1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_video.c  --  R-Car VSP1 Video Node
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/list.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/v4l2-mediabus.h>
15 #include <linux/videodev2.h>
16 #include <linux/wait.h>
17 
18 #include <media/media-entity.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-fh.h>
21 #include <media/v4l2-ioctl.h>
22 #include <media/v4l2-subdev.h>
23 #include <media/videobuf2-v4l2.h>
24 #include <media/videobuf2-dma-contig.h>
25 
26 #include "vsp1.h"
27 #include "vsp1_brx.h"
28 #include "vsp1_dl.h"
29 #include "vsp1_entity.h"
30 #include "vsp1_hgo.h"
31 #include "vsp1_hgt.h"
32 #include "vsp1_pipe.h"
33 #include "vsp1_rwpf.h"
34 #include "vsp1_uds.h"
35 #include "vsp1_video.h"
36 
37 #define VSP1_VIDEO_DEF_FORMAT		V4L2_PIX_FMT_YUYV
38 #define VSP1_VIDEO_DEF_WIDTH		1024
39 #define VSP1_VIDEO_DEF_HEIGHT		768
40 
41 #define VSP1_VIDEO_MIN_WIDTH		2U
42 #define VSP1_VIDEO_MAX_WIDTH		8190U
43 #define VSP1_VIDEO_MIN_HEIGHT		2U
44 #define VSP1_VIDEO_MAX_HEIGHT		8190U
45 
46 /* -----------------------------------------------------------------------------
47  * Helper functions
48  */
49 
50 static struct v4l2_subdev *
vsp1_video_remote_subdev(struct media_pad * local,u32 * pad)51 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
52 {
53 	struct media_pad *remote;
54 
55 	remote = media_entity_remote_pad(local);
56 	if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
57 		return NULL;
58 
59 	if (pad)
60 		*pad = remote->index;
61 
62 	return media_entity_to_v4l2_subdev(remote->entity);
63 }
64 
vsp1_video_verify_format(struct vsp1_video * video)65 static int vsp1_video_verify_format(struct vsp1_video *video)
66 {
67 	struct v4l2_subdev_format fmt;
68 	struct v4l2_subdev *subdev;
69 	int ret;
70 
71 	subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
72 	if (subdev == NULL)
73 		return -EINVAL;
74 
75 	fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
76 	ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
77 	if (ret < 0)
78 		return ret == -ENOIOCTLCMD ? -EINVAL : ret;
79 
80 	if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
81 	    video->rwpf->format.height != fmt.format.height ||
82 	    video->rwpf->format.width != fmt.format.width)
83 		return -EINVAL;
84 
85 	return 0;
86 }
87 
__vsp1_video_try_format(struct vsp1_video * video,struct v4l2_pix_format_mplane * pix,const struct vsp1_format_info ** fmtinfo)88 static int __vsp1_video_try_format(struct vsp1_video *video,
89 				   struct v4l2_pix_format_mplane *pix,
90 				   const struct vsp1_format_info **fmtinfo)
91 {
92 	static const u32 xrgb_formats[][2] = {
93 		{ V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
94 		{ V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
95 		{ V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
96 		{ V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
97 	};
98 
99 	const struct vsp1_format_info *info;
100 	unsigned int width = pix->width;
101 	unsigned int height = pix->height;
102 	unsigned int i;
103 
104 	/*
105 	 * Backward compatibility: replace deprecated RGB formats by their XRGB
106 	 * equivalent. This selects the format older userspace applications want
107 	 * while still exposing the new format.
108 	 */
109 	for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
110 		if (xrgb_formats[i][0] == pix->pixelformat) {
111 			pix->pixelformat = xrgb_formats[i][1];
112 			break;
113 		}
114 	}
115 
116 	/*
117 	 * Retrieve format information and select the default format if the
118 	 * requested format isn't supported.
119 	 */
120 	info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
121 	if (info == NULL)
122 		info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
123 
124 	pix->pixelformat = info->fourcc;
125 	pix->colorspace = V4L2_COLORSPACE_SRGB;
126 	pix->field = V4L2_FIELD_NONE;
127 
128 	if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
129 	    info->fourcc == V4L2_PIX_FMT_HSV32)
130 		pix->hsv_enc = V4L2_HSV_ENC_256;
131 
132 	memset(pix->reserved, 0, sizeof(pix->reserved));
133 
134 	/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
135 	width = round_down(width, info->hsub);
136 	height = round_down(height, info->vsub);
137 
138 	/* Clamp the width and height. */
139 	pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH);
140 	pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT,
141 			    VSP1_VIDEO_MAX_HEIGHT);
142 
143 	/*
144 	 * Compute and clamp the stride and image size. While not documented in
145 	 * the datasheet, strides not aligned to a multiple of 128 bytes result
146 	 * in image corruption.
147 	 */
148 	for (i = 0; i < min(info->planes, 2U); ++i) {
149 		unsigned int hsub = i > 0 ? info->hsub : 1;
150 		unsigned int vsub = i > 0 ? info->vsub : 1;
151 		unsigned int align = 128;
152 		unsigned int bpl;
153 
154 		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
155 			      pix->width / hsub * info->bpp[i] / 8,
156 			      round_down(65535U, align));
157 
158 		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
159 		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
160 					    * pix->height / vsub;
161 	}
162 
163 	if (info->planes == 3) {
164 		/* The second and third planes must have the same stride. */
165 		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
166 		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
167 	}
168 
169 	pix->num_planes = info->planes;
170 
171 	if (fmtinfo)
172 		*fmtinfo = info;
173 
174 	return 0;
175 }
176 
177 /* -----------------------------------------------------------------------------
178  * VSP1 Partition Algorithm support
179  */
180 
181 /**
182  * vsp1_video_calculate_partition - Calculate the active partition output window
183  *
184  * @pipe: the pipeline
185  * @partition: partition that will hold the calculated values
186  * @div_size: pre-determined maximum partition division size
187  * @index: partition index
188  */
vsp1_video_calculate_partition(struct vsp1_pipeline * pipe,struct vsp1_partition * partition,unsigned int div_size,unsigned int index)189 static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
190 					   struct vsp1_partition *partition,
191 					   unsigned int div_size,
192 					   unsigned int index)
193 {
194 	const struct v4l2_mbus_framefmt *format;
195 	struct vsp1_partition_window window;
196 	unsigned int modulus;
197 
198 	/*
199 	 * Partitions are computed on the size before rotation, use the format
200 	 * at the WPF sink.
201 	 */
202 	format = vsp1_entity_get_pad_format(&pipe->output->entity,
203 					    pipe->output->entity.config,
204 					    RWPF_PAD_SINK);
205 
206 	/* A single partition simply processes the output size in full. */
207 	if (pipe->partitions <= 1) {
208 		window.left = 0;
209 		window.width = format->width;
210 
211 		vsp1_pipeline_propagate_partition(pipe, partition, index,
212 						  &window);
213 		return;
214 	}
215 
216 	/* Initialise the partition with sane starting conditions. */
217 	window.left = index * div_size;
218 	window.width = div_size;
219 
220 	modulus = format->width % div_size;
221 
222 	/*
223 	 * We need to prevent the last partition from being smaller than the
224 	 * *minimum* width of the hardware capabilities.
225 	 *
226 	 * If the modulus is less than half of the partition size,
227 	 * the penultimate partition is reduced to half, which is added
228 	 * to the final partition: |1234|1234|1234|12|341|
229 	 * to prevents this:       |1234|1234|1234|1234|1|.
230 	 */
231 	if (modulus) {
232 		/*
233 		 * pipe->partitions is 1 based, whilst index is a 0 based index.
234 		 * Normalise this locally.
235 		 */
236 		unsigned int partitions = pipe->partitions - 1;
237 
238 		if (modulus < div_size / 2) {
239 			if (index == partitions - 1) {
240 				/* Halve the penultimate partition. */
241 				window.width = div_size / 2;
242 			} else if (index == partitions) {
243 				/* Increase the final partition. */
244 				window.width = (div_size / 2) + modulus;
245 				window.left -= div_size / 2;
246 			}
247 		} else if (index == partitions) {
248 			window.width = modulus;
249 		}
250 	}
251 
252 	vsp1_pipeline_propagate_partition(pipe, partition, index, &window);
253 }
254 
vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline * pipe)255 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
256 {
257 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
258 	const struct v4l2_mbus_framefmt *format;
259 	struct vsp1_entity *entity;
260 	unsigned int div_size;
261 	unsigned int i;
262 
263 	/*
264 	 * Partitions are computed on the size before rotation, use the format
265 	 * at the WPF sink.
266 	 */
267 	format = vsp1_entity_get_pad_format(&pipe->output->entity,
268 					    pipe->output->entity.config,
269 					    RWPF_PAD_SINK);
270 	div_size = format->width;
271 
272 	/*
273 	 * Only Gen3 hardware requires image partitioning, Gen2 will operate
274 	 * with a single partition that covers the whole output.
275 	 */
276 	if (vsp1->info->gen == 3) {
277 		list_for_each_entry(entity, &pipe->entities, list_pipe) {
278 			unsigned int entity_max;
279 
280 			if (!entity->ops->max_width)
281 				continue;
282 
283 			entity_max = entity->ops->max_width(entity, pipe);
284 			if (entity_max)
285 				div_size = min(div_size, entity_max);
286 		}
287 	}
288 
289 	pipe->partitions = DIV_ROUND_UP(format->width, div_size);
290 	pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
291 				   GFP_KERNEL);
292 	if (!pipe->part_table)
293 		return -ENOMEM;
294 
295 	for (i = 0; i < pipe->partitions; ++i)
296 		vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
297 					       div_size, i);
298 
299 	return 0;
300 }
301 
302 /* -----------------------------------------------------------------------------
303  * Pipeline Management
304  */
305 
306 /*
307  * vsp1_video_complete_buffer - Complete the current buffer
308  * @video: the video node
309  *
310  * This function completes the current buffer by filling its sequence number,
311  * time stamp and payload size, and hands it back to the videobuf core.
312  *
313  * When operating in DU output mode (deep pipeline to the DU through the LIF),
314  * the VSP1 needs to constantly supply frames to the display. In that case, if
315  * no other buffer is queued, reuse the one that has just been processed instead
316  * of handing it back to the videobuf core.
317  *
318  * Return the next queued buffer or NULL if the queue is empty.
319  */
320 static struct vsp1_vb2_buffer *
vsp1_video_complete_buffer(struct vsp1_video * video)321 vsp1_video_complete_buffer(struct vsp1_video *video)
322 {
323 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
324 	struct vsp1_vb2_buffer *next = NULL;
325 	struct vsp1_vb2_buffer *done;
326 	unsigned long flags;
327 	unsigned int i;
328 
329 	spin_lock_irqsave(&video->irqlock, flags);
330 
331 	if (list_empty(&video->irqqueue)) {
332 		spin_unlock_irqrestore(&video->irqlock, flags);
333 		return NULL;
334 	}
335 
336 	done = list_first_entry(&video->irqqueue,
337 				struct vsp1_vb2_buffer, queue);
338 
339 	/* In DU output mode reuse the buffer if the list is singular. */
340 	if (pipe->lif && list_is_singular(&video->irqqueue)) {
341 		spin_unlock_irqrestore(&video->irqlock, flags);
342 		return done;
343 	}
344 
345 	list_del(&done->queue);
346 
347 	if (!list_empty(&video->irqqueue))
348 		next = list_first_entry(&video->irqqueue,
349 					struct vsp1_vb2_buffer, queue);
350 
351 	spin_unlock_irqrestore(&video->irqlock, flags);
352 
353 	done->buf.sequence = pipe->sequence;
354 	done->buf.vb2_buf.timestamp = ktime_get_ns();
355 	for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
356 		vb2_set_plane_payload(&done->buf.vb2_buf, i,
357 				      vb2_plane_size(&done->buf.vb2_buf, i));
358 	vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
359 
360 	return next;
361 }
362 
vsp1_video_frame_end(struct vsp1_pipeline * pipe,struct vsp1_rwpf * rwpf)363 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
364 				 struct vsp1_rwpf *rwpf)
365 {
366 	struct vsp1_video *video = rwpf->video;
367 	struct vsp1_vb2_buffer *buf;
368 
369 	buf = vsp1_video_complete_buffer(video);
370 	if (buf == NULL)
371 		return;
372 
373 	video->rwpf->mem = buf->mem;
374 	pipe->buffers_ready |= 1 << video->pipe_index;
375 }
376 
vsp1_video_pipeline_run_partition(struct vsp1_pipeline * pipe,struct vsp1_dl_list * dl,unsigned int partition)377 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
378 					      struct vsp1_dl_list *dl,
379 					      unsigned int partition)
380 {
381 	struct vsp1_dl_body *dlb = vsp1_dl_list_get_body0(dl);
382 	struct vsp1_entity *entity;
383 
384 	pipe->partition = &pipe->part_table[partition];
385 
386 	list_for_each_entry(entity, &pipe->entities, list_pipe)
387 		vsp1_entity_configure_partition(entity, pipe, dl, dlb);
388 }
389 
vsp1_video_pipeline_run(struct vsp1_pipeline * pipe)390 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
391 {
392 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
393 	struct vsp1_entity *entity;
394 	struct vsp1_dl_body *dlb;
395 	struct vsp1_dl_list *dl;
396 	unsigned int partition;
397 
398 	dl = vsp1_dl_list_get(pipe->output->dlm);
399 
400 	/*
401 	 * If the VSP hardware isn't configured yet (which occurs either when
402 	 * processing the first frame or after a system suspend/resume), add the
403 	 * cached stream configuration to the display list to perform a full
404 	 * initialisation.
405 	 */
406 	if (!pipe->configured)
407 		vsp1_dl_list_add_body(dl, pipe->stream_config);
408 
409 	dlb = vsp1_dl_list_get_body0(dl);
410 
411 	list_for_each_entry(entity, &pipe->entities, list_pipe)
412 		vsp1_entity_configure_frame(entity, pipe, dl, dlb);
413 
414 	/* Run the first partition. */
415 	vsp1_video_pipeline_run_partition(pipe, dl, 0);
416 
417 	/* Process consecutive partitions as necessary. */
418 	for (partition = 1; partition < pipe->partitions; ++partition) {
419 		struct vsp1_dl_list *dl_next;
420 
421 		dl_next = vsp1_dl_list_get(pipe->output->dlm);
422 
423 		/*
424 		 * An incomplete chain will still function, but output only
425 		 * the partitions that had a dl available. The frame end
426 		 * interrupt will be marked on the last dl in the chain.
427 		 */
428 		if (!dl_next) {
429 			dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
430 			break;
431 		}
432 
433 		vsp1_video_pipeline_run_partition(pipe, dl_next, partition);
434 		vsp1_dl_list_add_chain(dl, dl_next);
435 	}
436 
437 	/* Complete, and commit the head display list. */
438 	vsp1_dl_list_commit(dl, false);
439 	pipe->configured = true;
440 
441 	vsp1_pipeline_run(pipe);
442 }
443 
vsp1_video_pipeline_frame_end(struct vsp1_pipeline * pipe,unsigned int completion)444 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
445 					  unsigned int completion)
446 {
447 	struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
448 	enum vsp1_pipeline_state state;
449 	unsigned long flags;
450 	unsigned int i;
451 
452 	/* M2M Pipelines should never call here with an incomplete frame. */
453 	WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
454 
455 	spin_lock_irqsave(&pipe->irqlock, flags);
456 
457 	/* Complete buffers on all video nodes. */
458 	for (i = 0; i < vsp1->info->rpf_count; ++i) {
459 		if (!pipe->inputs[i])
460 			continue;
461 
462 		vsp1_video_frame_end(pipe, pipe->inputs[i]);
463 	}
464 
465 	vsp1_video_frame_end(pipe, pipe->output);
466 
467 	state = pipe->state;
468 	pipe->state = VSP1_PIPELINE_STOPPED;
469 
470 	/*
471 	 * If a stop has been requested, mark the pipeline as stopped and
472 	 * return. Otherwise restart the pipeline if ready.
473 	 */
474 	if (state == VSP1_PIPELINE_STOPPING)
475 		wake_up(&pipe->wq);
476 	else if (vsp1_pipeline_ready(pipe))
477 		vsp1_video_pipeline_run(pipe);
478 
479 	spin_unlock_irqrestore(&pipe->irqlock, flags);
480 }
481 
vsp1_video_pipeline_build_branch(struct vsp1_pipeline * pipe,struct vsp1_rwpf * input,struct vsp1_rwpf * output)482 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
483 					    struct vsp1_rwpf *input,
484 					    struct vsp1_rwpf *output)
485 {
486 	struct media_entity_enum ent_enum;
487 	struct vsp1_entity *entity;
488 	struct media_pad *pad;
489 	struct vsp1_brx *brx = NULL;
490 	int ret;
491 
492 	ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
493 	if (ret < 0)
494 		return ret;
495 
496 	/*
497 	 * The main data path doesn't include the HGO or HGT, use
498 	 * vsp1_entity_remote_pad() to traverse the graph.
499 	 */
500 
501 	pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
502 
503 	while (1) {
504 		if (pad == NULL) {
505 			ret = -EPIPE;
506 			goto out;
507 		}
508 
509 		/* We've reached a video node, that shouldn't have happened. */
510 		if (!is_media_entity_v4l2_subdev(pad->entity)) {
511 			ret = -EPIPE;
512 			goto out;
513 		}
514 
515 		entity = to_vsp1_entity(
516 			media_entity_to_v4l2_subdev(pad->entity));
517 
518 		/*
519 		 * A BRU or BRS is present in the pipeline, store its input pad
520 		 * number in the input RPF for use when configuring the RPF.
521 		 */
522 		if (entity->type == VSP1_ENTITY_BRU ||
523 		    entity->type == VSP1_ENTITY_BRS) {
524 			/* BRU and BRS can't be chained. */
525 			if (brx) {
526 				ret = -EPIPE;
527 				goto out;
528 			}
529 
530 			brx = to_brx(&entity->subdev);
531 			brx->inputs[pad->index].rpf = input;
532 			input->brx_input = pad->index;
533 		}
534 
535 		/* We've reached the WPF, we're done. */
536 		if (entity->type == VSP1_ENTITY_WPF)
537 			break;
538 
539 		/* Ensure the branch has no loop. */
540 		if (media_entity_enum_test_and_set(&ent_enum,
541 						   &entity->subdev.entity)) {
542 			ret = -EPIPE;
543 			goto out;
544 		}
545 
546 		/* UDS can't be chained. */
547 		if (entity->type == VSP1_ENTITY_UDS) {
548 			if (pipe->uds) {
549 				ret = -EPIPE;
550 				goto out;
551 			}
552 
553 			pipe->uds = entity;
554 			pipe->uds_input = brx ? &brx->entity : &input->entity;
555 		}
556 
557 		/* Follow the source link, ignoring any HGO or HGT. */
558 		pad = &entity->pads[entity->source_pad];
559 		pad = vsp1_entity_remote_pad(pad);
560 	}
561 
562 	/* The last entity must be the output WPF. */
563 	if (entity != &output->entity)
564 		ret = -EPIPE;
565 
566 out:
567 	media_entity_enum_cleanup(&ent_enum);
568 
569 	return ret;
570 }
571 
vsp1_video_pipeline_build(struct vsp1_pipeline * pipe,struct vsp1_video * video)572 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
573 				     struct vsp1_video *video)
574 {
575 	struct media_graph graph;
576 	struct media_entity *entity = &video->video.entity;
577 	struct media_device *mdev = entity->graph_obj.mdev;
578 	unsigned int i;
579 	int ret;
580 
581 	/* Walk the graph to locate the entities and video nodes. */
582 	ret = media_graph_walk_init(&graph, mdev);
583 	if (ret)
584 		return ret;
585 
586 	media_graph_walk_start(&graph, entity);
587 
588 	while ((entity = media_graph_walk_next(&graph))) {
589 		struct v4l2_subdev *subdev;
590 		struct vsp1_rwpf *rwpf;
591 		struct vsp1_entity *e;
592 
593 		if (!is_media_entity_v4l2_subdev(entity))
594 			continue;
595 
596 		subdev = media_entity_to_v4l2_subdev(entity);
597 		e = to_vsp1_entity(subdev);
598 		list_add_tail(&e->list_pipe, &pipe->entities);
599 		e->pipe = pipe;
600 
601 		switch (e->type) {
602 		case VSP1_ENTITY_RPF:
603 			rwpf = to_rwpf(subdev);
604 			pipe->inputs[rwpf->entity.index] = rwpf;
605 			rwpf->video->pipe_index = ++pipe->num_inputs;
606 			break;
607 
608 		case VSP1_ENTITY_WPF:
609 			rwpf = to_rwpf(subdev);
610 			pipe->output = rwpf;
611 			rwpf->video->pipe_index = 0;
612 			break;
613 
614 		case VSP1_ENTITY_LIF:
615 			pipe->lif = e;
616 			break;
617 
618 		case VSP1_ENTITY_BRU:
619 		case VSP1_ENTITY_BRS:
620 			pipe->brx = e;
621 			break;
622 
623 		case VSP1_ENTITY_HGO:
624 			pipe->hgo = e;
625 			break;
626 
627 		case VSP1_ENTITY_HGT:
628 			pipe->hgt = e;
629 			break;
630 
631 		default:
632 			break;
633 		}
634 	}
635 
636 	media_graph_walk_cleanup(&graph);
637 
638 	/* We need one output and at least one input. */
639 	if (pipe->num_inputs == 0 || !pipe->output)
640 		return -EPIPE;
641 
642 	/*
643 	 * Follow links downstream for each input and make sure the graph
644 	 * contains no loop and that all branches end at the output WPF.
645 	 */
646 	for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
647 		if (!pipe->inputs[i])
648 			continue;
649 
650 		ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
651 						       pipe->output);
652 		if (ret < 0)
653 			return ret;
654 	}
655 
656 	return 0;
657 }
658 
vsp1_video_pipeline_init(struct vsp1_pipeline * pipe,struct vsp1_video * video)659 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
660 				    struct vsp1_video *video)
661 {
662 	vsp1_pipeline_init(pipe);
663 
664 	pipe->frame_end = vsp1_video_pipeline_frame_end;
665 
666 	return vsp1_video_pipeline_build(pipe, video);
667 }
668 
vsp1_video_pipeline_get(struct vsp1_video * video)669 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
670 {
671 	struct vsp1_pipeline *pipe;
672 	int ret;
673 
674 	/*
675 	 * Get a pipeline object for the video node. If a pipeline has already
676 	 * been allocated just increment its reference count and return it.
677 	 * Otherwise allocate a new pipeline and initialize it, it will be freed
678 	 * when the last reference is released.
679 	 */
680 	if (!video->rwpf->entity.pipe) {
681 		pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
682 		if (!pipe)
683 			return ERR_PTR(-ENOMEM);
684 
685 		ret = vsp1_video_pipeline_init(pipe, video);
686 		if (ret < 0) {
687 			vsp1_pipeline_reset(pipe);
688 			kfree(pipe);
689 			return ERR_PTR(ret);
690 		}
691 	} else {
692 		pipe = video->rwpf->entity.pipe;
693 		kref_get(&pipe->kref);
694 	}
695 
696 	return pipe;
697 }
698 
vsp1_video_pipeline_release(struct kref * kref)699 static void vsp1_video_pipeline_release(struct kref *kref)
700 {
701 	struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
702 
703 	vsp1_pipeline_reset(pipe);
704 	kfree(pipe);
705 }
706 
vsp1_video_pipeline_put(struct vsp1_pipeline * pipe)707 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
708 {
709 	struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
710 
711 	mutex_lock(&mdev->graph_mutex);
712 	kref_put(&pipe->kref, vsp1_video_pipeline_release);
713 	mutex_unlock(&mdev->graph_mutex);
714 }
715 
716 /* -----------------------------------------------------------------------------
717  * videobuf2 Queue Operations
718  */
719 
720 static int
vsp1_video_queue_setup(struct vb2_queue * vq,unsigned int * nbuffers,unsigned int * nplanes,unsigned int sizes[],struct device * alloc_devs[])721 vsp1_video_queue_setup(struct vb2_queue *vq,
722 		       unsigned int *nbuffers, unsigned int *nplanes,
723 		       unsigned int sizes[], struct device *alloc_devs[])
724 {
725 	struct vsp1_video *video = vb2_get_drv_priv(vq);
726 	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
727 	unsigned int i;
728 
729 	if (*nplanes) {
730 		if (*nplanes != format->num_planes)
731 			return -EINVAL;
732 
733 		for (i = 0; i < *nplanes; i++)
734 			if (sizes[i] < format->plane_fmt[i].sizeimage)
735 				return -EINVAL;
736 		return 0;
737 	}
738 
739 	*nplanes = format->num_planes;
740 
741 	for (i = 0; i < format->num_planes; ++i)
742 		sizes[i] = format->plane_fmt[i].sizeimage;
743 
744 	return 0;
745 }
746 
vsp1_video_buffer_prepare(struct vb2_buffer * vb)747 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
748 {
749 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
750 	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
751 	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
752 	const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
753 	unsigned int i;
754 
755 	if (vb->num_planes < format->num_planes)
756 		return -EINVAL;
757 
758 	for (i = 0; i < vb->num_planes; ++i) {
759 		buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
760 
761 		if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
762 			return -EINVAL;
763 	}
764 
765 	for ( ; i < 3; ++i)
766 		buf->mem.addr[i] = 0;
767 
768 	return 0;
769 }
770 
vsp1_video_buffer_queue(struct vb2_buffer * vb)771 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
772 {
773 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
774 	struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
775 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
776 	struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
777 	unsigned long flags;
778 	bool empty;
779 
780 	spin_lock_irqsave(&video->irqlock, flags);
781 	empty = list_empty(&video->irqqueue);
782 	list_add_tail(&buf->queue, &video->irqqueue);
783 	spin_unlock_irqrestore(&video->irqlock, flags);
784 
785 	if (!empty)
786 		return;
787 
788 	spin_lock_irqsave(&pipe->irqlock, flags);
789 
790 	video->rwpf->mem = buf->mem;
791 	pipe->buffers_ready |= 1 << video->pipe_index;
792 
793 	if (vb2_is_streaming(&video->queue) &&
794 	    vsp1_pipeline_ready(pipe))
795 		vsp1_video_pipeline_run(pipe);
796 
797 	spin_unlock_irqrestore(&pipe->irqlock, flags);
798 }
799 
vsp1_video_setup_pipeline(struct vsp1_pipeline * pipe)800 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
801 {
802 	struct vsp1_entity *entity;
803 	int ret;
804 
805 	/* Determine this pipelines sizes for image partitioning support. */
806 	ret = vsp1_video_pipeline_setup_partitions(pipe);
807 	if (ret < 0)
808 		return ret;
809 
810 	if (pipe->uds) {
811 		struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
812 
813 		/*
814 		 * If a BRU or BRS is present in the pipeline before the UDS,
815 		 * the alpha component doesn't need to be scaled as the BRU and
816 		 * BRS output alpha value is fixed to 255. Otherwise we need to
817 		 * scale the alpha component only when available at the input
818 		 * RPF.
819 		 */
820 		if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
821 		    pipe->uds_input->type == VSP1_ENTITY_BRS) {
822 			uds->scale_alpha = false;
823 		} else {
824 			struct vsp1_rwpf *rpf =
825 				to_rwpf(&pipe->uds_input->subdev);
826 
827 			uds->scale_alpha = rpf->fmtinfo->alpha;
828 		}
829 	}
830 
831 	/*
832 	 * Compute and cache the stream configuration into a body. The cached
833 	 * body will be added to the display list by vsp1_video_pipeline_run()
834 	 * whenever the pipeline needs to be fully reconfigured.
835 	 */
836 	pipe->stream_config = vsp1_dlm_dl_body_get(pipe->output->dlm);
837 	if (!pipe->stream_config)
838 		return -ENOMEM;
839 
840 	list_for_each_entry(entity, &pipe->entities, list_pipe) {
841 		vsp1_entity_route_setup(entity, pipe, pipe->stream_config);
842 		vsp1_entity_configure_stream(entity, pipe, pipe->stream_config);
843 	}
844 
845 	return 0;
846 }
847 
vsp1_video_release_buffers(struct vsp1_video * video)848 static void vsp1_video_release_buffers(struct vsp1_video *video)
849 {
850 	struct vsp1_vb2_buffer *buffer;
851 	unsigned long flags;
852 
853 	/* Remove all buffers from the IRQ queue. */
854 	spin_lock_irqsave(&video->irqlock, flags);
855 	list_for_each_entry(buffer, &video->irqqueue, queue)
856 		vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
857 	INIT_LIST_HEAD(&video->irqqueue);
858 	spin_unlock_irqrestore(&video->irqlock, flags);
859 }
860 
vsp1_video_cleanup_pipeline(struct vsp1_pipeline * pipe)861 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
862 {
863 	lockdep_assert_held(&pipe->lock);
864 
865 	/* Release any cached configuration from our output video. */
866 	vsp1_dl_body_put(pipe->stream_config);
867 	pipe->stream_config = NULL;
868 	pipe->configured = false;
869 
870 	/* Release our partition table allocation */
871 	kfree(pipe->part_table);
872 	pipe->part_table = NULL;
873 }
874 
vsp1_video_start_streaming(struct vb2_queue * vq,unsigned int count)875 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
876 {
877 	struct vsp1_video *video = vb2_get_drv_priv(vq);
878 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
879 	bool start_pipeline = false;
880 	unsigned long flags;
881 	int ret;
882 
883 	mutex_lock(&pipe->lock);
884 	if (pipe->stream_count == pipe->num_inputs) {
885 		ret = vsp1_video_setup_pipeline(pipe);
886 		if (ret < 0) {
887 			vsp1_video_release_buffers(video);
888 			vsp1_video_cleanup_pipeline(pipe);
889 			mutex_unlock(&pipe->lock);
890 			return ret;
891 		}
892 
893 		start_pipeline = true;
894 	}
895 
896 	pipe->stream_count++;
897 	mutex_unlock(&pipe->lock);
898 
899 	/*
900 	 * vsp1_pipeline_ready() is not sufficient to establish that all streams
901 	 * are prepared and the pipeline is configured, as multiple streams
902 	 * can race through streamon with buffers already queued; Therefore we
903 	 * don't even attempt to start the pipeline until the last stream has
904 	 * called through here.
905 	 */
906 	if (!start_pipeline)
907 		return 0;
908 
909 	spin_lock_irqsave(&pipe->irqlock, flags);
910 	if (vsp1_pipeline_ready(pipe))
911 		vsp1_video_pipeline_run(pipe);
912 	spin_unlock_irqrestore(&pipe->irqlock, flags);
913 
914 	return 0;
915 }
916 
vsp1_video_stop_streaming(struct vb2_queue * vq)917 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
918 {
919 	struct vsp1_video *video = vb2_get_drv_priv(vq);
920 	struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
921 	unsigned long flags;
922 	int ret;
923 
924 	/*
925 	 * Clear the buffers ready flag to make sure the device won't be started
926 	 * by a QBUF on the video node on the other side of the pipeline.
927 	 */
928 	spin_lock_irqsave(&video->irqlock, flags);
929 	pipe->buffers_ready &= ~(1 << video->pipe_index);
930 	spin_unlock_irqrestore(&video->irqlock, flags);
931 
932 	mutex_lock(&pipe->lock);
933 	if (--pipe->stream_count == pipe->num_inputs) {
934 		/* Stop the pipeline. */
935 		ret = vsp1_pipeline_stop(pipe);
936 		if (ret == -ETIMEDOUT)
937 			dev_err(video->vsp1->dev, "pipeline stop timeout\n");
938 
939 		vsp1_video_cleanup_pipeline(pipe);
940 	}
941 	mutex_unlock(&pipe->lock);
942 
943 	media_pipeline_stop(&video->video.entity);
944 	vsp1_video_release_buffers(video);
945 	vsp1_video_pipeline_put(pipe);
946 }
947 
948 static const struct vb2_ops vsp1_video_queue_qops = {
949 	.queue_setup = vsp1_video_queue_setup,
950 	.buf_prepare = vsp1_video_buffer_prepare,
951 	.buf_queue = vsp1_video_buffer_queue,
952 	.wait_prepare = vb2_ops_wait_prepare,
953 	.wait_finish = vb2_ops_wait_finish,
954 	.start_streaming = vsp1_video_start_streaming,
955 	.stop_streaming = vsp1_video_stop_streaming,
956 };
957 
958 /* -----------------------------------------------------------------------------
959  * V4L2 ioctls
960  */
961 
962 static int
vsp1_video_querycap(struct file * file,void * fh,struct v4l2_capability * cap)963 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
964 {
965 	struct v4l2_fh *vfh = file->private_data;
966 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
967 
968 	cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
969 			  | V4L2_CAP_VIDEO_CAPTURE_MPLANE
970 			  | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
971 
972 	if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
973 		cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
974 				 | V4L2_CAP_STREAMING;
975 	else
976 		cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
977 				 | V4L2_CAP_STREAMING;
978 
979 	strlcpy(cap->driver, "vsp1", sizeof(cap->driver));
980 	strlcpy(cap->card, video->video.name, sizeof(cap->card));
981 	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
982 		 dev_name(video->vsp1->dev));
983 
984 	return 0;
985 }
986 
987 static int
vsp1_video_get_format(struct file * file,void * fh,struct v4l2_format * format)988 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
989 {
990 	struct v4l2_fh *vfh = file->private_data;
991 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
992 
993 	if (format->type != video->queue.type)
994 		return -EINVAL;
995 
996 	mutex_lock(&video->lock);
997 	format->fmt.pix_mp = video->rwpf->format;
998 	mutex_unlock(&video->lock);
999 
1000 	return 0;
1001 }
1002 
1003 static int
vsp1_video_try_format(struct file * file,void * fh,struct v4l2_format * format)1004 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
1005 {
1006 	struct v4l2_fh *vfh = file->private_data;
1007 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1008 
1009 	if (format->type != video->queue.type)
1010 		return -EINVAL;
1011 
1012 	return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
1013 }
1014 
1015 static int
vsp1_video_set_format(struct file * file,void * fh,struct v4l2_format * format)1016 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
1017 {
1018 	struct v4l2_fh *vfh = file->private_data;
1019 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1020 	const struct vsp1_format_info *info;
1021 	int ret;
1022 
1023 	if (format->type != video->queue.type)
1024 		return -EINVAL;
1025 
1026 	ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
1027 	if (ret < 0)
1028 		return ret;
1029 
1030 	mutex_lock(&video->lock);
1031 
1032 	if (vb2_is_busy(&video->queue)) {
1033 		ret = -EBUSY;
1034 		goto done;
1035 	}
1036 
1037 	video->rwpf->format = format->fmt.pix_mp;
1038 	video->rwpf->fmtinfo = info;
1039 
1040 done:
1041 	mutex_unlock(&video->lock);
1042 	return ret;
1043 }
1044 
1045 static int
vsp1_video_streamon(struct file * file,void * fh,enum v4l2_buf_type type)1046 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
1047 {
1048 	struct v4l2_fh *vfh = file->private_data;
1049 	struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1050 	struct media_device *mdev = &video->vsp1->media_dev;
1051 	struct vsp1_pipeline *pipe;
1052 	int ret;
1053 
1054 	if (video->queue.owner && video->queue.owner != file->private_data)
1055 		return -EBUSY;
1056 
1057 	/*
1058 	 * Get a pipeline for the video node and start streaming on it. No link
1059 	 * touching an entity in the pipeline can be activated or deactivated
1060 	 * once streaming is started.
1061 	 */
1062 	mutex_lock(&mdev->graph_mutex);
1063 
1064 	pipe = vsp1_video_pipeline_get(video);
1065 	if (IS_ERR(pipe)) {
1066 		mutex_unlock(&mdev->graph_mutex);
1067 		return PTR_ERR(pipe);
1068 	}
1069 
1070 	ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
1071 	if (ret < 0) {
1072 		mutex_unlock(&mdev->graph_mutex);
1073 		goto err_pipe;
1074 	}
1075 
1076 	mutex_unlock(&mdev->graph_mutex);
1077 
1078 	/*
1079 	 * Verify that the configured format matches the output of the connected
1080 	 * subdev.
1081 	 */
1082 	ret = vsp1_video_verify_format(video);
1083 	if (ret < 0)
1084 		goto err_stop;
1085 
1086 	/* Start the queue. */
1087 	ret = vb2_streamon(&video->queue, type);
1088 	if (ret < 0)
1089 		goto err_stop;
1090 
1091 	return 0;
1092 
1093 err_stop:
1094 	media_pipeline_stop(&video->video.entity);
1095 err_pipe:
1096 	vsp1_video_pipeline_put(pipe);
1097 	return ret;
1098 }
1099 
1100 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1101 	.vidioc_querycap		= vsp1_video_querycap,
1102 	.vidioc_g_fmt_vid_cap_mplane	= vsp1_video_get_format,
1103 	.vidioc_s_fmt_vid_cap_mplane	= vsp1_video_set_format,
1104 	.vidioc_try_fmt_vid_cap_mplane	= vsp1_video_try_format,
1105 	.vidioc_g_fmt_vid_out_mplane	= vsp1_video_get_format,
1106 	.vidioc_s_fmt_vid_out_mplane	= vsp1_video_set_format,
1107 	.vidioc_try_fmt_vid_out_mplane	= vsp1_video_try_format,
1108 	.vidioc_reqbufs			= vb2_ioctl_reqbufs,
1109 	.vidioc_querybuf		= vb2_ioctl_querybuf,
1110 	.vidioc_qbuf			= vb2_ioctl_qbuf,
1111 	.vidioc_dqbuf			= vb2_ioctl_dqbuf,
1112 	.vidioc_expbuf			= vb2_ioctl_expbuf,
1113 	.vidioc_create_bufs		= vb2_ioctl_create_bufs,
1114 	.vidioc_prepare_buf		= vb2_ioctl_prepare_buf,
1115 	.vidioc_streamon		= vsp1_video_streamon,
1116 	.vidioc_streamoff		= vb2_ioctl_streamoff,
1117 };
1118 
1119 /* -----------------------------------------------------------------------------
1120  * V4L2 File Operations
1121  */
1122 
vsp1_video_open(struct file * file)1123 static int vsp1_video_open(struct file *file)
1124 {
1125 	struct vsp1_video *video = video_drvdata(file);
1126 	struct v4l2_fh *vfh;
1127 	int ret = 0;
1128 
1129 	vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1130 	if (vfh == NULL)
1131 		return -ENOMEM;
1132 
1133 	v4l2_fh_init(vfh, &video->video);
1134 	v4l2_fh_add(vfh);
1135 
1136 	file->private_data = vfh;
1137 
1138 	ret = vsp1_device_get(video->vsp1);
1139 	if (ret < 0) {
1140 		v4l2_fh_del(vfh);
1141 		v4l2_fh_exit(vfh);
1142 		kfree(vfh);
1143 	}
1144 
1145 	return ret;
1146 }
1147 
vsp1_video_release(struct file * file)1148 static int vsp1_video_release(struct file *file)
1149 {
1150 	struct vsp1_video *video = video_drvdata(file);
1151 	struct v4l2_fh *vfh = file->private_data;
1152 
1153 	mutex_lock(&video->lock);
1154 	if (video->queue.owner == vfh) {
1155 		vb2_queue_release(&video->queue);
1156 		video->queue.owner = NULL;
1157 	}
1158 	mutex_unlock(&video->lock);
1159 
1160 	vsp1_device_put(video->vsp1);
1161 
1162 	v4l2_fh_release(file);
1163 
1164 	file->private_data = NULL;
1165 
1166 	return 0;
1167 }
1168 
1169 static const struct v4l2_file_operations vsp1_video_fops = {
1170 	.owner = THIS_MODULE,
1171 	.unlocked_ioctl = video_ioctl2,
1172 	.open = vsp1_video_open,
1173 	.release = vsp1_video_release,
1174 	.poll = vb2_fop_poll,
1175 	.mmap = vb2_fop_mmap,
1176 };
1177 
1178 /* -----------------------------------------------------------------------------
1179  * Suspend and Resume
1180  */
1181 
vsp1_video_suspend(struct vsp1_device * vsp1)1182 void vsp1_video_suspend(struct vsp1_device *vsp1)
1183 {
1184 	unsigned long flags;
1185 	unsigned int i;
1186 	int ret;
1187 
1188 	/*
1189 	 * To avoid increasing the system suspend time needlessly, loop over the
1190 	 * pipelines twice, first to set them all to the stopping state, and
1191 	 * then to wait for the stop to complete.
1192 	 */
1193 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1194 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1195 		struct vsp1_pipeline *pipe;
1196 
1197 		if (wpf == NULL)
1198 			continue;
1199 
1200 		pipe = wpf->entity.pipe;
1201 		if (pipe == NULL)
1202 			continue;
1203 
1204 		spin_lock_irqsave(&pipe->irqlock, flags);
1205 		if (pipe->state == VSP1_PIPELINE_RUNNING)
1206 			pipe->state = VSP1_PIPELINE_STOPPING;
1207 		spin_unlock_irqrestore(&pipe->irqlock, flags);
1208 	}
1209 
1210 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1211 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1212 		struct vsp1_pipeline *pipe;
1213 
1214 		if (wpf == NULL)
1215 			continue;
1216 
1217 		pipe = wpf->entity.pipe;
1218 		if (pipe == NULL)
1219 			continue;
1220 
1221 		ret = wait_event_timeout(pipe->wq, vsp1_pipeline_stopped(pipe),
1222 					 msecs_to_jiffies(500));
1223 		if (ret == 0)
1224 			dev_warn(vsp1->dev, "pipeline %u stop timeout\n",
1225 				 wpf->entity.index);
1226 	}
1227 }
1228 
vsp1_video_resume(struct vsp1_device * vsp1)1229 void vsp1_video_resume(struct vsp1_device *vsp1)
1230 {
1231 	unsigned long flags;
1232 	unsigned int i;
1233 
1234 	/* Resume all running pipelines. */
1235 	for (i = 0; i < vsp1->info->wpf_count; ++i) {
1236 		struct vsp1_rwpf *wpf = vsp1->wpf[i];
1237 		struct vsp1_pipeline *pipe;
1238 
1239 		if (wpf == NULL)
1240 			continue;
1241 
1242 		pipe = wpf->entity.pipe;
1243 		if (pipe == NULL)
1244 			continue;
1245 
1246 		/*
1247 		 * The hardware may have been reset during a suspend and will
1248 		 * need a full reconfiguration.
1249 		 */
1250 		pipe->configured = false;
1251 
1252 		spin_lock_irqsave(&pipe->irqlock, flags);
1253 		if (vsp1_pipeline_ready(pipe))
1254 			vsp1_video_pipeline_run(pipe);
1255 		spin_unlock_irqrestore(&pipe->irqlock, flags);
1256 	}
1257 }
1258 
1259 /* -----------------------------------------------------------------------------
1260  * Initialization and Cleanup
1261  */
1262 
vsp1_video_create(struct vsp1_device * vsp1,struct vsp1_rwpf * rwpf)1263 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1264 				     struct vsp1_rwpf *rwpf)
1265 {
1266 	struct vsp1_video *video;
1267 	const char *direction;
1268 	int ret;
1269 
1270 	video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1271 	if (!video)
1272 		return ERR_PTR(-ENOMEM);
1273 
1274 	rwpf->video = video;
1275 
1276 	video->vsp1 = vsp1;
1277 	video->rwpf = rwpf;
1278 
1279 	if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1280 		direction = "input";
1281 		video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1282 		video->pad.flags = MEDIA_PAD_FL_SOURCE;
1283 		video->video.vfl_dir = VFL_DIR_TX;
1284 	} else {
1285 		direction = "output";
1286 		video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1287 		video->pad.flags = MEDIA_PAD_FL_SINK;
1288 		video->video.vfl_dir = VFL_DIR_RX;
1289 	}
1290 
1291 	mutex_init(&video->lock);
1292 	spin_lock_init(&video->irqlock);
1293 	INIT_LIST_HEAD(&video->irqqueue);
1294 
1295 	/* Initialize the media entity... */
1296 	ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1297 	if (ret < 0)
1298 		return ERR_PTR(ret);
1299 
1300 	/* ... and the format ... */
1301 	rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1302 	rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1303 	rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1304 	__vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1305 
1306 	/* ... and the video node... */
1307 	video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1308 	video->video.fops = &vsp1_video_fops;
1309 	snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1310 		 rwpf->entity.subdev.name, direction);
1311 	video->video.vfl_type = VFL_TYPE_GRABBER;
1312 	video->video.release = video_device_release_empty;
1313 	video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1314 
1315 	video_set_drvdata(&video->video, video);
1316 
1317 	video->queue.type = video->type;
1318 	video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1319 	video->queue.lock = &video->lock;
1320 	video->queue.drv_priv = video;
1321 	video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1322 	video->queue.ops = &vsp1_video_queue_qops;
1323 	video->queue.mem_ops = &vb2_dma_contig_memops;
1324 	video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1325 	video->queue.dev = video->vsp1->bus_master;
1326 	ret = vb2_queue_init(&video->queue);
1327 	if (ret < 0) {
1328 		dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1329 		goto error;
1330 	}
1331 
1332 	/* ... and register the video device. */
1333 	video->video.queue = &video->queue;
1334 	ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
1335 	if (ret < 0) {
1336 		dev_err(video->vsp1->dev, "failed to register video device\n");
1337 		goto error;
1338 	}
1339 
1340 	return video;
1341 
1342 error:
1343 	vsp1_video_cleanup(video);
1344 	return ERR_PTR(ret);
1345 }
1346 
vsp1_video_cleanup(struct vsp1_video * video)1347 void vsp1_video_cleanup(struct vsp1_video *video)
1348 {
1349 	if (video_is_registered(&video->video))
1350 		video_unregister_device(&video->video);
1351 
1352 	media_entity_cleanup(&video->video.entity);
1353 }
1354