732 {
1733 struct dentry *root = floor->dbg.dfs_dir;
1734 struct docg3 *docg3 = floor->priv;
1735
1736 if (IS_ERR_OR_NULL(root)) {
1737 if (IS_ENABLED(CONFIG_DEBUG_FS) &&
1738 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1739 dev_warn(floor->dev.parent,
1740 "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
1741 return;
1742 }
1743
1744 debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3,
1745 &flashcontrol_fops);
1746 debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3,
1747 &asic_mode_fops);
1748 debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3,
1749 &device_id_fops);
1750 debugfs_create_file("docg3_protection", S_IRUSR, root, docg3,
1751 &protection_fops);
1752 }
1753
1754 /**
1755 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1756 * @chip_id: The chip ID of the supported chip
1757 * @mtd: The structure to fill
1758 */
doc_set_driver_info(int chip_id,struct mtd_info * mtd)1759 static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1760 {
1761 struct docg3 *docg3 = mtd->priv;
1762 int cfg;
1763
1764 cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1765 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1766 docg3->reliable = reliable_mode;
1767
1768 switch (chip_id) {
1769 case DOC_CHIPID_G3:
1770 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1771 docg3->device_id);
1772 if (!mtd->name)
1773 return -ENOMEM;
1774 docg3->max_block = 2047;
1775 break;
1776 }
1777 mtd->type = MTD_NANDFLASH;
1778 mtd->flags = MTD_CAP_NANDFLASH;
1779 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1780 if (docg3->reliable == 2)
1781 mtd->size /= 2;
1782 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1783 if (docg3->reliable == 2)
1784 mtd->erasesize /= 2;
1785 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1786 mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1787 mtd->_erase = doc_erase;
1788 mtd->_read_oob = doc_read_oob;
1789 mtd->_write_oob = doc_write_oob;
1790 mtd->_block_isbad = doc_block_isbad;
1791 mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops);
1792 mtd->oobavail = 8;
1793 mtd->ecc_strength = DOC_ECC_BCH_T;
1794
1795 return 0;
1796 }
1797
1798 /**
1799 * doc_probe_device - Check if a device is available
1800 * @base: the io space where the device is probed
1801 * @floor: the floor of the probed device
1802 * @dev: the device
1803 * @cascade: the cascade of chips this devices will belong to
1804 *
1805 * Checks whether a device at the specified IO range, and floor is available.
1806 *
1807 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1808 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1809 * launched.
1810 */
1811 static struct mtd_info * __init
doc_probe_device(struct docg3_cascade * cascade,int floor,struct device * dev)1812 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1813 {
1814 int ret, bbt_nbpages;
1815 u16 chip_id, chip_id_inv;
1816 struct docg3 *docg3;
1817 struct mtd_info *mtd;
1818
1819 ret = -ENOMEM;
1820 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1821 if (!docg3)
1822 goto nomem1;
1823 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1824 if (!mtd)
1825 goto nomem2;
1826 mtd->priv = docg3;
1827 mtd->dev.parent = dev;
1828 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1829 8 * DOC_LAYOUT_PAGE_SIZE);
1830 docg3->bbt = kcalloc(DOC_LAYOUT_PAGE_SIZE, bbt_nbpages, GFP_KERNEL);
1831 if (!docg3->bbt)
1832 goto nomem3;
1833
1834 docg3->dev = dev;
1835 docg3->device_id = floor;
1836 docg3->cascade = cascade;
1837 doc_set_device_id(docg3, docg3->device_id);
1838 if (!floor)
1839 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1840 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1841
1842 chip_id = doc_register_readw(docg3, DOC_CHIPID);
1843 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1844
1845 ret = 0;
1846 if (chip_id != (u16)(~chip_id_inv)) {
1847 goto nomem4;
1848 }
1849
1850 switch (chip_id) {
1851 case DOC_CHIPID_G3:
1852 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1853 docg3->cascade->base, floor);
1854 break;
1855 default:
1856 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1857 goto nomem4;
1858 }
1859
1860 ret = doc_set_driver_info(chip_id, mtd);
1861 if (ret)
1862 goto nomem4;
1863
1864 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1865 doc_reload_bbt(docg3);
1866 return mtd;
1867
1868 nomem4:
1869 kfree(docg3->bbt);
1870 nomem3:
1871 kfree(mtd);
1872 nomem2:
1873 kfree(docg3);
1874 nomem1:
1875 return ERR_PTR(ret);
1876 }
1877
1878 /**
1879 * doc_release_device - Release a docg3 floor
1880 * @mtd: the device
1881 */
doc_release_device(struct mtd_info * mtd)1882 static void doc_release_device(struct mtd_info *mtd)
1883 {
1884 struct docg3 *docg3 = mtd->priv;
1885
1886 mtd_device_unregister(mtd);
1887 kfree(docg3->bbt);
1888 kfree(docg3);
1889 kfree(mtd->name);
1890 kfree(mtd);
1891 }
1892
1893 /**
1894 * docg3_resume - Awakens docg3 floor
1895 * @pdev: platfrom device
1896 *
1897 * Returns 0 (always successful)
1898 */
docg3_resume(struct platform_device * pdev)1899 static int docg3_resume(struct platform_device *pdev)
1900 {
1901 int i;
1902 struct docg3_cascade *cascade;
1903 struct mtd_info **docg3_floors, *mtd;
1904 struct docg3 *docg3;
1905
1906 cascade = platform_get_drvdata(pdev);
1907 docg3_floors = cascade->floors;
1908 mtd = docg3_floors[0];
1909 docg3 = mtd->priv;
1910
1911 doc_dbg("docg3_resume()\n");
1912 for (i = 0; i < 12; i++)
1913 doc_readb(docg3, DOC_IOSPACE_IPL);
1914 return 0;
1915 }
1916
1917 /**
1918 * docg3_suspend - Put in low power mode the docg3 floor
1919 * @pdev: platform device
1920 * @state: power state
1921 *
1922 * Shuts off most of docg3 circuitery to lower power consumption.
1923 *
1924 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1925 */
docg3_suspend(struct platform_device * pdev,pm_message_t state)1926 static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1927 {
1928 int floor, i;
1929 struct docg3_cascade *cascade;
1930 struct mtd_info **docg3_floors, *mtd;
1931 struct docg3 *docg3;
1932 u8 ctrl, pwr_down;
1933
1934 cascade = platform_get_drvdata(pdev);
1935 docg3_floors = cascade->floors;
1936 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1937 mtd = docg3_floors[floor];
1938 if (!mtd)
1939 continue;
1940 docg3 = mtd->priv;
1941
1942 doc_writeb(docg3, floor, DOC_DEVICESELECT);
1943 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1944 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
1945 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
1946
1947 for (i = 0; i < 10; i++) {
1948 usleep_range(3000, 4000);
1949 pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
1950 if (pwr_down & DOC_POWERDOWN_READY)
1951 break;
1952 }
1953 if (pwr_down & DOC_POWERDOWN_READY) {
1954 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
1955 floor);
1956 } else {
1957 doc_err("docg3_suspend(): floor %d powerdown failed\n",
1958 floor);
1959 return -EIO;
1960 }
1961 }
1962
1963 mtd = docg3_floors[0];
1964 docg3 = mtd->priv;
1965 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
1966 return 0;
1967 }
1968
1969 /**
1970 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
1971 * @pdev: platform device
1972 *
1973 * Probes for a G3 chip at the specified IO space in the platform data
1974 * ressources. The floor 0 must be available.
1975 *
1976 * Returns 0 on success, -ENOMEM, -ENXIO on error
1977 */
docg3_probe(struct platform_device * pdev)1978 static int __init docg3_probe(struct platform_device *pdev)
1979 {
1980 struct device *dev = &pdev->dev;
1981 struct mtd_info *mtd;
1982 struct resource *ress;
1983 void __iomem *base;
1984 int ret, floor;
1985 struct docg3_cascade *cascade;
1986
1987 ret = -ENXIO;
1988 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1989 if (!ress) {
1990 dev_err(dev, "No I/O memory resource defined\n");
1991 return ret;
1992 }
1993 base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
1994
1995 ret = -ENOMEM;
1996 cascade = devm_kcalloc(dev, DOC_MAX_NBFLOORS, sizeof(*cascade),
1997 GFP_KERNEL);
1998 if (!cascade)
1999 return ret;
2000 cascade->base = base;
2001 mutex_init(&cascade->lock);
2002 cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2003 DOC_ECC_BCH_PRIMPOLY);
2004 if (!cascade->bch)
2005 return ret;
2006
2007 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2008 mtd = doc_probe_device(cascade, floor, dev);
2009 if (IS_ERR(mtd)) {
2010 ret = PTR_ERR(mtd);
2011 goto err_probe;
2012 }
2013 if (!mtd) {
2014 if (floor == 0)
2015 goto notfound;
2016 else
2017 continue;
2018 }
2019 cascade->floors[floor] = mtd;
2020 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2021 0);
2022 if (ret)
2023 goto err_probe;
2024
2025 doc_dbg_register(cascade->floors[floor]);
2026 }
2027
2028 ret = doc_register_sysfs(pdev, cascade);
2029 if (ret)
2030 goto err_probe;
2031
2032 platform_set_drvdata(pdev, cascade);
2033 return 0;
2034
2035 notfound:
2036 ret = -ENODEV;
2037 dev_info(dev, "No supported DiskOnChip found\n");
2038 err_probe:
2039 free_bch(cascade->bch);
2040 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2041 if (cascade->floors[floor])
2042 doc_release_device(cascade->floors[floor]);
2043 return ret;
2044 }
2045
2046 /**
2047 * docg3_release - Release the driver
2048 * @pdev: the platform device
2049 *
2050 * Returns 0
2051 */
docg3_release(struct platform_device * pdev)2052 static int docg3_release(struct platform_device *pdev)
2053 {
2054 struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2055 struct docg3 *docg3 = cascade->floors[0]->priv;
2056 int floor;
2057
2058 doc_unregister_sysfs(pdev, cascade);
2059 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2060 if (cascade->floors[floor])
2061 doc_release_device(cascade->floors[floor]);
2062
2063 free_bch(docg3->cascade->bch);
2064 return 0;
2065 }
2066
2067 #ifdef CONFIG_OF
2068 static const struct of_device_id docg3_dt_ids[] = {
2069 { .compatible = "m-systems,diskonchip-g3" },
2070 {}
2071 };
2072 MODULE_DEVICE_TABLE(of, docg3_dt_ids);
2073 #endif
2074
2075 static struct platform_driver g3_driver = {
2076 .driver = {
2077 .name = "docg3",
2078 .of_match_table = of_match_ptr(docg3_dt_ids),
2079 },
2080 .suspend = docg3_suspend,
2081 .resume = docg3_resume,
2082 .remove = docg3_release,
2083 };
2084
2085 module_platform_driver_probe(g3_driver, docg3_probe);
2086
2087 MODULE_LICENSE("GPL");
2088 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2089 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2090