1 /*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31
32 #define DEFAULT_CMD6_TIMEOUT_MS 500
33
34 static const unsigned int tran_exp[] = {
35 10000, 100000, 1000000, 10000000,
36 0, 0, 0, 0
37 };
38
39 static const unsigned char tran_mant[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
42 };
43
44 static const unsigned int taac_exp[] = {
45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
46 };
47
48 static const unsigned int taac_mant[] = {
49 0, 10, 12, 13, 15, 20, 25, 30,
50 35, 40, 45, 50, 55, 60, 70, 80,
51 };
52
53 #define UNSTUFF_BITS(resp,start,size) \
54 ({ \
55 const int __size = size; \
56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
57 const int __off = 3 - ((start) / 32); \
58 const int __shft = (start) & 31; \
59 u32 __res; \
60 \
61 __res = resp[__off] >> __shft; \
62 if (__size + __shft > 32) \
63 __res |= resp[__off-1] << ((32 - __shft) % 32); \
64 __res & __mask; \
65 })
66
67 /*
68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
69 */
mmc_decode_cid(struct mmc_card * card)70 static int mmc_decode_cid(struct mmc_card *card)
71 {
72 u32 *resp = card->raw_cid;
73
74 /*
75 * The selection of the format here is based upon published
76 * specs from sandisk and from what people have reported.
77 */
78 switch (card->csd.mmca_vsn) {
79 case 0: /* MMC v1.0 - v1.2 */
80 case 1: /* MMC v1.4 */
81 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
82 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
83 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
84 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
85 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
86 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
87 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
88 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
89 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
90 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
91 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
92 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
93 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
94 break;
95
96 case 2: /* MMC v2.0 - v2.2 */
97 case 3: /* MMC v3.1 - v3.3 */
98 case 4: /* MMC v4 */
99 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
100 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
101 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
102 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
103 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
104 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
105 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
106 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
107 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
108 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
109 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
110 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
111 break;
112
113 default:
114 pr_err("%s: card has unknown MMCA version %d\n",
115 mmc_hostname(card->host), card->csd.mmca_vsn);
116 return -EINVAL;
117 }
118
119 return 0;
120 }
121
mmc_set_erase_size(struct mmc_card * card)122 static void mmc_set_erase_size(struct mmc_card *card)
123 {
124 if (card->ext_csd.erase_group_def & 1)
125 card->erase_size = card->ext_csd.hc_erase_size;
126 else
127 card->erase_size = card->csd.erase_size;
128
129 mmc_init_erase(card);
130 }
131
132 /*
133 * Given a 128-bit response, decode to our card CSD structure.
134 */
mmc_decode_csd(struct mmc_card * card)135 static int mmc_decode_csd(struct mmc_card *card)
136 {
137 struct mmc_csd *csd = &card->csd;
138 unsigned int e, m, a, b;
139 u32 *resp = card->raw_csd;
140
141 /*
142 * We only understand CSD structure v1.1 and v1.2.
143 * v1.2 has extra information in bits 15, 11 and 10.
144 * We also support eMMC v4.4 & v4.41.
145 */
146 csd->structure = UNSTUFF_BITS(resp, 126, 2);
147 if (csd->structure == 0) {
148 pr_err("%s: unrecognised CSD structure version %d\n",
149 mmc_hostname(card->host), csd->structure);
150 return -EINVAL;
151 }
152
153 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
154 m = UNSTUFF_BITS(resp, 115, 4);
155 e = UNSTUFF_BITS(resp, 112, 3);
156 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
157 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
158
159 m = UNSTUFF_BITS(resp, 99, 4);
160 e = UNSTUFF_BITS(resp, 96, 3);
161 csd->max_dtr = tran_exp[e] * tran_mant[m];
162 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
163
164 e = UNSTUFF_BITS(resp, 47, 3);
165 m = UNSTUFF_BITS(resp, 62, 12);
166 csd->capacity = (1 + m) << (e + 2);
167
168 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
169 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
170 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
171 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
172 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
173 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
174 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
175 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
176
177 if (csd->write_blkbits >= 9) {
178 a = UNSTUFF_BITS(resp, 42, 5);
179 b = UNSTUFF_BITS(resp, 37, 5);
180 csd->erase_size = (a + 1) * (b + 1);
181 csd->erase_size <<= csd->write_blkbits - 9;
182 }
183
184 return 0;
185 }
186
mmc_select_card_type(struct mmc_card * card)187 static void mmc_select_card_type(struct mmc_card *card)
188 {
189 struct mmc_host *host = card->host;
190 u8 card_type = card->ext_csd.raw_card_type;
191 u32 caps = host->caps, caps2 = host->caps2;
192 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
193 unsigned int avail_type = 0;
194
195 if (caps & MMC_CAP_MMC_HIGHSPEED &&
196 card_type & EXT_CSD_CARD_TYPE_HS_26) {
197 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
198 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
199 }
200
201 if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 card_type & EXT_CSD_CARD_TYPE_HS_52) {
203 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
204 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
205 }
206
207 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
208 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
209 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
210 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
211 }
212
213 if (caps & MMC_CAP_1_2V_DDR &&
214 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
215 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
217 }
218
219 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
220 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
221 hs200_max_dtr = MMC_HS200_MAX_DTR;
222 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
223 }
224
225 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
226 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
227 hs200_max_dtr = MMC_HS200_MAX_DTR;
228 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
229 }
230
231 if (caps2 & MMC_CAP2_HS400_1_8V &&
232 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
233 hs200_max_dtr = MMC_HS200_MAX_DTR;
234 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
235 }
236
237 if (caps2 & MMC_CAP2_HS400_1_2V &&
238 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
239 hs200_max_dtr = MMC_HS200_MAX_DTR;
240 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
241 }
242
243 if ((caps2 & MMC_CAP2_HS400_ES) &&
244 card->ext_csd.strobe_support &&
245 (avail_type & EXT_CSD_CARD_TYPE_HS400))
246 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
247
248 card->ext_csd.hs_max_dtr = hs_max_dtr;
249 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
250 card->mmc_avail_type = avail_type;
251 }
252
mmc_manage_enhanced_area(struct mmc_card * card,u8 * ext_csd)253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
254 {
255 u8 hc_erase_grp_sz, hc_wp_grp_sz;
256
257 /*
258 * Disable these attributes by default
259 */
260 card->ext_csd.enhanced_area_offset = -EINVAL;
261 card->ext_csd.enhanced_area_size = -EINVAL;
262
263 /*
264 * Enhanced area feature support -- check whether the eMMC
265 * card has the Enhanced area enabled. If so, export enhanced
266 * area offset and size to user by adding sysfs interface.
267 */
268 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
269 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
270 if (card->ext_csd.partition_setting_completed) {
271 hc_erase_grp_sz =
272 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
273 hc_wp_grp_sz =
274 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
275
276 /*
277 * calculate the enhanced data area offset, in bytes
278 */
279 card->ext_csd.enhanced_area_offset =
280 (((unsigned long long)ext_csd[139]) << 24) +
281 (((unsigned long long)ext_csd[138]) << 16) +
282 (((unsigned long long)ext_csd[137]) << 8) +
283 (((unsigned long long)ext_csd[136]));
284 if (mmc_card_blockaddr(card))
285 card->ext_csd.enhanced_area_offset <<= 9;
286 /*
287 * calculate the enhanced data area size, in kilobytes
288 */
289 card->ext_csd.enhanced_area_size =
290 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
291 ext_csd[140];
292 card->ext_csd.enhanced_area_size *=
293 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
294 card->ext_csd.enhanced_area_size <<= 9;
295 } else {
296 pr_warn("%s: defines enhanced area without partition setting complete\n",
297 mmc_hostname(card->host));
298 }
299 }
300 }
301
mmc_part_add(struct mmc_card * card,unsigned int size,unsigned int part_cfg,char * name,int idx,bool ro,int area_type)302 static void mmc_part_add(struct mmc_card *card, unsigned int size,
303 unsigned int part_cfg, char *name, int idx, bool ro,
304 int area_type)
305 {
306 card->part[card->nr_parts].size = size;
307 card->part[card->nr_parts].part_cfg = part_cfg;
308 sprintf(card->part[card->nr_parts].name, name, idx);
309 card->part[card->nr_parts].force_ro = ro;
310 card->part[card->nr_parts].area_type = area_type;
311 card->nr_parts++;
312 }
313
mmc_manage_gp_partitions(struct mmc_card * card,u8 * ext_csd)314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
315 {
316 int idx;
317 u8 hc_erase_grp_sz, hc_wp_grp_sz;
318 unsigned int part_size;
319
320 /*
321 * General purpose partition feature support --
322 * If ext_csd has the size of general purpose partitions,
323 * set size, part_cfg, partition name in mmc_part.
324 */
325 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
326 EXT_CSD_PART_SUPPORT_PART_EN) {
327 hc_erase_grp_sz =
328 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
329 hc_wp_grp_sz =
330 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
331
332 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
333 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
336 continue;
337 if (card->ext_csd.partition_setting_completed == 0) {
338 pr_warn("%s: has partition size defined without partition complete\n",
339 mmc_hostname(card->host));
340 break;
341 }
342 part_size =
343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
344 << 16) +
345 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
346 << 8) +
347 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
348 part_size *= (size_t)(hc_erase_grp_sz *
349 hc_wp_grp_sz);
350 mmc_part_add(card, part_size << 19,
351 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
352 "gp%d", idx, false,
353 MMC_BLK_DATA_AREA_GP);
354 }
355 }
356 }
357
358 /* Minimum partition switch timeout in milliseconds */
359 #define MMC_MIN_PART_SWITCH_TIME 300
360
361 /*
362 * Decode extended CSD.
363 */
mmc_decode_ext_csd(struct mmc_card * card,u8 * ext_csd)364 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
365 {
366 int err = 0, idx;
367 unsigned int part_size;
368 struct device_node *np;
369 bool broken_hpi = false;
370
371 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
372 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
373 if (card->csd.structure == 3) {
374 if (card->ext_csd.raw_ext_csd_structure > 2) {
375 pr_err("%s: unrecognised EXT_CSD structure "
376 "version %d\n", mmc_hostname(card->host),
377 card->ext_csd.raw_ext_csd_structure);
378 err = -EINVAL;
379 goto out;
380 }
381 }
382
383 np = mmc_of_find_child_device(card->host, 0);
384 if (np && of_device_is_compatible(np, "mmc-card"))
385 broken_hpi = of_property_read_bool(np, "broken-hpi");
386 of_node_put(np);
387
388 /*
389 * The EXT_CSD format is meant to be forward compatible. As long
390 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
391 * are authorized, see JEDEC JESD84-B50 section B.8.
392 */
393 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
394
395 /* fixup device after ext_csd revision field is updated */
396 mmc_fixup_device(card, mmc_ext_csd_fixups);
397
398 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
399 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
400 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
401 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
402 if (card->ext_csd.rev >= 2) {
403 card->ext_csd.sectors =
404 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
405 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
406 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
407 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
408
409 /* Cards with density > 2GiB are sector addressed */
410 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
411 mmc_card_set_blockaddr(card);
412 }
413
414 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
415 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
416 mmc_select_card_type(card);
417
418 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
419 card->ext_csd.raw_erase_timeout_mult =
420 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
421 card->ext_csd.raw_hc_erase_grp_size =
422 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
423 if (card->ext_csd.rev >= 3) {
424 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
426
427 /* EXT_CSD value is in units of 10ms, but we store in ms */
428 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429 /* Some eMMC set the value too low so set a minimum */
430 if (card->ext_csd.part_time &&
431 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
432 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
433
434 /* Sleep / awake timeout in 100ns units */
435 if (sa_shift > 0 && sa_shift <= 0x17)
436 card->ext_csd.sa_timeout =
437 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
438 card->ext_csd.erase_group_def =
439 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
440 card->ext_csd.hc_erase_timeout = 300 *
441 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
442 card->ext_csd.hc_erase_size =
443 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
444
445 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
446
447 /*
448 * There are two boot regions of equal size, defined in
449 * multiples of 128K.
450 */
451 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
452 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
453 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
454 mmc_part_add(card, part_size,
455 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
456 "boot%d", idx, true,
457 MMC_BLK_DATA_AREA_BOOT);
458 }
459 }
460 }
461
462 card->ext_csd.raw_hc_erase_gap_size =
463 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
464 card->ext_csd.raw_sec_trim_mult =
465 ext_csd[EXT_CSD_SEC_TRIM_MULT];
466 card->ext_csd.raw_sec_erase_mult =
467 ext_csd[EXT_CSD_SEC_ERASE_MULT];
468 card->ext_csd.raw_sec_feature_support =
469 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
470 card->ext_csd.raw_trim_mult =
471 ext_csd[EXT_CSD_TRIM_MULT];
472 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
473 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
474 if (card->ext_csd.rev >= 4) {
475 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
476 EXT_CSD_PART_SETTING_COMPLETED)
477 card->ext_csd.partition_setting_completed = 1;
478 else
479 card->ext_csd.partition_setting_completed = 0;
480
481 mmc_manage_enhanced_area(card, ext_csd);
482
483 mmc_manage_gp_partitions(card, ext_csd);
484
485 card->ext_csd.sec_trim_mult =
486 ext_csd[EXT_CSD_SEC_TRIM_MULT];
487 card->ext_csd.sec_erase_mult =
488 ext_csd[EXT_CSD_SEC_ERASE_MULT];
489 card->ext_csd.sec_feature_support =
490 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
491 card->ext_csd.trim_timeout = 300 *
492 ext_csd[EXT_CSD_TRIM_MULT];
493
494 /*
495 * Note that the call to mmc_part_add above defaults to read
496 * only. If this default assumption is changed, the call must
497 * take into account the value of boot_locked below.
498 */
499 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
500 card->ext_csd.boot_ro_lockable = true;
501
502 /* Save power class values */
503 card->ext_csd.raw_pwr_cl_52_195 =
504 ext_csd[EXT_CSD_PWR_CL_52_195];
505 card->ext_csd.raw_pwr_cl_26_195 =
506 ext_csd[EXT_CSD_PWR_CL_26_195];
507 card->ext_csd.raw_pwr_cl_52_360 =
508 ext_csd[EXT_CSD_PWR_CL_52_360];
509 card->ext_csd.raw_pwr_cl_26_360 =
510 ext_csd[EXT_CSD_PWR_CL_26_360];
511 card->ext_csd.raw_pwr_cl_200_195 =
512 ext_csd[EXT_CSD_PWR_CL_200_195];
513 card->ext_csd.raw_pwr_cl_200_360 =
514 ext_csd[EXT_CSD_PWR_CL_200_360];
515 card->ext_csd.raw_pwr_cl_ddr_52_195 =
516 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
517 card->ext_csd.raw_pwr_cl_ddr_52_360 =
518 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
519 card->ext_csd.raw_pwr_cl_ddr_200_360 =
520 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
521 }
522
523 if (card->ext_csd.rev >= 5) {
524 /* Adjust production date as per JEDEC JESD84-B451 */
525 if (card->cid.year < 2010)
526 card->cid.year += 16;
527
528 /* check whether the eMMC card supports BKOPS */
529 if (!mmc_card_broken_hpi(card) &&
530 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 card->ext_csd.bkops = 1;
532 card->ext_csd.man_bkops_en =
533 (ext_csd[EXT_CSD_BKOPS_EN] &
534 EXT_CSD_MANUAL_BKOPS_MASK);
535 card->ext_csd.raw_bkops_status =
536 ext_csd[EXT_CSD_BKOPS_STATUS];
537 if (card->ext_csd.man_bkops_en)
538 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 mmc_hostname(card->host));
540 card->ext_csd.auto_bkops_en =
541 (ext_csd[EXT_CSD_BKOPS_EN] &
542 EXT_CSD_AUTO_BKOPS_MASK);
543 if (card->ext_csd.auto_bkops_en)
544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 mmc_hostname(card->host));
546 }
547
548 /* check whether the eMMC card supports HPI */
549 if (!mmc_card_broken_hpi(card) &&
550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 card->ext_csd.hpi = 1;
552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
554 else
555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
556 /*
557 * Indicate the maximum timeout to close
558 * a command interrupted by HPI
559 */
560 card->ext_csd.out_of_int_time =
561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
562 }
563
564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
566
567 /*
568 * RPMB regions are defined in multiples of 128K.
569 */
570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 EXT_CSD_PART_CONFIG_ACC_RPMB,
574 "rpmb", 0, false,
575 MMC_BLK_DATA_AREA_RPMB);
576 }
577 }
578
579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 card->erased_byte = 0xFF;
582 else
583 card->erased_byte = 0x0;
584
585 /* eMMC v4.5 or later */
586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 if (card->ext_csd.rev >= 6) {
588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
589
590 card->ext_csd.generic_cmd6_time = 10 *
591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 card->ext_csd.power_off_longtime = 10 *
593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
594
595 card->ext_csd.cache_size =
596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
600
601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 card->ext_csd.data_sector_size = 4096;
603 else
604 card->ext_csd.data_sector_size = 512;
605
606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 card->ext_csd.data_tag_unit_size =
609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 (card->ext_csd.data_sector_size);
611 } else {
612 card->ext_csd.data_tag_unit_size = 0;
613 }
614
615 card->ext_csd.max_packed_writes =
616 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
617 card->ext_csd.max_packed_reads =
618 ext_csd[EXT_CSD_MAX_PACKED_READS];
619 } else {
620 card->ext_csd.data_sector_size = 512;
621 }
622
623 /* eMMC v5 or later */
624 if (card->ext_csd.rev >= 7) {
625 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
626 MMC_FIRMWARE_LEN);
627 card->ext_csd.ffu_capable =
628 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
629 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
630
631 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
632 card->ext_csd.device_life_time_est_typ_a =
633 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
634 card->ext_csd.device_life_time_est_typ_b =
635 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
636 }
637
638 /* eMMC v5.1 or later */
639 if (card->ext_csd.rev >= 8) {
640 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
641 EXT_CSD_CMDQ_SUPPORTED;
642 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
643 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
644 /* Exclude inefficiently small queue depths */
645 if (card->ext_csd.cmdq_depth <= 2) {
646 card->ext_csd.cmdq_support = false;
647 card->ext_csd.cmdq_depth = 0;
648 }
649 if (card->ext_csd.cmdq_support) {
650 pr_debug("%s: Command Queue supported depth %u\n",
651 mmc_hostname(card->host),
652 card->ext_csd.cmdq_depth);
653 }
654 }
655 out:
656 return err;
657 }
658
mmc_read_ext_csd(struct mmc_card * card)659 static int mmc_read_ext_csd(struct mmc_card *card)
660 {
661 u8 *ext_csd;
662 int err;
663
664 if (!mmc_can_ext_csd(card))
665 return 0;
666
667 err = mmc_get_ext_csd(card, &ext_csd);
668 if (err) {
669 /* If the host or the card can't do the switch,
670 * fail more gracefully. */
671 if ((err != -EINVAL)
672 && (err != -ENOSYS)
673 && (err != -EFAULT))
674 return err;
675
676 /*
677 * High capacity cards should have this "magic" size
678 * stored in their CSD.
679 */
680 if (card->csd.capacity == (4096 * 512)) {
681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 mmc_hostname(card->host));
683 } else {
684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 mmc_hostname(card->host));
686 err = 0;
687 }
688
689 return err;
690 }
691
692 err = mmc_decode_ext_csd(card, ext_csd);
693 kfree(ext_csd);
694 return err;
695 }
696
mmc_compare_ext_csds(struct mmc_card * card,unsigned bus_width)697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
698 {
699 u8 *bw_ext_csd;
700 int err;
701
702 if (bus_width == MMC_BUS_WIDTH_1)
703 return 0;
704
705 err = mmc_get_ext_csd(card, &bw_ext_csd);
706 if (err)
707 return err;
708
709 /* only compare read only fields */
710 err = !((card->ext_csd.raw_partition_support ==
711 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
712 (card->ext_csd.raw_erased_mem_count ==
713 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
714 (card->ext_csd.rev ==
715 bw_ext_csd[EXT_CSD_REV]) &&
716 (card->ext_csd.raw_ext_csd_structure ==
717 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
718 (card->ext_csd.raw_card_type ==
719 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
720 (card->ext_csd.raw_s_a_timeout ==
721 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
722 (card->ext_csd.raw_hc_erase_gap_size ==
723 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
724 (card->ext_csd.raw_erase_timeout_mult ==
725 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
726 (card->ext_csd.raw_hc_erase_grp_size ==
727 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
728 (card->ext_csd.raw_sec_trim_mult ==
729 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
730 (card->ext_csd.raw_sec_erase_mult ==
731 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
732 (card->ext_csd.raw_sec_feature_support ==
733 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
734 (card->ext_csd.raw_trim_mult ==
735 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
736 (card->ext_csd.raw_sectors[0] ==
737 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
738 (card->ext_csd.raw_sectors[1] ==
739 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
740 (card->ext_csd.raw_sectors[2] ==
741 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
742 (card->ext_csd.raw_sectors[3] ==
743 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
744 (card->ext_csd.raw_pwr_cl_52_195 ==
745 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
746 (card->ext_csd.raw_pwr_cl_26_195 ==
747 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
748 (card->ext_csd.raw_pwr_cl_52_360 ==
749 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
750 (card->ext_csd.raw_pwr_cl_26_360 ==
751 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
752 (card->ext_csd.raw_pwr_cl_200_195 ==
753 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
754 (card->ext_csd.raw_pwr_cl_200_360 ==
755 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
756 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
758 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
759 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
760 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
761 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
762
763 if (err)
764 err = -EINVAL;
765
766 kfree(bw_ext_csd);
767 return err;
768 }
769
770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
771 card->raw_cid[2], card->raw_cid[3]);
772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
773 card->raw_csd[2], card->raw_csd[3]);
774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
783 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
784 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
785 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
786 card->ext_csd.device_life_time_est_typ_a,
787 card->ext_csd.device_life_time_est_typ_b);
788 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
789 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
790 card->ext_csd.enhanced_area_offset);
791 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
792 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
793 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
794 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
795 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
796 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
797
mmc_fwrev_show(struct device * dev,struct device_attribute * attr,char * buf)798 static ssize_t mmc_fwrev_show(struct device *dev,
799 struct device_attribute *attr,
800 char *buf)
801 {
802 struct mmc_card *card = mmc_dev_to_card(dev);
803
804 if (card->ext_csd.rev < 7) {
805 return sprintf(buf, "0x%x\n", card->cid.fwrev);
806 } else {
807 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
808 card->ext_csd.fwrev);
809 }
810 }
811
812 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
813
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)814 static ssize_t mmc_dsr_show(struct device *dev,
815 struct device_attribute *attr,
816 char *buf)
817 {
818 struct mmc_card *card = mmc_dev_to_card(dev);
819 struct mmc_host *host = card->host;
820
821 if (card->csd.dsr_imp && host->dsr_req)
822 return sprintf(buf, "0x%x\n", host->dsr);
823 else
824 /* return default DSR value */
825 return sprintf(buf, "0x%x\n", 0x404);
826 }
827
828 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
829
830 static struct attribute *mmc_std_attrs[] = {
831 &dev_attr_cid.attr,
832 &dev_attr_csd.attr,
833 &dev_attr_date.attr,
834 &dev_attr_erase_size.attr,
835 &dev_attr_preferred_erase_size.attr,
836 &dev_attr_fwrev.attr,
837 &dev_attr_ffu_capable.attr,
838 &dev_attr_hwrev.attr,
839 &dev_attr_manfid.attr,
840 &dev_attr_name.attr,
841 &dev_attr_oemid.attr,
842 &dev_attr_prv.attr,
843 &dev_attr_rev.attr,
844 &dev_attr_pre_eol_info.attr,
845 &dev_attr_life_time.attr,
846 &dev_attr_serial.attr,
847 &dev_attr_enhanced_area_offset.attr,
848 &dev_attr_enhanced_area_size.attr,
849 &dev_attr_raw_rpmb_size_mult.attr,
850 &dev_attr_rel_sectors.attr,
851 &dev_attr_ocr.attr,
852 &dev_attr_rca.attr,
853 &dev_attr_dsr.attr,
854 &dev_attr_cmdq_en.attr,
855 NULL,
856 };
857 ATTRIBUTE_GROUPS(mmc_std);
858
859 static struct device_type mmc_type = {
860 .groups = mmc_std_groups,
861 };
862
863 /*
864 * Select the PowerClass for the current bus width
865 * If power class is defined for 4/8 bit bus in the
866 * extended CSD register, select it by executing the
867 * mmc_switch command.
868 */
__mmc_select_powerclass(struct mmc_card * card,unsigned int bus_width)869 static int __mmc_select_powerclass(struct mmc_card *card,
870 unsigned int bus_width)
871 {
872 struct mmc_host *host = card->host;
873 struct mmc_ext_csd *ext_csd = &card->ext_csd;
874 unsigned int pwrclass_val = 0;
875 int err = 0;
876
877 switch (1 << host->ios.vdd) {
878 case MMC_VDD_165_195:
879 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
880 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
881 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
882 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
883 ext_csd->raw_pwr_cl_52_195 :
884 ext_csd->raw_pwr_cl_ddr_52_195;
885 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
886 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
887 break;
888 case MMC_VDD_27_28:
889 case MMC_VDD_28_29:
890 case MMC_VDD_29_30:
891 case MMC_VDD_30_31:
892 case MMC_VDD_31_32:
893 case MMC_VDD_32_33:
894 case MMC_VDD_33_34:
895 case MMC_VDD_34_35:
896 case MMC_VDD_35_36:
897 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
898 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
899 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
900 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
901 ext_csd->raw_pwr_cl_52_360 :
902 ext_csd->raw_pwr_cl_ddr_52_360;
903 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
904 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
905 ext_csd->raw_pwr_cl_ddr_200_360 :
906 ext_csd->raw_pwr_cl_200_360;
907 break;
908 default:
909 pr_warn("%s: Voltage range not supported for power class\n",
910 mmc_hostname(host));
911 return -EINVAL;
912 }
913
914 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
915 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
916 EXT_CSD_PWR_CL_8BIT_SHIFT;
917 else
918 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
919 EXT_CSD_PWR_CL_4BIT_SHIFT;
920
921 /* If the power class is different from the default value */
922 if (pwrclass_val > 0) {
923 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
924 EXT_CSD_POWER_CLASS,
925 pwrclass_val,
926 card->ext_csd.generic_cmd6_time);
927 }
928
929 return err;
930 }
931
mmc_select_powerclass(struct mmc_card * card)932 static int mmc_select_powerclass(struct mmc_card *card)
933 {
934 struct mmc_host *host = card->host;
935 u32 bus_width, ext_csd_bits;
936 int err, ddr;
937
938 /* Power class selection is supported for versions >= 4.0 */
939 if (!mmc_can_ext_csd(card))
940 return 0;
941
942 bus_width = host->ios.bus_width;
943 /* Power class values are defined only for 4/8 bit bus */
944 if (bus_width == MMC_BUS_WIDTH_1)
945 return 0;
946
947 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
948 if (ddr)
949 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
950 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
951 else
952 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
953 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
954
955 err = __mmc_select_powerclass(card, ext_csd_bits);
956 if (err)
957 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
958 mmc_hostname(host), 1 << bus_width, ddr);
959
960 return err;
961 }
962
963 /*
964 * Set the bus speed for the selected speed mode.
965 */
mmc_set_bus_speed(struct mmc_card * card)966 static void mmc_set_bus_speed(struct mmc_card *card)
967 {
968 unsigned int max_dtr = (unsigned int)-1;
969
970 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
971 max_dtr > card->ext_csd.hs200_max_dtr)
972 max_dtr = card->ext_csd.hs200_max_dtr;
973 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
974 max_dtr = card->ext_csd.hs_max_dtr;
975 else if (max_dtr > card->csd.max_dtr)
976 max_dtr = card->csd.max_dtr;
977
978 mmc_set_clock(card->host, max_dtr);
979 }
980
981 /*
982 * Select the bus width amoung 4-bit and 8-bit(SDR).
983 * If the bus width is changed successfully, return the selected width value.
984 * Zero is returned instead of error value if the wide width is not supported.
985 */
mmc_select_bus_width(struct mmc_card * card)986 static int mmc_select_bus_width(struct mmc_card *card)
987 {
988 static unsigned ext_csd_bits[] = {
989 EXT_CSD_BUS_WIDTH_8,
990 EXT_CSD_BUS_WIDTH_4,
991 };
992 static unsigned bus_widths[] = {
993 MMC_BUS_WIDTH_8,
994 MMC_BUS_WIDTH_4,
995 };
996 struct mmc_host *host = card->host;
997 unsigned idx, bus_width = 0;
998 int err = 0;
999
1000 if (!mmc_can_ext_csd(card) ||
1001 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1002 return 0;
1003
1004 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1005
1006 /*
1007 * Unlike SD, MMC cards dont have a configuration register to notify
1008 * supported bus width. So bus test command should be run to identify
1009 * the supported bus width or compare the ext csd values of current
1010 * bus width and ext csd values of 1 bit mode read earlier.
1011 */
1012 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1013 /*
1014 * Host is capable of 8bit transfer, then switch
1015 * the device to work in 8bit transfer mode. If the
1016 * mmc switch command returns error then switch to
1017 * 4bit transfer mode. On success set the corresponding
1018 * bus width on the host.
1019 */
1020 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1021 EXT_CSD_BUS_WIDTH,
1022 ext_csd_bits[idx],
1023 card->ext_csd.generic_cmd6_time);
1024 if (err)
1025 continue;
1026
1027 bus_width = bus_widths[idx];
1028 mmc_set_bus_width(host, bus_width);
1029
1030 /*
1031 * If controller can't handle bus width test,
1032 * compare ext_csd previously read in 1 bit mode
1033 * against ext_csd at new bus width
1034 */
1035 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1036 err = mmc_compare_ext_csds(card, bus_width);
1037 else
1038 err = mmc_bus_test(card, bus_width);
1039
1040 if (!err) {
1041 err = bus_width;
1042 break;
1043 } else {
1044 pr_warn("%s: switch to bus width %d failed\n",
1045 mmc_hostname(host), 1 << bus_width);
1046 }
1047 }
1048
1049 return err;
1050 }
1051
1052 /*
1053 * Switch to the high-speed mode
1054 */
mmc_select_hs(struct mmc_card * card)1055 static int mmc_select_hs(struct mmc_card *card)
1056 {
1057 int err;
1058
1059 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1060 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1061 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1062 true, true, true);
1063 if (err)
1064 pr_warn("%s: switch to high-speed failed, err:%d\n",
1065 mmc_hostname(card->host), err);
1066
1067 return err;
1068 }
1069
1070 /*
1071 * Activate wide bus and DDR if supported.
1072 */
mmc_select_hs_ddr(struct mmc_card * card)1073 static int mmc_select_hs_ddr(struct mmc_card *card)
1074 {
1075 struct mmc_host *host = card->host;
1076 u32 bus_width, ext_csd_bits;
1077 int err = 0;
1078
1079 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1080 return 0;
1081
1082 bus_width = host->ios.bus_width;
1083 if (bus_width == MMC_BUS_WIDTH_1)
1084 return 0;
1085
1086 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1087 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1088
1089 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1090 EXT_CSD_BUS_WIDTH,
1091 ext_csd_bits,
1092 card->ext_csd.generic_cmd6_time,
1093 MMC_TIMING_MMC_DDR52,
1094 true, true, true);
1095 if (err) {
1096 pr_err("%s: switch to bus width %d ddr failed\n",
1097 mmc_hostname(host), 1 << bus_width);
1098 return err;
1099 }
1100
1101 /*
1102 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1103 * signaling.
1104 *
1105 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1106 *
1107 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1108 * in the JEDEC spec for DDR.
1109 *
1110 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1111 * host controller can support this, like some of the SDHCI
1112 * controller which connect to an eMMC device. Some of these
1113 * host controller still needs to use 1.8v vccq for supporting
1114 * DDR mode.
1115 *
1116 * So the sequence will be:
1117 * if (host and device can both support 1.2v IO)
1118 * use 1.2v IO;
1119 * else if (host and device can both support 1.8v IO)
1120 * use 1.8v IO;
1121 * so if host and device can only support 3.3v IO, this is the
1122 * last choice.
1123 *
1124 * WARNING: eMMC rules are NOT the same as SD DDR
1125 */
1126 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1127 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1128 if (!err)
1129 return 0;
1130 }
1131
1132 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1133 host->caps & MMC_CAP_1_8V_DDR)
1134 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1135
1136 /* make sure vccq is 3.3v after switching disaster */
1137 if (err)
1138 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1139
1140 return err;
1141 }
1142
mmc_select_hs400(struct mmc_card * card)1143 static int mmc_select_hs400(struct mmc_card *card)
1144 {
1145 struct mmc_host *host = card->host;
1146 unsigned int max_dtr;
1147 int err = 0;
1148 u8 val;
1149
1150 /*
1151 * HS400 mode requires 8-bit bus width
1152 */
1153 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1154 host->ios.bus_width == MMC_BUS_WIDTH_8))
1155 return 0;
1156
1157 /* Switch card to HS mode */
1158 val = EXT_CSD_TIMING_HS;
1159 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1160 EXT_CSD_HS_TIMING, val,
1161 card->ext_csd.generic_cmd6_time, 0,
1162 true, false, true);
1163 if (err) {
1164 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1165 mmc_hostname(host), err);
1166 return err;
1167 }
1168
1169 /* Set host controller to HS timing */
1170 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1171
1172 /* Prepare host to downgrade to HS timing */
1173 if (host->ops->hs400_downgrade)
1174 host->ops->hs400_downgrade(host);
1175
1176 /* Reduce frequency to HS frequency */
1177 max_dtr = card->ext_csd.hs_max_dtr;
1178 mmc_set_clock(host, max_dtr);
1179
1180 err = mmc_switch_status(card);
1181 if (err)
1182 goto out_err;
1183
1184 /* Switch card to DDR */
1185 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1186 EXT_CSD_BUS_WIDTH,
1187 EXT_CSD_DDR_BUS_WIDTH_8,
1188 card->ext_csd.generic_cmd6_time);
1189 if (err) {
1190 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1191 mmc_hostname(host), err);
1192 return err;
1193 }
1194
1195 /* Switch card to HS400 */
1196 val = EXT_CSD_TIMING_HS400 |
1197 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1198 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1199 EXT_CSD_HS_TIMING, val,
1200 card->ext_csd.generic_cmd6_time, 0,
1201 true, false, true);
1202 if (err) {
1203 pr_err("%s: switch to hs400 failed, err:%d\n",
1204 mmc_hostname(host), err);
1205 return err;
1206 }
1207
1208 /* Set host controller to HS400 timing and frequency */
1209 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1210 mmc_set_bus_speed(card);
1211
1212 err = mmc_switch_status(card);
1213 if (err)
1214 goto out_err;
1215
1216 if (host->ops->hs400_complete)
1217 host->ops->hs400_complete(host);
1218
1219 return 0;
1220
1221 out_err:
1222 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1223 __func__, err);
1224 return err;
1225 }
1226
mmc_hs200_to_hs400(struct mmc_card * card)1227 int mmc_hs200_to_hs400(struct mmc_card *card)
1228 {
1229 return mmc_select_hs400(card);
1230 }
1231
mmc_hs400_to_hs200(struct mmc_card * card)1232 int mmc_hs400_to_hs200(struct mmc_card *card)
1233 {
1234 struct mmc_host *host = card->host;
1235 unsigned int max_dtr;
1236 int err;
1237 u8 val;
1238
1239 /* Reduce frequency to HS */
1240 max_dtr = card->ext_csd.hs_max_dtr;
1241 mmc_set_clock(host, max_dtr);
1242
1243 /* Switch HS400 to HS DDR */
1244 val = EXT_CSD_TIMING_HS;
1245 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1246 val, card->ext_csd.generic_cmd6_time, 0,
1247 true, false, true);
1248 if (err)
1249 goto out_err;
1250
1251 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1252
1253 err = mmc_switch_status(card);
1254 if (err)
1255 goto out_err;
1256
1257 /* Switch HS DDR to HS */
1258 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1259 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1260 0, true, false, true);
1261 if (err)
1262 goto out_err;
1263
1264 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1265
1266 if (host->ops->hs400_downgrade)
1267 host->ops->hs400_downgrade(host);
1268
1269 err = mmc_switch_status(card);
1270 if (err)
1271 goto out_err;
1272
1273 /* Switch HS to HS200 */
1274 val = EXT_CSD_TIMING_HS200 |
1275 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1276 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1277 val, card->ext_csd.generic_cmd6_time, 0,
1278 true, false, true);
1279 if (err)
1280 goto out_err;
1281
1282 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1283
1284 /*
1285 * For HS200, CRC errors are not a reliable way to know the switch
1286 * failed. If there really is a problem, we would expect tuning will
1287 * fail and the result ends up the same.
1288 */
1289 err = __mmc_switch_status(card, false);
1290 if (err)
1291 goto out_err;
1292
1293 mmc_set_bus_speed(card);
1294
1295 /* Prepare tuning for HS400 mode. */
1296 if (host->ops->prepare_hs400_tuning)
1297 host->ops->prepare_hs400_tuning(host, &host->ios);
1298
1299 return 0;
1300
1301 out_err:
1302 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1303 __func__, err);
1304 return err;
1305 }
1306
mmc_select_driver_type(struct mmc_card * card)1307 static void mmc_select_driver_type(struct mmc_card *card)
1308 {
1309 int card_drv_type, drive_strength, drv_type = 0;
1310 int fixed_drv_type = card->host->fixed_drv_type;
1311
1312 card_drv_type = card->ext_csd.raw_driver_strength |
1313 mmc_driver_type_mask(0);
1314
1315 if (fixed_drv_type >= 0)
1316 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1317 ? fixed_drv_type : 0;
1318 else
1319 drive_strength = mmc_select_drive_strength(card,
1320 card->ext_csd.hs200_max_dtr,
1321 card_drv_type, &drv_type);
1322
1323 card->drive_strength = drive_strength;
1324
1325 if (drv_type)
1326 mmc_set_driver_type(card->host, drv_type);
1327 }
1328
mmc_select_hs400es(struct mmc_card * card)1329 static int mmc_select_hs400es(struct mmc_card *card)
1330 {
1331 struct mmc_host *host = card->host;
1332 int err = -EINVAL;
1333 u8 val;
1334
1335 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1336 err = -ENOTSUPP;
1337 goto out_err;
1338 }
1339
1340 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1341 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1342
1343 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1344 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1345
1346 /* If fails try again during next card power cycle */
1347 if (err)
1348 goto out_err;
1349
1350 err = mmc_select_bus_width(card);
1351 if (err != MMC_BUS_WIDTH_8) {
1352 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1353 mmc_hostname(host), err);
1354 err = err < 0 ? err : -ENOTSUPP;
1355 goto out_err;
1356 }
1357
1358 /* Switch card to HS mode */
1359 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1360 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1361 card->ext_csd.generic_cmd6_time, 0,
1362 true, false, true);
1363 if (err) {
1364 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1365 mmc_hostname(host), err);
1366 goto out_err;
1367 }
1368
1369 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1370 err = mmc_switch_status(card);
1371 if (err)
1372 goto out_err;
1373
1374 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1375
1376 /* Switch card to DDR with strobe bit */
1377 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1378 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1379 EXT_CSD_BUS_WIDTH,
1380 val,
1381 card->ext_csd.generic_cmd6_time);
1382 if (err) {
1383 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1384 mmc_hostname(host), err);
1385 goto out_err;
1386 }
1387
1388 mmc_select_driver_type(card);
1389
1390 /* Switch card to HS400 */
1391 val = EXT_CSD_TIMING_HS400 |
1392 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1393 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1394 EXT_CSD_HS_TIMING, val,
1395 card->ext_csd.generic_cmd6_time, 0,
1396 true, false, true);
1397 if (err) {
1398 pr_err("%s: switch to hs400es failed, err:%d\n",
1399 mmc_hostname(host), err);
1400 goto out_err;
1401 }
1402
1403 /* Set host controller to HS400 timing and frequency */
1404 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1405
1406 /* Controller enable enhanced strobe function */
1407 host->ios.enhanced_strobe = true;
1408 if (host->ops->hs400_enhanced_strobe)
1409 host->ops->hs400_enhanced_strobe(host, &host->ios);
1410
1411 err = mmc_switch_status(card);
1412 if (err)
1413 goto out_err;
1414
1415 return 0;
1416
1417 out_err:
1418 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1419 __func__, err);
1420 return err;
1421 }
1422
1423 /*
1424 * For device supporting HS200 mode, the following sequence
1425 * should be done before executing the tuning process.
1426 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1427 * 2. switch to HS200 mode
1428 * 3. set the clock to > 52Mhz and <=200MHz
1429 */
mmc_select_hs200(struct mmc_card * card)1430 static int mmc_select_hs200(struct mmc_card *card)
1431 {
1432 struct mmc_host *host = card->host;
1433 unsigned int old_timing, old_signal_voltage;
1434 int err = -EINVAL;
1435 u8 val;
1436
1437 old_signal_voltage = host->ios.signal_voltage;
1438 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1439 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1440
1441 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1442 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1443
1444 /* If fails try again during next card power cycle */
1445 if (err)
1446 return err;
1447
1448 mmc_select_driver_type(card);
1449
1450 /*
1451 * Set the bus width(4 or 8) with host's support and
1452 * switch to HS200 mode if bus width is set successfully.
1453 */
1454 err = mmc_select_bus_width(card);
1455 if (err > 0) {
1456 val = EXT_CSD_TIMING_HS200 |
1457 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1458 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1459 EXT_CSD_HS_TIMING, val,
1460 card->ext_csd.generic_cmd6_time, 0,
1461 true, false, true);
1462 if (err)
1463 goto err;
1464 old_timing = host->ios.timing;
1465 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1466
1467 /*
1468 * For HS200, CRC errors are not a reliable way to know the
1469 * switch failed. If there really is a problem, we would expect
1470 * tuning will fail and the result ends up the same.
1471 */
1472 err = __mmc_switch_status(card, false);
1473
1474 /*
1475 * mmc_select_timing() assumes timing has not changed if
1476 * it is a switch error.
1477 */
1478 if (err == -EBADMSG)
1479 mmc_set_timing(host, old_timing);
1480 }
1481 err:
1482 if (err) {
1483 /* fall back to the old signal voltage, if fails report error */
1484 if (mmc_set_signal_voltage(host, old_signal_voltage))
1485 err = -EIO;
1486
1487 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1488 __func__, err);
1489 }
1490 return err;
1491 }
1492
1493 /*
1494 * Activate High Speed, HS200 or HS400ES mode if supported.
1495 */
mmc_select_timing(struct mmc_card * card)1496 static int mmc_select_timing(struct mmc_card *card)
1497 {
1498 int err = 0;
1499
1500 if (!mmc_can_ext_csd(card))
1501 goto bus_speed;
1502
1503 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1504 err = mmc_select_hs400es(card);
1505 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1506 err = mmc_select_hs200(card);
1507 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1508 err = mmc_select_hs(card);
1509
1510 if (err && err != -EBADMSG)
1511 return err;
1512
1513 bus_speed:
1514 /*
1515 * Set the bus speed to the selected bus timing.
1516 * If timing is not selected, backward compatible is the default.
1517 */
1518 mmc_set_bus_speed(card);
1519 return 0;
1520 }
1521
1522 /*
1523 * Execute tuning sequence to seek the proper bus operating
1524 * conditions for HS200 and HS400, which sends CMD21 to the device.
1525 */
mmc_hs200_tuning(struct mmc_card * card)1526 static int mmc_hs200_tuning(struct mmc_card *card)
1527 {
1528 struct mmc_host *host = card->host;
1529
1530 /*
1531 * Timing should be adjusted to the HS400 target
1532 * operation frequency for tuning process
1533 */
1534 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1535 host->ios.bus_width == MMC_BUS_WIDTH_8)
1536 if (host->ops->prepare_hs400_tuning)
1537 host->ops->prepare_hs400_tuning(host, &host->ios);
1538
1539 return mmc_execute_tuning(card);
1540 }
1541
1542 /*
1543 * Handle the detection and initialisation of a card.
1544 *
1545 * In the case of a resume, "oldcard" will contain the card
1546 * we're trying to reinitialise.
1547 */
mmc_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1548 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1549 struct mmc_card *oldcard)
1550 {
1551 struct mmc_card *card;
1552 int err;
1553 u32 cid[4];
1554 u32 rocr;
1555
1556 WARN_ON(!host->claimed);
1557
1558 /* Set correct bus mode for MMC before attempting init */
1559 if (!mmc_host_is_spi(host))
1560 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1561
1562 /*
1563 * Since we're changing the OCR value, we seem to
1564 * need to tell some cards to go back to the idle
1565 * state. We wait 1ms to give cards time to
1566 * respond.
1567 * mmc_go_idle is needed for eMMC that are asleep
1568 */
1569 mmc_go_idle(host);
1570
1571 /* The extra bit indicates that we support high capacity */
1572 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1573 if (err)
1574 goto err;
1575
1576 /*
1577 * For SPI, enable CRC as appropriate.
1578 */
1579 if (mmc_host_is_spi(host)) {
1580 err = mmc_spi_set_crc(host, use_spi_crc);
1581 if (err)
1582 goto err;
1583 }
1584
1585 /*
1586 * Fetch CID from card.
1587 */
1588 err = mmc_send_cid(host, cid);
1589 if (err)
1590 goto err;
1591
1592 if (oldcard) {
1593 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1594 err = -ENOENT;
1595 goto err;
1596 }
1597
1598 card = oldcard;
1599 } else {
1600 /*
1601 * Allocate card structure.
1602 */
1603 card = mmc_alloc_card(host, &mmc_type);
1604 if (IS_ERR(card)) {
1605 err = PTR_ERR(card);
1606 goto err;
1607 }
1608
1609 card->ocr = ocr;
1610 card->type = MMC_TYPE_MMC;
1611 card->rca = 1;
1612 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1613 }
1614
1615 /*
1616 * Call the optional HC's init_card function to handle quirks.
1617 */
1618 if (host->ops->init_card)
1619 host->ops->init_card(host, card);
1620
1621 /*
1622 * For native busses: set card RCA and quit open drain mode.
1623 */
1624 if (!mmc_host_is_spi(host)) {
1625 err = mmc_set_relative_addr(card);
1626 if (err)
1627 goto free_card;
1628
1629 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1630 }
1631
1632 if (!oldcard) {
1633 /*
1634 * Fetch CSD from card.
1635 */
1636 err = mmc_send_csd(card, card->raw_csd);
1637 if (err)
1638 goto free_card;
1639
1640 err = mmc_decode_csd(card);
1641 if (err)
1642 goto free_card;
1643 err = mmc_decode_cid(card);
1644 if (err)
1645 goto free_card;
1646 }
1647
1648 /*
1649 * handling only for cards supporting DSR and hosts requesting
1650 * DSR configuration
1651 */
1652 if (card->csd.dsr_imp && host->dsr_req)
1653 mmc_set_dsr(host);
1654
1655 /*
1656 * Select card, as all following commands rely on that.
1657 */
1658 if (!mmc_host_is_spi(host)) {
1659 err = mmc_select_card(card);
1660 if (err)
1661 goto free_card;
1662 }
1663
1664 if (!oldcard) {
1665 /* Read extended CSD. */
1666 err = mmc_read_ext_csd(card);
1667 if (err)
1668 goto free_card;
1669
1670 /*
1671 * If doing byte addressing, check if required to do sector
1672 * addressing. Handle the case of <2GB cards needing sector
1673 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1674 * ocr register has bit 30 set for sector addressing.
1675 */
1676 if (rocr & BIT(30))
1677 mmc_card_set_blockaddr(card);
1678
1679 /* Erase size depends on CSD and Extended CSD */
1680 mmc_set_erase_size(card);
1681 }
1682
1683 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1684 if (card->ext_csd.rev >= 3) {
1685 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1686 EXT_CSD_ERASE_GROUP_DEF, 1,
1687 card->ext_csd.generic_cmd6_time);
1688
1689 if (err && err != -EBADMSG)
1690 goto free_card;
1691
1692 if (err) {
1693 err = 0;
1694 /*
1695 * Just disable enhanced area off & sz
1696 * will try to enable ERASE_GROUP_DEF
1697 * during next time reinit
1698 */
1699 card->ext_csd.enhanced_area_offset = -EINVAL;
1700 card->ext_csd.enhanced_area_size = -EINVAL;
1701 } else {
1702 card->ext_csd.erase_group_def = 1;
1703 /*
1704 * enable ERASE_GRP_DEF successfully.
1705 * This will affect the erase size, so
1706 * here need to reset erase size
1707 */
1708 mmc_set_erase_size(card);
1709 }
1710 }
1711
1712 /*
1713 * Ensure eMMC user default partition is enabled
1714 */
1715 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1716 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1717 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1718 card->ext_csd.part_config,
1719 card->ext_csd.part_time);
1720 if (err && err != -EBADMSG)
1721 goto free_card;
1722 }
1723
1724 /*
1725 * Enable power_off_notification byte in the ext_csd register
1726 */
1727 if (card->ext_csd.rev >= 6) {
1728 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1729 EXT_CSD_POWER_OFF_NOTIFICATION,
1730 EXT_CSD_POWER_ON,
1731 card->ext_csd.generic_cmd6_time);
1732 if (err && err != -EBADMSG)
1733 goto free_card;
1734
1735 /*
1736 * The err can be -EBADMSG or 0,
1737 * so check for success and update the flag
1738 */
1739 if (!err)
1740 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1741 }
1742
1743 /*
1744 * Select timing interface
1745 */
1746 err = mmc_select_timing(card);
1747 if (err)
1748 goto free_card;
1749
1750 if (mmc_card_hs200(card)) {
1751 err = mmc_hs200_tuning(card);
1752 if (err)
1753 goto free_card;
1754
1755 err = mmc_select_hs400(card);
1756 if (err)
1757 goto free_card;
1758 } else if (!mmc_card_hs400es(card)) {
1759 /* Select the desired bus width optionally */
1760 err = mmc_select_bus_width(card);
1761 if (err > 0 && mmc_card_hs(card)) {
1762 err = mmc_select_hs_ddr(card);
1763 if (err)
1764 goto free_card;
1765 }
1766 }
1767
1768 /*
1769 * Choose the power class with selected bus interface
1770 */
1771 mmc_select_powerclass(card);
1772
1773 /*
1774 * Enable HPI feature (if supported)
1775 */
1776 if (card->ext_csd.hpi) {
1777 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1778 EXT_CSD_HPI_MGMT, 1,
1779 card->ext_csd.generic_cmd6_time);
1780 if (err && err != -EBADMSG)
1781 goto free_card;
1782 if (err) {
1783 pr_warn("%s: Enabling HPI failed\n",
1784 mmc_hostname(card->host));
1785 err = 0;
1786 } else
1787 card->ext_csd.hpi_en = 1;
1788 }
1789
1790 /*
1791 * If cache size is higher than 0, this indicates
1792 * the existence of cache and it can be turned on.
1793 */
1794 if (!mmc_card_broken_hpi(card) &&
1795 card->ext_csd.cache_size > 0) {
1796 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1797 EXT_CSD_CACHE_CTRL, 1,
1798 card->ext_csd.generic_cmd6_time);
1799 if (err && err != -EBADMSG)
1800 goto free_card;
1801
1802 /*
1803 * Only if no error, cache is turned on successfully.
1804 */
1805 if (err) {
1806 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1807 mmc_hostname(card->host), err);
1808 card->ext_csd.cache_ctrl = 0;
1809 err = 0;
1810 } else {
1811 card->ext_csd.cache_ctrl = 1;
1812 }
1813 }
1814
1815 /*
1816 * Enable Command Queue if supported. Note that Packed Commands cannot
1817 * be used with Command Queue.
1818 */
1819 card->ext_csd.cmdq_en = false;
1820 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1821 err = mmc_cmdq_enable(card);
1822 if (err && err != -EBADMSG)
1823 goto free_card;
1824 if (err) {
1825 pr_warn("%s: Enabling CMDQ failed\n",
1826 mmc_hostname(card->host));
1827 card->ext_csd.cmdq_support = false;
1828 card->ext_csd.cmdq_depth = 0;
1829 err = 0;
1830 }
1831 }
1832 /*
1833 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1834 * disabled for a time, so a flag is needed to indicate to re-enable the
1835 * Command Queue.
1836 */
1837 card->reenable_cmdq = card->ext_csd.cmdq_en;
1838
1839 if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1840 err = host->cqe_ops->cqe_enable(host, card);
1841 if (err) {
1842 pr_err("%s: Failed to enable CQE, error %d\n",
1843 mmc_hostname(host), err);
1844 } else {
1845 host->cqe_enabled = true;
1846 pr_info("%s: Command Queue Engine enabled\n",
1847 mmc_hostname(host));
1848 }
1849 }
1850
1851 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1852 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1853 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1854 mmc_hostname(host));
1855 err = -EINVAL;
1856 goto free_card;
1857 }
1858
1859 if (!oldcard)
1860 host->card = card;
1861
1862 return 0;
1863
1864 free_card:
1865 if (!oldcard)
1866 mmc_remove_card(card);
1867 err:
1868 return err;
1869 }
1870
mmc_can_sleep(struct mmc_card * card)1871 static int mmc_can_sleep(struct mmc_card *card)
1872 {
1873 return (card && card->ext_csd.rev >= 3);
1874 }
1875
mmc_sleep(struct mmc_host * host)1876 static int mmc_sleep(struct mmc_host *host)
1877 {
1878 struct mmc_command cmd = {};
1879 struct mmc_card *card = host->card;
1880 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1881 int err;
1882
1883 /* Re-tuning can't be done once the card is deselected */
1884 mmc_retune_hold(host);
1885
1886 err = mmc_deselect_cards(host);
1887 if (err)
1888 goto out_release;
1889
1890 cmd.opcode = MMC_SLEEP_AWAKE;
1891 cmd.arg = card->rca << 16;
1892 cmd.arg |= 1 << 15;
1893
1894 /*
1895 * If the max_busy_timeout of the host is specified, validate it against
1896 * the sleep cmd timeout. A failure means we need to prevent the host
1897 * from doing hw busy detection, which is done by converting to a R1
1898 * response instead of a R1B.
1899 */
1900 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1901 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1902 } else {
1903 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1904 cmd.busy_timeout = timeout_ms;
1905 }
1906
1907 err = mmc_wait_for_cmd(host, &cmd, 0);
1908 if (err)
1909 goto out_release;
1910
1911 /*
1912 * If the host does not wait while the card signals busy, then we will
1913 * will have to wait the sleep/awake timeout. Note, we cannot use the
1914 * SEND_STATUS command to poll the status because that command (and most
1915 * others) is invalid while the card sleeps.
1916 */
1917 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1918 mmc_delay(timeout_ms);
1919
1920 out_release:
1921 mmc_retune_release(host);
1922 return err;
1923 }
1924
mmc_can_poweroff_notify(const struct mmc_card * card)1925 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1926 {
1927 return card &&
1928 mmc_card_mmc(card) &&
1929 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1930 }
1931
mmc_poweroff_notify(struct mmc_card * card,unsigned int notify_type)1932 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1933 {
1934 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1935 int err;
1936
1937 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1938 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1939 timeout = card->ext_csd.power_off_longtime;
1940
1941 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1942 EXT_CSD_POWER_OFF_NOTIFICATION,
1943 notify_type, timeout, 0, true, false, false);
1944 if (err)
1945 pr_err("%s: Power Off Notification timed out, %u\n",
1946 mmc_hostname(card->host), timeout);
1947
1948 /* Disable the power off notification after the switch operation. */
1949 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1950
1951 return err;
1952 }
1953
1954 /*
1955 * Host is being removed. Free up the current card.
1956 */
mmc_remove(struct mmc_host * host)1957 static void mmc_remove(struct mmc_host *host)
1958 {
1959 mmc_remove_card(host->card);
1960 host->card = NULL;
1961 }
1962
1963 /*
1964 * Card detection - card is alive.
1965 */
mmc_alive(struct mmc_host * host)1966 static int mmc_alive(struct mmc_host *host)
1967 {
1968 return mmc_send_status(host->card, NULL);
1969 }
1970
1971 /*
1972 * Card detection callback from host.
1973 */
mmc_detect(struct mmc_host * host)1974 static void mmc_detect(struct mmc_host *host)
1975 {
1976 int err;
1977
1978 mmc_get_card(host->card, NULL);
1979
1980 /*
1981 * Just check if our card has been removed.
1982 */
1983 err = _mmc_detect_card_removed(host);
1984
1985 mmc_put_card(host->card, NULL);
1986
1987 if (err) {
1988 mmc_remove(host);
1989
1990 mmc_claim_host(host);
1991 mmc_detach_bus(host);
1992 mmc_power_off(host);
1993 mmc_release_host(host);
1994 }
1995 }
1996
_mmc_suspend(struct mmc_host * host,bool is_suspend)1997 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1998 {
1999 int err = 0;
2000 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2001 EXT_CSD_POWER_OFF_LONG;
2002
2003 mmc_claim_host(host);
2004
2005 if (mmc_card_suspended(host->card))
2006 goto out;
2007
2008 if (mmc_card_doing_bkops(host->card)) {
2009 err = mmc_stop_bkops(host->card);
2010 if (err)
2011 goto out;
2012 }
2013
2014 err = mmc_flush_cache(host->card);
2015 if (err)
2016 goto out;
2017
2018 if (mmc_can_poweroff_notify(host->card) &&
2019 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
2020 err = mmc_poweroff_notify(host->card, notify_type);
2021 else if (mmc_can_sleep(host->card))
2022 err = mmc_sleep(host);
2023 else if (!mmc_host_is_spi(host))
2024 err = mmc_deselect_cards(host);
2025
2026 if (!err) {
2027 mmc_power_off(host);
2028 mmc_card_set_suspended(host->card);
2029 }
2030 out:
2031 mmc_release_host(host);
2032 return err;
2033 }
2034
2035 /*
2036 * Suspend callback
2037 */
mmc_suspend(struct mmc_host * host)2038 static int mmc_suspend(struct mmc_host *host)
2039 {
2040 int err;
2041
2042 err = _mmc_suspend(host, true);
2043 if (!err) {
2044 pm_runtime_disable(&host->card->dev);
2045 pm_runtime_set_suspended(&host->card->dev);
2046 }
2047
2048 return err;
2049 }
2050
2051 /*
2052 * This function tries to determine if the same card is still present
2053 * and, if so, restore all state to it.
2054 */
_mmc_resume(struct mmc_host * host)2055 static int _mmc_resume(struct mmc_host *host)
2056 {
2057 int err = 0;
2058
2059 mmc_claim_host(host);
2060
2061 if (!mmc_card_suspended(host->card))
2062 goto out;
2063
2064 mmc_power_up(host, host->card->ocr);
2065 err = mmc_init_card(host, host->card->ocr, host->card);
2066 mmc_card_clr_suspended(host->card);
2067
2068 out:
2069 mmc_release_host(host);
2070 return err;
2071 }
2072
2073 /*
2074 * Shutdown callback
2075 */
mmc_shutdown(struct mmc_host * host)2076 static int mmc_shutdown(struct mmc_host *host)
2077 {
2078 int err = 0;
2079
2080 /*
2081 * In a specific case for poweroff notify, we need to resume the card
2082 * before we can shutdown it properly.
2083 */
2084 if (mmc_can_poweroff_notify(host->card) &&
2085 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2086 err = _mmc_resume(host);
2087
2088 if (!err)
2089 err = _mmc_suspend(host, false);
2090
2091 return err;
2092 }
2093
2094 /*
2095 * Callback for resume.
2096 */
mmc_resume(struct mmc_host * host)2097 static int mmc_resume(struct mmc_host *host)
2098 {
2099 pm_runtime_enable(&host->card->dev);
2100 return 0;
2101 }
2102
2103 /*
2104 * Callback for runtime_suspend.
2105 */
mmc_runtime_suspend(struct mmc_host * host)2106 static int mmc_runtime_suspend(struct mmc_host *host)
2107 {
2108 int err;
2109
2110 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2111 return 0;
2112
2113 err = _mmc_suspend(host, true);
2114 if (err)
2115 pr_err("%s: error %d doing aggressive suspend\n",
2116 mmc_hostname(host), err);
2117
2118 return err;
2119 }
2120
2121 /*
2122 * Callback for runtime_resume.
2123 */
mmc_runtime_resume(struct mmc_host * host)2124 static int mmc_runtime_resume(struct mmc_host *host)
2125 {
2126 int err;
2127
2128 err = _mmc_resume(host);
2129 if (err && err != -ENOMEDIUM)
2130 pr_err("%s: error %d doing runtime resume\n",
2131 mmc_hostname(host), err);
2132
2133 return 0;
2134 }
2135
mmc_can_reset(struct mmc_card * card)2136 static int mmc_can_reset(struct mmc_card *card)
2137 {
2138 u8 rst_n_function;
2139
2140 rst_n_function = card->ext_csd.rst_n_function;
2141 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2142 return 0;
2143 return 1;
2144 }
2145
_mmc_hw_reset(struct mmc_host * host)2146 static int _mmc_hw_reset(struct mmc_host *host)
2147 {
2148 struct mmc_card *card = host->card;
2149
2150 /*
2151 * In the case of recovery, we can't expect flushing the cache to work
2152 * always, but we have a go and ignore errors.
2153 */
2154 mmc_flush_cache(host->card);
2155
2156 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2157 mmc_can_reset(card)) {
2158 /* If the card accept RST_n signal, send it. */
2159 mmc_set_clock(host, host->f_init);
2160 host->ops->hw_reset(host);
2161 /* Set initial state and call mmc_set_ios */
2162 mmc_set_initial_state(host);
2163 } else {
2164 /* Do a brute force power cycle */
2165 mmc_power_cycle(host, card->ocr);
2166 mmc_pwrseq_reset(host);
2167 }
2168 return mmc_init_card(host, card->ocr, card);
2169 }
2170
2171 static const struct mmc_bus_ops mmc_ops = {
2172 .remove = mmc_remove,
2173 .detect = mmc_detect,
2174 .suspend = mmc_suspend,
2175 .resume = mmc_resume,
2176 .runtime_suspend = mmc_runtime_suspend,
2177 .runtime_resume = mmc_runtime_resume,
2178 .alive = mmc_alive,
2179 .shutdown = mmc_shutdown,
2180 .hw_reset = _mmc_hw_reset,
2181 };
2182
2183 /*
2184 * Starting point for MMC card init.
2185 */
mmc_attach_mmc(struct mmc_host * host)2186 int mmc_attach_mmc(struct mmc_host *host)
2187 {
2188 int err;
2189 u32 ocr, rocr;
2190
2191 WARN_ON(!host->claimed);
2192
2193 /* Set correct bus mode for MMC before attempting attach */
2194 if (!mmc_host_is_spi(host))
2195 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2196
2197 err = mmc_send_op_cond(host, 0, &ocr);
2198 if (err)
2199 return err;
2200
2201 mmc_attach_bus(host, &mmc_ops);
2202 if (host->ocr_avail_mmc)
2203 host->ocr_avail = host->ocr_avail_mmc;
2204
2205 /*
2206 * We need to get OCR a different way for SPI.
2207 */
2208 if (mmc_host_is_spi(host)) {
2209 err = mmc_spi_read_ocr(host, 1, &ocr);
2210 if (err)
2211 goto err;
2212 }
2213
2214 rocr = mmc_select_voltage(host, ocr);
2215
2216 /*
2217 * Can we support the voltage of the card?
2218 */
2219 if (!rocr) {
2220 err = -EINVAL;
2221 goto err;
2222 }
2223
2224 /*
2225 * Detect and init the card.
2226 */
2227 err = mmc_init_card(host, rocr, NULL);
2228 if (err)
2229 goto err;
2230
2231 mmc_release_host(host);
2232 err = mmc_add_card(host->card);
2233 if (err)
2234 goto remove_card;
2235
2236 mmc_claim_host(host);
2237 return 0;
2238
2239 remove_card:
2240 mmc_remove_card(host->card);
2241 mmc_claim_host(host);
2242 host->card = NULL;
2243 err:
2244 mmc_detach_bus(host);
2245
2246 pr_err("%s: error %d whilst initialising MMC card\n",
2247 mmc_hostname(host), err);
2248
2249 return err;
2250 }
2251