1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2008-2009 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8 
9 /*
10  * Cross Partition Communication (XPC) sn2-based functions.
11  *
12  *     Architecture specific implementation of common functions.
13  *
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/slab.h>
18 #include <asm/uncached.h>
19 #include <asm/sn/mspec.h>
20 #include <asm/sn/sn_sal.h>
21 #include "xpc.h"
22 
23 /*
24  * Define the number of u64s required to represent all the C-brick nasids
25  * as a bitmap.  The cross-partition kernel modules deal only with
26  * C-brick nasids, thus the need for bitmaps which don't account for
27  * odd-numbered (non C-brick) nasids.
28  */
29 #define XPC_MAX_PHYSNODES_SN2	(MAX_NUMALINK_NODES / 2)
30 #define XP_NASID_MASK_BYTES_SN2	((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
31 #define XP_NASID_MASK_WORDS_SN2	((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
32 
33 /*
34  * Memory for XPC's amo variables is allocated by the MSPEC driver. These
35  * pages are located in the lowest granule. The lowest granule uses 4k pages
36  * for cached references and an alternate TLB handler to never provide a
37  * cacheable mapping for the entire region. This will prevent speculative
38  * reading of cached copies of our lines from being issued which will cause
39  * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
40  * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
41  * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
42  * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
43  * partitions (i.e., XPCs) consider themselves currently engaged with the
44  * local XPC and 1 amo variable to request partition deactivation.
45  */
46 #define XPC_NOTIFY_IRQ_AMOS_SN2		0
47 #define XPC_ACTIVATE_IRQ_AMOS_SN2	(XPC_NOTIFY_IRQ_AMOS_SN2 + \
48 					 XP_MAX_NPARTITIONS_SN2)
49 #define XPC_ENGAGED_PARTITIONS_AMO_SN2	(XPC_ACTIVATE_IRQ_AMOS_SN2 + \
50 					 XP_NASID_MASK_WORDS_SN2)
51 #define XPC_DEACTIVATE_REQUEST_AMO_SN2	(XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
52 
53 /*
54  * Buffer used to store a local copy of portions of a remote partition's
55  * reserved page (either its header and part_nasids mask, or its vars).
56  */
57 static void *xpc_remote_copy_buffer_base_sn2;
58 static char *xpc_remote_copy_buffer_sn2;
59 
60 static struct xpc_vars_sn2 *xpc_vars_sn2;
61 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
62 
63 static int
xpc_setup_partitions_sn2(void)64 xpc_setup_partitions_sn2(void)
65 {
66 	/* nothing needs to be done */
67 	return 0;
68 }
69 
70 static void
xpc_teardown_partitions_sn2(void)71 xpc_teardown_partitions_sn2(void)
72 {
73 	/* nothing needs to be done */
74 }
75 
76 /* SH_IPI_ACCESS shub register value on startup */
77 static u64 xpc_sh1_IPI_access_sn2;
78 static u64 xpc_sh2_IPI_access0_sn2;
79 static u64 xpc_sh2_IPI_access1_sn2;
80 static u64 xpc_sh2_IPI_access2_sn2;
81 static u64 xpc_sh2_IPI_access3_sn2;
82 
83 /*
84  * Change protections to allow IPI operations.
85  */
86 static void
xpc_allow_IPI_ops_sn2(void)87 xpc_allow_IPI_ops_sn2(void)
88 {
89 	int node;
90 	int nasid;
91 
92 	/* !!! The following should get moved into SAL. */
93 	if (is_shub2()) {
94 		xpc_sh2_IPI_access0_sn2 =
95 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
96 		xpc_sh2_IPI_access1_sn2 =
97 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
98 		xpc_sh2_IPI_access2_sn2 =
99 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
100 		xpc_sh2_IPI_access3_sn2 =
101 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
102 
103 		for_each_online_node(node) {
104 			nasid = cnodeid_to_nasid(node);
105 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
106 			      -1UL);
107 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
108 			      -1UL);
109 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
110 			      -1UL);
111 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
112 			      -1UL);
113 		}
114 	} else {
115 		xpc_sh1_IPI_access_sn2 =
116 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
117 
118 		for_each_online_node(node) {
119 			nasid = cnodeid_to_nasid(node);
120 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
121 			      -1UL);
122 		}
123 	}
124 }
125 
126 /*
127  * Restrict protections to disallow IPI operations.
128  */
129 static void
xpc_disallow_IPI_ops_sn2(void)130 xpc_disallow_IPI_ops_sn2(void)
131 {
132 	int node;
133 	int nasid;
134 
135 	/* !!! The following should get moved into SAL. */
136 	if (is_shub2()) {
137 		for_each_online_node(node) {
138 			nasid = cnodeid_to_nasid(node);
139 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
140 			      xpc_sh2_IPI_access0_sn2);
141 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
142 			      xpc_sh2_IPI_access1_sn2);
143 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
144 			      xpc_sh2_IPI_access2_sn2);
145 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
146 			      xpc_sh2_IPI_access3_sn2);
147 		}
148 	} else {
149 		for_each_online_node(node) {
150 			nasid = cnodeid_to_nasid(node);
151 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
152 			      xpc_sh1_IPI_access_sn2);
153 		}
154 	}
155 }
156 
157 /*
158  * The following set of functions are used for the sending and receiving of
159  * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
160  * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
161  * is associated with channel activity (SGI_XPC_NOTIFY).
162  */
163 
164 static u64
xpc_receive_IRQ_amo_sn2(struct amo * amo)165 xpc_receive_IRQ_amo_sn2(struct amo *amo)
166 {
167 	return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
168 }
169 
170 static enum xp_retval
xpc_send_IRQ_sn2(struct amo * amo,u64 flag,int nasid,int phys_cpuid,int vector)171 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
172 		 int vector)
173 {
174 	int ret = 0;
175 	unsigned long irq_flags;
176 
177 	local_irq_save(irq_flags);
178 
179 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
180 	sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
181 
182 	/*
183 	 * We must always use the nofault function regardless of whether we
184 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
185 	 * didn't, we'd never know that the other partition is down and would
186 	 * keep sending IRQs and amos to it until the heartbeat times out.
187 	 */
188 	ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
189 						     xp_nofault_PIOR_target));
190 
191 	local_irq_restore(irq_flags);
192 
193 	return (ret == 0) ? xpSuccess : xpPioReadError;
194 }
195 
196 static struct amo *
xpc_init_IRQ_amo_sn2(int index)197 xpc_init_IRQ_amo_sn2(int index)
198 {
199 	struct amo *amo = xpc_vars_sn2->amos_page + index;
200 
201 	(void)xpc_receive_IRQ_amo_sn2(amo);	/* clear amo variable */
202 	return amo;
203 }
204 
205 /*
206  * Functions associated with SGI_XPC_ACTIVATE IRQ.
207  */
208 
209 /*
210  * Notify the heartbeat check thread that an activate IRQ has been received.
211  */
212 static irqreturn_t
xpc_handle_activate_IRQ_sn2(int irq,void * dev_id)213 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
214 {
215 	unsigned long irq_flags;
216 
217 	spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
218 	xpc_activate_IRQ_rcvd++;
219 	spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
220 
221 	wake_up_interruptible(&xpc_activate_IRQ_wq);
222 	return IRQ_HANDLED;
223 }
224 
225 /*
226  * Flag the appropriate amo variable and send an IRQ to the specified node.
227  */
228 static void
xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa,int from_nasid,int to_nasid,int to_phys_cpuid)229 xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
230 			  int to_nasid, int to_phys_cpuid)
231 {
232 	struct amo *amos = (struct amo *)__va(amos_page_pa +
233 					      (XPC_ACTIVATE_IRQ_AMOS_SN2 *
234 					      sizeof(struct amo)));
235 
236 	(void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
237 			       BIT_MASK(from_nasid / 2), to_nasid,
238 			       to_phys_cpuid, SGI_XPC_ACTIVATE);
239 }
240 
241 static void
xpc_send_local_activate_IRQ_sn2(int from_nasid)242 xpc_send_local_activate_IRQ_sn2(int from_nasid)
243 {
244 	unsigned long irq_flags;
245 	struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
246 					      (XPC_ACTIVATE_IRQ_AMOS_SN2 *
247 					      sizeof(struct amo)));
248 
249 	/* fake the sending and receipt of an activate IRQ from remote nasid */
250 	FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
251 			 FETCHOP_OR, BIT_MASK(from_nasid / 2));
252 
253 	spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
254 	xpc_activate_IRQ_rcvd++;
255 	spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
256 
257 	wake_up_interruptible(&xpc_activate_IRQ_wq);
258 }
259 
260 /*
261  * Functions associated with SGI_XPC_NOTIFY IRQ.
262  */
263 
264 /*
265  * Check to see if any chctl flags were sent from the specified partition.
266  */
267 static void
xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition * part)268 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
269 {
270 	union xpc_channel_ctl_flags chctl;
271 	unsigned long irq_flags;
272 
273 	chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
274 						  local_chctl_amo_va);
275 	if (chctl.all_flags == 0)
276 		return;
277 
278 	spin_lock_irqsave(&part->chctl_lock, irq_flags);
279 	part->chctl.all_flags |= chctl.all_flags;
280 	spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
281 
282 	dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
283 		"0x%llx\n", XPC_PARTID(part), chctl.all_flags);
284 
285 	xpc_wakeup_channel_mgr(part);
286 }
287 
288 /*
289  * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
290  * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
291  * than one partition, we use an amo structure per partition to indicate
292  * whether a partition has sent an IRQ or not.  If it has, then wake up the
293  * associated kthread to handle it.
294  *
295  * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
296  * running on other partitions.
297  *
298  * Noteworthy Arguments:
299  *
300  *	irq - Interrupt ReQuest number. NOT USED.
301  *
302  *	dev_id - partid of IRQ's potential sender.
303  */
304 static irqreturn_t
xpc_handle_notify_IRQ_sn2(int irq,void * dev_id)305 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
306 {
307 	short partid = (short)(u64)dev_id;
308 	struct xpc_partition *part = &xpc_partitions[partid];
309 
310 	DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
311 
312 	if (xpc_part_ref(part)) {
313 		xpc_check_for_sent_chctl_flags_sn2(part);
314 
315 		xpc_part_deref(part);
316 	}
317 	return IRQ_HANDLED;
318 }
319 
320 /*
321  * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
322  * because the write to their associated amo variable completed after the IRQ
323  * was received.
324  */
325 static void
xpc_check_for_dropped_notify_IRQ_sn2(struct timer_list * t)326 xpc_check_for_dropped_notify_IRQ_sn2(struct timer_list *t)
327 {
328 	struct xpc_partition *part =
329 		from_timer(part, t, sn.sn2.dropped_notify_IRQ_timer);
330 
331 	if (xpc_part_ref(part)) {
332 		xpc_check_for_sent_chctl_flags_sn2(part);
333 
334 		t->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
335 		add_timer(t);
336 		xpc_part_deref(part);
337 	}
338 }
339 
340 /*
341  * Send a notify IRQ to the remote partition that is associated with the
342  * specified channel.
343  */
344 static void
xpc_send_notify_IRQ_sn2(struct xpc_channel * ch,u8 chctl_flag,char * chctl_flag_string,unsigned long * irq_flags)345 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
346 			char *chctl_flag_string, unsigned long *irq_flags)
347 {
348 	struct xpc_partition *part = &xpc_partitions[ch->partid];
349 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
350 	union xpc_channel_ctl_flags chctl = { 0 };
351 	enum xp_retval ret;
352 
353 	if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) {
354 		chctl.flags[ch->number] = chctl_flag;
355 		ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
356 				       chctl.all_flags,
357 				       part_sn2->notify_IRQ_nasid,
358 				       part_sn2->notify_IRQ_phys_cpuid,
359 				       SGI_XPC_NOTIFY);
360 		dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
361 			chctl_flag_string, ch->partid, ch->number, ret);
362 		if (unlikely(ret != xpSuccess)) {
363 			if (irq_flags != NULL)
364 				spin_unlock_irqrestore(&ch->lock, *irq_flags);
365 			XPC_DEACTIVATE_PARTITION(part, ret);
366 			if (irq_flags != NULL)
367 				spin_lock_irqsave(&ch->lock, *irq_flags);
368 		}
369 	}
370 }
371 
372 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
373 		xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
374 
375 /*
376  * Make it look like the remote partition, which is associated with the
377  * specified channel, sent us a notify IRQ. This faked IRQ will be handled
378  * by xpc_check_for_dropped_notify_IRQ_sn2().
379  */
380 static void
xpc_send_local_notify_IRQ_sn2(struct xpc_channel * ch,u8 chctl_flag,char * chctl_flag_string)381 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
382 			      char *chctl_flag_string)
383 {
384 	struct xpc_partition *part = &xpc_partitions[ch->partid];
385 	union xpc_channel_ctl_flags chctl = { 0 };
386 
387 	chctl.flags[ch->number] = chctl_flag;
388 	FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
389 				variable), FETCHOP_OR, chctl.all_flags);
390 	dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
391 		chctl_flag_string, ch->partid, ch->number);
392 }
393 
394 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
395 		xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
396 
397 static void
xpc_send_chctl_closerequest_sn2(struct xpc_channel * ch,unsigned long * irq_flags)398 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
399 				unsigned long *irq_flags)
400 {
401 	struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
402 
403 	args->reason = ch->reason;
404 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
405 }
406 
407 static void
xpc_send_chctl_closereply_sn2(struct xpc_channel * ch,unsigned long * irq_flags)408 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
409 {
410 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
411 }
412 
413 static void
xpc_send_chctl_openrequest_sn2(struct xpc_channel * ch,unsigned long * irq_flags)414 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
415 {
416 	struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
417 
418 	args->entry_size = ch->entry_size;
419 	args->local_nentries = ch->local_nentries;
420 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
421 }
422 
423 static void
xpc_send_chctl_openreply_sn2(struct xpc_channel * ch,unsigned long * irq_flags)424 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
425 {
426 	struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
427 
428 	args->remote_nentries = ch->remote_nentries;
429 	args->local_nentries = ch->local_nentries;
430 	args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue);
431 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
432 }
433 
434 static void
xpc_send_chctl_opencomplete_sn2(struct xpc_channel * ch,unsigned long * irq_flags)435 xpc_send_chctl_opencomplete_sn2(struct xpc_channel *ch,
436 				unsigned long *irq_flags)
437 {
438 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENCOMPLETE, irq_flags);
439 }
440 
441 static void
xpc_send_chctl_msgrequest_sn2(struct xpc_channel * ch)442 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
443 {
444 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
445 }
446 
447 static void
xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel * ch)448 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
449 {
450 	XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
451 }
452 
453 static enum xp_retval
xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel * ch,unsigned long msgqueue_pa)454 xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch,
455 				unsigned long msgqueue_pa)
456 {
457 	ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa;
458 	return xpSuccess;
459 }
460 
461 /*
462  * This next set of functions are used to keep track of when a partition is
463  * potentially engaged in accessing memory belonging to another partition.
464  */
465 
466 static void
xpc_indicate_partition_engaged_sn2(struct xpc_partition * part)467 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
468 {
469 	unsigned long irq_flags;
470 	struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
471 					     (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
472 					     sizeof(struct amo)));
473 
474 	local_irq_save(irq_flags);
475 
476 	/* set bit corresponding to our partid in remote partition's amo */
477 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
478 			 BIT(sn_partition_id));
479 
480 	/*
481 	 * We must always use the nofault function regardless of whether we
482 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
483 	 * didn't, we'd never know that the other partition is down and would
484 	 * keep sending IRQs and amos to it until the heartbeat times out.
485 	 */
486 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
487 							       variable),
488 						     xp_nofault_PIOR_target));
489 
490 	local_irq_restore(irq_flags);
491 }
492 
493 static void
xpc_indicate_partition_disengaged_sn2(struct xpc_partition * part)494 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
495 {
496 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
497 	unsigned long irq_flags;
498 	struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
499 					     (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
500 					     sizeof(struct amo)));
501 
502 	local_irq_save(irq_flags);
503 
504 	/* clear bit corresponding to our partid in remote partition's amo */
505 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
506 			 ~BIT(sn_partition_id));
507 
508 	/*
509 	 * We must always use the nofault function regardless of whether we
510 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
511 	 * didn't, we'd never know that the other partition is down and would
512 	 * keep sending IRQs and amos to it until the heartbeat times out.
513 	 */
514 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
515 							       variable),
516 						     xp_nofault_PIOR_target));
517 
518 	local_irq_restore(irq_flags);
519 
520 	/*
521 	 * Send activate IRQ to get other side to see that we've cleared our
522 	 * bit in their engaged partitions amo.
523 	 */
524 	xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
525 				  cnodeid_to_nasid(0),
526 				  part_sn2->activate_IRQ_nasid,
527 				  part_sn2->activate_IRQ_phys_cpuid);
528 }
529 
530 static void
xpc_assume_partition_disengaged_sn2(short partid)531 xpc_assume_partition_disengaged_sn2(short partid)
532 {
533 	struct amo *amo = xpc_vars_sn2->amos_page +
534 			  XPC_ENGAGED_PARTITIONS_AMO_SN2;
535 
536 	/* clear bit(s) based on partid mask in our partition's amo */
537 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
538 			 ~BIT(partid));
539 }
540 
541 static int
xpc_partition_engaged_sn2(short partid)542 xpc_partition_engaged_sn2(short partid)
543 {
544 	struct amo *amo = xpc_vars_sn2->amos_page +
545 			  XPC_ENGAGED_PARTITIONS_AMO_SN2;
546 
547 	/* our partition's amo variable ANDed with partid mask */
548 	return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
549 		BIT(partid)) != 0;
550 }
551 
552 static int
xpc_any_partition_engaged_sn2(void)553 xpc_any_partition_engaged_sn2(void)
554 {
555 	struct amo *amo = xpc_vars_sn2->amos_page +
556 			  XPC_ENGAGED_PARTITIONS_AMO_SN2;
557 
558 	/* our partition's amo variable */
559 	return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
560 }
561 
562 /* original protection values for each node */
563 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
564 
565 /*
566  * Change protections to allow amo operations on non-Shub 1.1 systems.
567  */
568 static enum xp_retval
xpc_allow_amo_ops_sn2(struct amo * amos_page)569 xpc_allow_amo_ops_sn2(struct amo *amos_page)
570 {
571 	enum xp_retval ret = xpSuccess;
572 
573 	/*
574 	 * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
575 	 * collides with memory operations. On those systems we call
576 	 * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
577 	 */
578 	if (!enable_shub_wars_1_1())
579 		ret = xp_expand_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE);
580 
581 	return ret;
582 }
583 
584 /*
585  * Change protections to allow amo operations on Shub 1.1 systems.
586  */
587 static void
xpc_allow_amo_ops_shub_wars_1_1_sn2(void)588 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
589 {
590 	int node;
591 	int nasid;
592 
593 	if (!enable_shub_wars_1_1())
594 		return;
595 
596 	for_each_online_node(node) {
597 		nasid = cnodeid_to_nasid(node);
598 		/* save current protection values */
599 		xpc_prot_vec_sn2[node] =
600 		    (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
601 						  SH1_MD_DQLP_MMR_DIR_PRIVEC0));
602 		/* open up everything */
603 		HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
604 					     SH1_MD_DQLP_MMR_DIR_PRIVEC0),
605 		      -1UL);
606 		HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
607 					     SH1_MD_DQRP_MMR_DIR_PRIVEC0),
608 		      -1UL);
609 	}
610 }
611 
612 static enum xp_retval
xpc_get_partition_rsvd_page_pa_sn2(void * buf,u64 * cookie,unsigned long * rp_pa,size_t * len)613 xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
614 				   size_t *len)
615 {
616 	s64 status;
617 	enum xp_retval ret;
618 
619 	status = sn_partition_reserved_page_pa((u64)buf, cookie,
620 			(u64 *)rp_pa, (u64 *)len);
621 	if (status == SALRET_OK)
622 		ret = xpSuccess;
623 	else if (status == SALRET_MORE_PASSES)
624 		ret = xpNeedMoreInfo;
625 	else
626 		ret = xpSalError;
627 
628 	return ret;
629 }
630 
631 
632 static int
xpc_setup_rsvd_page_sn2(struct xpc_rsvd_page * rp)633 xpc_setup_rsvd_page_sn2(struct xpc_rsvd_page *rp)
634 {
635 	struct amo *amos_page;
636 	int i;
637 	int ret;
638 
639 	xpc_vars_sn2 = XPC_RP_VARS(rp);
640 
641 	rp->sn.sn2.vars_pa = xp_pa(xpc_vars_sn2);
642 
643 	/* vars_part array follows immediately after vars */
644 	xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
645 							 XPC_RP_VARS_SIZE);
646 
647 	/*
648 	 * Before clearing xpc_vars_sn2, see if a page of amos had been
649 	 * previously allocated. If not we'll need to allocate one and set
650 	 * permissions so that cross-partition amos are allowed.
651 	 *
652 	 * The allocated amo page needs MCA reporting to remain disabled after
653 	 * XPC has unloaded.  To make this work, we keep a copy of the pointer
654 	 * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
655 	 * which is pointed to by the reserved page, and re-use that saved copy
656 	 * on subsequent loads of XPC. This amo page is never freed, and its
657 	 * memory protections are never restricted.
658 	 */
659 	amos_page = xpc_vars_sn2->amos_page;
660 	if (amos_page == NULL) {
661 		amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
662 		if (amos_page == NULL) {
663 			dev_err(xpc_part, "can't allocate page of amos\n");
664 			return -ENOMEM;
665 		}
666 
667 		/*
668 		 * Open up amo-R/W to cpu.  This is done on Shub 1.1 systems
669 		 * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
670 		 */
671 		ret = xpc_allow_amo_ops_sn2(amos_page);
672 		if (ret != xpSuccess) {
673 			dev_err(xpc_part, "can't allow amo operations\n");
674 			uncached_free_page(__IA64_UNCACHED_OFFSET |
675 					   TO_PHYS((u64)amos_page), 1);
676 			return -EPERM;
677 		}
678 	}
679 
680 	/* clear xpc_vars_sn2 */
681 	memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
682 
683 	xpc_vars_sn2->version = XPC_V_VERSION;
684 	xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
685 	xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
686 	xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
687 	xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
688 	xpc_vars_sn2->amos_page = amos_page;	/* save for next load of XPC */
689 
690 	/* clear xpc_vars_part_sn2 */
691 	memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
692 	       XP_MAX_NPARTITIONS_SN2);
693 
694 	/* initialize the activate IRQ related amo variables */
695 	for (i = 0; i < xpc_nasid_mask_nlongs; i++)
696 		(void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
697 
698 	/* initialize the engaged remote partitions related amo variables */
699 	(void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
700 	(void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
701 
702 	return 0;
703 }
704 
705 static int
xpc_hb_allowed_sn2(short partid,void * heartbeating_to_mask)706 xpc_hb_allowed_sn2(short partid, void *heartbeating_to_mask)
707 {
708 	return test_bit(partid, heartbeating_to_mask);
709 }
710 
711 static void
xpc_allow_hb_sn2(short partid)712 xpc_allow_hb_sn2(short partid)
713 {
714 	DBUG_ON(xpc_vars_sn2 == NULL);
715 	set_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
716 }
717 
718 static void
xpc_disallow_hb_sn2(short partid)719 xpc_disallow_hb_sn2(short partid)
720 {
721 	DBUG_ON(xpc_vars_sn2 == NULL);
722 	clear_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
723 }
724 
725 static void
xpc_disallow_all_hbs_sn2(void)726 xpc_disallow_all_hbs_sn2(void)
727 {
728 	DBUG_ON(xpc_vars_sn2 == NULL);
729 	bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, xp_max_npartitions);
730 }
731 
732 static void
xpc_increment_heartbeat_sn2(void)733 xpc_increment_heartbeat_sn2(void)
734 {
735 	xpc_vars_sn2->heartbeat++;
736 }
737 
738 static void
xpc_offline_heartbeat_sn2(void)739 xpc_offline_heartbeat_sn2(void)
740 {
741 	xpc_increment_heartbeat_sn2();
742 	xpc_vars_sn2->heartbeat_offline = 1;
743 }
744 
745 static void
xpc_online_heartbeat_sn2(void)746 xpc_online_heartbeat_sn2(void)
747 {
748 	xpc_increment_heartbeat_sn2();
749 	xpc_vars_sn2->heartbeat_offline = 0;
750 }
751 
752 static void
xpc_heartbeat_init_sn2(void)753 xpc_heartbeat_init_sn2(void)
754 {
755 	DBUG_ON(xpc_vars_sn2 == NULL);
756 
757 	bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
758 	xpc_online_heartbeat_sn2();
759 }
760 
761 static void
xpc_heartbeat_exit_sn2(void)762 xpc_heartbeat_exit_sn2(void)
763 {
764 	xpc_offline_heartbeat_sn2();
765 }
766 
767 static enum xp_retval
xpc_get_remote_heartbeat_sn2(struct xpc_partition * part)768 xpc_get_remote_heartbeat_sn2(struct xpc_partition *part)
769 {
770 	struct xpc_vars_sn2 *remote_vars;
771 	enum xp_retval ret;
772 
773 	remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
774 
775 	/* pull the remote vars structure that contains the heartbeat */
776 	ret = xp_remote_memcpy(xp_pa(remote_vars),
777 			       part->sn.sn2.remote_vars_pa,
778 			       XPC_RP_VARS_SIZE);
779 	if (ret != xpSuccess)
780 		return ret;
781 
782 	dev_dbg(xpc_part, "partid=%d, heartbeat=%lld, last_heartbeat=%lld, "
783 		"heartbeat_offline=%lld, HB_mask[0]=0x%lx\n", XPC_PARTID(part),
784 		remote_vars->heartbeat, part->last_heartbeat,
785 		remote_vars->heartbeat_offline,
786 		remote_vars->heartbeating_to_mask[0]);
787 
788 	if ((remote_vars->heartbeat == part->last_heartbeat &&
789 	    !remote_vars->heartbeat_offline) ||
790 	    !xpc_hb_allowed_sn2(sn_partition_id,
791 				remote_vars->heartbeating_to_mask)) {
792 		ret = xpNoHeartbeat;
793 	} else {
794 		part->last_heartbeat = remote_vars->heartbeat;
795 	}
796 
797 	return ret;
798 }
799 
800 /*
801  * Get a copy of the remote partition's XPC variables from the reserved page.
802  *
803  * remote_vars points to a buffer that is cacheline aligned for BTE copies and
804  * assumed to be of size XPC_RP_VARS_SIZE.
805  */
806 static enum xp_retval
xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,struct xpc_vars_sn2 * remote_vars)807 xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
808 			struct xpc_vars_sn2 *remote_vars)
809 {
810 	enum xp_retval ret;
811 
812 	if (remote_vars_pa == 0)
813 		return xpVarsNotSet;
814 
815 	/* pull over the cross partition variables */
816 	ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
817 			       XPC_RP_VARS_SIZE);
818 	if (ret != xpSuccess)
819 		return ret;
820 
821 	if (XPC_VERSION_MAJOR(remote_vars->version) !=
822 	    XPC_VERSION_MAJOR(XPC_V_VERSION)) {
823 		return xpBadVersion;
824 	}
825 
826 	return xpSuccess;
827 }
828 
829 static void
xpc_request_partition_activation_sn2(struct xpc_rsvd_page * remote_rp,unsigned long remote_rp_pa,int nasid)830 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
831 				     unsigned long remote_rp_pa, int nasid)
832 {
833 	xpc_send_local_activate_IRQ_sn2(nasid);
834 }
835 
836 static void
xpc_request_partition_reactivation_sn2(struct xpc_partition * part)837 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
838 {
839 	xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
840 }
841 
842 static void
xpc_request_partition_deactivation_sn2(struct xpc_partition * part)843 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
844 {
845 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
846 	unsigned long irq_flags;
847 	struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
848 					     (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
849 					     sizeof(struct amo)));
850 
851 	local_irq_save(irq_flags);
852 
853 	/* set bit corresponding to our partid in remote partition's amo */
854 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
855 			 BIT(sn_partition_id));
856 
857 	/*
858 	 * We must always use the nofault function regardless of whether we
859 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
860 	 * didn't, we'd never know that the other partition is down and would
861 	 * keep sending IRQs and amos to it until the heartbeat times out.
862 	 */
863 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
864 							       variable),
865 						     xp_nofault_PIOR_target));
866 
867 	local_irq_restore(irq_flags);
868 
869 	/*
870 	 * Send activate IRQ to get other side to see that we've set our
871 	 * bit in their deactivate request amo.
872 	 */
873 	xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
874 				  cnodeid_to_nasid(0),
875 				  part_sn2->activate_IRQ_nasid,
876 				  part_sn2->activate_IRQ_phys_cpuid);
877 }
878 
879 static void
xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition * part)880 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
881 {
882 	unsigned long irq_flags;
883 	struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
884 					     (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
885 					     sizeof(struct amo)));
886 
887 	local_irq_save(irq_flags);
888 
889 	/* clear bit corresponding to our partid in remote partition's amo */
890 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
891 			 ~BIT(sn_partition_id));
892 
893 	/*
894 	 * We must always use the nofault function regardless of whether we
895 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
896 	 * didn't, we'd never know that the other partition is down and would
897 	 * keep sending IRQs and amos to it until the heartbeat times out.
898 	 */
899 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
900 							       variable),
901 						     xp_nofault_PIOR_target));
902 
903 	local_irq_restore(irq_flags);
904 }
905 
906 static int
xpc_partition_deactivation_requested_sn2(short partid)907 xpc_partition_deactivation_requested_sn2(short partid)
908 {
909 	struct amo *amo = xpc_vars_sn2->amos_page +
910 			  XPC_DEACTIVATE_REQUEST_AMO_SN2;
911 
912 	/* our partition's amo variable ANDed with partid mask */
913 	return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
914 		BIT(partid)) != 0;
915 }
916 
917 /*
918  * Update the remote partition's info.
919  */
920 static void
xpc_update_partition_info_sn2(struct xpc_partition * part,u8 remote_rp_version,unsigned long * remote_rp_ts_jiffies,unsigned long remote_rp_pa,unsigned long remote_vars_pa,struct xpc_vars_sn2 * remote_vars)921 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
922 			      unsigned long *remote_rp_ts_jiffies,
923 			      unsigned long remote_rp_pa,
924 			      unsigned long remote_vars_pa,
925 			      struct xpc_vars_sn2 *remote_vars)
926 {
927 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
928 
929 	part->remote_rp_version = remote_rp_version;
930 	dev_dbg(xpc_part, "  remote_rp_version = 0x%016x\n",
931 		part->remote_rp_version);
932 
933 	part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
934 	dev_dbg(xpc_part, "  remote_rp_ts_jiffies = 0x%016lx\n",
935 		part->remote_rp_ts_jiffies);
936 
937 	part->remote_rp_pa = remote_rp_pa;
938 	dev_dbg(xpc_part, "  remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
939 
940 	part_sn2->remote_vars_pa = remote_vars_pa;
941 	dev_dbg(xpc_part, "  remote_vars_pa = 0x%016lx\n",
942 		part_sn2->remote_vars_pa);
943 
944 	part->last_heartbeat = remote_vars->heartbeat - 1;
945 	dev_dbg(xpc_part, "  last_heartbeat = 0x%016llx\n",
946 		part->last_heartbeat);
947 
948 	part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
949 	dev_dbg(xpc_part, "  remote_vars_part_pa = 0x%016lx\n",
950 		part_sn2->remote_vars_part_pa);
951 
952 	part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
953 	dev_dbg(xpc_part, "  activate_IRQ_nasid = 0x%x\n",
954 		part_sn2->activate_IRQ_nasid);
955 
956 	part_sn2->activate_IRQ_phys_cpuid =
957 	    remote_vars->activate_IRQ_phys_cpuid;
958 	dev_dbg(xpc_part, "  activate_IRQ_phys_cpuid = 0x%x\n",
959 		part_sn2->activate_IRQ_phys_cpuid);
960 
961 	part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
962 	dev_dbg(xpc_part, "  remote_amos_page_pa = 0x%lx\n",
963 		part_sn2->remote_amos_page_pa);
964 
965 	part_sn2->remote_vars_version = remote_vars->version;
966 	dev_dbg(xpc_part, "  remote_vars_version = 0x%x\n",
967 		part_sn2->remote_vars_version);
968 }
969 
970 /*
971  * Prior code has determined the nasid which generated a activate IRQ.
972  * Inspect that nasid to determine if its partition needs to be activated
973  * or deactivated.
974  *
975  * A partition is considered "awaiting activation" if our partition
976  * flags indicate it is not active and it has a heartbeat.  A
977  * partition is considered "awaiting deactivation" if our partition
978  * flags indicate it is active but it has no heartbeat or it is not
979  * sending its heartbeat to us.
980  *
981  * To determine the heartbeat, the remote nasid must have a properly
982  * initialized reserved page.
983  */
984 static void
xpc_identify_activate_IRQ_req_sn2(int nasid)985 xpc_identify_activate_IRQ_req_sn2(int nasid)
986 {
987 	struct xpc_rsvd_page *remote_rp;
988 	struct xpc_vars_sn2 *remote_vars;
989 	unsigned long remote_rp_pa;
990 	unsigned long remote_vars_pa;
991 	int remote_rp_version;
992 	int reactivate = 0;
993 	unsigned long remote_rp_ts_jiffies = 0;
994 	short partid;
995 	struct xpc_partition *part;
996 	struct xpc_partition_sn2 *part_sn2;
997 	enum xp_retval ret;
998 
999 	/* pull over the reserved page structure */
1000 
1001 	remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
1002 
1003 	ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
1004 	if (ret != xpSuccess) {
1005 		dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
1006 			 "which sent interrupt, reason=%d\n", nasid, ret);
1007 		return;
1008 	}
1009 
1010 	remote_vars_pa = remote_rp->sn.sn2.vars_pa;
1011 	remote_rp_version = remote_rp->version;
1012 	remote_rp_ts_jiffies = remote_rp->ts_jiffies;
1013 
1014 	partid = remote_rp->SAL_partid;
1015 	part = &xpc_partitions[partid];
1016 	part_sn2 = &part->sn.sn2;
1017 
1018 	/* pull over the cross partition variables */
1019 
1020 	remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
1021 
1022 	ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
1023 	if (ret != xpSuccess) {
1024 		dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
1025 			 "which sent interrupt, reason=%d\n", nasid, ret);
1026 
1027 		XPC_DEACTIVATE_PARTITION(part, ret);
1028 		return;
1029 	}
1030 
1031 	part->activate_IRQ_rcvd++;
1032 
1033 	dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
1034 		"%lld:0x%lx\n", (int)nasid, (int)partid,
1035 		part->activate_IRQ_rcvd,
1036 		remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
1037 
1038 	if (xpc_partition_disengaged(part) &&
1039 	    part->act_state == XPC_P_AS_INACTIVE) {
1040 
1041 		xpc_update_partition_info_sn2(part, remote_rp_version,
1042 					      &remote_rp_ts_jiffies,
1043 					      remote_rp_pa, remote_vars_pa,
1044 					      remote_vars);
1045 
1046 		if (xpc_partition_deactivation_requested_sn2(partid)) {
1047 			/*
1048 			 * Other side is waiting on us to deactivate even though
1049 			 * we already have.
1050 			 */
1051 			return;
1052 		}
1053 
1054 		xpc_activate_partition(part);
1055 		return;
1056 	}
1057 
1058 	DBUG_ON(part->remote_rp_version == 0);
1059 	DBUG_ON(part_sn2->remote_vars_version == 0);
1060 
1061 	if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1062 
1063 		/* the other side rebooted */
1064 
1065 		DBUG_ON(xpc_partition_engaged_sn2(partid));
1066 		DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1067 
1068 		xpc_update_partition_info_sn2(part, remote_rp_version,
1069 					      &remote_rp_ts_jiffies,
1070 					      remote_rp_pa, remote_vars_pa,
1071 					      remote_vars);
1072 		reactivate = 1;
1073 	}
1074 
1075 	if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1076 		/* still waiting on other side to disengage from us */
1077 		return;
1078 	}
1079 
1080 	if (reactivate)
1081 		XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1082 	else if (xpc_partition_deactivation_requested_sn2(partid))
1083 		XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1084 }
1085 
1086 /*
1087  * Loop through the activation amo variables and process any bits
1088  * which are set.  Each bit indicates a nasid sending a partition
1089  * activation or deactivation request.
1090  *
1091  * Return #of IRQs detected.
1092  */
1093 int
xpc_identify_activate_IRQ_sender_sn2(void)1094 xpc_identify_activate_IRQ_sender_sn2(void)
1095 {
1096 	int l;
1097 	int b;
1098 	unsigned long nasid_mask_long;
1099 	u64 nasid;		/* remote nasid */
1100 	int n_IRQs_detected = 0;
1101 	struct amo *act_amos;
1102 
1103 	act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1104 
1105 	/* scan through activate amo variables looking for non-zero entries */
1106 	for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1107 
1108 		if (xpc_exiting)
1109 			break;
1110 
1111 		nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1112 
1113 		b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1114 		if (b >= BITS_PER_LONG) {
1115 			/* no IRQs from nasids in this amo variable */
1116 			continue;
1117 		}
1118 
1119 		dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1120 			nasid_mask_long);
1121 
1122 		/*
1123 		 * If this nasid has been added to the machine since
1124 		 * our partition was reset, this will retain the
1125 		 * remote nasid in our reserved pages machine mask.
1126 		 * This is used in the event of module reload.
1127 		 */
1128 		xpc_mach_nasids[l] |= nasid_mask_long;
1129 
1130 		/* locate the nasid(s) which sent interrupts */
1131 
1132 		do {
1133 			n_IRQs_detected++;
1134 			nasid = (l * BITS_PER_LONG + b) * 2;
1135 			dev_dbg(xpc_part, "interrupt from nasid %lld\n", nasid);
1136 			xpc_identify_activate_IRQ_req_sn2(nasid);
1137 
1138 			b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1139 					  b + 1);
1140 		} while (b < BITS_PER_LONG);
1141 	}
1142 	return n_IRQs_detected;
1143 }
1144 
1145 static void
xpc_process_activate_IRQ_rcvd_sn2(void)1146 xpc_process_activate_IRQ_rcvd_sn2(void)
1147 {
1148 	unsigned long irq_flags;
1149 	int n_IRQs_expected;
1150 	int n_IRQs_detected;
1151 
1152 	spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1153 	n_IRQs_expected = xpc_activate_IRQ_rcvd;
1154 	xpc_activate_IRQ_rcvd = 0;
1155 	spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1156 
1157 	n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1158 	if (n_IRQs_detected < n_IRQs_expected) {
1159 		/* retry once to help avoid missing amo */
1160 		(void)xpc_identify_activate_IRQ_sender_sn2();
1161 	}
1162 }
1163 
1164 /*
1165  * Setup the channel structures that are sn2 specific.
1166  */
1167 static enum xp_retval
xpc_setup_ch_structures_sn2(struct xpc_partition * part)1168 xpc_setup_ch_structures_sn2(struct xpc_partition *part)
1169 {
1170 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1171 	struct xpc_channel_sn2 *ch_sn2;
1172 	enum xp_retval retval;
1173 	int ret;
1174 	int cpuid;
1175 	int ch_number;
1176 	struct timer_list *timer;
1177 	short partid = XPC_PARTID(part);
1178 
1179 	/* allocate all the required GET/PUT values */
1180 
1181 	part_sn2->local_GPs =
1182 	    xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1183 					  &part_sn2->local_GPs_base);
1184 	if (part_sn2->local_GPs == NULL) {
1185 		dev_err(xpc_chan, "can't get memory for local get/put "
1186 			"values\n");
1187 		return xpNoMemory;
1188 	}
1189 
1190 	part_sn2->remote_GPs =
1191 	    xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1192 					  &part_sn2->remote_GPs_base);
1193 	if (part_sn2->remote_GPs == NULL) {
1194 		dev_err(xpc_chan, "can't get memory for remote get/put "
1195 			"values\n");
1196 		retval = xpNoMemory;
1197 		goto out_1;
1198 	}
1199 
1200 	part_sn2->remote_GPs_pa = 0;
1201 
1202 	/* allocate all the required open and close args */
1203 
1204 	part_sn2->local_openclose_args =
1205 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
1206 					  GFP_KERNEL, &part_sn2->
1207 					  local_openclose_args_base);
1208 	if (part_sn2->local_openclose_args == NULL) {
1209 		dev_err(xpc_chan, "can't get memory for local connect args\n");
1210 		retval = xpNoMemory;
1211 		goto out_2;
1212 	}
1213 
1214 	part_sn2->remote_openclose_args_pa = 0;
1215 
1216 	part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1217 
1218 	part_sn2->notify_IRQ_nasid = 0;
1219 	part_sn2->notify_IRQ_phys_cpuid = 0;
1220 	part_sn2->remote_chctl_amo_va = NULL;
1221 
1222 	sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1223 	ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1224 			  IRQF_SHARED, part_sn2->notify_IRQ_owner,
1225 			  (void *)(u64)partid);
1226 	if (ret != 0) {
1227 		dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1228 			"errno=%d\n", -ret);
1229 		retval = xpLackOfResources;
1230 		goto out_3;
1231 	}
1232 
1233 	/* Setup a timer to check for dropped notify IRQs */
1234 	timer = &part_sn2->dropped_notify_IRQ_timer;
1235 	timer_setup(timer, xpc_check_for_dropped_notify_IRQ_sn2, 0);
1236 	timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1237 	add_timer(timer);
1238 
1239 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1240 		ch_sn2 = &part->channels[ch_number].sn.sn2;
1241 
1242 		ch_sn2->local_GP = &part_sn2->local_GPs[ch_number];
1243 		ch_sn2->local_openclose_args =
1244 		    &part_sn2->local_openclose_args[ch_number];
1245 
1246 		mutex_init(&ch_sn2->msg_to_pull_mutex);
1247 	}
1248 
1249 	/*
1250 	 * Setup the per partition specific variables required by the
1251 	 * remote partition to establish channel connections with us.
1252 	 *
1253 	 * The setting of the magic # indicates that these per partition
1254 	 * specific variables are ready to be used.
1255 	 */
1256 	xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1257 	xpc_vars_part_sn2[partid].openclose_args_pa =
1258 	    xp_pa(part_sn2->local_openclose_args);
1259 	xpc_vars_part_sn2[partid].chctl_amo_pa =
1260 	    xp_pa(part_sn2->local_chctl_amo_va);
1261 	cpuid = raw_smp_processor_id();	/* any CPU in this partition will do */
1262 	xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1263 	xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1264 	    cpu_physical_id(cpuid);
1265 	xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1266 	xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2;
1267 
1268 	return xpSuccess;
1269 
1270 	/* setup of ch structures failed */
1271 out_3:
1272 	kfree(part_sn2->local_openclose_args_base);
1273 	part_sn2->local_openclose_args = NULL;
1274 out_2:
1275 	kfree(part_sn2->remote_GPs_base);
1276 	part_sn2->remote_GPs = NULL;
1277 out_1:
1278 	kfree(part_sn2->local_GPs_base);
1279 	part_sn2->local_GPs = NULL;
1280 	return retval;
1281 }
1282 
1283 /*
1284  * Teardown the channel structures that are sn2 specific.
1285  */
1286 static void
xpc_teardown_ch_structures_sn2(struct xpc_partition * part)1287 xpc_teardown_ch_structures_sn2(struct xpc_partition *part)
1288 {
1289 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1290 	short partid = XPC_PARTID(part);
1291 
1292 	/*
1293 	 * Indicate that the variables specific to the remote partition are no
1294 	 * longer available for its use.
1295 	 */
1296 	xpc_vars_part_sn2[partid].magic = 0;
1297 
1298 	/* in case we've still got outstanding timers registered... */
1299 	del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1300 	free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1301 
1302 	kfree(part_sn2->local_openclose_args_base);
1303 	part_sn2->local_openclose_args = NULL;
1304 	kfree(part_sn2->remote_GPs_base);
1305 	part_sn2->remote_GPs = NULL;
1306 	kfree(part_sn2->local_GPs_base);
1307 	part_sn2->local_GPs = NULL;
1308 	part_sn2->local_chctl_amo_va = NULL;
1309 }
1310 
1311 /*
1312  * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1313  * (or multiple cachelines) from a remote partition.
1314  *
1315  * src_pa must be a cacheline aligned physical address on the remote partition.
1316  * dst must be a cacheline aligned virtual address on this partition.
1317  * cnt must be cacheline sized
1318  */
1319 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1320 static enum xp_retval
xpc_pull_remote_cachelines_sn2(struct xpc_partition * part,void * dst,const unsigned long src_pa,size_t cnt)1321 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1322 			       const unsigned long src_pa, size_t cnt)
1323 {
1324 	enum xp_retval ret;
1325 
1326 	DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1327 	DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1328 	DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1329 
1330 	if (part->act_state == XPC_P_AS_DEACTIVATING)
1331 		return part->reason;
1332 
1333 	ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1334 	if (ret != xpSuccess) {
1335 		dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1336 			" ret=%d\n", XPC_PARTID(part), ret);
1337 	}
1338 	return ret;
1339 }
1340 
1341 /*
1342  * Pull the remote per partition specific variables from the specified
1343  * partition.
1344  */
1345 static enum xp_retval
xpc_pull_remote_vars_part_sn2(struct xpc_partition * part)1346 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1347 {
1348 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1349 	u8 buffer[L1_CACHE_BYTES * 2];
1350 	struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1351 	    (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1352 	struct xpc_vars_part_sn2 *pulled_entry;
1353 	unsigned long remote_entry_cacheline_pa;
1354 	unsigned long remote_entry_pa;
1355 	short partid = XPC_PARTID(part);
1356 	enum xp_retval ret;
1357 
1358 	/* pull the cacheline that contains the variables we're interested in */
1359 
1360 	DBUG_ON(part_sn2->remote_vars_part_pa !=
1361 		L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1362 	DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1363 
1364 	remote_entry_pa = part_sn2->remote_vars_part_pa +
1365 	    sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1366 
1367 	remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1368 
1369 	pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1370 						    + (remote_entry_pa &
1371 						    (L1_CACHE_BYTES - 1)));
1372 
1373 	ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1374 					     remote_entry_cacheline_pa,
1375 					     L1_CACHE_BYTES);
1376 	if (ret != xpSuccess) {
1377 		dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1378 			"partition %d, ret=%d\n", partid, ret);
1379 		return ret;
1380 	}
1381 
1382 	/* see if they've been set up yet */
1383 
1384 	if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 &&
1385 	    pulled_entry->magic != XPC_VP_MAGIC2_SN2) {
1386 
1387 		if (pulled_entry->magic != 0) {
1388 			dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1389 				"partition %d has bad magic value (=0x%llx)\n",
1390 				partid, sn_partition_id, pulled_entry->magic);
1391 			return xpBadMagic;
1392 		}
1393 
1394 		/* they've not been initialized yet */
1395 		return xpRetry;
1396 	}
1397 
1398 	if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) {
1399 
1400 		/* validate the variables */
1401 
1402 		if (pulled_entry->GPs_pa == 0 ||
1403 		    pulled_entry->openclose_args_pa == 0 ||
1404 		    pulled_entry->chctl_amo_pa == 0) {
1405 
1406 			dev_err(xpc_chan, "partition %d's XPC vars_part for "
1407 				"partition %d are not valid\n", partid,
1408 				sn_partition_id);
1409 			return xpInvalidAddress;
1410 		}
1411 
1412 		/* the variables we imported look to be valid */
1413 
1414 		part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1415 		part_sn2->remote_openclose_args_pa =
1416 		    pulled_entry->openclose_args_pa;
1417 		part_sn2->remote_chctl_amo_va =
1418 		    (struct amo *)__va(pulled_entry->chctl_amo_pa);
1419 		part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1420 		part_sn2->notify_IRQ_phys_cpuid =
1421 		    pulled_entry->notify_IRQ_phys_cpuid;
1422 
1423 		if (part->nchannels > pulled_entry->nchannels)
1424 			part->nchannels = pulled_entry->nchannels;
1425 
1426 		/* let the other side know that we've pulled their variables */
1427 
1428 		xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2;
1429 	}
1430 
1431 	if (pulled_entry->magic == XPC_VP_MAGIC1_SN2)
1432 		return xpRetry;
1433 
1434 	return xpSuccess;
1435 }
1436 
1437 /*
1438  * Establish first contact with the remote partititon. This involves pulling
1439  * the XPC per partition variables from the remote partition and waiting for
1440  * the remote partition to pull ours.
1441  */
1442 static enum xp_retval
xpc_make_first_contact_sn2(struct xpc_partition * part)1443 xpc_make_first_contact_sn2(struct xpc_partition *part)
1444 {
1445 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1446 	enum xp_retval ret;
1447 
1448 	/*
1449 	 * Register the remote partition's amos with SAL so it can handle
1450 	 * and cleanup errors within that address range should the remote
1451 	 * partition go down. We don't unregister this range because it is
1452 	 * difficult to tell when outstanding writes to the remote partition
1453 	 * are finished and thus when it is safe to unregister. This should
1454 	 * not result in wasted space in the SAL xp_addr_region table because
1455 	 * we should get the same page for remote_amos_page_pa after module
1456 	 * reloads and system reboots.
1457 	 */
1458 	if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1459 				       PAGE_SIZE, 1) < 0) {
1460 		dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1461 			 "xp_addr region\n", XPC_PARTID(part));
1462 
1463 		ret = xpPhysAddrRegFailed;
1464 		XPC_DEACTIVATE_PARTITION(part, ret);
1465 		return ret;
1466 	}
1467 
1468 	/*
1469 	 * Send activate IRQ to get other side to activate if they've not
1470 	 * already begun to do so.
1471 	 */
1472 	xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1473 				  cnodeid_to_nasid(0),
1474 				  part_sn2->activate_IRQ_nasid,
1475 				  part_sn2->activate_IRQ_phys_cpuid);
1476 
1477 	while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1478 		if (ret != xpRetry) {
1479 			XPC_DEACTIVATE_PARTITION(part, ret);
1480 			return ret;
1481 		}
1482 
1483 		dev_dbg(xpc_part, "waiting to make first contact with "
1484 			"partition %d\n", XPC_PARTID(part));
1485 
1486 		/* wait a 1/4 of a second or so */
1487 		(void)msleep_interruptible(250);
1488 
1489 		if (part->act_state == XPC_P_AS_DEACTIVATING)
1490 			return part->reason;
1491 	}
1492 
1493 	return xpSuccess;
1494 }
1495 
1496 /*
1497  * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1498  */
1499 static u64
xpc_get_chctl_all_flags_sn2(struct xpc_partition * part)1500 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1501 {
1502 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1503 	unsigned long irq_flags;
1504 	union xpc_channel_ctl_flags chctl;
1505 	enum xp_retval ret;
1506 
1507 	/*
1508 	 * See if there are any chctl flags to be handled.
1509 	 */
1510 
1511 	spin_lock_irqsave(&part->chctl_lock, irq_flags);
1512 	chctl = part->chctl;
1513 	if (chctl.all_flags != 0)
1514 		part->chctl.all_flags = 0;
1515 
1516 	spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1517 
1518 	if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1519 		ret = xpc_pull_remote_cachelines_sn2(part, part->
1520 						     remote_openclose_args,
1521 						     part_sn2->
1522 						     remote_openclose_args_pa,
1523 						     XPC_OPENCLOSE_ARGS_SIZE);
1524 		if (ret != xpSuccess) {
1525 			XPC_DEACTIVATE_PARTITION(part, ret);
1526 
1527 			dev_dbg(xpc_chan, "failed to pull openclose args from "
1528 				"partition %d, ret=%d\n", XPC_PARTID(part),
1529 				ret);
1530 
1531 			/* don't bother processing chctl flags anymore */
1532 			chctl.all_flags = 0;
1533 		}
1534 	}
1535 
1536 	if (xpc_any_msg_chctl_flags_set(&chctl)) {
1537 		ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1538 						     part_sn2->remote_GPs_pa,
1539 						     XPC_GP_SIZE);
1540 		if (ret != xpSuccess) {
1541 			XPC_DEACTIVATE_PARTITION(part, ret);
1542 
1543 			dev_dbg(xpc_chan, "failed to pull GPs from partition "
1544 				"%d, ret=%d\n", XPC_PARTID(part), ret);
1545 
1546 			/* don't bother processing chctl flags anymore */
1547 			chctl.all_flags = 0;
1548 		}
1549 	}
1550 
1551 	return chctl.all_flags;
1552 }
1553 
1554 /*
1555  * Allocate the local message queue and the notify queue.
1556  */
1557 static enum xp_retval
xpc_allocate_local_msgqueue_sn2(struct xpc_channel * ch)1558 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1559 {
1560 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1561 	unsigned long irq_flags;
1562 	int nentries;
1563 	size_t nbytes;
1564 
1565 	for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1566 
1567 		nbytes = nentries * ch->entry_size;
1568 		ch_sn2->local_msgqueue =
1569 		    xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL,
1570 						  &ch_sn2->local_msgqueue_base);
1571 		if (ch_sn2->local_msgqueue == NULL)
1572 			continue;
1573 
1574 		nbytes = nentries * sizeof(struct xpc_notify_sn2);
1575 		ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1576 		if (ch_sn2->notify_queue == NULL) {
1577 			kfree(ch_sn2->local_msgqueue_base);
1578 			ch_sn2->local_msgqueue = NULL;
1579 			continue;
1580 		}
1581 
1582 		spin_lock_irqsave(&ch->lock, irq_flags);
1583 		if (nentries < ch->local_nentries) {
1584 			dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1585 				"partid=%d, channel=%d\n", nentries,
1586 				ch->local_nentries, ch->partid, ch->number);
1587 
1588 			ch->local_nentries = nentries;
1589 		}
1590 		spin_unlock_irqrestore(&ch->lock, irq_flags);
1591 		return xpSuccess;
1592 	}
1593 
1594 	dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1595 		"queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1596 	return xpNoMemory;
1597 }
1598 
1599 /*
1600  * Allocate the cached remote message queue.
1601  */
1602 static enum xp_retval
xpc_allocate_remote_msgqueue_sn2(struct xpc_channel * ch)1603 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1604 {
1605 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1606 	unsigned long irq_flags;
1607 	int nentries;
1608 	size_t nbytes;
1609 
1610 	DBUG_ON(ch->remote_nentries <= 0);
1611 
1612 	for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1613 
1614 		nbytes = nentries * ch->entry_size;
1615 		ch_sn2->remote_msgqueue =
1616 		    xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2->
1617 						  remote_msgqueue_base);
1618 		if (ch_sn2->remote_msgqueue == NULL)
1619 			continue;
1620 
1621 		spin_lock_irqsave(&ch->lock, irq_flags);
1622 		if (nentries < ch->remote_nentries) {
1623 			dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1624 				"partid=%d, channel=%d\n", nentries,
1625 				ch->remote_nentries, ch->partid, ch->number);
1626 
1627 			ch->remote_nentries = nentries;
1628 		}
1629 		spin_unlock_irqrestore(&ch->lock, irq_flags);
1630 		return xpSuccess;
1631 	}
1632 
1633 	dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1634 		"partid=%d, channel=%d\n", ch->partid, ch->number);
1635 	return xpNoMemory;
1636 }
1637 
1638 /*
1639  * Allocate message queues and other stuff associated with a channel.
1640  *
1641  * Note: Assumes all of the channel sizes are filled in.
1642  */
1643 static enum xp_retval
xpc_setup_msg_structures_sn2(struct xpc_channel * ch)1644 xpc_setup_msg_structures_sn2(struct xpc_channel *ch)
1645 {
1646 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1647 	enum xp_retval ret;
1648 
1649 	DBUG_ON(ch->flags & XPC_C_SETUP);
1650 
1651 	ret = xpc_allocate_local_msgqueue_sn2(ch);
1652 	if (ret == xpSuccess) {
1653 
1654 		ret = xpc_allocate_remote_msgqueue_sn2(ch);
1655 		if (ret != xpSuccess) {
1656 			kfree(ch_sn2->local_msgqueue_base);
1657 			ch_sn2->local_msgqueue = NULL;
1658 			kfree(ch_sn2->notify_queue);
1659 			ch_sn2->notify_queue = NULL;
1660 		}
1661 	}
1662 	return ret;
1663 }
1664 
1665 /*
1666  * Free up message queues and other stuff that were allocated for the specified
1667  * channel.
1668  */
1669 static void
xpc_teardown_msg_structures_sn2(struct xpc_channel * ch)1670 xpc_teardown_msg_structures_sn2(struct xpc_channel *ch)
1671 {
1672 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1673 
1674 	DBUG_ON(!spin_is_locked(&ch->lock));
1675 
1676 	ch_sn2->remote_msgqueue_pa = 0;
1677 
1678 	ch_sn2->local_GP->get = 0;
1679 	ch_sn2->local_GP->put = 0;
1680 	ch_sn2->remote_GP.get = 0;
1681 	ch_sn2->remote_GP.put = 0;
1682 	ch_sn2->w_local_GP.get = 0;
1683 	ch_sn2->w_local_GP.put = 0;
1684 	ch_sn2->w_remote_GP.get = 0;
1685 	ch_sn2->w_remote_GP.put = 0;
1686 	ch_sn2->next_msg_to_pull = 0;
1687 
1688 	if (ch->flags & XPC_C_SETUP) {
1689 		dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1690 			ch->flags, ch->partid, ch->number);
1691 
1692 		kfree(ch_sn2->local_msgqueue_base);
1693 		ch_sn2->local_msgqueue = NULL;
1694 		kfree(ch_sn2->remote_msgqueue_base);
1695 		ch_sn2->remote_msgqueue = NULL;
1696 		kfree(ch_sn2->notify_queue);
1697 		ch_sn2->notify_queue = NULL;
1698 	}
1699 }
1700 
1701 /*
1702  * Notify those who wanted to be notified upon delivery of their message.
1703  */
1704 static void
xpc_notify_senders_sn2(struct xpc_channel * ch,enum xp_retval reason,s64 put)1705 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1706 {
1707 	struct xpc_notify_sn2 *notify;
1708 	u8 notify_type;
1709 	s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1710 
1711 	while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1712 
1713 		notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries];
1714 
1715 		/*
1716 		 * See if the notify entry indicates it was associated with
1717 		 * a message who's sender wants to be notified. It is possible
1718 		 * that it is, but someone else is doing or has done the
1719 		 * notification.
1720 		 */
1721 		notify_type = notify->type;
1722 		if (notify_type == 0 ||
1723 		    cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1724 			continue;
1725 		}
1726 
1727 		DBUG_ON(notify_type != XPC_N_CALL);
1728 
1729 		atomic_dec(&ch->n_to_notify);
1730 
1731 		if (notify->func != NULL) {
1732 			dev_dbg(xpc_chan, "notify->func() called, notify=0x%p "
1733 				"msg_number=%lld partid=%d channel=%d\n",
1734 				(void *)notify, get, ch->partid, ch->number);
1735 
1736 			notify->func(reason, ch->partid, ch->number,
1737 				     notify->key);
1738 
1739 			dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p"
1740 				" msg_number=%lld partid=%d channel=%d\n",
1741 				(void *)notify, get, ch->partid, ch->number);
1742 		}
1743 	}
1744 }
1745 
1746 static void
xpc_notify_senders_of_disconnect_sn2(struct xpc_channel * ch)1747 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1748 {
1749 	xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1750 }
1751 
1752 /*
1753  * Clear some of the msg flags in the local message queue.
1754  */
1755 static inline void
xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel * ch)1756 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1757 {
1758 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1759 	struct xpc_msg_sn2 *msg;
1760 	s64 get;
1761 
1762 	get = ch_sn2->w_remote_GP.get;
1763 	do {
1764 		msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
1765 					     (get % ch->local_nentries) *
1766 					     ch->entry_size);
1767 		DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1768 		msg->flags = 0;
1769 	} while (++get < ch_sn2->remote_GP.get);
1770 }
1771 
1772 /*
1773  * Clear some of the msg flags in the remote message queue.
1774  */
1775 static inline void
xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel * ch)1776 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1777 {
1778 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1779 	struct xpc_msg_sn2 *msg;
1780 	s64 put, remote_nentries = ch->remote_nentries;
1781 
1782 	/* flags are zeroed when the buffer is allocated */
1783 	if (ch_sn2->remote_GP.put < remote_nentries)
1784 		return;
1785 
1786 	put = max(ch_sn2->w_remote_GP.put, remote_nentries);
1787 	do {
1788 		msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1789 					     (put % remote_nentries) *
1790 					     ch->entry_size);
1791 		DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1792 		DBUG_ON(!(msg->flags & XPC_M_SN2_DONE));
1793 		DBUG_ON(msg->number != put - remote_nentries);
1794 		msg->flags = 0;
1795 	} while (++put < ch_sn2->remote_GP.put);
1796 }
1797 
1798 static int
xpc_n_of_deliverable_payloads_sn2(struct xpc_channel * ch)1799 xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch)
1800 {
1801 	return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1802 }
1803 
1804 static void
xpc_process_msg_chctl_flags_sn2(struct xpc_partition * part,int ch_number)1805 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1806 {
1807 	struct xpc_channel *ch = &part->channels[ch_number];
1808 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1809 	int npayloads_sent;
1810 
1811 	ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1812 
1813 	/* See what, if anything, has changed for each connected channel */
1814 
1815 	xpc_msgqueue_ref(ch);
1816 
1817 	if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1818 	    ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1819 		/* nothing changed since GPs were last pulled */
1820 		xpc_msgqueue_deref(ch);
1821 		return;
1822 	}
1823 
1824 	if (!(ch->flags & XPC_C_CONNECTED)) {
1825 		xpc_msgqueue_deref(ch);
1826 		return;
1827 	}
1828 
1829 	/*
1830 	 * First check to see if messages recently sent by us have been
1831 	 * received by the other side. (The remote GET value will have
1832 	 * changed since we last looked at it.)
1833 	 */
1834 
1835 	if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1836 
1837 		/*
1838 		 * We need to notify any senders that want to be notified
1839 		 * that their sent messages have been received by their
1840 		 * intended recipients. We need to do this before updating
1841 		 * w_remote_GP.get so that we don't allocate the same message
1842 		 * queue entries prematurely (see xpc_allocate_msg()).
1843 		 */
1844 		if (atomic_read(&ch->n_to_notify) > 0) {
1845 			/*
1846 			 * Notify senders that messages sent have been
1847 			 * received and delivered by the other side.
1848 			 */
1849 			xpc_notify_senders_sn2(ch, xpMsgDelivered,
1850 					       ch_sn2->remote_GP.get);
1851 		}
1852 
1853 		/*
1854 		 * Clear msg->flags in previously sent messages, so that
1855 		 * they're ready for xpc_allocate_msg().
1856 		 */
1857 		xpc_clear_local_msgqueue_flags_sn2(ch);
1858 
1859 		ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1860 
1861 		dev_dbg(xpc_chan, "w_remote_GP.get changed to %lld, partid=%d, "
1862 			"channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1863 			ch->number);
1864 
1865 		/*
1866 		 * If anyone was waiting for message queue entries to become
1867 		 * available, wake them up.
1868 		 */
1869 		if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1870 			wake_up(&ch->msg_allocate_wq);
1871 	}
1872 
1873 	/*
1874 	 * Now check for newly sent messages by the other side. (The remote
1875 	 * PUT value will have changed since we last looked at it.)
1876 	 */
1877 
1878 	if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1879 		/*
1880 		 * Clear msg->flags in previously received messages, so that
1881 		 * they're ready for xpc_get_deliverable_payload_sn2().
1882 		 */
1883 		xpc_clear_remote_msgqueue_flags_sn2(ch);
1884 
1885 		smp_wmb(); /* ensure flags have been cleared before bte_copy */
1886 		ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1887 
1888 		dev_dbg(xpc_chan, "w_remote_GP.put changed to %lld, partid=%d, "
1889 			"channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1890 			ch->number);
1891 
1892 		npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch);
1893 		if (npayloads_sent > 0) {
1894 			dev_dbg(xpc_chan, "msgs waiting to be copied and "
1895 				"delivered=%d, partid=%d, channel=%d\n",
1896 				npayloads_sent, ch->partid, ch->number);
1897 
1898 			if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1899 				xpc_activate_kthreads(ch, npayloads_sent);
1900 		}
1901 	}
1902 
1903 	xpc_msgqueue_deref(ch);
1904 }
1905 
1906 static struct xpc_msg_sn2 *
xpc_pull_remote_msg_sn2(struct xpc_channel * ch,s64 get)1907 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1908 {
1909 	struct xpc_partition *part = &xpc_partitions[ch->partid];
1910 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1911 	unsigned long remote_msg_pa;
1912 	struct xpc_msg_sn2 *msg;
1913 	u32 msg_index;
1914 	u32 nmsgs;
1915 	u64 msg_offset;
1916 	enum xp_retval ret;
1917 
1918 	if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1919 		/* we were interrupted by a signal */
1920 		return NULL;
1921 	}
1922 
1923 	while (get >= ch_sn2->next_msg_to_pull) {
1924 
1925 		/* pull as many messages as are ready and able to be pulled */
1926 
1927 		msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1928 
1929 		DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1930 		nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1931 		if (msg_index + nmsgs > ch->remote_nentries) {
1932 			/* ignore the ones that wrap the msg queue for now */
1933 			nmsgs = ch->remote_nentries - msg_index;
1934 		}
1935 
1936 		msg_offset = msg_index * ch->entry_size;
1937 		msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1938 		    msg_offset);
1939 		remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset;
1940 
1941 		ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
1942 						     nmsgs * ch->entry_size);
1943 		if (ret != xpSuccess) {
1944 
1945 			dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1946 				" msg %lld from partition %d, channel=%d, "
1947 				"ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1948 				ch->partid, ch->number, ret);
1949 
1950 			XPC_DEACTIVATE_PARTITION(part, ret);
1951 
1952 			mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1953 			return NULL;
1954 		}
1955 
1956 		ch_sn2->next_msg_to_pull += nmsgs;
1957 	}
1958 
1959 	mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1960 
1961 	/* return the message we were looking for */
1962 	msg_offset = (get % ch->remote_nentries) * ch->entry_size;
1963 	msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset);
1964 
1965 	return msg;
1966 }
1967 
1968 /*
1969  * Get the next deliverable message's payload.
1970  */
1971 static void *
xpc_get_deliverable_payload_sn2(struct xpc_channel * ch)1972 xpc_get_deliverable_payload_sn2(struct xpc_channel *ch)
1973 {
1974 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1975 	struct xpc_msg_sn2 *msg;
1976 	void *payload = NULL;
1977 	s64 get;
1978 
1979 	do {
1980 		if (ch->flags & XPC_C_DISCONNECTING)
1981 			break;
1982 
1983 		get = ch_sn2->w_local_GP.get;
1984 		smp_rmb();	/* guarantee that .get loads before .put */
1985 		if (get == ch_sn2->w_remote_GP.put)
1986 			break;
1987 
1988 		/* There are messages waiting to be pulled and delivered.
1989 		 * We need to try to secure one for ourselves. We'll do this
1990 		 * by trying to increment w_local_GP.get and hope that no one
1991 		 * else beats us to it. If they do, we'll we'll simply have
1992 		 * to try again for the next one.
1993 		 */
1994 
1995 		if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1996 			/* we got the entry referenced by get */
1997 
1998 			dev_dbg(xpc_chan, "w_local_GP.get changed to %lld, "
1999 				"partid=%d, channel=%d\n", get + 1,
2000 				ch->partid, ch->number);
2001 
2002 			/* pull the message from the remote partition */
2003 
2004 			msg = xpc_pull_remote_msg_sn2(ch, get);
2005 
2006 			if (msg != NULL) {
2007 				DBUG_ON(msg->number != get);
2008 				DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2009 				DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2010 
2011 				payload = &msg->payload;
2012 			}
2013 			break;
2014 		}
2015 
2016 	} while (1);
2017 
2018 	return payload;
2019 }
2020 
2021 /*
2022  * Now we actually send the messages that are ready to be sent by advancing
2023  * the local message queue's Put value and then send a chctl msgrequest to the
2024  * recipient partition.
2025  */
2026 static void
xpc_send_msgs_sn2(struct xpc_channel * ch,s64 initial_put)2027 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2028 {
2029 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2030 	struct xpc_msg_sn2 *msg;
2031 	s64 put = initial_put + 1;
2032 	int send_msgrequest = 0;
2033 
2034 	while (1) {
2035 
2036 		while (1) {
2037 			if (put == ch_sn2->w_local_GP.put)
2038 				break;
2039 
2040 			msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2041 						     local_msgqueue + (put %
2042 						     ch->local_nentries) *
2043 						     ch->entry_size);
2044 
2045 			if (!(msg->flags & XPC_M_SN2_READY))
2046 				break;
2047 
2048 			put++;
2049 		}
2050 
2051 		if (put == initial_put) {
2052 			/* nothing's changed */
2053 			break;
2054 		}
2055 
2056 		if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2057 		    initial_put) {
2058 			/* someone else beat us to it */
2059 			DBUG_ON(ch_sn2->local_GP->put < initial_put);
2060 			break;
2061 		}
2062 
2063 		/* we just set the new value of local_GP->put */
2064 
2065 		dev_dbg(xpc_chan, "local_GP->put changed to %lld, partid=%d, "
2066 			"channel=%d\n", put, ch->partid, ch->number);
2067 
2068 		send_msgrequest = 1;
2069 
2070 		/*
2071 		 * We need to ensure that the message referenced by
2072 		 * local_GP->put is not XPC_M_SN2_READY or that local_GP->put
2073 		 * equals w_local_GP.put, so we'll go have a look.
2074 		 */
2075 		initial_put = put;
2076 	}
2077 
2078 	if (send_msgrequest)
2079 		xpc_send_chctl_msgrequest_sn2(ch);
2080 }
2081 
2082 /*
2083  * Allocate an entry for a message from the message queue associated with the
2084  * specified channel.
2085  */
2086 static enum xp_retval
xpc_allocate_msg_sn2(struct xpc_channel * ch,u32 flags,struct xpc_msg_sn2 ** address_of_msg)2087 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2088 		     struct xpc_msg_sn2 **address_of_msg)
2089 {
2090 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2091 	struct xpc_msg_sn2 *msg;
2092 	enum xp_retval ret;
2093 	s64 put;
2094 
2095 	/*
2096 	 * Get the next available message entry from the local message queue.
2097 	 * If none are available, we'll make sure that we grab the latest
2098 	 * GP values.
2099 	 */
2100 	ret = xpTimeout;
2101 
2102 	while (1) {
2103 
2104 		put = ch_sn2->w_local_GP.put;
2105 		smp_rmb();	/* guarantee that .put loads before .get */
2106 		if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2107 
2108 			/* There are available message entries. We need to try
2109 			 * to secure one for ourselves. We'll do this by trying
2110 			 * to increment w_local_GP.put as long as someone else
2111 			 * doesn't beat us to it. If they do, we'll have to
2112 			 * try again.
2113 			 */
2114 			if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2115 			    put) {
2116 				/* we got the entry referenced by put */
2117 				break;
2118 			}
2119 			continue;	/* try again */
2120 		}
2121 
2122 		/*
2123 		 * There aren't any available msg entries at this time.
2124 		 *
2125 		 * In waiting for a message entry to become available,
2126 		 * we set a timeout in case the other side is not sending
2127 		 * completion interrupts. This lets us fake a notify IRQ
2128 		 * that will cause the notify IRQ handler to fetch the latest
2129 		 * GP values as if an interrupt was sent by the other side.
2130 		 */
2131 		if (ret == xpTimeout)
2132 			xpc_send_chctl_local_msgrequest_sn2(ch);
2133 
2134 		if (flags & XPC_NOWAIT)
2135 			return xpNoWait;
2136 
2137 		ret = xpc_allocate_msg_wait(ch);
2138 		if (ret != xpInterrupted && ret != xpTimeout)
2139 			return ret;
2140 	}
2141 
2142 	/* get the message's address and initialize it */
2143 	msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
2144 				     (put % ch->local_nentries) *
2145 				     ch->entry_size);
2146 
2147 	DBUG_ON(msg->flags != 0);
2148 	msg->number = put;
2149 
2150 	dev_dbg(xpc_chan, "w_local_GP.put changed to %lld; msg=0x%p, "
2151 		"msg_number=%lld, partid=%d, channel=%d\n", put + 1,
2152 		(void *)msg, msg->number, ch->partid, ch->number);
2153 
2154 	*address_of_msg = msg;
2155 	return xpSuccess;
2156 }
2157 
2158 /*
2159  * Common code that does the actual sending of the message by advancing the
2160  * local message queue's Put value and sends a chctl msgrequest to the
2161  * partition the message is being sent to.
2162  */
2163 static enum xp_retval
xpc_send_payload_sn2(struct xpc_channel * ch,u32 flags,void * payload,u16 payload_size,u8 notify_type,xpc_notify_func func,void * key)2164 xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2165 		     u16 payload_size, u8 notify_type, xpc_notify_func func,
2166 		     void *key)
2167 {
2168 	enum xp_retval ret = xpSuccess;
2169 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2170 	struct xpc_msg_sn2 *msg = msg;
2171 	struct xpc_notify_sn2 *notify = notify;
2172 	s64 msg_number;
2173 	s64 put;
2174 
2175 	DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2176 
2177 	if (XPC_MSG_SIZE(payload_size) > ch->entry_size)
2178 		return xpPayloadTooBig;
2179 
2180 	xpc_msgqueue_ref(ch);
2181 
2182 	if (ch->flags & XPC_C_DISCONNECTING) {
2183 		ret = ch->reason;
2184 		goto out_1;
2185 	}
2186 	if (!(ch->flags & XPC_C_CONNECTED)) {
2187 		ret = xpNotConnected;
2188 		goto out_1;
2189 	}
2190 
2191 	ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2192 	if (ret != xpSuccess)
2193 		goto out_1;
2194 
2195 	msg_number = msg->number;
2196 
2197 	if (notify_type != 0) {
2198 		/*
2199 		 * Tell the remote side to send an ACK interrupt when the
2200 		 * message has been delivered.
2201 		 */
2202 		msg->flags |= XPC_M_SN2_INTERRUPT;
2203 
2204 		atomic_inc(&ch->n_to_notify);
2205 
2206 		notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries];
2207 		notify->func = func;
2208 		notify->key = key;
2209 		notify->type = notify_type;
2210 
2211 		/* ??? Is a mb() needed here? */
2212 
2213 		if (ch->flags & XPC_C_DISCONNECTING) {
2214 			/*
2215 			 * An error occurred between our last error check and
2216 			 * this one. We will try to clear the type field from
2217 			 * the notify entry. If we succeed then
2218 			 * xpc_disconnect_channel() didn't already process
2219 			 * the notify entry.
2220 			 */
2221 			if (cmpxchg(&notify->type, notify_type, 0) ==
2222 			    notify_type) {
2223 				atomic_dec(&ch->n_to_notify);
2224 				ret = ch->reason;
2225 			}
2226 			goto out_1;
2227 		}
2228 	}
2229 
2230 	memcpy(&msg->payload, payload, payload_size);
2231 
2232 	msg->flags |= XPC_M_SN2_READY;
2233 
2234 	/*
2235 	 * The preceding store of msg->flags must occur before the following
2236 	 * load of local_GP->put.
2237 	 */
2238 	smp_mb();
2239 
2240 	/* see if the message is next in line to be sent, if so send it */
2241 
2242 	put = ch_sn2->local_GP->put;
2243 	if (put == msg_number)
2244 		xpc_send_msgs_sn2(ch, put);
2245 
2246 out_1:
2247 	xpc_msgqueue_deref(ch);
2248 	return ret;
2249 }
2250 
2251 /*
2252  * Now we actually acknowledge the messages that have been delivered and ack'd
2253  * by advancing the cached remote message queue's Get value and if requested
2254  * send a chctl msgrequest to the message sender's partition.
2255  *
2256  * If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition
2257  * that sent the message.
2258  */
2259 static void
xpc_acknowledge_msgs_sn2(struct xpc_channel * ch,s64 initial_get,u8 msg_flags)2260 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2261 {
2262 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2263 	struct xpc_msg_sn2 *msg;
2264 	s64 get = initial_get + 1;
2265 	int send_msgrequest = 0;
2266 
2267 	while (1) {
2268 
2269 		while (1) {
2270 			if (get == ch_sn2->w_local_GP.get)
2271 				break;
2272 
2273 			msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2274 						     remote_msgqueue + (get %
2275 						     ch->remote_nentries) *
2276 						     ch->entry_size);
2277 
2278 			if (!(msg->flags & XPC_M_SN2_DONE))
2279 				break;
2280 
2281 			msg_flags |= msg->flags;
2282 			get++;
2283 		}
2284 
2285 		if (get == initial_get) {
2286 			/* nothing's changed */
2287 			break;
2288 		}
2289 
2290 		if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2291 		    initial_get) {
2292 			/* someone else beat us to it */
2293 			DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2294 			break;
2295 		}
2296 
2297 		/* we just set the new value of local_GP->get */
2298 
2299 		dev_dbg(xpc_chan, "local_GP->get changed to %lld, partid=%d, "
2300 			"channel=%d\n", get, ch->partid, ch->number);
2301 
2302 		send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT);
2303 
2304 		/*
2305 		 * We need to ensure that the message referenced by
2306 		 * local_GP->get is not XPC_M_SN2_DONE or that local_GP->get
2307 		 * equals w_local_GP.get, so we'll go have a look.
2308 		 */
2309 		initial_get = get;
2310 	}
2311 
2312 	if (send_msgrequest)
2313 		xpc_send_chctl_msgrequest_sn2(ch);
2314 }
2315 
2316 static void
xpc_received_payload_sn2(struct xpc_channel * ch,void * payload)2317 xpc_received_payload_sn2(struct xpc_channel *ch, void *payload)
2318 {
2319 	struct xpc_msg_sn2 *msg;
2320 	s64 msg_number;
2321 	s64 get;
2322 
2323 	msg = container_of(payload, struct xpc_msg_sn2, payload);
2324 	msg_number = msg->number;
2325 
2326 	dev_dbg(xpc_chan, "msg=0x%p, msg_number=%lld, partid=%d, channel=%d\n",
2327 		(void *)msg, msg_number, ch->partid, ch->number);
2328 
2329 	DBUG_ON((((u64)msg - (u64)ch->sn.sn2.remote_msgqueue) / ch->entry_size) !=
2330 		msg_number % ch->remote_nentries);
2331 	DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2332 	DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2333 
2334 	msg->flags |= XPC_M_SN2_DONE;
2335 
2336 	/*
2337 	 * The preceding store of msg->flags must occur before the following
2338 	 * load of local_GP->get.
2339 	 */
2340 	smp_mb();
2341 
2342 	/*
2343 	 * See if this message is next in line to be acknowledged as having
2344 	 * been delivered.
2345 	 */
2346 	get = ch->sn.sn2.local_GP->get;
2347 	if (get == msg_number)
2348 		xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2349 }
2350 
2351 static struct xpc_arch_operations xpc_arch_ops_sn2 = {
2352 	.setup_partitions = xpc_setup_partitions_sn2,
2353 	.teardown_partitions = xpc_teardown_partitions_sn2,
2354 	.process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2,
2355 	.get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2,
2356 	.setup_rsvd_page = xpc_setup_rsvd_page_sn2,
2357 
2358 	.allow_hb = xpc_allow_hb_sn2,
2359 	.disallow_hb = xpc_disallow_hb_sn2,
2360 	.disallow_all_hbs = xpc_disallow_all_hbs_sn2,
2361 	.increment_heartbeat = xpc_increment_heartbeat_sn2,
2362 	.offline_heartbeat = xpc_offline_heartbeat_sn2,
2363 	.online_heartbeat = xpc_online_heartbeat_sn2,
2364 	.heartbeat_init = xpc_heartbeat_init_sn2,
2365 	.heartbeat_exit = xpc_heartbeat_exit_sn2,
2366 	.get_remote_heartbeat = xpc_get_remote_heartbeat_sn2,
2367 
2368 	.request_partition_activation =
2369 		xpc_request_partition_activation_sn2,
2370 	.request_partition_reactivation =
2371 		xpc_request_partition_reactivation_sn2,
2372 	.request_partition_deactivation =
2373 		xpc_request_partition_deactivation_sn2,
2374 	.cancel_partition_deactivation_request =
2375 		xpc_cancel_partition_deactivation_request_sn2,
2376 
2377 	.setup_ch_structures = xpc_setup_ch_structures_sn2,
2378 	.teardown_ch_structures = xpc_teardown_ch_structures_sn2,
2379 
2380 	.make_first_contact = xpc_make_first_contact_sn2,
2381 
2382 	.get_chctl_all_flags = xpc_get_chctl_all_flags_sn2,
2383 	.send_chctl_closerequest = xpc_send_chctl_closerequest_sn2,
2384 	.send_chctl_closereply = xpc_send_chctl_closereply_sn2,
2385 	.send_chctl_openrequest = xpc_send_chctl_openrequest_sn2,
2386 	.send_chctl_openreply = xpc_send_chctl_openreply_sn2,
2387 	.send_chctl_opencomplete = xpc_send_chctl_opencomplete_sn2,
2388 	.process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2,
2389 
2390 	.save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2,
2391 
2392 	.setup_msg_structures = xpc_setup_msg_structures_sn2,
2393 	.teardown_msg_structures = xpc_teardown_msg_structures_sn2,
2394 
2395 	.indicate_partition_engaged = xpc_indicate_partition_engaged_sn2,
2396 	.indicate_partition_disengaged = xpc_indicate_partition_disengaged_sn2,
2397 	.partition_engaged = xpc_partition_engaged_sn2,
2398 	.any_partition_engaged = xpc_any_partition_engaged_sn2,
2399 	.assume_partition_disengaged = xpc_assume_partition_disengaged_sn2,
2400 
2401 	.n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2,
2402 	.send_payload = xpc_send_payload_sn2,
2403 	.get_deliverable_payload = xpc_get_deliverable_payload_sn2,
2404 	.received_payload = xpc_received_payload_sn2,
2405 	.notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2,
2406 };
2407 
2408 int
xpc_init_sn2(void)2409 xpc_init_sn2(void)
2410 {
2411 	int ret;
2412 	size_t buf_size;
2413 
2414 	xpc_arch_ops = xpc_arch_ops_sn2;
2415 
2416 	if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) {
2417 		dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is "
2418 			"larger than %d\n", XPC_MSG_HDR_MAX_SIZE);
2419 		return -E2BIG;
2420 	}
2421 
2422 	buf_size = max(XPC_RP_VARS_SIZE,
2423 		       XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2424 	xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2425 								   GFP_KERNEL,
2426 					      &xpc_remote_copy_buffer_base_sn2);
2427 	if (xpc_remote_copy_buffer_sn2 == NULL) {
2428 		dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2429 		return -ENOMEM;
2430 	}
2431 
2432 	/* open up protections for IPI and [potentially] amo operations */
2433 	xpc_allow_IPI_ops_sn2();
2434 	xpc_allow_amo_ops_shub_wars_1_1_sn2();
2435 
2436 	/*
2437 	 * This is safe to do before the xpc_hb_checker thread has started
2438 	 * because the handler releases a wait queue.  If an interrupt is
2439 	 * received before the thread is waiting, it will not go to sleep,
2440 	 * but rather immediately process the interrupt.
2441 	 */
2442 	ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2443 			  "xpc hb", NULL);
2444 	if (ret != 0) {
2445 		dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2446 			"errno=%d\n", -ret);
2447 		xpc_disallow_IPI_ops_sn2();
2448 		kfree(xpc_remote_copy_buffer_base_sn2);
2449 	}
2450 	return ret;
2451 }
2452 
2453 void
xpc_exit_sn2(void)2454 xpc_exit_sn2(void)
2455 {
2456 	free_irq(SGI_XPC_ACTIVATE, NULL);
2457 	xpc_disallow_IPI_ops_sn2();
2458 	kfree(xpc_remote_copy_buffer_base_sn2);
2459 }
2460