1 /*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/pci.h>
18
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sizes.h>
23
24 #include "mei_dev.h"
25 #include "hbm.h"
26
27 #include "hw-me.h"
28 #include "hw-me-regs.h"
29
30 #include "mei-trace.h"
31
32 /**
33 * mei_me_reg_read - Reads 32bit data from the mei device
34 *
35 * @hw: the me hardware structure
36 * @offset: offset from which to read the data
37 *
38 * Return: register value (u32)
39 */
mei_me_reg_read(const struct mei_me_hw * hw,unsigned long offset)40 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
41 unsigned long offset)
42 {
43 return ioread32(hw->mem_addr + offset);
44 }
45
46
47 /**
48 * mei_me_reg_write - Writes 32bit data to the mei device
49 *
50 * @hw: the me hardware structure
51 * @offset: offset from which to write the data
52 * @value: register value to write (u32)
53 */
mei_me_reg_write(const struct mei_me_hw * hw,unsigned long offset,u32 value)54 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
55 unsigned long offset, u32 value)
56 {
57 iowrite32(value, hw->mem_addr + offset);
58 }
59
60 /**
61 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
62 * read window register
63 *
64 * @dev: the device structure
65 *
66 * Return: ME_CB_RW register value (u32)
67 */
mei_me_mecbrw_read(const struct mei_device * dev)68 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
69 {
70 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
71 }
72
73 /**
74 * mei_me_hcbww_write - write 32bit data to the host circular buffer
75 *
76 * @dev: the device structure
77 * @data: 32bit data to be written to the host circular buffer
78 */
mei_me_hcbww_write(struct mei_device * dev,u32 data)79 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
80 {
81 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
82 }
83
84 /**
85 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
86 *
87 * @dev: the device structure
88 *
89 * Return: ME_CSR_HA register value (u32)
90 */
mei_me_mecsr_read(const struct mei_device * dev)91 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
92 {
93 u32 reg;
94
95 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
96 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
97
98 return reg;
99 }
100
101 /**
102 * mei_hcsr_read - Reads 32bit data from the host CSR
103 *
104 * @dev: the device structure
105 *
106 * Return: H_CSR register value (u32)
107 */
mei_hcsr_read(const struct mei_device * dev)108 static inline u32 mei_hcsr_read(const struct mei_device *dev)
109 {
110 u32 reg;
111
112 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
113 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
114
115 return reg;
116 }
117
118 /**
119 * mei_hcsr_write - writes H_CSR register to the mei device
120 *
121 * @dev: the device structure
122 * @reg: new register value
123 */
mei_hcsr_write(struct mei_device * dev,u32 reg)124 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
125 {
126 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
127 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
128 }
129
130 /**
131 * mei_hcsr_set - writes H_CSR register to the mei device,
132 * and ignores the H_IS bit for it is write-one-to-zero.
133 *
134 * @dev: the device structure
135 * @reg: new register value
136 */
mei_hcsr_set(struct mei_device * dev,u32 reg)137 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
138 {
139 reg &= ~H_CSR_IS_MASK;
140 mei_hcsr_write(dev, reg);
141 }
142
143 /**
144 * mei_hcsr_set_hig - set host interrupt (set H_IG)
145 *
146 * @dev: the device structure
147 */
mei_hcsr_set_hig(struct mei_device * dev)148 static inline void mei_hcsr_set_hig(struct mei_device *dev)
149 {
150 u32 hcsr;
151
152 hcsr = mei_hcsr_read(dev) | H_IG;
153 mei_hcsr_set(dev, hcsr);
154 }
155
156 /**
157 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
158 *
159 * @dev: the device structure
160 *
161 * Return: H_D0I3C register value (u32)
162 */
mei_me_d0i3c_read(const struct mei_device * dev)163 static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
164 {
165 u32 reg;
166
167 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
168 trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
169
170 return reg;
171 }
172
173 /**
174 * mei_me_d0i3c_write - writes H_D0I3C register to device
175 *
176 * @dev: the device structure
177 * @reg: new register value
178 */
mei_me_d0i3c_write(struct mei_device * dev,u32 reg)179 static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
180 {
181 trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
182 mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
183 }
184
185 /**
186 * mei_me_fw_status - read fw status register from pci config space
187 *
188 * @dev: mei device
189 * @fw_status: fw status register values
190 *
191 * Return: 0 on success, error otherwise
192 */
mei_me_fw_status(struct mei_device * dev,struct mei_fw_status * fw_status)193 static int mei_me_fw_status(struct mei_device *dev,
194 struct mei_fw_status *fw_status)
195 {
196 struct pci_dev *pdev = to_pci_dev(dev->dev);
197 struct mei_me_hw *hw = to_me_hw(dev);
198 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
199 int ret;
200 int i;
201
202 if (!fw_status)
203 return -EINVAL;
204
205 fw_status->count = fw_src->count;
206 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
207 ret = pci_read_config_dword(pdev, fw_src->status[i],
208 &fw_status->status[i]);
209 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
210 fw_src->status[i],
211 fw_status->status[i]);
212 if (ret)
213 return ret;
214 }
215
216 return 0;
217 }
218
219 /**
220 * mei_me_hw_config - configure hw dependent settings
221 *
222 * @dev: mei device
223 */
mei_me_hw_config(struct mei_device * dev)224 static void mei_me_hw_config(struct mei_device *dev)
225 {
226 struct pci_dev *pdev = to_pci_dev(dev->dev);
227 struct mei_me_hw *hw = to_me_hw(dev);
228 u32 hcsr, reg;
229
230 /* Doesn't change in runtime */
231 hcsr = mei_hcsr_read(dev);
232 hw->hbuf_depth = (hcsr & H_CBD) >> 24;
233
234 reg = 0;
235 pci_read_config_dword(pdev, PCI_CFG_HFS_1, ®);
236 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
237 hw->d0i3_supported =
238 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
239
240 hw->pg_state = MEI_PG_OFF;
241 if (hw->d0i3_supported) {
242 reg = mei_me_d0i3c_read(dev);
243 if (reg & H_D0I3C_I3)
244 hw->pg_state = MEI_PG_ON;
245 }
246 }
247
248 /**
249 * mei_me_pg_state - translate internal pg state
250 * to the mei power gating state
251 *
252 * @dev: mei device
253 *
254 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
255 */
mei_me_pg_state(struct mei_device * dev)256 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
257 {
258 struct mei_me_hw *hw = to_me_hw(dev);
259
260 return hw->pg_state;
261 }
262
me_intr_src(u32 hcsr)263 static inline u32 me_intr_src(u32 hcsr)
264 {
265 return hcsr & H_CSR_IS_MASK;
266 }
267
268 /**
269 * me_intr_disable - disables mei device interrupts
270 * using supplied hcsr register value.
271 *
272 * @dev: the device structure
273 * @hcsr: supplied hcsr register value
274 */
me_intr_disable(struct mei_device * dev,u32 hcsr)275 static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
276 {
277 hcsr &= ~H_CSR_IE_MASK;
278 mei_hcsr_set(dev, hcsr);
279 }
280
281 /**
282 * mei_me_intr_clear - clear and stop interrupts
283 *
284 * @dev: the device structure
285 * @hcsr: supplied hcsr register value
286 */
me_intr_clear(struct mei_device * dev,u32 hcsr)287 static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
288 {
289 if (me_intr_src(hcsr))
290 mei_hcsr_write(dev, hcsr);
291 }
292
293 /**
294 * mei_me_intr_clear - clear and stop interrupts
295 *
296 * @dev: the device structure
297 */
mei_me_intr_clear(struct mei_device * dev)298 static void mei_me_intr_clear(struct mei_device *dev)
299 {
300 u32 hcsr = mei_hcsr_read(dev);
301
302 me_intr_clear(dev, hcsr);
303 }
304 /**
305 * mei_me_intr_enable - enables mei device interrupts
306 *
307 * @dev: the device structure
308 */
mei_me_intr_enable(struct mei_device * dev)309 static void mei_me_intr_enable(struct mei_device *dev)
310 {
311 u32 hcsr = mei_hcsr_read(dev);
312
313 hcsr |= H_CSR_IE_MASK;
314 mei_hcsr_set(dev, hcsr);
315 }
316
317 /**
318 * mei_me_intr_disable - disables mei device interrupts
319 *
320 * @dev: the device structure
321 */
mei_me_intr_disable(struct mei_device * dev)322 static void mei_me_intr_disable(struct mei_device *dev)
323 {
324 u32 hcsr = mei_hcsr_read(dev);
325
326 me_intr_disable(dev, hcsr);
327 }
328
329 /**
330 * mei_me_synchronize_irq - wait for pending IRQ handlers
331 *
332 * @dev: the device structure
333 */
mei_me_synchronize_irq(struct mei_device * dev)334 static void mei_me_synchronize_irq(struct mei_device *dev)
335 {
336 struct pci_dev *pdev = to_pci_dev(dev->dev);
337
338 synchronize_irq(pdev->irq);
339 }
340
341 /**
342 * mei_me_hw_reset_release - release device from the reset
343 *
344 * @dev: the device structure
345 */
mei_me_hw_reset_release(struct mei_device * dev)346 static void mei_me_hw_reset_release(struct mei_device *dev)
347 {
348 u32 hcsr = mei_hcsr_read(dev);
349
350 hcsr |= H_IG;
351 hcsr &= ~H_RST;
352 mei_hcsr_set(dev, hcsr);
353
354 /* complete this write before we set host ready on another CPU */
355 mmiowb();
356 }
357
358 /**
359 * mei_me_host_set_ready - enable device
360 *
361 * @dev: mei device
362 */
mei_me_host_set_ready(struct mei_device * dev)363 static void mei_me_host_set_ready(struct mei_device *dev)
364 {
365 u32 hcsr = mei_hcsr_read(dev);
366
367 hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
368 mei_hcsr_set(dev, hcsr);
369 }
370
371 /**
372 * mei_me_host_is_ready - check whether the host has turned ready
373 *
374 * @dev: mei device
375 * Return: bool
376 */
mei_me_host_is_ready(struct mei_device * dev)377 static bool mei_me_host_is_ready(struct mei_device *dev)
378 {
379 u32 hcsr = mei_hcsr_read(dev);
380
381 return (hcsr & H_RDY) == H_RDY;
382 }
383
384 /**
385 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
386 *
387 * @dev: mei device
388 * Return: bool
389 */
mei_me_hw_is_ready(struct mei_device * dev)390 static bool mei_me_hw_is_ready(struct mei_device *dev)
391 {
392 u32 mecsr = mei_me_mecsr_read(dev);
393
394 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
395 }
396
397 /**
398 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
399 *
400 * @dev: mei device
401 * Return: bool
402 */
mei_me_hw_is_resetting(struct mei_device * dev)403 static bool mei_me_hw_is_resetting(struct mei_device *dev)
404 {
405 u32 mecsr = mei_me_mecsr_read(dev);
406
407 return (mecsr & ME_RST_HRA) == ME_RST_HRA;
408 }
409
410 /**
411 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
412 * or timeout is reached
413 *
414 * @dev: mei device
415 * Return: 0 on success, error otherwise
416 */
mei_me_hw_ready_wait(struct mei_device * dev)417 static int mei_me_hw_ready_wait(struct mei_device *dev)
418 {
419 mutex_unlock(&dev->device_lock);
420 wait_event_timeout(dev->wait_hw_ready,
421 dev->recvd_hw_ready,
422 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
423 mutex_lock(&dev->device_lock);
424 if (!dev->recvd_hw_ready) {
425 dev_err(dev->dev, "wait hw ready failed\n");
426 return -ETIME;
427 }
428
429 mei_me_hw_reset_release(dev);
430 dev->recvd_hw_ready = false;
431 return 0;
432 }
433
434 /**
435 * mei_me_hw_start - hw start routine
436 *
437 * @dev: mei device
438 * Return: 0 on success, error otherwise
439 */
mei_me_hw_start(struct mei_device * dev)440 static int mei_me_hw_start(struct mei_device *dev)
441 {
442 int ret = mei_me_hw_ready_wait(dev);
443
444 if (ret)
445 return ret;
446 dev_dbg(dev->dev, "hw is ready\n");
447
448 mei_me_host_set_ready(dev);
449 return ret;
450 }
451
452
453 /**
454 * mei_hbuf_filled_slots - gets number of device filled buffer slots
455 *
456 * @dev: the device structure
457 *
458 * Return: number of filled slots
459 */
mei_hbuf_filled_slots(struct mei_device * dev)460 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
461 {
462 u32 hcsr;
463 char read_ptr, write_ptr;
464
465 hcsr = mei_hcsr_read(dev);
466
467 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
468 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
469
470 return (unsigned char) (write_ptr - read_ptr);
471 }
472
473 /**
474 * mei_me_hbuf_is_empty - checks if host buffer is empty.
475 *
476 * @dev: the device structure
477 *
478 * Return: true if empty, false - otherwise.
479 */
mei_me_hbuf_is_empty(struct mei_device * dev)480 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
481 {
482 return mei_hbuf_filled_slots(dev) == 0;
483 }
484
485 /**
486 * mei_me_hbuf_empty_slots - counts write empty slots.
487 *
488 * @dev: the device structure
489 *
490 * Return: -EOVERFLOW if overflow, otherwise empty slots count
491 */
mei_me_hbuf_empty_slots(struct mei_device * dev)492 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
493 {
494 struct mei_me_hw *hw = to_me_hw(dev);
495 unsigned char filled_slots, empty_slots;
496
497 filled_slots = mei_hbuf_filled_slots(dev);
498 empty_slots = hw->hbuf_depth - filled_slots;
499
500 /* check for overflow */
501 if (filled_slots > hw->hbuf_depth)
502 return -EOVERFLOW;
503
504 return empty_slots;
505 }
506
507 /**
508 * mei_me_hbuf_depth - returns depth of the hw buffer.
509 *
510 * @dev: the device structure
511 *
512 * Return: size of hw buffer in slots
513 */
mei_me_hbuf_depth(const struct mei_device * dev)514 static u32 mei_me_hbuf_depth(const struct mei_device *dev)
515 {
516 struct mei_me_hw *hw = to_me_hw(dev);
517
518 return hw->hbuf_depth;
519 }
520
521 /**
522 * mei_me_hbuf_write - writes a message to host hw buffer.
523 *
524 * @dev: the device structure
525 * @hdr: header of message
526 * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
527 * @data: payload
528 * @data_len: payload length in bytes
529 *
530 * Return: 0 if success, < 0 - otherwise.
531 */
mei_me_hbuf_write(struct mei_device * dev,const void * hdr,size_t hdr_len,const void * data,size_t data_len)532 static int mei_me_hbuf_write(struct mei_device *dev,
533 const void *hdr, size_t hdr_len,
534 const void *data, size_t data_len)
535 {
536 unsigned long rem;
537 unsigned long i;
538 const u32 *reg_buf;
539 u32 dw_cnt;
540 int empty_slots;
541
542 if (WARN_ON(!hdr || !data || hdr_len & 0x3))
543 return -EINVAL;
544
545 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
546
547 empty_slots = mei_hbuf_empty_slots(dev);
548 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
549
550 if (empty_slots < 0)
551 return -EOVERFLOW;
552
553 dw_cnt = mei_data2slots(hdr_len + data_len);
554 if (dw_cnt > (u32)empty_slots)
555 return -EMSGSIZE;
556
557 reg_buf = hdr;
558 for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
559 mei_me_hcbww_write(dev, reg_buf[i]);
560
561 reg_buf = data;
562 for (i = 0; i < data_len / MEI_SLOT_SIZE; i++)
563 mei_me_hcbww_write(dev, reg_buf[i]);
564
565 rem = data_len & 0x3;
566 if (rem > 0) {
567 u32 reg = 0;
568
569 memcpy(®, (const u8 *)data + data_len - rem, rem);
570 mei_me_hcbww_write(dev, reg);
571 }
572
573 mei_hcsr_set_hig(dev);
574 if (!mei_me_hw_is_ready(dev))
575 return -EIO;
576
577 return 0;
578 }
579
580 /**
581 * mei_me_count_full_read_slots - counts read full slots.
582 *
583 * @dev: the device structure
584 *
585 * Return: -EOVERFLOW if overflow, otherwise filled slots count
586 */
mei_me_count_full_read_slots(struct mei_device * dev)587 static int mei_me_count_full_read_slots(struct mei_device *dev)
588 {
589 u32 me_csr;
590 char read_ptr, write_ptr;
591 unsigned char buffer_depth, filled_slots;
592
593 me_csr = mei_me_mecsr_read(dev);
594 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
595 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
596 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
597 filled_slots = (unsigned char) (write_ptr - read_ptr);
598
599 /* check for overflow */
600 if (filled_slots > buffer_depth)
601 return -EOVERFLOW;
602
603 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
604 return (int)filled_slots;
605 }
606
607 /**
608 * mei_me_read_slots - reads a message from mei device.
609 *
610 * @dev: the device structure
611 * @buffer: message buffer will be written
612 * @buffer_length: message size will be read
613 *
614 * Return: always 0
615 */
mei_me_read_slots(struct mei_device * dev,unsigned char * buffer,unsigned long buffer_length)616 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
617 unsigned long buffer_length)
618 {
619 u32 *reg_buf = (u32 *)buffer;
620
621 for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE)
622 *reg_buf++ = mei_me_mecbrw_read(dev);
623
624 if (buffer_length > 0) {
625 u32 reg = mei_me_mecbrw_read(dev);
626
627 memcpy(reg_buf, ®, buffer_length);
628 }
629
630 mei_hcsr_set_hig(dev);
631 return 0;
632 }
633
634 /**
635 * mei_me_pg_set - write pg enter register
636 *
637 * @dev: the device structure
638 */
mei_me_pg_set(struct mei_device * dev)639 static void mei_me_pg_set(struct mei_device *dev)
640 {
641 struct mei_me_hw *hw = to_me_hw(dev);
642 u32 reg;
643
644 reg = mei_me_reg_read(hw, H_HPG_CSR);
645 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
646
647 reg |= H_HPG_CSR_PGI;
648
649 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
650 mei_me_reg_write(hw, H_HPG_CSR, reg);
651 }
652
653 /**
654 * mei_me_pg_unset - write pg exit register
655 *
656 * @dev: the device structure
657 */
mei_me_pg_unset(struct mei_device * dev)658 static void mei_me_pg_unset(struct mei_device *dev)
659 {
660 struct mei_me_hw *hw = to_me_hw(dev);
661 u32 reg;
662
663 reg = mei_me_reg_read(hw, H_HPG_CSR);
664 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
665
666 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
667
668 reg |= H_HPG_CSR_PGIHEXR;
669
670 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
671 mei_me_reg_write(hw, H_HPG_CSR, reg);
672 }
673
674 /**
675 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
676 *
677 * @dev: the device structure
678 *
679 * Return: 0 on success an error code otherwise
680 */
mei_me_pg_legacy_enter_sync(struct mei_device * dev)681 static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
682 {
683 struct mei_me_hw *hw = to_me_hw(dev);
684 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
685 int ret;
686
687 dev->pg_event = MEI_PG_EVENT_WAIT;
688
689 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
690 if (ret)
691 return ret;
692
693 mutex_unlock(&dev->device_lock);
694 wait_event_timeout(dev->wait_pg,
695 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
696 mutex_lock(&dev->device_lock);
697
698 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
699 mei_me_pg_set(dev);
700 ret = 0;
701 } else {
702 ret = -ETIME;
703 }
704
705 dev->pg_event = MEI_PG_EVENT_IDLE;
706 hw->pg_state = MEI_PG_ON;
707
708 return ret;
709 }
710
711 /**
712 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
713 *
714 * @dev: the device structure
715 *
716 * Return: 0 on success an error code otherwise
717 */
mei_me_pg_legacy_exit_sync(struct mei_device * dev)718 static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
719 {
720 struct mei_me_hw *hw = to_me_hw(dev);
721 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
722 int ret;
723
724 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
725 goto reply;
726
727 dev->pg_event = MEI_PG_EVENT_WAIT;
728
729 mei_me_pg_unset(dev);
730
731 mutex_unlock(&dev->device_lock);
732 wait_event_timeout(dev->wait_pg,
733 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
734 mutex_lock(&dev->device_lock);
735
736 reply:
737 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
738 ret = -ETIME;
739 goto out;
740 }
741
742 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
743 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
744 if (ret)
745 return ret;
746
747 mutex_unlock(&dev->device_lock);
748 wait_event_timeout(dev->wait_pg,
749 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
750 mutex_lock(&dev->device_lock);
751
752 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
753 ret = 0;
754 else
755 ret = -ETIME;
756
757 out:
758 dev->pg_event = MEI_PG_EVENT_IDLE;
759 hw->pg_state = MEI_PG_OFF;
760
761 return ret;
762 }
763
764 /**
765 * mei_me_pg_in_transition - is device now in pg transition
766 *
767 * @dev: the device structure
768 *
769 * Return: true if in pg transition, false otherwise
770 */
mei_me_pg_in_transition(struct mei_device * dev)771 static bool mei_me_pg_in_transition(struct mei_device *dev)
772 {
773 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
774 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
775 }
776
777 /**
778 * mei_me_pg_is_enabled - detect if PG is supported by HW
779 *
780 * @dev: the device structure
781 *
782 * Return: true is pg supported, false otherwise
783 */
mei_me_pg_is_enabled(struct mei_device * dev)784 static bool mei_me_pg_is_enabled(struct mei_device *dev)
785 {
786 struct mei_me_hw *hw = to_me_hw(dev);
787 u32 reg = mei_me_mecsr_read(dev);
788
789 if (hw->d0i3_supported)
790 return true;
791
792 if ((reg & ME_PGIC_HRA) == 0)
793 goto notsupported;
794
795 if (!dev->hbm_f_pg_supported)
796 goto notsupported;
797
798 return true;
799
800 notsupported:
801 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
802 hw->d0i3_supported,
803 !!(reg & ME_PGIC_HRA),
804 dev->version.major_version,
805 dev->version.minor_version,
806 HBM_MAJOR_VERSION_PGI,
807 HBM_MINOR_VERSION_PGI);
808
809 return false;
810 }
811
812 /**
813 * mei_me_d0i3_set - write d0i3 register bit on mei device.
814 *
815 * @dev: the device structure
816 * @intr: ask for interrupt
817 *
818 * Return: D0I3C register value
819 */
mei_me_d0i3_set(struct mei_device * dev,bool intr)820 static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
821 {
822 u32 reg = mei_me_d0i3c_read(dev);
823
824 reg |= H_D0I3C_I3;
825 if (intr)
826 reg |= H_D0I3C_IR;
827 else
828 reg &= ~H_D0I3C_IR;
829 mei_me_d0i3c_write(dev, reg);
830 /* read it to ensure HW consistency */
831 reg = mei_me_d0i3c_read(dev);
832 return reg;
833 }
834
835 /**
836 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
837 *
838 * @dev: the device structure
839 *
840 * Return: D0I3C register value
841 */
mei_me_d0i3_unset(struct mei_device * dev)842 static u32 mei_me_d0i3_unset(struct mei_device *dev)
843 {
844 u32 reg = mei_me_d0i3c_read(dev);
845
846 reg &= ~H_D0I3C_I3;
847 reg |= H_D0I3C_IR;
848 mei_me_d0i3c_write(dev, reg);
849 /* read it to ensure HW consistency */
850 reg = mei_me_d0i3c_read(dev);
851 return reg;
852 }
853
854 /**
855 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
856 *
857 * @dev: the device structure
858 *
859 * Return: 0 on success an error code otherwise
860 */
mei_me_d0i3_enter_sync(struct mei_device * dev)861 static int mei_me_d0i3_enter_sync(struct mei_device *dev)
862 {
863 struct mei_me_hw *hw = to_me_hw(dev);
864 unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
865 unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
866 int ret;
867 u32 reg;
868
869 reg = mei_me_d0i3c_read(dev);
870 if (reg & H_D0I3C_I3) {
871 /* we are in d0i3, nothing to do */
872 dev_dbg(dev->dev, "d0i3 set not needed\n");
873 ret = 0;
874 goto on;
875 }
876
877 /* PGI entry procedure */
878 dev->pg_event = MEI_PG_EVENT_WAIT;
879
880 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
881 if (ret)
882 /* FIXME: should we reset here? */
883 goto out;
884
885 mutex_unlock(&dev->device_lock);
886 wait_event_timeout(dev->wait_pg,
887 dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
888 mutex_lock(&dev->device_lock);
889
890 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
891 ret = -ETIME;
892 goto out;
893 }
894 /* end PGI entry procedure */
895
896 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
897
898 reg = mei_me_d0i3_set(dev, true);
899 if (!(reg & H_D0I3C_CIP)) {
900 dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
901 ret = 0;
902 goto on;
903 }
904
905 mutex_unlock(&dev->device_lock);
906 wait_event_timeout(dev->wait_pg,
907 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
908 mutex_lock(&dev->device_lock);
909
910 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
911 reg = mei_me_d0i3c_read(dev);
912 if (!(reg & H_D0I3C_I3)) {
913 ret = -ETIME;
914 goto out;
915 }
916 }
917
918 ret = 0;
919 on:
920 hw->pg_state = MEI_PG_ON;
921 out:
922 dev->pg_event = MEI_PG_EVENT_IDLE;
923 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
924 return ret;
925 }
926
927 /**
928 * mei_me_d0i3_enter - perform d0i3 entry procedure
929 * no hbm PG handshake
930 * no waiting for confirmation; runs with interrupts
931 * disabled
932 *
933 * @dev: the device structure
934 *
935 * Return: 0 on success an error code otherwise
936 */
mei_me_d0i3_enter(struct mei_device * dev)937 static int mei_me_d0i3_enter(struct mei_device *dev)
938 {
939 struct mei_me_hw *hw = to_me_hw(dev);
940 u32 reg;
941
942 reg = mei_me_d0i3c_read(dev);
943 if (reg & H_D0I3C_I3) {
944 /* we are in d0i3, nothing to do */
945 dev_dbg(dev->dev, "already d0i3 : set not needed\n");
946 goto on;
947 }
948
949 mei_me_d0i3_set(dev, false);
950 on:
951 hw->pg_state = MEI_PG_ON;
952 dev->pg_event = MEI_PG_EVENT_IDLE;
953 dev_dbg(dev->dev, "d0i3 enter\n");
954 return 0;
955 }
956
957 /**
958 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
959 *
960 * @dev: the device structure
961 *
962 * Return: 0 on success an error code otherwise
963 */
mei_me_d0i3_exit_sync(struct mei_device * dev)964 static int mei_me_d0i3_exit_sync(struct mei_device *dev)
965 {
966 struct mei_me_hw *hw = to_me_hw(dev);
967 unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
968 int ret;
969 u32 reg;
970
971 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
972
973 reg = mei_me_d0i3c_read(dev);
974 if (!(reg & H_D0I3C_I3)) {
975 /* we are not in d0i3, nothing to do */
976 dev_dbg(dev->dev, "d0i3 exit not needed\n");
977 ret = 0;
978 goto off;
979 }
980
981 reg = mei_me_d0i3_unset(dev);
982 if (!(reg & H_D0I3C_CIP)) {
983 dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
984 ret = 0;
985 goto off;
986 }
987
988 mutex_unlock(&dev->device_lock);
989 wait_event_timeout(dev->wait_pg,
990 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
991 mutex_lock(&dev->device_lock);
992
993 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
994 reg = mei_me_d0i3c_read(dev);
995 if (reg & H_D0I3C_I3) {
996 ret = -ETIME;
997 goto out;
998 }
999 }
1000
1001 ret = 0;
1002 off:
1003 hw->pg_state = MEI_PG_OFF;
1004 out:
1005 dev->pg_event = MEI_PG_EVENT_IDLE;
1006
1007 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
1008 return ret;
1009 }
1010
1011 /**
1012 * mei_me_pg_legacy_intr - perform legacy pg processing
1013 * in interrupt thread handler
1014 *
1015 * @dev: the device structure
1016 */
mei_me_pg_legacy_intr(struct mei_device * dev)1017 static void mei_me_pg_legacy_intr(struct mei_device *dev)
1018 {
1019 struct mei_me_hw *hw = to_me_hw(dev);
1020
1021 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1022 return;
1023
1024 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1025 hw->pg_state = MEI_PG_OFF;
1026 if (waitqueue_active(&dev->wait_pg))
1027 wake_up(&dev->wait_pg);
1028 }
1029
1030 /**
1031 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1032 *
1033 * @dev: the device structure
1034 * @intr_source: interrupt source
1035 */
mei_me_d0i3_intr(struct mei_device * dev,u32 intr_source)1036 static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1037 {
1038 struct mei_me_hw *hw = to_me_hw(dev);
1039
1040 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1041 (intr_source & H_D0I3C_IS)) {
1042 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1043 if (hw->pg_state == MEI_PG_ON) {
1044 hw->pg_state = MEI_PG_OFF;
1045 if (dev->hbm_state != MEI_HBM_IDLE) {
1046 /*
1047 * force H_RDY because it could be
1048 * wiped off during PG
1049 */
1050 dev_dbg(dev->dev, "d0i3 set host ready\n");
1051 mei_me_host_set_ready(dev);
1052 }
1053 } else {
1054 hw->pg_state = MEI_PG_ON;
1055 }
1056
1057 wake_up(&dev->wait_pg);
1058 }
1059
1060 if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1061 /*
1062 * HW sent some data and we are in D0i3, so
1063 * we got here because of HW initiated exit from D0i3.
1064 * Start runtime pm resume sequence to exit low power state.
1065 */
1066 dev_dbg(dev->dev, "d0i3 want resume\n");
1067 mei_hbm_pg_resume(dev);
1068 }
1069 }
1070
1071 /**
1072 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1073 *
1074 * @dev: the device structure
1075 * @intr_source: interrupt source
1076 */
mei_me_pg_intr(struct mei_device * dev,u32 intr_source)1077 static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1078 {
1079 struct mei_me_hw *hw = to_me_hw(dev);
1080
1081 if (hw->d0i3_supported)
1082 mei_me_d0i3_intr(dev, intr_source);
1083 else
1084 mei_me_pg_legacy_intr(dev);
1085 }
1086
1087 /**
1088 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1089 *
1090 * @dev: the device structure
1091 *
1092 * Return: 0 on success an error code otherwise
1093 */
mei_me_pg_enter_sync(struct mei_device * dev)1094 int mei_me_pg_enter_sync(struct mei_device *dev)
1095 {
1096 struct mei_me_hw *hw = to_me_hw(dev);
1097
1098 if (hw->d0i3_supported)
1099 return mei_me_d0i3_enter_sync(dev);
1100 else
1101 return mei_me_pg_legacy_enter_sync(dev);
1102 }
1103
1104 /**
1105 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1106 *
1107 * @dev: the device structure
1108 *
1109 * Return: 0 on success an error code otherwise
1110 */
mei_me_pg_exit_sync(struct mei_device * dev)1111 int mei_me_pg_exit_sync(struct mei_device *dev)
1112 {
1113 struct mei_me_hw *hw = to_me_hw(dev);
1114
1115 if (hw->d0i3_supported)
1116 return mei_me_d0i3_exit_sync(dev);
1117 else
1118 return mei_me_pg_legacy_exit_sync(dev);
1119 }
1120
1121 /**
1122 * mei_me_hw_reset - resets fw via mei csr register.
1123 *
1124 * @dev: the device structure
1125 * @intr_enable: if interrupt should be enabled after reset.
1126 *
1127 * Return: 0 on success an error code otherwise
1128 */
mei_me_hw_reset(struct mei_device * dev,bool intr_enable)1129 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1130 {
1131 struct mei_me_hw *hw = to_me_hw(dev);
1132 int ret;
1133 u32 hcsr;
1134
1135 if (intr_enable) {
1136 mei_me_intr_enable(dev);
1137 if (hw->d0i3_supported) {
1138 ret = mei_me_d0i3_exit_sync(dev);
1139 if (ret)
1140 return ret;
1141 }
1142 }
1143
1144 pm_runtime_set_active(dev->dev);
1145
1146 hcsr = mei_hcsr_read(dev);
1147 /* H_RST may be found lit before reset is started,
1148 * for example if preceding reset flow hasn't completed.
1149 * In that case asserting H_RST will be ignored, therefore
1150 * we need to clean H_RST bit to start a successful reset sequence.
1151 */
1152 if ((hcsr & H_RST) == H_RST) {
1153 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1154 hcsr &= ~H_RST;
1155 mei_hcsr_set(dev, hcsr);
1156 hcsr = mei_hcsr_read(dev);
1157 }
1158
1159 hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1160
1161 if (!intr_enable)
1162 hcsr &= ~H_CSR_IE_MASK;
1163
1164 dev->recvd_hw_ready = false;
1165 mei_hcsr_write(dev, hcsr);
1166
1167 /*
1168 * Host reads the H_CSR once to ensure that the
1169 * posted write to H_CSR completes.
1170 */
1171 hcsr = mei_hcsr_read(dev);
1172
1173 if ((hcsr & H_RST) == 0)
1174 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1175
1176 if ((hcsr & H_RDY) == H_RDY)
1177 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1178
1179 if (!intr_enable) {
1180 mei_me_hw_reset_release(dev);
1181 if (hw->d0i3_supported) {
1182 ret = mei_me_d0i3_enter(dev);
1183 if (ret)
1184 return ret;
1185 }
1186 }
1187 return 0;
1188 }
1189
1190 /**
1191 * mei_me_irq_quick_handler - The ISR of the MEI device
1192 *
1193 * @irq: The irq number
1194 * @dev_id: pointer to the device structure
1195 *
1196 * Return: irqreturn_t
1197 */
mei_me_irq_quick_handler(int irq,void * dev_id)1198 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1199 {
1200 struct mei_device *dev = (struct mei_device *)dev_id;
1201 u32 hcsr;
1202
1203 hcsr = mei_hcsr_read(dev);
1204 if (!me_intr_src(hcsr))
1205 return IRQ_NONE;
1206
1207 dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1208
1209 /* disable interrupts on device */
1210 me_intr_disable(dev, hcsr);
1211 return IRQ_WAKE_THREAD;
1212 }
1213
1214 /**
1215 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1216 * processing.
1217 *
1218 * @irq: The irq number
1219 * @dev_id: pointer to the device structure
1220 *
1221 * Return: irqreturn_t
1222 *
1223 */
mei_me_irq_thread_handler(int irq,void * dev_id)1224 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1225 {
1226 struct mei_device *dev = (struct mei_device *) dev_id;
1227 struct list_head cmpl_list;
1228 s32 slots;
1229 u32 hcsr;
1230 int rets = 0;
1231
1232 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1233 /* initialize our complete list */
1234 mutex_lock(&dev->device_lock);
1235
1236 hcsr = mei_hcsr_read(dev);
1237 me_intr_clear(dev, hcsr);
1238
1239 INIT_LIST_HEAD(&cmpl_list);
1240
1241 /* check if ME wants a reset */
1242 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1243 dev_warn(dev->dev, "FW not ready: resetting.\n");
1244 schedule_work(&dev->reset_work);
1245 goto end;
1246 }
1247
1248 if (mei_me_hw_is_resetting(dev))
1249 mei_hcsr_set_hig(dev);
1250
1251 mei_me_pg_intr(dev, me_intr_src(hcsr));
1252
1253 /* check if we need to start the dev */
1254 if (!mei_host_is_ready(dev)) {
1255 if (mei_hw_is_ready(dev)) {
1256 dev_dbg(dev->dev, "we need to start the dev.\n");
1257 dev->recvd_hw_ready = true;
1258 wake_up(&dev->wait_hw_ready);
1259 } else {
1260 dev_dbg(dev->dev, "Spurious Interrupt\n");
1261 }
1262 goto end;
1263 }
1264 /* check slots available for reading */
1265 slots = mei_count_full_read_slots(dev);
1266 while (slots > 0) {
1267 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1268 rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1269 /* There is a race between ME write and interrupt delivery:
1270 * Not all data is always available immediately after the
1271 * interrupt, so try to read again on the next interrupt.
1272 */
1273 if (rets == -ENODATA)
1274 break;
1275
1276 if (rets &&
1277 (dev->dev_state != MEI_DEV_RESETTING &&
1278 dev->dev_state != MEI_DEV_POWER_DOWN)) {
1279 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1280 rets);
1281 schedule_work(&dev->reset_work);
1282 goto end;
1283 }
1284 }
1285
1286 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1287
1288 /*
1289 * During PG handshake only allowed write is the replay to the
1290 * PG exit message, so block calling write function
1291 * if the pg event is in PG handshake
1292 */
1293 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1294 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1295 rets = mei_irq_write_handler(dev, &cmpl_list);
1296 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1297 }
1298
1299 mei_irq_compl_handler(dev, &cmpl_list);
1300
1301 end:
1302 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1303 mei_me_intr_enable(dev);
1304 mutex_unlock(&dev->device_lock);
1305 return IRQ_HANDLED;
1306 }
1307
1308 static const struct mei_hw_ops mei_me_hw_ops = {
1309
1310 .fw_status = mei_me_fw_status,
1311 .pg_state = mei_me_pg_state,
1312
1313 .host_is_ready = mei_me_host_is_ready,
1314
1315 .hw_is_ready = mei_me_hw_is_ready,
1316 .hw_reset = mei_me_hw_reset,
1317 .hw_config = mei_me_hw_config,
1318 .hw_start = mei_me_hw_start,
1319
1320 .pg_in_transition = mei_me_pg_in_transition,
1321 .pg_is_enabled = mei_me_pg_is_enabled,
1322
1323 .intr_clear = mei_me_intr_clear,
1324 .intr_enable = mei_me_intr_enable,
1325 .intr_disable = mei_me_intr_disable,
1326 .synchronize_irq = mei_me_synchronize_irq,
1327
1328 .hbuf_free_slots = mei_me_hbuf_empty_slots,
1329 .hbuf_is_ready = mei_me_hbuf_is_empty,
1330 .hbuf_depth = mei_me_hbuf_depth,
1331
1332 .write = mei_me_hbuf_write,
1333
1334 .rdbuf_full_slots = mei_me_count_full_read_slots,
1335 .read_hdr = mei_me_mecbrw_read,
1336 .read = mei_me_read_slots
1337 };
1338
mei_me_fw_type_nm(struct pci_dev * pdev)1339 static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1340 {
1341 u32 reg;
1342
1343 pci_read_config_dword(pdev, PCI_CFG_HFS_2, ®);
1344 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1345 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1346 return (reg & 0x600) == 0x200;
1347 }
1348
1349 #define MEI_CFG_FW_NM \
1350 .quirk_probe = mei_me_fw_type_nm
1351
mei_me_fw_type_sps(struct pci_dev * pdev)1352 static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1353 {
1354 u32 reg;
1355 unsigned int devfn;
1356
1357 /*
1358 * Read ME FW Status register to check for SPS Firmware
1359 * The SPS FW is only signaled in pci function 0
1360 */
1361 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1362 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, ®);
1363 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1364 /* if bits [19:16] = 15, running SPS Firmware */
1365 return (reg & 0xf0000) == 0xf0000;
1366 }
1367
1368 #define MEI_CFG_FW_SPS \
1369 .quirk_probe = mei_me_fw_type_sps
1370
1371
1372 #define MEI_CFG_ICH_HFS \
1373 .fw_status.count = 0
1374
1375 #define MEI_CFG_ICH10_HFS \
1376 .fw_status.count = 1, \
1377 .fw_status.status[0] = PCI_CFG_HFS_1
1378
1379 #define MEI_CFG_PCH_HFS \
1380 .fw_status.count = 2, \
1381 .fw_status.status[0] = PCI_CFG_HFS_1, \
1382 .fw_status.status[1] = PCI_CFG_HFS_2
1383
1384 #define MEI_CFG_PCH8_HFS \
1385 .fw_status.count = 6, \
1386 .fw_status.status[0] = PCI_CFG_HFS_1, \
1387 .fw_status.status[1] = PCI_CFG_HFS_2, \
1388 .fw_status.status[2] = PCI_CFG_HFS_3, \
1389 .fw_status.status[3] = PCI_CFG_HFS_4, \
1390 .fw_status.status[4] = PCI_CFG_HFS_5, \
1391 .fw_status.status[5] = PCI_CFG_HFS_6
1392
1393 #define MEI_CFG_DMA_128 \
1394 .dma_size[DMA_DSCR_HOST] = SZ_128K, \
1395 .dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
1396 .dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
1397
1398 /* ICH Legacy devices */
1399 static const struct mei_cfg mei_me_ich_cfg = {
1400 MEI_CFG_ICH_HFS,
1401 };
1402
1403 /* ICH devices */
1404 static const struct mei_cfg mei_me_ich10_cfg = {
1405 MEI_CFG_ICH10_HFS,
1406 };
1407
1408 /* PCH devices */
1409 static const struct mei_cfg mei_me_pch_cfg = {
1410 MEI_CFG_PCH_HFS,
1411 };
1412
1413 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1414 static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1415 MEI_CFG_PCH_HFS,
1416 MEI_CFG_FW_NM,
1417 };
1418
1419 /* PCH8 Lynx Point and newer devices */
1420 static const struct mei_cfg mei_me_pch8_cfg = {
1421 MEI_CFG_PCH8_HFS,
1422 };
1423
1424 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1425 static const struct mei_cfg mei_me_pch8_sps_cfg = {
1426 MEI_CFG_PCH8_HFS,
1427 MEI_CFG_FW_SPS,
1428 };
1429
1430 /* Cannon Lake and newer devices */
1431 static const struct mei_cfg mei_me_pch12_cfg = {
1432 MEI_CFG_PCH8_HFS,
1433 MEI_CFG_DMA_128,
1434 };
1435
1436 /*
1437 * mei_cfg_list - A list of platform platform specific configurations.
1438 * Note: has to be synchronized with enum mei_cfg_idx.
1439 */
1440 static const struct mei_cfg *const mei_cfg_list[] = {
1441 [MEI_ME_UNDEF_CFG] = NULL,
1442 [MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
1443 [MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
1444 [MEI_ME_PCH_CFG] = &mei_me_pch_cfg,
1445 [MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
1446 [MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
1447 [MEI_ME_PCH8_SPS_CFG] = &mei_me_pch8_sps_cfg,
1448 [MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg,
1449 };
1450
mei_me_get_cfg(kernel_ulong_t idx)1451 const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
1452 {
1453 BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
1454
1455 if (idx >= MEI_ME_NUM_CFG)
1456 return NULL;
1457
1458 return mei_cfg_list[idx];
1459 };
1460
1461 /**
1462 * mei_me_dev_init - allocates and initializes the mei device structure
1463 *
1464 * @pdev: The pci device structure
1465 * @cfg: per device generation config
1466 *
1467 * Return: The mei_device pointer on success, NULL on failure.
1468 */
mei_me_dev_init(struct pci_dev * pdev,const struct mei_cfg * cfg)1469 struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1470 const struct mei_cfg *cfg)
1471 {
1472 struct mei_device *dev;
1473 struct mei_me_hw *hw;
1474
1475 dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1476 sizeof(struct mei_me_hw), GFP_KERNEL);
1477 if (!dev)
1478 return NULL;
1479 hw = to_me_hw(dev);
1480
1481 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1482 hw->cfg = cfg;
1483 return dev;
1484 }
1485
1486