1 /*
2  * VPDMA helper library
3  *
4  * Copyright (c) 2013 Texas Instruments Inc.
5  *
6  * David Griego, <dagriego@biglakesoftware.com>
7  * Dale Farnsworth, <dale@farnsworth.org>
8  * Archit Taneja, <archit@ti.com>
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License version 2 as published by
12  * the Free Software Foundation.
13  */
14 
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/firmware.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/videodev2.h>
25 
26 #include "vpdma.h"
27 #include "vpdma_priv.h"
28 
29 #define VPDMA_FIRMWARE	"vpdma-1b8.bin"
30 
31 const struct vpdma_data_format vpdma_yuv_fmts[] = {
32 	[VPDMA_DATA_FMT_Y444] = {
33 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
34 		.data_type	= DATA_TYPE_Y444,
35 		.depth		= 8,
36 	},
37 	[VPDMA_DATA_FMT_Y422] = {
38 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
39 		.data_type	= DATA_TYPE_Y422,
40 		.depth		= 8,
41 	},
42 	[VPDMA_DATA_FMT_Y420] = {
43 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
44 		.data_type	= DATA_TYPE_Y420,
45 		.depth		= 8,
46 	},
47 	[VPDMA_DATA_FMT_C444] = {
48 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
49 		.data_type	= DATA_TYPE_C444,
50 		.depth		= 8,
51 	},
52 	[VPDMA_DATA_FMT_C422] = {
53 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
54 		.data_type	= DATA_TYPE_C422,
55 		.depth		= 8,
56 	},
57 	[VPDMA_DATA_FMT_C420] = {
58 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
59 		.data_type	= DATA_TYPE_C420,
60 		.depth		= 4,
61 	},
62 	[VPDMA_DATA_FMT_YCR422] = {
63 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
64 		.data_type	= DATA_TYPE_YCR422,
65 		.depth		= 16,
66 	},
67 	[VPDMA_DATA_FMT_YC444] = {
68 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
69 		.data_type	= DATA_TYPE_YC444,
70 		.depth		= 24,
71 	},
72 	[VPDMA_DATA_FMT_CRY422] = {
73 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
74 		.data_type	= DATA_TYPE_CRY422,
75 		.depth		= 16,
76 	},
77 	[VPDMA_DATA_FMT_CBY422] = {
78 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
79 		.data_type	= DATA_TYPE_CBY422,
80 		.depth		= 16,
81 	},
82 	[VPDMA_DATA_FMT_YCB422] = {
83 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
84 		.data_type	= DATA_TYPE_YCB422,
85 		.depth		= 16,
86 	},
87 };
88 EXPORT_SYMBOL(vpdma_yuv_fmts);
89 
90 const struct vpdma_data_format vpdma_rgb_fmts[] = {
91 	[VPDMA_DATA_FMT_RGB565] = {
92 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
93 		.data_type	= DATA_TYPE_RGB16_565,
94 		.depth		= 16,
95 	},
96 	[VPDMA_DATA_FMT_ARGB16_1555] = {
97 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
98 		.data_type	= DATA_TYPE_ARGB_1555,
99 		.depth		= 16,
100 	},
101 	[VPDMA_DATA_FMT_ARGB16] = {
102 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
103 		.data_type	= DATA_TYPE_ARGB_4444,
104 		.depth		= 16,
105 	},
106 	[VPDMA_DATA_FMT_RGBA16_5551] = {
107 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
108 		.data_type	= DATA_TYPE_RGBA_5551,
109 		.depth		= 16,
110 	},
111 	[VPDMA_DATA_FMT_RGBA16] = {
112 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
113 		.data_type	= DATA_TYPE_RGBA_4444,
114 		.depth		= 16,
115 	},
116 	[VPDMA_DATA_FMT_ARGB24] = {
117 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
118 		.data_type	= DATA_TYPE_ARGB24_6666,
119 		.depth		= 24,
120 	},
121 	[VPDMA_DATA_FMT_RGB24] = {
122 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
123 		.data_type	= DATA_TYPE_RGB24_888,
124 		.depth		= 24,
125 	},
126 	[VPDMA_DATA_FMT_ARGB32] = {
127 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
128 		.data_type	= DATA_TYPE_ARGB32_8888,
129 		.depth		= 32,
130 	},
131 	[VPDMA_DATA_FMT_RGBA24] = {
132 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
133 		.data_type	= DATA_TYPE_RGBA24_6666,
134 		.depth		= 24,
135 	},
136 	[VPDMA_DATA_FMT_RGBA32] = {
137 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
138 		.data_type	= DATA_TYPE_RGBA32_8888,
139 		.depth		= 32,
140 	},
141 	[VPDMA_DATA_FMT_BGR565] = {
142 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
143 		.data_type	= DATA_TYPE_BGR16_565,
144 		.depth		= 16,
145 	},
146 	[VPDMA_DATA_FMT_ABGR16_1555] = {
147 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
148 		.data_type	= DATA_TYPE_ABGR_1555,
149 		.depth		= 16,
150 	},
151 	[VPDMA_DATA_FMT_ABGR16] = {
152 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
153 		.data_type	= DATA_TYPE_ABGR_4444,
154 		.depth		= 16,
155 	},
156 	[VPDMA_DATA_FMT_BGRA16_5551] = {
157 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
158 		.data_type	= DATA_TYPE_BGRA_5551,
159 		.depth		= 16,
160 	},
161 	[VPDMA_DATA_FMT_BGRA16] = {
162 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
163 		.data_type	= DATA_TYPE_BGRA_4444,
164 		.depth		= 16,
165 	},
166 	[VPDMA_DATA_FMT_ABGR24] = {
167 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
168 		.data_type	= DATA_TYPE_ABGR24_6666,
169 		.depth		= 24,
170 	},
171 	[VPDMA_DATA_FMT_BGR24] = {
172 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
173 		.data_type	= DATA_TYPE_BGR24_888,
174 		.depth		= 24,
175 	},
176 	[VPDMA_DATA_FMT_ABGR32] = {
177 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
178 		.data_type	= DATA_TYPE_ABGR32_8888,
179 		.depth		= 32,
180 	},
181 	[VPDMA_DATA_FMT_BGRA24] = {
182 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
183 		.data_type	= DATA_TYPE_BGRA24_6666,
184 		.depth		= 24,
185 	},
186 	[VPDMA_DATA_FMT_BGRA32] = {
187 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
188 		.data_type	= DATA_TYPE_BGRA32_8888,
189 		.depth		= 32,
190 	},
191 };
192 EXPORT_SYMBOL(vpdma_rgb_fmts);
193 
194 /*
195  * To handle RAW format we are re-using the CBY422
196  * vpdma data type so that we use the vpdma to re-order
197  * the incoming bytes, as the parser assumes that the
198  * first byte presented on the bus is the MSB of a 2
199  * bytes value.
200  * RAW8 handles from 1 to 8 bits
201  * RAW16 handles from 9 to 16 bits
202  */
203 const struct vpdma_data_format vpdma_raw_fmts[] = {
204 	[VPDMA_DATA_FMT_RAW8] = {
205 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
206 		.data_type	= DATA_TYPE_CBY422,
207 		.depth		= 8,
208 	},
209 	[VPDMA_DATA_FMT_RAW16] = {
210 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
211 		.data_type	= DATA_TYPE_CBY422,
212 		.depth		= 16,
213 	},
214 };
215 EXPORT_SYMBOL(vpdma_raw_fmts);
216 
217 const struct vpdma_data_format vpdma_misc_fmts[] = {
218 	[VPDMA_DATA_FMT_MV] = {
219 		.type		= VPDMA_DATA_FMT_TYPE_MISC,
220 		.data_type	= DATA_TYPE_MV,
221 		.depth		= 4,
222 	},
223 };
224 EXPORT_SYMBOL(vpdma_misc_fmts);
225 
226 struct vpdma_channel_info {
227 	int num;		/* VPDMA channel number */
228 	int cstat_offset;	/* client CSTAT register offset */
229 };
230 
231 static const struct vpdma_channel_info chan_info[] = {
232 	[VPE_CHAN_LUMA1_IN] = {
233 		.num		= VPE_CHAN_NUM_LUMA1_IN,
234 		.cstat_offset	= VPDMA_DEI_LUMA1_CSTAT,
235 	},
236 	[VPE_CHAN_CHROMA1_IN] = {
237 		.num		= VPE_CHAN_NUM_CHROMA1_IN,
238 		.cstat_offset	= VPDMA_DEI_CHROMA1_CSTAT,
239 	},
240 	[VPE_CHAN_LUMA2_IN] = {
241 		.num		= VPE_CHAN_NUM_LUMA2_IN,
242 		.cstat_offset	= VPDMA_DEI_LUMA2_CSTAT,
243 	},
244 	[VPE_CHAN_CHROMA2_IN] = {
245 		.num		= VPE_CHAN_NUM_CHROMA2_IN,
246 		.cstat_offset	= VPDMA_DEI_CHROMA2_CSTAT,
247 	},
248 	[VPE_CHAN_LUMA3_IN] = {
249 		.num		= VPE_CHAN_NUM_LUMA3_IN,
250 		.cstat_offset	= VPDMA_DEI_LUMA3_CSTAT,
251 	},
252 	[VPE_CHAN_CHROMA3_IN] = {
253 		.num		= VPE_CHAN_NUM_CHROMA3_IN,
254 		.cstat_offset	= VPDMA_DEI_CHROMA3_CSTAT,
255 	},
256 	[VPE_CHAN_MV_IN] = {
257 		.num		= VPE_CHAN_NUM_MV_IN,
258 		.cstat_offset	= VPDMA_DEI_MV_IN_CSTAT,
259 	},
260 	[VPE_CHAN_MV_OUT] = {
261 		.num		= VPE_CHAN_NUM_MV_OUT,
262 		.cstat_offset	= VPDMA_DEI_MV_OUT_CSTAT,
263 	},
264 	[VPE_CHAN_LUMA_OUT] = {
265 		.num		= VPE_CHAN_NUM_LUMA_OUT,
266 		.cstat_offset	= VPDMA_VIP_UP_Y_CSTAT,
267 	},
268 	[VPE_CHAN_CHROMA_OUT] = {
269 		.num		= VPE_CHAN_NUM_CHROMA_OUT,
270 		.cstat_offset	= VPDMA_VIP_UP_UV_CSTAT,
271 	},
272 	[VPE_CHAN_RGB_OUT] = {
273 		.num		= VPE_CHAN_NUM_RGB_OUT,
274 		.cstat_offset	= VPDMA_VIP_UP_Y_CSTAT,
275 	},
276 };
277 
read_reg(struct vpdma_data * vpdma,int offset)278 static u32 read_reg(struct vpdma_data *vpdma, int offset)
279 {
280 	return ioread32(vpdma->base + offset);
281 }
282 
write_reg(struct vpdma_data * vpdma,int offset,u32 value)283 static void write_reg(struct vpdma_data *vpdma, int offset, u32 value)
284 {
285 	iowrite32(value, vpdma->base + offset);
286 }
287 
read_field_reg(struct vpdma_data * vpdma,int offset,u32 mask,int shift)288 static int read_field_reg(struct vpdma_data *vpdma, int offset,
289 		u32 mask, int shift)
290 {
291 	return (read_reg(vpdma, offset) & (mask << shift)) >> shift;
292 }
293 
write_field_reg(struct vpdma_data * vpdma,int offset,u32 field,u32 mask,int shift)294 static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field,
295 		u32 mask, int shift)
296 {
297 	u32 val = read_reg(vpdma, offset);
298 
299 	val &= ~(mask << shift);
300 	val |= (field & mask) << shift;
301 
302 	write_reg(vpdma, offset, val);
303 }
304 
vpdma_dump_regs(struct vpdma_data * vpdma)305 void vpdma_dump_regs(struct vpdma_data *vpdma)
306 {
307 	struct device *dev = &vpdma->pdev->dev;
308 
309 #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r))
310 
311 	dev_dbg(dev, "VPDMA Registers:\n");
312 
313 	DUMPREG(PID);
314 	DUMPREG(LIST_ADDR);
315 	DUMPREG(LIST_ATTR);
316 	DUMPREG(LIST_STAT_SYNC);
317 	DUMPREG(BG_RGB);
318 	DUMPREG(BG_YUV);
319 	DUMPREG(SETUP);
320 	DUMPREG(MAX_SIZE1);
321 	DUMPREG(MAX_SIZE2);
322 	DUMPREG(MAX_SIZE3);
323 
324 	/*
325 	 * dumping registers of only group0 and group3, because VPE channels
326 	 * lie within group0 and group3 registers
327 	 */
328 	DUMPREG(INT_CHAN_STAT(0));
329 	DUMPREG(INT_CHAN_MASK(0));
330 	DUMPREG(INT_CHAN_STAT(3));
331 	DUMPREG(INT_CHAN_MASK(3));
332 	DUMPREG(INT_CLIENT0_STAT);
333 	DUMPREG(INT_CLIENT0_MASK);
334 	DUMPREG(INT_CLIENT1_STAT);
335 	DUMPREG(INT_CLIENT1_MASK);
336 	DUMPREG(INT_LIST0_STAT);
337 	DUMPREG(INT_LIST0_MASK);
338 
339 	/*
340 	 * these are registers specific to VPE clients, we can make this
341 	 * function dump client registers specific to VPE or VIP based on
342 	 * who is using it
343 	 */
344 	DUMPREG(DEI_CHROMA1_CSTAT);
345 	DUMPREG(DEI_LUMA1_CSTAT);
346 	DUMPREG(DEI_CHROMA2_CSTAT);
347 	DUMPREG(DEI_LUMA2_CSTAT);
348 	DUMPREG(DEI_CHROMA3_CSTAT);
349 	DUMPREG(DEI_LUMA3_CSTAT);
350 	DUMPREG(DEI_MV_IN_CSTAT);
351 	DUMPREG(DEI_MV_OUT_CSTAT);
352 	DUMPREG(VIP_UP_Y_CSTAT);
353 	DUMPREG(VIP_UP_UV_CSTAT);
354 	DUMPREG(VPI_CTL_CSTAT);
355 }
356 EXPORT_SYMBOL(vpdma_dump_regs);
357 
358 /*
359  * Allocate a DMA buffer
360  */
vpdma_alloc_desc_buf(struct vpdma_buf * buf,size_t size)361 int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size)
362 {
363 	buf->size = size;
364 	buf->mapped = false;
365 	buf->addr = kzalloc(size, GFP_KERNEL);
366 	if (!buf->addr)
367 		return -ENOMEM;
368 
369 	WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0);
370 
371 	return 0;
372 }
373 EXPORT_SYMBOL(vpdma_alloc_desc_buf);
374 
vpdma_free_desc_buf(struct vpdma_buf * buf)375 void vpdma_free_desc_buf(struct vpdma_buf *buf)
376 {
377 	WARN_ON(buf->mapped);
378 	kfree(buf->addr);
379 	buf->addr = NULL;
380 	buf->size = 0;
381 }
382 EXPORT_SYMBOL(vpdma_free_desc_buf);
383 
384 /*
385  * map descriptor/payload DMA buffer, enabling DMA access
386  */
vpdma_map_desc_buf(struct vpdma_data * vpdma,struct vpdma_buf * buf)387 int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
388 {
389 	struct device *dev = &vpdma->pdev->dev;
390 
391 	WARN_ON(buf->mapped);
392 	buf->dma_addr = dma_map_single(dev, buf->addr, buf->size,
393 				DMA_BIDIRECTIONAL);
394 	if (dma_mapping_error(dev, buf->dma_addr)) {
395 		dev_err(dev, "failed to map buffer\n");
396 		return -EINVAL;
397 	}
398 
399 	buf->mapped = true;
400 
401 	return 0;
402 }
403 EXPORT_SYMBOL(vpdma_map_desc_buf);
404 
405 /*
406  * unmap descriptor/payload DMA buffer, disabling DMA access and
407  * allowing the main processor to acces the data
408  */
vpdma_unmap_desc_buf(struct vpdma_data * vpdma,struct vpdma_buf * buf)409 void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
410 {
411 	struct device *dev = &vpdma->pdev->dev;
412 
413 	if (buf->mapped)
414 		dma_unmap_single(dev, buf->dma_addr, buf->size,
415 				DMA_BIDIRECTIONAL);
416 
417 	buf->mapped = false;
418 }
419 EXPORT_SYMBOL(vpdma_unmap_desc_buf);
420 
421 /*
422  * Cleanup all pending descriptors of a list
423  * First, stop the current list being processed.
424  * If the VPDMA was busy, this step makes vpdma to accept post lists.
425  * To cleanup the internal FSM, post abort list descriptor for all the
426  * channels from @channels array of size @size.
427  */
vpdma_list_cleanup(struct vpdma_data * vpdma,int list_num,int * channels,int size)428 int vpdma_list_cleanup(struct vpdma_data *vpdma, int list_num,
429 		int *channels, int size)
430 {
431 	struct vpdma_desc_list abort_list;
432 	int i, ret, timeout = 500;
433 
434 	write_reg(vpdma, VPDMA_LIST_ATTR,
435 			(list_num << VPDMA_LIST_NUM_SHFT) |
436 			(1 << VPDMA_LIST_STOP_SHFT));
437 
438 	if (size <= 0 || !channels)
439 		return 0;
440 
441 	ret = vpdma_create_desc_list(&abort_list,
442 		size * sizeof(struct vpdma_dtd), VPDMA_LIST_TYPE_NORMAL);
443 	if (ret)
444 		return ret;
445 
446 	for (i = 0; i < size; i++)
447 		vpdma_add_abort_channel_ctd(&abort_list, channels[i]);
448 
449 	ret = vpdma_map_desc_buf(vpdma, &abort_list.buf);
450 	if (ret)
451 		return ret;
452 	ret = vpdma_submit_descs(vpdma, &abort_list, list_num);
453 	if (ret)
454 		return ret;
455 
456 	while (vpdma_list_busy(vpdma, list_num) && --timeout)
457 		;
458 
459 	if (timeout == 0) {
460 		dev_err(&vpdma->pdev->dev, "Timed out cleaning up VPDMA list\n");
461 		return -EBUSY;
462 	}
463 
464 	vpdma_unmap_desc_buf(vpdma, &abort_list.buf);
465 	vpdma_free_desc_buf(&abort_list.buf);
466 
467 	return 0;
468 }
469 EXPORT_SYMBOL(vpdma_list_cleanup);
470 
471 /*
472  * create a descriptor list, the user of this list will append configuration,
473  * control and data descriptors to this list, this list will be submitted to
474  * VPDMA. VPDMA's list parser will go through each descriptor and perform the
475  * required DMA operations
476  */
vpdma_create_desc_list(struct vpdma_desc_list * list,size_t size,int type)477 int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type)
478 {
479 	int r;
480 
481 	r = vpdma_alloc_desc_buf(&list->buf, size);
482 	if (r)
483 		return r;
484 
485 	list->next = list->buf.addr;
486 
487 	list->type = type;
488 
489 	return 0;
490 }
491 EXPORT_SYMBOL(vpdma_create_desc_list);
492 
493 /*
494  * once a descriptor list is parsed by VPDMA, we reset the list by emptying it,
495  * to allow new descriptors to be added to the list.
496  */
vpdma_reset_desc_list(struct vpdma_desc_list * list)497 void vpdma_reset_desc_list(struct vpdma_desc_list *list)
498 {
499 	list->next = list->buf.addr;
500 }
501 EXPORT_SYMBOL(vpdma_reset_desc_list);
502 
503 /*
504  * free the buffer allocated fot the VPDMA descriptor list, this should be
505  * called when the user doesn't want to use VPDMA any more.
506  */
vpdma_free_desc_list(struct vpdma_desc_list * list)507 void vpdma_free_desc_list(struct vpdma_desc_list *list)
508 {
509 	vpdma_free_desc_buf(&list->buf);
510 
511 	list->next = NULL;
512 }
513 EXPORT_SYMBOL(vpdma_free_desc_list);
514 
vpdma_list_busy(struct vpdma_data * vpdma,int list_num)515 bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num)
516 {
517 	return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16);
518 }
519 EXPORT_SYMBOL(vpdma_list_busy);
520 
521 /*
522  * submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion
523  */
vpdma_submit_descs(struct vpdma_data * vpdma,struct vpdma_desc_list * list,int list_num)524 int vpdma_submit_descs(struct vpdma_data *vpdma,
525 			struct vpdma_desc_list *list, int list_num)
526 {
527 	int list_size;
528 	unsigned long flags;
529 
530 	if (vpdma_list_busy(vpdma, list_num))
531 		return -EBUSY;
532 
533 	/* 16-byte granularity */
534 	list_size = (list->next - list->buf.addr) >> 4;
535 
536 	spin_lock_irqsave(&vpdma->lock, flags);
537 	write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr);
538 
539 	write_reg(vpdma, VPDMA_LIST_ATTR,
540 			(list_num << VPDMA_LIST_NUM_SHFT) |
541 			(list->type << VPDMA_LIST_TYPE_SHFT) |
542 			list_size);
543 	spin_unlock_irqrestore(&vpdma->lock, flags);
544 
545 	return 0;
546 }
547 EXPORT_SYMBOL(vpdma_submit_descs);
548 
549 static void dump_dtd(struct vpdma_dtd *dtd);
550 
vpdma_update_dma_addr(struct vpdma_data * vpdma,struct vpdma_desc_list * list,dma_addr_t dma_addr,void * write_dtd,int drop,int idx)551 void vpdma_update_dma_addr(struct vpdma_data *vpdma,
552 	struct vpdma_desc_list *list, dma_addr_t dma_addr,
553 	void *write_dtd, int drop, int idx)
554 {
555 	struct vpdma_dtd *dtd = list->buf.addr;
556 	dma_addr_t write_desc_addr;
557 	int offset;
558 
559 	dtd += idx;
560 	vpdma_unmap_desc_buf(vpdma, &list->buf);
561 
562 	dtd->start_addr = dma_addr;
563 
564 	/* Calculate write address from the offset of write_dtd from start
565 	 * of the list->buf
566 	 */
567 	offset = (void *)write_dtd - list->buf.addr;
568 	write_desc_addr = list->buf.dma_addr + offset;
569 
570 	if (drop)
571 		dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
572 							   1, 1, 0);
573 	else
574 		dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
575 							   1, 0, 0);
576 
577 	vpdma_map_desc_buf(vpdma, &list->buf);
578 
579 	dump_dtd(dtd);
580 }
581 EXPORT_SYMBOL(vpdma_update_dma_addr);
582 
vpdma_set_max_size(struct vpdma_data * vpdma,int reg_addr,u32 width,u32 height)583 void vpdma_set_max_size(struct vpdma_data *vpdma, int reg_addr,
584 			u32 width, u32 height)
585 {
586 	if (reg_addr != VPDMA_MAX_SIZE1 && reg_addr != VPDMA_MAX_SIZE2 &&
587 	    reg_addr != VPDMA_MAX_SIZE3)
588 		reg_addr = VPDMA_MAX_SIZE1;
589 
590 	write_field_reg(vpdma, reg_addr, width - 1,
591 			VPDMA_MAX_SIZE_WIDTH_MASK, VPDMA_MAX_SIZE_WIDTH_SHFT);
592 
593 	write_field_reg(vpdma, reg_addr, height - 1,
594 			VPDMA_MAX_SIZE_HEIGHT_MASK, VPDMA_MAX_SIZE_HEIGHT_SHFT);
595 
596 }
597 EXPORT_SYMBOL(vpdma_set_max_size);
598 
dump_cfd(struct vpdma_cfd * cfd)599 static void dump_cfd(struct vpdma_cfd *cfd)
600 {
601 	int class;
602 
603 	class = cfd_get_class(cfd);
604 
605 	pr_debug("config descriptor of payload class: %s\n",
606 		class == CFD_CLS_BLOCK ? "simple block" :
607 		"address data block");
608 
609 	if (class == CFD_CLS_BLOCK)
610 		pr_debug("word0: dst_addr_offset = 0x%08x\n",
611 			cfd->dest_addr_offset);
612 
613 	if (class == CFD_CLS_BLOCK)
614 		pr_debug("word1: num_data_wrds = %d\n", cfd->block_len);
615 
616 	pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr);
617 
618 	pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, payload_len = %d\n",
619 		 cfd_get_pkt_type(cfd),
620 		 cfd_get_direct(cfd), class, cfd_get_dest(cfd),
621 		 cfd_get_payload_len(cfd));
622 }
623 
624 /*
625  * append a configuration descriptor to the given descriptor list, where the
626  * payload is in the form of a simple data block specified in the descriptor
627  * header, this is used to upload scaler coefficients to the scaler module
628  */
vpdma_add_cfd_block(struct vpdma_desc_list * list,int client,struct vpdma_buf * blk,u32 dest_offset)629 void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client,
630 		struct vpdma_buf *blk, u32 dest_offset)
631 {
632 	struct vpdma_cfd *cfd;
633 	int len = blk->size;
634 
635 	WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN);
636 
637 	cfd = list->next;
638 	WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
639 
640 	cfd->dest_addr_offset = dest_offset;
641 	cfd->block_len = len;
642 	cfd->payload_addr = (u32) blk->dma_addr;
643 	cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK,
644 				client, len >> 4);
645 
646 	list->next = cfd + 1;
647 
648 	dump_cfd(cfd);
649 }
650 EXPORT_SYMBOL(vpdma_add_cfd_block);
651 
652 /*
653  * append a configuration descriptor to the given descriptor list, where the
654  * payload is in the address data block format, this is used to a configure a
655  * discontiguous set of MMRs
656  */
vpdma_add_cfd_adb(struct vpdma_desc_list * list,int client,struct vpdma_buf * adb)657 void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client,
658 		struct vpdma_buf *adb)
659 {
660 	struct vpdma_cfd *cfd;
661 	unsigned int len = adb->size;
662 
663 	WARN_ON(len & VPDMA_ADB_SIZE_ALIGN);
664 	WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN);
665 
666 	cfd = list->next;
667 	BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
668 
669 	cfd->w0 = 0;
670 	cfd->w1 = 0;
671 	cfd->payload_addr = (u32) adb->dma_addr;
672 	cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB,
673 				client, len >> 4);
674 
675 	list->next = cfd + 1;
676 
677 	dump_cfd(cfd);
678 };
679 EXPORT_SYMBOL(vpdma_add_cfd_adb);
680 
681 /*
682  * control descriptor format change based on what type of control descriptor it
683  * is, we only use 'sync on channel' control descriptors for now, so assume it's
684  * that
685  */
dump_ctd(struct vpdma_ctd * ctd)686 static void dump_ctd(struct vpdma_ctd *ctd)
687 {
688 	pr_debug("control descriptor\n");
689 
690 	pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n",
691 		ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd));
692 }
693 
694 /*
695  * append a 'sync on channel' type control descriptor to the given descriptor
696  * list, this descriptor stalls the VPDMA list till the time DMA is completed
697  * on the specified channel
698  */
vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list * list,enum vpdma_channel chan)699 void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list,
700 		enum vpdma_channel chan)
701 {
702 	struct vpdma_ctd *ctd;
703 
704 	ctd = list->next;
705 	WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
706 
707 	ctd->w0 = 0;
708 	ctd->w1 = 0;
709 	ctd->w2 = 0;
710 	ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num,
711 				CTD_TYPE_SYNC_ON_CHANNEL);
712 
713 	list->next = ctd + 1;
714 
715 	dump_ctd(ctd);
716 }
717 EXPORT_SYMBOL(vpdma_add_sync_on_channel_ctd);
718 
719 /*
720  * append an 'abort_channel' type control descriptor to the given descriptor
721  * list, this descriptor aborts any DMA transaction happening using the
722  * specified channel
723  */
vpdma_add_abort_channel_ctd(struct vpdma_desc_list * list,int chan_num)724 void vpdma_add_abort_channel_ctd(struct vpdma_desc_list *list,
725 		int chan_num)
726 {
727 	struct vpdma_ctd *ctd;
728 
729 	ctd = list->next;
730 	WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
731 
732 	ctd->w0 = 0;
733 	ctd->w1 = 0;
734 	ctd->w2 = 0;
735 	ctd->type_source_ctl = ctd_type_source_ctl(chan_num,
736 				CTD_TYPE_ABORT_CHANNEL);
737 
738 	list->next = ctd + 1;
739 
740 	dump_ctd(ctd);
741 }
742 EXPORT_SYMBOL(vpdma_add_abort_channel_ctd);
743 
dump_dtd(struct vpdma_dtd * dtd)744 static void dump_dtd(struct vpdma_dtd *dtd)
745 {
746 	int dir, chan;
747 
748 	dir = dtd_get_dir(dtd);
749 	chan = dtd_get_chan(dtd);
750 
751 	pr_debug("%s data transfer descriptor for channel %d\n",
752 		dir == DTD_DIR_OUT ? "outbound" : "inbound", chan);
753 
754 	pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n",
755 		dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd),
756 		dtd_get_1d(dtd), dtd_get_even_line_skip(dtd),
757 		dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd));
758 
759 	if (dir == DTD_DIR_IN)
760 		pr_debug("word1: line_length = %d, xfer_height = %d\n",
761 			dtd_get_line_length(dtd), dtd_get_xfer_height(dtd));
762 
763 	pr_debug("word2: start_addr = %pad\n", &dtd->start_addr);
764 
765 	pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, pri = %d, next_chan = %d\n",
766 		 dtd_get_pkt_type(dtd),
767 		 dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd),
768 		 dtd_get_next_chan(dtd));
769 
770 	if (dir == DTD_DIR_IN)
771 		pr_debug("word4: frame_width = %d, frame_height = %d\n",
772 			dtd_get_frame_width(dtd), dtd_get_frame_height(dtd));
773 	else
774 		pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, drp_data = %d, use_desc_reg = %d\n",
775 			dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd),
776 			dtd_get_drop_data(dtd), dtd_get_use_desc(dtd));
777 
778 	if (dir == DTD_DIR_IN)
779 		pr_debug("word5: hor_start = %d, ver_start = %d\n",
780 			dtd_get_h_start(dtd), dtd_get_v_start(dtd));
781 	else
782 		pr_debug("word5: max_width %d, max_height %d\n",
783 			dtd_get_max_width(dtd), dtd_get_max_height(dtd));
784 
785 	pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0);
786 	pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1);
787 }
788 
789 /*
790  * append an outbound data transfer descriptor to the given descriptor list,
791  * this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel
792  *
793  * @list: vpdma desc list to which we add this decriptor
794  * @width: width of the image in pixels in memory
795  * @c_rect: compose params of output image
796  * @fmt: vpdma data format of the buffer
797  * dma_addr: dma address as seen by VPDMA
798  * max_width: enum for maximum width of data transfer
799  * max_height: enum for maximum height of data transfer
800  * chan: VPDMA channel
801  * flags: VPDMA flags to configure some descriptor fileds
802  */
vpdma_add_out_dtd(struct vpdma_desc_list * list,int width,int stride,const struct v4l2_rect * c_rect,const struct vpdma_data_format * fmt,dma_addr_t dma_addr,int max_w,int max_h,enum vpdma_channel chan,u32 flags)803 void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width,
804 		int stride, const struct v4l2_rect *c_rect,
805 		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
806 		int max_w, int max_h, enum vpdma_channel chan, u32 flags)
807 {
808 	vpdma_rawchan_add_out_dtd(list, width, stride, c_rect, fmt, dma_addr,
809 				  max_w, max_h, chan_info[chan].num, flags);
810 }
811 EXPORT_SYMBOL(vpdma_add_out_dtd);
812 
vpdma_rawchan_add_out_dtd(struct vpdma_desc_list * list,int width,int stride,const struct v4l2_rect * c_rect,const struct vpdma_data_format * fmt,dma_addr_t dma_addr,int max_w,int max_h,int raw_vpdma_chan,u32 flags)813 void vpdma_rawchan_add_out_dtd(struct vpdma_desc_list *list, int width,
814 		int stride, const struct v4l2_rect *c_rect,
815 		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
816 		int max_w, int max_h, int raw_vpdma_chan, u32 flags)
817 {
818 	int priority = 0;
819 	int field = 0;
820 	int notify = 1;
821 	int channel, next_chan;
822 	struct v4l2_rect rect = *c_rect;
823 	int depth = fmt->depth;
824 	struct vpdma_dtd *dtd;
825 
826 	channel = next_chan = raw_vpdma_chan;
827 
828 	if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
829 			fmt->data_type == DATA_TYPE_C420) {
830 		rect.height >>= 1;
831 		rect.top >>= 1;
832 		depth = 8;
833 	}
834 
835 	dma_addr += rect.top * stride + (rect.left * depth >> 3);
836 
837 	dtd = list->next;
838 	WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
839 
840 	dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
841 					notify,
842 					field,
843 					!!(flags & VPDMA_DATA_FRAME_1D),
844 					!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
845 					!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
846 					stride);
847 	dtd->w1 = 0;
848 	dtd->start_addr = (u32) dma_addr;
849 	dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
850 				DTD_DIR_OUT, channel, priority, next_chan);
851 	dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0);
852 	dtd->max_width_height = dtd_max_width_height(max_w, max_h);
853 	dtd->client_attr0 = 0;
854 	dtd->client_attr1 = 0;
855 
856 	list->next = dtd + 1;
857 
858 	dump_dtd(dtd);
859 }
860 EXPORT_SYMBOL(vpdma_rawchan_add_out_dtd);
861 
862 /*
863  * append an inbound data transfer descriptor to the given descriptor list,
864  * this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel
865  *
866  * @list: vpdma desc list to which we add this decriptor
867  * @width: width of the image in pixels in memory(not the cropped width)
868  * @c_rect: crop params of input image
869  * @fmt: vpdma data format of the buffer
870  * dma_addr: dma address as seen by VPDMA
871  * chan: VPDMA channel
872  * field: top or bottom field info of the input image
873  * flags: VPDMA flags to configure some descriptor fileds
874  * frame_width/height: the complete width/height of the image presented to the
875  *			client (this makes sense when multiple channels are
876  *			connected to the same client, forming a larger frame)
877  * start_h, start_v: position where the given channel starts providing pixel
878  *			data to the client (makes sense when multiple channels
879  *			contribute to the client)
880  */
vpdma_add_in_dtd(struct vpdma_desc_list * list,int width,int stride,const struct v4l2_rect * c_rect,const struct vpdma_data_format * fmt,dma_addr_t dma_addr,enum vpdma_channel chan,int field,u32 flags,int frame_width,int frame_height,int start_h,int start_v)881 void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width,
882 		int stride, const struct v4l2_rect *c_rect,
883 		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
884 		enum vpdma_channel chan, int field, u32 flags, int frame_width,
885 		int frame_height, int start_h, int start_v)
886 {
887 	int priority = 0;
888 	int notify = 1;
889 	int depth = fmt->depth;
890 	int channel, next_chan;
891 	struct v4l2_rect rect = *c_rect;
892 	struct vpdma_dtd *dtd;
893 
894 	channel = next_chan = chan_info[chan].num;
895 
896 	if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
897 			fmt->data_type == DATA_TYPE_C420) {
898 		rect.height >>= 1;
899 		rect.top >>= 1;
900 		depth = 8;
901 	}
902 
903 	dma_addr += rect.top * stride + (rect.left * depth >> 3);
904 
905 	dtd = list->next;
906 	WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
907 
908 	dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
909 					notify,
910 					field,
911 					!!(flags & VPDMA_DATA_FRAME_1D),
912 					!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
913 					!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
914 					stride);
915 
916 	dtd->xfer_length_height = dtd_xfer_length_height(rect.width,
917 					rect.height);
918 	dtd->start_addr = (u32) dma_addr;
919 	dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
920 				DTD_DIR_IN, channel, priority, next_chan);
921 	dtd->frame_width_height = dtd_frame_width_height(frame_width,
922 					frame_height);
923 	dtd->start_h_v = dtd_start_h_v(start_h, start_v);
924 	dtd->client_attr0 = 0;
925 	dtd->client_attr1 = 0;
926 
927 	list->next = dtd + 1;
928 
929 	dump_dtd(dtd);
930 }
931 EXPORT_SYMBOL(vpdma_add_in_dtd);
932 
vpdma_hwlist_alloc(struct vpdma_data * vpdma,void * priv)933 int vpdma_hwlist_alloc(struct vpdma_data *vpdma, void *priv)
934 {
935 	int i, list_num = -1;
936 	unsigned long flags;
937 
938 	spin_lock_irqsave(&vpdma->lock, flags);
939 	for (i = 0; i < VPDMA_MAX_NUM_LIST &&
940 	    vpdma->hwlist_used[i] == true; i++)
941 		;
942 
943 	if (i < VPDMA_MAX_NUM_LIST) {
944 		list_num = i;
945 		vpdma->hwlist_used[i] = true;
946 		vpdma->hwlist_priv[i] = priv;
947 	}
948 	spin_unlock_irqrestore(&vpdma->lock, flags);
949 
950 	return list_num;
951 }
952 EXPORT_SYMBOL(vpdma_hwlist_alloc);
953 
vpdma_hwlist_get_priv(struct vpdma_data * vpdma,int list_num)954 void *vpdma_hwlist_get_priv(struct vpdma_data *vpdma, int list_num)
955 {
956 	if (!vpdma || list_num >= VPDMA_MAX_NUM_LIST)
957 		return NULL;
958 
959 	return vpdma->hwlist_priv[list_num];
960 }
961 EXPORT_SYMBOL(vpdma_hwlist_get_priv);
962 
vpdma_hwlist_release(struct vpdma_data * vpdma,int list_num)963 void *vpdma_hwlist_release(struct vpdma_data *vpdma, int list_num)
964 {
965 	void *priv;
966 	unsigned long flags;
967 
968 	spin_lock_irqsave(&vpdma->lock, flags);
969 	vpdma->hwlist_used[list_num] = false;
970 	priv = vpdma->hwlist_priv;
971 	spin_unlock_irqrestore(&vpdma->lock, flags);
972 
973 	return priv;
974 }
975 EXPORT_SYMBOL(vpdma_hwlist_release);
976 
977 /* set or clear the mask for list complete interrupt */
vpdma_enable_list_complete_irq(struct vpdma_data * vpdma,int irq_num,int list_num,bool enable)978 void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int irq_num,
979 		int list_num, bool enable)
980 {
981 	u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
982 	u32 val;
983 
984 	val = read_reg(vpdma, reg_addr);
985 	if (enable)
986 		val |= (1 << (list_num * 2));
987 	else
988 		val &= ~(1 << (list_num * 2));
989 	write_reg(vpdma, reg_addr, val);
990 }
991 EXPORT_SYMBOL(vpdma_enable_list_complete_irq);
992 
993 /* get the LIST_STAT register */
vpdma_get_list_stat(struct vpdma_data * vpdma,int irq_num)994 unsigned int vpdma_get_list_stat(struct vpdma_data *vpdma, int irq_num)
995 {
996 	u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
997 
998 	return read_reg(vpdma, reg_addr);
999 }
1000 EXPORT_SYMBOL(vpdma_get_list_stat);
1001 
1002 /* get the LIST_MASK register */
vpdma_get_list_mask(struct vpdma_data * vpdma,int irq_num)1003 unsigned int vpdma_get_list_mask(struct vpdma_data *vpdma, int irq_num)
1004 {
1005 	u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
1006 
1007 	return read_reg(vpdma, reg_addr);
1008 }
1009 EXPORT_SYMBOL(vpdma_get_list_mask);
1010 
1011 /* clear previosuly occured list intterupts in the LIST_STAT register */
vpdma_clear_list_stat(struct vpdma_data * vpdma,int irq_num,int list_num)1012 void vpdma_clear_list_stat(struct vpdma_data *vpdma, int irq_num,
1013 			   int list_num)
1014 {
1015 	u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
1016 
1017 	write_reg(vpdma, reg_addr, 3 << (list_num * 2));
1018 }
1019 EXPORT_SYMBOL(vpdma_clear_list_stat);
1020 
vpdma_set_bg_color(struct vpdma_data * vpdma,struct vpdma_data_format * fmt,u32 color)1021 void vpdma_set_bg_color(struct vpdma_data *vpdma,
1022 		struct vpdma_data_format *fmt, u32 color)
1023 {
1024 	if (fmt->type == VPDMA_DATA_FMT_TYPE_RGB)
1025 		write_reg(vpdma, VPDMA_BG_RGB, color);
1026 	else if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV)
1027 		write_reg(vpdma, VPDMA_BG_YUV, color);
1028 }
1029 EXPORT_SYMBOL(vpdma_set_bg_color);
1030 
1031 /*
1032  * configures the output mode of the line buffer for the given client, the
1033  * line buffer content can either be mirrored(each line repeated twice) or
1034  * passed to the client as is
1035  */
vpdma_set_line_mode(struct vpdma_data * vpdma,int line_mode,enum vpdma_channel chan)1036 void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode,
1037 		enum vpdma_channel chan)
1038 {
1039 	int client_cstat = chan_info[chan].cstat_offset;
1040 
1041 	write_field_reg(vpdma, client_cstat, line_mode,
1042 		VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT);
1043 }
1044 EXPORT_SYMBOL(vpdma_set_line_mode);
1045 
1046 /*
1047  * configures the event which should trigger VPDMA transfer for the given
1048  * client
1049  */
vpdma_set_frame_start_event(struct vpdma_data * vpdma,enum vpdma_frame_start_event fs_event,enum vpdma_channel chan)1050 void vpdma_set_frame_start_event(struct vpdma_data *vpdma,
1051 		enum vpdma_frame_start_event fs_event,
1052 		enum vpdma_channel chan)
1053 {
1054 	int client_cstat = chan_info[chan].cstat_offset;
1055 
1056 	write_field_reg(vpdma, client_cstat, fs_event,
1057 		VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT);
1058 }
1059 EXPORT_SYMBOL(vpdma_set_frame_start_event);
1060 
vpdma_firmware_cb(const struct firmware * f,void * context)1061 static void vpdma_firmware_cb(const struct firmware *f, void *context)
1062 {
1063 	struct vpdma_data *vpdma = context;
1064 	struct vpdma_buf fw_dma_buf;
1065 	int i, r;
1066 
1067 	dev_dbg(&vpdma->pdev->dev, "firmware callback\n");
1068 
1069 	if (!f || !f->data) {
1070 		dev_err(&vpdma->pdev->dev, "couldn't get firmware\n");
1071 		return;
1072 	}
1073 
1074 	/* already initialized */
1075 	if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1076 			VPDMA_LIST_RDY_SHFT)) {
1077 		vpdma->cb(vpdma->pdev);
1078 		return;
1079 	}
1080 
1081 	r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size);
1082 	if (r) {
1083 		dev_err(&vpdma->pdev->dev,
1084 			"failed to allocate dma buffer for firmware\n");
1085 		goto rel_fw;
1086 	}
1087 
1088 	memcpy(fw_dma_buf.addr, f->data, f->size);
1089 
1090 	vpdma_map_desc_buf(vpdma, &fw_dma_buf);
1091 
1092 	write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr);
1093 
1094 	for (i = 0; i < 100; i++) {		/* max 1 second */
1095 		msleep_interruptible(10);
1096 
1097 		if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1098 				VPDMA_LIST_RDY_SHFT))
1099 			break;
1100 	}
1101 
1102 	if (i == 100) {
1103 		dev_err(&vpdma->pdev->dev, "firmware upload failed\n");
1104 		goto free_buf;
1105 	}
1106 
1107 	vpdma->cb(vpdma->pdev);
1108 
1109 free_buf:
1110 	vpdma_unmap_desc_buf(vpdma, &fw_dma_buf);
1111 
1112 	vpdma_free_desc_buf(&fw_dma_buf);
1113 rel_fw:
1114 	release_firmware(f);
1115 }
1116 
vpdma_load_firmware(struct vpdma_data * vpdma)1117 static int vpdma_load_firmware(struct vpdma_data *vpdma)
1118 {
1119 	int r;
1120 	struct device *dev = &vpdma->pdev->dev;
1121 
1122 	r = request_firmware_nowait(THIS_MODULE, 1,
1123 		(const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma,
1124 		vpdma_firmware_cb);
1125 	if (r) {
1126 		dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE);
1127 		return r;
1128 	} else {
1129 		dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE);
1130 	}
1131 
1132 	return 0;
1133 }
1134 
vpdma_create(struct platform_device * pdev,struct vpdma_data * vpdma,void (* cb)(struct platform_device * pdev))1135 int vpdma_create(struct platform_device *pdev, struct vpdma_data *vpdma,
1136 		void (*cb)(struct platform_device *pdev))
1137 {
1138 	struct resource *res;
1139 	int r;
1140 
1141 	dev_dbg(&pdev->dev, "vpdma_create\n");
1142 
1143 	vpdma->pdev = pdev;
1144 	vpdma->cb = cb;
1145 	spin_lock_init(&vpdma->lock);
1146 
1147 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma");
1148 	if (res == NULL) {
1149 		dev_err(&pdev->dev, "missing platform resources data\n");
1150 		return -ENODEV;
1151 	}
1152 
1153 	vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1154 	if (!vpdma->base) {
1155 		dev_err(&pdev->dev, "failed to ioremap\n");
1156 		return -ENOMEM;
1157 	}
1158 
1159 	r = vpdma_load_firmware(vpdma);
1160 	if (r) {
1161 		pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE);
1162 		return r;
1163 	}
1164 
1165 	return 0;
1166 }
1167 EXPORT_SYMBOL(vpdma_create);
1168 
1169 MODULE_AUTHOR("Texas Instruments Inc.");
1170 MODULE_FIRMWARE(VPDMA_FIRMWARE);
1171 MODULE_LICENSE("GPL v2");
1172