1 /*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/pci.h>
18 #include <linux/jiffies.h>
19 #include <linux/ktime.h>
20 #include <linux/delay.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/pm_runtime.h>
24
25 #include <linux/mei.h>
26
27 #include "mei_dev.h"
28 #include "hw-txe.h"
29 #include "client.h"
30 #include "hbm.h"
31
32 #include "mei-trace.h"
33
34 #define TXE_HBUF_DEPTH (PAYLOAD_SIZE / MEI_SLOT_SIZE)
35
36 /**
37 * mei_txe_reg_read - Reads 32bit data from the txe device
38 *
39 * @base_addr: registers base address
40 * @offset: register offset
41 *
42 * Return: register value
43 */
mei_txe_reg_read(void __iomem * base_addr,unsigned long offset)44 static inline u32 mei_txe_reg_read(void __iomem *base_addr,
45 unsigned long offset)
46 {
47 return ioread32(base_addr + offset);
48 }
49
50 /**
51 * mei_txe_reg_write - Writes 32bit data to the txe device
52 *
53 * @base_addr: registers base address
54 * @offset: register offset
55 * @value: the value to write
56 */
mei_txe_reg_write(void __iomem * base_addr,unsigned long offset,u32 value)57 static inline void mei_txe_reg_write(void __iomem *base_addr,
58 unsigned long offset, u32 value)
59 {
60 iowrite32(value, base_addr + offset);
61 }
62
63 /**
64 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
65 *
66 * @hw: the txe hardware structure
67 * @offset: register offset
68 *
69 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
70 *
71 * Return: register value
72 */
mei_txe_sec_reg_read_silent(struct mei_txe_hw * hw,unsigned long offset)73 static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
74 unsigned long offset)
75 {
76 return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
77 }
78
79 /**
80 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
81 *
82 * @hw: the txe hardware structure
83 * @offset: register offset
84 *
85 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
86 *
87 * Return: register value
88 */
mei_txe_sec_reg_read(struct mei_txe_hw * hw,unsigned long offset)89 static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
90 unsigned long offset)
91 {
92 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
93 return mei_txe_sec_reg_read_silent(hw, offset);
94 }
95 /**
96 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
97 * doesn't check for aliveness
98 *
99 * @hw: the txe hardware structure
100 * @offset: register offset
101 * @value: value to write
102 *
103 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
104 */
mei_txe_sec_reg_write_silent(struct mei_txe_hw * hw,unsigned long offset,u32 value)105 static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
106 unsigned long offset, u32 value)
107 {
108 mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
109 }
110
111 /**
112 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
113 *
114 * @hw: the txe hardware structure
115 * @offset: register offset
116 * @value: value to write
117 *
118 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
119 */
mei_txe_sec_reg_write(struct mei_txe_hw * hw,unsigned long offset,u32 value)120 static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
121 unsigned long offset, u32 value)
122 {
123 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
124 mei_txe_sec_reg_write_silent(hw, offset, value);
125 }
126 /**
127 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
128 *
129 * @hw: the txe hardware structure
130 * @offset: offset from which to read the data
131 *
132 * Return: the byte read.
133 */
mei_txe_br_reg_read(struct mei_txe_hw * hw,unsigned long offset)134 static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
135 unsigned long offset)
136 {
137 return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
138 }
139
140 /**
141 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
142 *
143 * @hw: the txe hardware structure
144 * @offset: offset from which to write the data
145 * @value: the byte to write
146 */
mei_txe_br_reg_write(struct mei_txe_hw * hw,unsigned long offset,u32 value)147 static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
148 unsigned long offset, u32 value)
149 {
150 mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
151 }
152
153 /**
154 * mei_txe_aliveness_set - request for aliveness change
155 *
156 * @dev: the device structure
157 * @req: requested aliveness value
158 *
159 * Request for aliveness change and returns true if the change is
160 * really needed and false if aliveness is already
161 * in the requested state
162 *
163 * Locking: called under "dev->device_lock" lock
164 *
165 * Return: true if request was send
166 */
mei_txe_aliveness_set(struct mei_device * dev,u32 req)167 static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
168 {
169
170 struct mei_txe_hw *hw = to_txe_hw(dev);
171 bool do_req = hw->aliveness != req;
172
173 dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
174 hw->aliveness, req);
175 if (do_req) {
176 dev->pg_event = MEI_PG_EVENT_WAIT;
177 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
178 }
179 return do_req;
180 }
181
182
183 /**
184 * mei_txe_aliveness_req_get - get aliveness requested register value
185 *
186 * @dev: the device structure
187 *
188 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
189 * from HICR_HOST_ALIVENESS_REQ register value
190 *
191 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
192 */
mei_txe_aliveness_req_get(struct mei_device * dev)193 static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
194 {
195 struct mei_txe_hw *hw = to_txe_hw(dev);
196 u32 reg;
197
198 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
199 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
200 }
201
202 /**
203 * mei_txe_aliveness_get - get aliveness response register value
204 *
205 * @dev: the device structure
206 *
207 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
208 * register
209 */
mei_txe_aliveness_get(struct mei_device * dev)210 static u32 mei_txe_aliveness_get(struct mei_device *dev)
211 {
212 struct mei_txe_hw *hw = to_txe_hw(dev);
213 u32 reg;
214
215 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
216 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
217 }
218
219 /**
220 * mei_txe_aliveness_poll - waits for aliveness to settle
221 *
222 * @dev: the device structure
223 * @expected: expected aliveness value
224 *
225 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
226 *
227 * Return: 0 if the expected value was received, -ETIME otherwise
228 */
mei_txe_aliveness_poll(struct mei_device * dev,u32 expected)229 static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
230 {
231 struct mei_txe_hw *hw = to_txe_hw(dev);
232 ktime_t stop, start;
233
234 start = ktime_get();
235 stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
236 do {
237 hw->aliveness = mei_txe_aliveness_get(dev);
238 if (hw->aliveness == expected) {
239 dev->pg_event = MEI_PG_EVENT_IDLE;
240 dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
241 ktime_to_us(ktime_sub(ktime_get(), start)));
242 return 0;
243 }
244 usleep_range(20, 50);
245 } while (ktime_before(ktime_get(), stop));
246
247 dev->pg_event = MEI_PG_EVENT_IDLE;
248 dev_err(dev->dev, "aliveness timed out\n");
249 return -ETIME;
250 }
251
252 /**
253 * mei_txe_aliveness_wait - waits for aliveness to settle
254 *
255 * @dev: the device structure
256 * @expected: expected aliveness value
257 *
258 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
259 *
260 * Return: 0 on success and < 0 otherwise
261 */
mei_txe_aliveness_wait(struct mei_device * dev,u32 expected)262 static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
263 {
264 struct mei_txe_hw *hw = to_txe_hw(dev);
265 const unsigned long timeout =
266 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
267 long err;
268 int ret;
269
270 hw->aliveness = mei_txe_aliveness_get(dev);
271 if (hw->aliveness == expected)
272 return 0;
273
274 mutex_unlock(&dev->device_lock);
275 err = wait_event_timeout(hw->wait_aliveness_resp,
276 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
277 mutex_lock(&dev->device_lock);
278
279 hw->aliveness = mei_txe_aliveness_get(dev);
280 ret = hw->aliveness == expected ? 0 : -ETIME;
281
282 if (ret)
283 dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
284 err, hw->aliveness, dev->pg_event);
285 else
286 dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
287 jiffies_to_msecs(timeout - err),
288 hw->aliveness, dev->pg_event);
289
290 dev->pg_event = MEI_PG_EVENT_IDLE;
291 return ret;
292 }
293
294 /**
295 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
296 *
297 * @dev: the device structure
298 * @req: requested aliveness value
299 *
300 * Return: 0 on success and < 0 otherwise
301 */
mei_txe_aliveness_set_sync(struct mei_device * dev,u32 req)302 int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
303 {
304 if (mei_txe_aliveness_set(dev, req))
305 return mei_txe_aliveness_wait(dev, req);
306 return 0;
307 }
308
309 /**
310 * mei_txe_pg_in_transition - is device now in pg transition
311 *
312 * @dev: the device structure
313 *
314 * Return: true if in pg transition, false otherwise
315 */
mei_txe_pg_in_transition(struct mei_device * dev)316 static bool mei_txe_pg_in_transition(struct mei_device *dev)
317 {
318 return dev->pg_event == MEI_PG_EVENT_WAIT;
319 }
320
321 /**
322 * mei_txe_pg_is_enabled - detect if PG is supported by HW
323 *
324 * @dev: the device structure
325 *
326 * Return: true is pg supported, false otherwise
327 */
mei_txe_pg_is_enabled(struct mei_device * dev)328 static bool mei_txe_pg_is_enabled(struct mei_device *dev)
329 {
330 return true;
331 }
332
333 /**
334 * mei_txe_pg_state - translate aliveness register value
335 * to the mei power gating state
336 *
337 * @dev: the device structure
338 *
339 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
340 */
mei_txe_pg_state(struct mei_device * dev)341 static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
342 {
343 struct mei_txe_hw *hw = to_txe_hw(dev);
344
345 return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
346 }
347
348 /**
349 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
350 *
351 * @dev: the device structure
352 */
mei_txe_input_ready_interrupt_enable(struct mei_device * dev)353 static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
354 {
355 struct mei_txe_hw *hw = to_txe_hw(dev);
356 u32 hintmsk;
357 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
358 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
359 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
360 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
361 }
362
363 /**
364 * mei_txe_input_doorbell_set - sets bit 0 in
365 * SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
366 *
367 * @hw: the txe hardware structure
368 */
mei_txe_input_doorbell_set(struct mei_txe_hw * hw)369 static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
370 {
371 /* Clear the interrupt cause */
372 clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
373 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
374 }
375
376 /**
377 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
378 *
379 * @hw: the txe hardware structure
380 */
mei_txe_output_ready_set(struct mei_txe_hw * hw)381 static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
382 {
383 mei_txe_br_reg_write(hw,
384 SICR_SEC_IPC_OUTPUT_STATUS_REG,
385 SEC_IPC_OUTPUT_STATUS_RDY);
386 }
387
388 /**
389 * mei_txe_is_input_ready - check if TXE is ready for receiving data
390 *
391 * @dev: the device structure
392 *
393 * Return: true if INPUT STATUS READY bit is set
394 */
mei_txe_is_input_ready(struct mei_device * dev)395 static bool mei_txe_is_input_ready(struct mei_device *dev)
396 {
397 struct mei_txe_hw *hw = to_txe_hw(dev);
398 u32 status;
399
400 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
401 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
402 }
403
404 /**
405 * mei_txe_intr_clear - clear all interrupts
406 *
407 * @dev: the device structure
408 */
mei_txe_intr_clear(struct mei_device * dev)409 static inline void mei_txe_intr_clear(struct mei_device *dev)
410 {
411 struct mei_txe_hw *hw = to_txe_hw(dev);
412
413 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
414 SEC_IPC_HOST_INT_STATUS_PENDING);
415 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
416 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
417 }
418
419 /**
420 * mei_txe_intr_disable - disable all interrupts
421 *
422 * @dev: the device structure
423 */
mei_txe_intr_disable(struct mei_device * dev)424 static void mei_txe_intr_disable(struct mei_device *dev)
425 {
426 struct mei_txe_hw *hw = to_txe_hw(dev);
427
428 mei_txe_br_reg_write(hw, HHIER_REG, 0);
429 mei_txe_br_reg_write(hw, HIER_REG, 0);
430 }
431 /**
432 * mei_txe_intr_enable - enable all interrupts
433 *
434 * @dev: the device structure
435 */
mei_txe_intr_enable(struct mei_device * dev)436 static void mei_txe_intr_enable(struct mei_device *dev)
437 {
438 struct mei_txe_hw *hw = to_txe_hw(dev);
439
440 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
441 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
442 }
443
444 /**
445 * mei_txe_synchronize_irq - wait for pending IRQ handlers
446 *
447 * @dev: the device structure
448 */
mei_txe_synchronize_irq(struct mei_device * dev)449 static void mei_txe_synchronize_irq(struct mei_device *dev)
450 {
451 struct pci_dev *pdev = to_pci_dev(dev->dev);
452
453 synchronize_irq(pdev->irq);
454 }
455
456 /**
457 * mei_txe_pending_interrupts - check if there are pending interrupts
458 * only Aliveness, Input ready, and output doorbell are of relevance
459 *
460 * @dev: the device structure
461 *
462 * Checks if there are pending interrupts
463 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
464 *
465 * Return: true if there are pending interrupts
466 */
mei_txe_pending_interrupts(struct mei_device * dev)467 static bool mei_txe_pending_interrupts(struct mei_device *dev)
468 {
469
470 struct mei_txe_hw *hw = to_txe_hw(dev);
471 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
472 TXE_INTR_ALIVENESS |
473 TXE_INTR_IN_READY |
474 TXE_INTR_OUT_DB));
475
476 if (ret) {
477 dev_dbg(dev->dev,
478 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
479 !!(hw->intr_cause & TXE_INTR_IN_READY),
480 !!(hw->intr_cause & TXE_INTR_READINESS),
481 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
482 !!(hw->intr_cause & TXE_INTR_OUT_DB));
483 }
484 return ret;
485 }
486
487 /**
488 * mei_txe_input_payload_write - write a dword to the host buffer
489 * at offset idx
490 *
491 * @dev: the device structure
492 * @idx: index in the host buffer
493 * @value: value
494 */
mei_txe_input_payload_write(struct mei_device * dev,unsigned long idx,u32 value)495 static void mei_txe_input_payload_write(struct mei_device *dev,
496 unsigned long idx, u32 value)
497 {
498 struct mei_txe_hw *hw = to_txe_hw(dev);
499
500 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
501 (idx * sizeof(u32)), value);
502 }
503
504 /**
505 * mei_txe_out_data_read - read dword from the device buffer
506 * at offset idx
507 *
508 * @dev: the device structure
509 * @idx: index in the device buffer
510 *
511 * Return: register value at index
512 */
mei_txe_out_data_read(const struct mei_device * dev,unsigned long idx)513 static u32 mei_txe_out_data_read(const struct mei_device *dev,
514 unsigned long idx)
515 {
516 struct mei_txe_hw *hw = to_txe_hw(dev);
517
518 return mei_txe_br_reg_read(hw,
519 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
520 }
521
522 /* Readiness */
523
524 /**
525 * mei_txe_readiness_set_host_rdy - set host readiness bit
526 *
527 * @dev: the device structure
528 */
mei_txe_readiness_set_host_rdy(struct mei_device * dev)529 static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
530 {
531 struct mei_txe_hw *hw = to_txe_hw(dev);
532
533 mei_txe_br_reg_write(hw,
534 SICR_HOST_IPC_READINESS_REQ_REG,
535 SICR_HOST_IPC_READINESS_HOST_RDY);
536 }
537
538 /**
539 * mei_txe_readiness_clear - clear host readiness bit
540 *
541 * @dev: the device structure
542 */
mei_txe_readiness_clear(struct mei_device * dev)543 static void mei_txe_readiness_clear(struct mei_device *dev)
544 {
545 struct mei_txe_hw *hw = to_txe_hw(dev);
546
547 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
548 SICR_HOST_IPC_READINESS_RDY_CLR);
549 }
550 /**
551 * mei_txe_readiness_get - Reads and returns
552 * the HICR_SEC_IPC_READINESS register value
553 *
554 * @dev: the device structure
555 *
556 * Return: the HICR_SEC_IPC_READINESS register value
557 */
mei_txe_readiness_get(struct mei_device * dev)558 static u32 mei_txe_readiness_get(struct mei_device *dev)
559 {
560 struct mei_txe_hw *hw = to_txe_hw(dev);
561
562 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
563 }
564
565
566 /**
567 * mei_txe_readiness_is_sec_rdy - check readiness
568 * for HICR_SEC_IPC_READINESS_SEC_RDY
569 *
570 * @readiness: cached readiness state
571 *
572 * Return: true if readiness bit is set
573 */
mei_txe_readiness_is_sec_rdy(u32 readiness)574 static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
575 {
576 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
577 }
578
579 /**
580 * mei_txe_hw_is_ready - check if the hw is ready
581 *
582 * @dev: the device structure
583 *
584 * Return: true if sec is ready
585 */
mei_txe_hw_is_ready(struct mei_device * dev)586 static bool mei_txe_hw_is_ready(struct mei_device *dev)
587 {
588 u32 readiness = mei_txe_readiness_get(dev);
589
590 return mei_txe_readiness_is_sec_rdy(readiness);
591 }
592
593 /**
594 * mei_txe_host_is_ready - check if the host is ready
595 *
596 * @dev: the device structure
597 *
598 * Return: true if host is ready
599 */
mei_txe_host_is_ready(struct mei_device * dev)600 static inline bool mei_txe_host_is_ready(struct mei_device *dev)
601 {
602 struct mei_txe_hw *hw = to_txe_hw(dev);
603 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
604
605 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
606 }
607
608 /**
609 * mei_txe_readiness_wait - wait till readiness settles
610 *
611 * @dev: the device structure
612 *
613 * Return: 0 on success and -ETIME on timeout
614 */
mei_txe_readiness_wait(struct mei_device * dev)615 static int mei_txe_readiness_wait(struct mei_device *dev)
616 {
617 if (mei_txe_hw_is_ready(dev))
618 return 0;
619
620 mutex_unlock(&dev->device_lock);
621 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
622 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
623 mutex_lock(&dev->device_lock);
624 if (!dev->recvd_hw_ready) {
625 dev_err(dev->dev, "wait for readiness failed\n");
626 return -ETIME;
627 }
628
629 dev->recvd_hw_ready = false;
630 return 0;
631 }
632
633 static const struct mei_fw_status mei_txe_fw_sts = {
634 .count = 2,
635 .status[0] = PCI_CFG_TXE_FW_STS0,
636 .status[1] = PCI_CFG_TXE_FW_STS1
637 };
638
639 /**
640 * mei_txe_fw_status - read fw status register from pci config space
641 *
642 * @dev: mei device
643 * @fw_status: fw status register values
644 *
645 * Return: 0 on success, error otherwise
646 */
mei_txe_fw_status(struct mei_device * dev,struct mei_fw_status * fw_status)647 static int mei_txe_fw_status(struct mei_device *dev,
648 struct mei_fw_status *fw_status)
649 {
650 const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
651 struct pci_dev *pdev = to_pci_dev(dev->dev);
652 int ret;
653 int i;
654
655 if (!fw_status)
656 return -EINVAL;
657
658 fw_status->count = fw_src->count;
659 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
660 ret = pci_read_config_dword(pdev, fw_src->status[i],
661 &fw_status->status[i]);
662 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
663 fw_src->status[i],
664 fw_status->status[i]);
665 if (ret)
666 return ret;
667 }
668
669 return 0;
670 }
671
672 /**
673 * mei_txe_hw_config - configure hardware at the start of the devices
674 *
675 * @dev: the device structure
676 *
677 * Configure hardware at the start of the device should be done only
678 * once at the device probe time
679 */
mei_txe_hw_config(struct mei_device * dev)680 static void mei_txe_hw_config(struct mei_device *dev)
681 {
682
683 struct mei_txe_hw *hw = to_txe_hw(dev);
684
685 hw->aliveness = mei_txe_aliveness_get(dev);
686 hw->readiness = mei_txe_readiness_get(dev);
687
688 dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
689 hw->aliveness, hw->readiness);
690 }
691
692 /**
693 * mei_txe_write - writes a message to device.
694 *
695 * @dev: the device structure
696 * @hdr: header of message
697 * @hdr_len: header length in bytes - must multiplication of a slot (4bytes)
698 * @data: payload
699 * @data_len: paylead length in bytes
700 *
701 * Return: 0 if success, < 0 - otherwise.
702 */
mei_txe_write(struct mei_device * dev,const void * hdr,size_t hdr_len,const void * data,size_t data_len)703 static int mei_txe_write(struct mei_device *dev,
704 const void *hdr, size_t hdr_len,
705 const void *data, size_t data_len)
706 {
707 struct mei_txe_hw *hw = to_txe_hw(dev);
708 unsigned long rem;
709 const u32 *reg_buf;
710 u32 slots = TXE_HBUF_DEPTH;
711 u32 dw_cnt;
712 unsigned long i, j;
713
714 if (WARN_ON(!hdr || !data || hdr_len & 0x3))
715 return -EINVAL;
716
717 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
718
719 dw_cnt = mei_data2slots(hdr_len + data_len);
720 if (dw_cnt > slots)
721 return -EMSGSIZE;
722
723 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
724 return -EAGAIN;
725
726 /* Enable Input Ready Interrupt. */
727 mei_txe_input_ready_interrupt_enable(dev);
728
729 if (!mei_txe_is_input_ready(dev)) {
730 char fw_sts_str[MEI_FW_STATUS_STR_SZ];
731
732 mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
733 dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
734 return -EAGAIN;
735 }
736
737 reg_buf = hdr;
738 for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
739 mei_txe_input_payload_write(dev, i, reg_buf[i]);
740
741 reg_buf = data;
742 for (j = 0; j < data_len / MEI_SLOT_SIZE; j++)
743 mei_txe_input_payload_write(dev, i + j, reg_buf[j]);
744
745 rem = data_len & 0x3;
746 if (rem > 0) {
747 u32 reg = 0;
748
749 memcpy(®, (const u8 *)data + data_len - rem, rem);
750 mei_txe_input_payload_write(dev, i + j, reg);
751 }
752
753 /* after each write the whole buffer is consumed */
754 hw->slots = 0;
755
756 /* Set Input-Doorbell */
757 mei_txe_input_doorbell_set(hw);
758
759 return 0;
760 }
761
762 /**
763 * mei_txe_hbuf_depth - mimics the me hbuf circular buffer
764 *
765 * @dev: the device structure
766 *
767 * Return: the TXE_HBUF_DEPTH
768 */
mei_txe_hbuf_depth(const struct mei_device * dev)769 static u32 mei_txe_hbuf_depth(const struct mei_device *dev)
770 {
771 return TXE_HBUF_DEPTH;
772 }
773
774 /**
775 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
776 *
777 * @dev: the device structure
778 *
779 * Return: always TXE_HBUF_DEPTH
780 */
mei_txe_hbuf_empty_slots(struct mei_device * dev)781 static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
782 {
783 struct mei_txe_hw *hw = to_txe_hw(dev);
784
785 return hw->slots;
786 }
787
788 /**
789 * mei_txe_count_full_read_slots - mimics the me device circular buffer
790 *
791 * @dev: the device structure
792 *
793 * Return: always buffer size in dwords count
794 */
mei_txe_count_full_read_slots(struct mei_device * dev)795 static int mei_txe_count_full_read_slots(struct mei_device *dev)
796 {
797 /* read buffers has static size */
798 return TXE_HBUF_DEPTH;
799 }
800
801 /**
802 * mei_txe_read_hdr - read message header which is always in 4 first bytes
803 *
804 * @dev: the device structure
805 *
806 * Return: mei message header
807 */
808
mei_txe_read_hdr(const struct mei_device * dev)809 static u32 mei_txe_read_hdr(const struct mei_device *dev)
810 {
811 return mei_txe_out_data_read(dev, 0);
812 }
813 /**
814 * mei_txe_read - reads a message from the txe device.
815 *
816 * @dev: the device structure
817 * @buf: message buffer will be written
818 * @len: message size will be read
819 *
820 * Return: -EINVAL on error wrong argument and 0 on success
821 */
mei_txe_read(struct mei_device * dev,unsigned char * buf,unsigned long len)822 static int mei_txe_read(struct mei_device *dev,
823 unsigned char *buf, unsigned long len)
824 {
825
826 struct mei_txe_hw *hw = to_txe_hw(dev);
827 u32 *reg_buf, reg;
828 u32 rem;
829 u32 i;
830
831 if (WARN_ON(!buf || !len))
832 return -EINVAL;
833
834 reg_buf = (u32 *)buf;
835 rem = len & 0x3;
836
837 dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
838 len, mei_txe_out_data_read(dev, 0));
839
840 for (i = 0; i < len / MEI_SLOT_SIZE; i++) {
841 /* skip header: index starts from 1 */
842 reg = mei_txe_out_data_read(dev, i + 1);
843 dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
844 *reg_buf++ = reg;
845 }
846
847 if (rem) {
848 reg = mei_txe_out_data_read(dev, i + 1);
849 memcpy(reg_buf, ®, rem);
850 }
851
852 mei_txe_output_ready_set(hw);
853 return 0;
854 }
855
856 /**
857 * mei_txe_hw_reset - resets host and fw.
858 *
859 * @dev: the device structure
860 * @intr_enable: if interrupt should be enabled after reset.
861 *
862 * Return: 0 on success and < 0 in case of error
863 */
mei_txe_hw_reset(struct mei_device * dev,bool intr_enable)864 static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
865 {
866 struct mei_txe_hw *hw = to_txe_hw(dev);
867
868 u32 aliveness_req;
869 /*
870 * read input doorbell to ensure consistency between Bridge and SeC
871 * return value might be garbage return
872 */
873 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
874
875 aliveness_req = mei_txe_aliveness_req_get(dev);
876 hw->aliveness = mei_txe_aliveness_get(dev);
877
878 /* Disable interrupts in this stage we will poll */
879 mei_txe_intr_disable(dev);
880
881 /*
882 * If Aliveness Request and Aliveness Response are not equal then
883 * wait for them to be equal
884 * Since we might have interrupts disabled - poll for it
885 */
886 if (aliveness_req != hw->aliveness)
887 if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
888 dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
889 return -EIO;
890 }
891
892 /*
893 * If Aliveness Request and Aliveness Response are set then clear them
894 */
895 if (aliveness_req) {
896 mei_txe_aliveness_set(dev, 0);
897 if (mei_txe_aliveness_poll(dev, 0) < 0) {
898 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
899 return -EIO;
900 }
901 }
902
903 /*
904 * Set readiness RDY_CLR bit
905 */
906 mei_txe_readiness_clear(dev);
907
908 return 0;
909 }
910
911 /**
912 * mei_txe_hw_start - start the hardware after reset
913 *
914 * @dev: the device structure
915 *
916 * Return: 0 on success an error code otherwise
917 */
mei_txe_hw_start(struct mei_device * dev)918 static int mei_txe_hw_start(struct mei_device *dev)
919 {
920 struct mei_txe_hw *hw = to_txe_hw(dev);
921 int ret;
922
923 u32 hisr;
924
925 /* bring back interrupts */
926 mei_txe_intr_enable(dev);
927
928 ret = mei_txe_readiness_wait(dev);
929 if (ret < 0) {
930 dev_err(dev->dev, "waiting for readiness failed\n");
931 return ret;
932 }
933
934 /*
935 * If HISR.INT2_STS interrupt status bit is set then clear it.
936 */
937 hisr = mei_txe_br_reg_read(hw, HISR_REG);
938 if (hisr & HISR_INT_2_STS)
939 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
940
941 /* Clear the interrupt cause of OutputDoorbell */
942 clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
943
944 ret = mei_txe_aliveness_set_sync(dev, 1);
945 if (ret < 0) {
946 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
947 return ret;
948 }
949
950 pm_runtime_set_active(dev->dev);
951
952 /* enable input ready interrupts:
953 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
954 */
955 mei_txe_input_ready_interrupt_enable(dev);
956
957
958 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
959 mei_txe_output_ready_set(hw);
960
961 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
962 */
963 mei_txe_readiness_set_host_rdy(dev);
964
965 return 0;
966 }
967
968 /**
969 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
970 * single bit mask and acknowledge the interrupts
971 *
972 * @dev: the device structure
973 * @do_ack: acknowledge interrupts
974 *
975 * Return: true if found interrupts to process.
976 */
mei_txe_check_and_ack_intrs(struct mei_device * dev,bool do_ack)977 static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
978 {
979 struct mei_txe_hw *hw = to_txe_hw(dev);
980 u32 hisr;
981 u32 hhisr;
982 u32 ipc_isr;
983 u32 aliveness;
984 bool generated;
985
986 /* read interrupt registers */
987 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
988 generated = (hhisr & IPC_HHIER_MSK);
989 if (!generated)
990 goto out;
991
992 hisr = mei_txe_br_reg_read(hw, HISR_REG);
993
994 aliveness = mei_txe_aliveness_get(dev);
995 if (hhisr & IPC_HHIER_SEC && aliveness) {
996 ipc_isr = mei_txe_sec_reg_read_silent(hw,
997 SEC_IPC_HOST_INT_STATUS_REG);
998 } else {
999 ipc_isr = 0;
1000 hhisr &= ~IPC_HHIER_SEC;
1001 }
1002
1003 generated = generated ||
1004 (hisr & HISR_INT_STS_MSK) ||
1005 (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
1006
1007 if (generated && do_ack) {
1008 /* Save the interrupt causes */
1009 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
1010 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
1011 hw->intr_cause |= TXE_INTR_IN_READY;
1012
1013
1014 mei_txe_intr_disable(dev);
1015 /* Clear the interrupts in hierarchy:
1016 * IPC and Bridge, than the High Level */
1017 mei_txe_sec_reg_write_silent(hw,
1018 SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
1019 mei_txe_br_reg_write(hw, HISR_REG, hisr);
1020 mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
1021 }
1022
1023 out:
1024 return generated;
1025 }
1026
1027 /**
1028 * mei_txe_irq_quick_handler - The ISR of the MEI device
1029 *
1030 * @irq: The irq number
1031 * @dev_id: pointer to the device structure
1032 *
1033 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1034 * IRQ_NONE otherwise
1035 */
mei_txe_irq_quick_handler(int irq,void * dev_id)1036 irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1037 {
1038 struct mei_device *dev = dev_id;
1039
1040 if (mei_txe_check_and_ack_intrs(dev, true))
1041 return IRQ_WAKE_THREAD;
1042 return IRQ_NONE;
1043 }
1044
1045
1046 /**
1047 * mei_txe_irq_thread_handler - txe interrupt thread
1048 *
1049 * @irq: The irq number
1050 * @dev_id: pointer to the device structure
1051 *
1052 * Return: IRQ_HANDLED
1053 */
mei_txe_irq_thread_handler(int irq,void * dev_id)1054 irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1055 {
1056 struct mei_device *dev = (struct mei_device *) dev_id;
1057 struct mei_txe_hw *hw = to_txe_hw(dev);
1058 struct list_head cmpl_list;
1059 s32 slots;
1060 int rets = 0;
1061
1062 dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1063 mei_txe_br_reg_read(hw, HHISR_REG),
1064 mei_txe_br_reg_read(hw, HISR_REG),
1065 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1066
1067
1068 /* initialize our complete list */
1069 mutex_lock(&dev->device_lock);
1070 INIT_LIST_HEAD(&cmpl_list);
1071
1072 if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1073 mei_txe_check_and_ack_intrs(dev, true);
1074
1075 /* show irq events */
1076 mei_txe_pending_interrupts(dev);
1077
1078 hw->aliveness = mei_txe_aliveness_get(dev);
1079 hw->readiness = mei_txe_readiness_get(dev);
1080
1081 /* Readiness:
1082 * Detection of TXE driver going through reset
1083 * or TXE driver resetting the HECI interface.
1084 */
1085 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1086 dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1087
1088 /* Check if SeC is going through reset */
1089 if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1090 dev_dbg(dev->dev, "we need to start the dev.\n");
1091 dev->recvd_hw_ready = true;
1092 } else {
1093 dev->recvd_hw_ready = false;
1094 if (dev->dev_state != MEI_DEV_RESETTING) {
1095
1096 dev_warn(dev->dev, "FW not ready: resetting.\n");
1097 schedule_work(&dev->reset_work);
1098 goto end;
1099
1100 }
1101 }
1102 wake_up(&dev->wait_hw_ready);
1103 }
1104
1105 /************************************************************/
1106 /* Check interrupt cause:
1107 * Aliveness: Detection of SeC acknowledge of host request that
1108 * it remain alive or host cancellation of that request.
1109 */
1110
1111 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1112 /* Clear the interrupt cause */
1113 dev_dbg(dev->dev,
1114 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
1115 dev->pg_event = MEI_PG_EVENT_RECEIVED;
1116 if (waitqueue_active(&hw->wait_aliveness_resp))
1117 wake_up(&hw->wait_aliveness_resp);
1118 }
1119
1120
1121 /* Output Doorbell:
1122 * Detection of SeC having sent output to host
1123 */
1124 slots = mei_count_full_read_slots(dev);
1125 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1126 /* Read from TXE */
1127 rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1128 if (rets &&
1129 (dev->dev_state != MEI_DEV_RESETTING &&
1130 dev->dev_state != MEI_DEV_POWER_DOWN)) {
1131 dev_err(dev->dev,
1132 "mei_irq_read_handler ret = %d.\n", rets);
1133
1134 schedule_work(&dev->reset_work);
1135 goto end;
1136 }
1137 }
1138 /* Input Ready: Detection if host can write to SeC */
1139 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1140 dev->hbuf_is_ready = true;
1141 hw->slots = TXE_HBUF_DEPTH;
1142 }
1143
1144 if (hw->aliveness && dev->hbuf_is_ready) {
1145 /* get the real register value */
1146 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1147 rets = mei_irq_write_handler(dev, &cmpl_list);
1148 if (rets && rets != -EMSGSIZE)
1149 dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1150 rets);
1151 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1152 }
1153
1154 mei_irq_compl_handler(dev, &cmpl_list);
1155
1156 end:
1157 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1158
1159 mutex_unlock(&dev->device_lock);
1160
1161 mei_enable_interrupts(dev);
1162 return IRQ_HANDLED;
1163 }
1164
1165 static const struct mei_hw_ops mei_txe_hw_ops = {
1166
1167 .host_is_ready = mei_txe_host_is_ready,
1168
1169 .fw_status = mei_txe_fw_status,
1170 .pg_state = mei_txe_pg_state,
1171
1172 .hw_is_ready = mei_txe_hw_is_ready,
1173 .hw_reset = mei_txe_hw_reset,
1174 .hw_config = mei_txe_hw_config,
1175 .hw_start = mei_txe_hw_start,
1176
1177 .pg_in_transition = mei_txe_pg_in_transition,
1178 .pg_is_enabled = mei_txe_pg_is_enabled,
1179
1180 .intr_clear = mei_txe_intr_clear,
1181 .intr_enable = mei_txe_intr_enable,
1182 .intr_disable = mei_txe_intr_disable,
1183 .synchronize_irq = mei_txe_synchronize_irq,
1184
1185 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1186 .hbuf_is_ready = mei_txe_is_input_ready,
1187 .hbuf_depth = mei_txe_hbuf_depth,
1188
1189 .write = mei_txe_write,
1190
1191 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1192 .read_hdr = mei_txe_read_hdr,
1193
1194 .read = mei_txe_read,
1195
1196 };
1197
1198 /**
1199 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1200 *
1201 * @pdev: pci device
1202 *
1203 * Return: struct mei_device * on success or NULL
1204 */
mei_txe_dev_init(struct pci_dev * pdev)1205 struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1206 {
1207 struct mei_device *dev;
1208 struct mei_txe_hw *hw;
1209
1210 dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1211 sizeof(struct mei_txe_hw), GFP_KERNEL);
1212 if (!dev)
1213 return NULL;
1214
1215 mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1216
1217 hw = to_txe_hw(dev);
1218
1219 init_waitqueue_head(&hw->wait_aliveness_resp);
1220
1221 return dev;
1222 }
1223
1224 /**
1225 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1226 *
1227 * @dev: the device structure
1228 * @addr: physical address start of the range
1229 * @range: physical range size
1230 *
1231 * Return: 0 on success an error code otherwise
1232 */
mei_txe_setup_satt2(struct mei_device * dev,phys_addr_t addr,u32 range)1233 int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1234 {
1235 struct mei_txe_hw *hw = to_txe_hw(dev);
1236
1237 u32 lo32 = lower_32_bits(addr);
1238 u32 hi32 = upper_32_bits(addr);
1239 u32 ctrl;
1240
1241 /* SATT is limited to 36 Bits */
1242 if (hi32 & ~0xF)
1243 return -EINVAL;
1244
1245 /* SATT has to be 16Byte aligned */
1246 if (lo32 & 0xF)
1247 return -EINVAL;
1248
1249 /* SATT range has to be 4Bytes aligned */
1250 if (range & 0x4)
1251 return -EINVAL;
1252
1253 /* SATT is limited to 32 MB range*/
1254 if (range > SATT_RANGE_MAX)
1255 return -EINVAL;
1256
1257 ctrl = SATT2_CTRL_VALID_MSK;
1258 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1259
1260 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1261 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1262 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1263 dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1264 range, lo32, ctrl);
1265
1266 return 0;
1267 }
1268