1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache journalling code, for btree insertions
4 *
5 * Copyright 2012 Google, Inc.
6 */
7
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 #include "extents.h"
12
13 #include <trace/events/bcache.h>
14
15 /*
16 * Journal replay/recovery:
17 *
18 * This code is all driven from run_cache_set(); we first read the journal
19 * entries, do some other stuff, then we mark all the keys in the journal
20 * entries (same as garbage collection would), then we replay them - reinserting
21 * them into the cache in precisely the same order as they appear in the
22 * journal.
23 *
24 * We only journal keys that go in leaf nodes, which simplifies things quite a
25 * bit.
26 */
27
journal_read_endio(struct bio * bio)28 static void journal_read_endio(struct bio *bio)
29 {
30 struct closure *cl = bio->bi_private;
31
32 closure_put(cl);
33 }
34
journal_read_bucket(struct cache * ca,struct list_head * list,unsigned int bucket_index)35 static int journal_read_bucket(struct cache *ca, struct list_head *list,
36 unsigned int bucket_index)
37 {
38 struct journal_device *ja = &ca->journal;
39 struct bio *bio = &ja->bio;
40
41 struct journal_replay *i;
42 struct jset *j, *data = ca->set->journal.w[0].data;
43 struct closure cl;
44 unsigned int len, left, offset = 0;
45 int ret = 0;
46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
47
48 closure_init_stack(&cl);
49
50 pr_debug("reading %u", bucket_index);
51
52 while (offset < ca->sb.bucket_size) {
53 reread: left = ca->sb.bucket_size - offset;
54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS);
55
56 bio_reset(bio);
57 bio->bi_iter.bi_sector = bucket + offset;
58 bio_set_dev(bio, ca->bdev);
59 bio->bi_iter.bi_size = len << 9;
60
61 bio->bi_end_io = journal_read_endio;
62 bio->bi_private = &cl;
63 bio_set_op_attrs(bio, REQ_OP_READ, 0);
64 bch_bio_map(bio, data);
65
66 closure_bio_submit(ca->set, bio, &cl);
67 closure_sync(&cl);
68
69 /* This function could be simpler now since we no longer write
70 * journal entries that overlap bucket boundaries; this means
71 * the start of a bucket will always have a valid journal entry
72 * if it has any journal entries at all.
73 */
74
75 j = data;
76 while (len) {
77 struct list_head *where;
78 size_t blocks, bytes = set_bytes(j);
79
80 if (j->magic != jset_magic(&ca->sb)) {
81 pr_debug("%u: bad magic", bucket_index);
82 return ret;
83 }
84
85 if (bytes > left << 9 ||
86 bytes > PAGE_SIZE << JSET_BITS) {
87 pr_info("%u: too big, %zu bytes, offset %u",
88 bucket_index, bytes, offset);
89 return ret;
90 }
91
92 if (bytes > len << 9)
93 goto reread;
94
95 if (j->csum != csum_set(j)) {
96 pr_info("%u: bad csum, %zu bytes, offset %u",
97 bucket_index, bytes, offset);
98 return ret;
99 }
100
101 blocks = set_blocks(j, block_bytes(ca->set));
102
103 while (!list_empty(list)) {
104 i = list_first_entry(list,
105 struct journal_replay, list);
106 if (i->j.seq >= j->last_seq)
107 break;
108 list_del(&i->list);
109 kfree(i);
110 }
111
112 list_for_each_entry_reverse(i, list, list) {
113 if (j->seq == i->j.seq)
114 goto next_set;
115
116 if (j->seq < i->j.last_seq)
117 goto next_set;
118
119 if (j->seq > i->j.seq) {
120 where = &i->list;
121 goto add;
122 }
123 }
124
125 where = list;
126 add:
127 i = kmalloc(offsetof(struct journal_replay, j) +
128 bytes, GFP_KERNEL);
129 if (!i)
130 return -ENOMEM;
131 memcpy(&i->j, j, bytes);
132 list_add(&i->list, where);
133 ret = 1;
134
135 ja->seq[bucket_index] = j->seq;
136 next_set:
137 offset += blocks * ca->sb.block_size;
138 len -= blocks * ca->sb.block_size;
139 j = ((void *) j) + blocks * block_bytes(ca);
140 }
141 }
142
143 return ret;
144 }
145
bch_journal_read(struct cache_set * c,struct list_head * list)146 int bch_journal_read(struct cache_set *c, struct list_head *list)
147 {
148 #define read_bucket(b) \
149 ({ \
150 int ret = journal_read_bucket(ca, list, b); \
151 __set_bit(b, bitmap); \
152 if (ret < 0) \
153 return ret; \
154 ret; \
155 })
156
157 struct cache *ca;
158 unsigned int iter;
159
160 for_each_cache(ca, c, iter) {
161 struct journal_device *ja = &ca->journal;
162 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
163 unsigned int i, l, r, m;
164 uint64_t seq;
165
166 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
167 pr_debug("%u journal buckets", ca->sb.njournal_buckets);
168
169 /*
170 * Read journal buckets ordered by golden ratio hash to quickly
171 * find a sequence of buckets with valid journal entries
172 */
173 for (i = 0; i < ca->sb.njournal_buckets; i++) {
174 /*
175 * We must try the index l with ZERO first for
176 * correctness due to the scenario that the journal
177 * bucket is circular buffer which might have wrapped
178 */
179 l = (i * 2654435769U) % ca->sb.njournal_buckets;
180
181 if (test_bit(l, bitmap))
182 break;
183
184 if (read_bucket(l))
185 goto bsearch;
186 }
187
188 /*
189 * If that fails, check all the buckets we haven't checked
190 * already
191 */
192 pr_debug("falling back to linear search");
193
194 for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets);
195 l < ca->sb.njournal_buckets;
196 l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets,
197 l + 1))
198 if (read_bucket(l))
199 goto bsearch;
200
201 /* no journal entries on this device? */
202 if (l == ca->sb.njournal_buckets)
203 continue;
204 bsearch:
205 BUG_ON(list_empty(list));
206
207 /* Binary search */
208 m = l;
209 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
210 pr_debug("starting binary search, l %u r %u", l, r);
211
212 while (l + 1 < r) {
213 seq = list_entry(list->prev, struct journal_replay,
214 list)->j.seq;
215
216 m = (l + r) >> 1;
217 read_bucket(m);
218
219 if (seq != list_entry(list->prev, struct journal_replay,
220 list)->j.seq)
221 l = m;
222 else
223 r = m;
224 }
225
226 /*
227 * Read buckets in reverse order until we stop finding more
228 * journal entries
229 */
230 pr_debug("finishing up: m %u njournal_buckets %u",
231 m, ca->sb.njournal_buckets);
232 l = m;
233
234 while (1) {
235 if (!l--)
236 l = ca->sb.njournal_buckets - 1;
237
238 if (l == m)
239 break;
240
241 if (test_bit(l, bitmap))
242 continue;
243
244 if (!read_bucket(l))
245 break;
246 }
247
248 seq = 0;
249
250 for (i = 0; i < ca->sb.njournal_buckets; i++)
251 if (ja->seq[i] > seq) {
252 seq = ja->seq[i];
253 /*
254 * When journal_reclaim() goes to allocate for
255 * the first time, it'll use the bucket after
256 * ja->cur_idx
257 */
258 ja->cur_idx = i;
259 ja->last_idx = ja->discard_idx = (i + 1) %
260 ca->sb.njournal_buckets;
261
262 }
263 }
264
265 if (!list_empty(list))
266 c->journal.seq = list_entry(list->prev,
267 struct journal_replay,
268 list)->j.seq;
269
270 return 0;
271 #undef read_bucket
272 }
273
bch_journal_mark(struct cache_set * c,struct list_head * list)274 void bch_journal_mark(struct cache_set *c, struct list_head *list)
275 {
276 atomic_t p = { 0 };
277 struct bkey *k;
278 struct journal_replay *i;
279 struct journal *j = &c->journal;
280 uint64_t last = j->seq;
281
282 /*
283 * journal.pin should never fill up - we never write a journal
284 * entry when it would fill up. But if for some reason it does, we
285 * iterate over the list in reverse order so that we can just skip that
286 * refcount instead of bugging.
287 */
288
289 list_for_each_entry_reverse(i, list, list) {
290 BUG_ON(last < i->j.seq);
291 i->pin = NULL;
292
293 while (last-- != i->j.seq)
294 if (fifo_free(&j->pin) > 1) {
295 fifo_push_front(&j->pin, p);
296 atomic_set(&fifo_front(&j->pin), 0);
297 }
298
299 if (fifo_free(&j->pin) > 1) {
300 fifo_push_front(&j->pin, p);
301 i->pin = &fifo_front(&j->pin);
302 atomic_set(i->pin, 1);
303 }
304
305 for (k = i->j.start;
306 k < bset_bkey_last(&i->j);
307 k = bkey_next(k))
308 if (!__bch_extent_invalid(c, k)) {
309 unsigned int j;
310
311 for (j = 0; j < KEY_PTRS(k); j++)
312 if (ptr_available(c, k, j))
313 atomic_inc(&PTR_BUCKET(c, k, j)->pin);
314
315 bch_initial_mark_key(c, 0, k);
316 }
317 }
318 }
319
bch_journal_replay(struct cache_set * s,struct list_head * list)320 int bch_journal_replay(struct cache_set *s, struct list_head *list)
321 {
322 int ret = 0, keys = 0, entries = 0;
323 struct bkey *k;
324 struct journal_replay *i =
325 list_entry(list->prev, struct journal_replay, list);
326
327 uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
328 struct keylist keylist;
329
330 list_for_each_entry(i, list, list) {
331 BUG_ON(i->pin && atomic_read(i->pin) != 1);
332
333 cache_set_err_on(n != i->j.seq, s,
334 "bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)",
335 n, i->j.seq - 1, start, end);
336
337 for (k = i->j.start;
338 k < bset_bkey_last(&i->j);
339 k = bkey_next(k)) {
340 trace_bcache_journal_replay_key(k);
341
342 bch_keylist_init_single(&keylist, k);
343
344 ret = bch_btree_insert(s, &keylist, i->pin, NULL);
345 if (ret)
346 goto err;
347
348 BUG_ON(!bch_keylist_empty(&keylist));
349 keys++;
350
351 cond_resched();
352 }
353
354 if (i->pin)
355 atomic_dec(i->pin);
356 n = i->j.seq + 1;
357 entries++;
358 }
359
360 pr_info("journal replay done, %i keys in %i entries, seq %llu",
361 keys, entries, end);
362 err:
363 while (!list_empty(list)) {
364 i = list_first_entry(list, struct journal_replay, list);
365 list_del(&i->list);
366 kfree(i);
367 }
368
369 return ret;
370 }
371
372 /* Journalling */
373 #define journal_max_cmp(l, r) \
374 (fifo_idx(&c->journal.pin, btree_current_write(l)->journal) < \
375 fifo_idx(&(c)->journal.pin, btree_current_write(r)->journal))
376 #define journal_min_cmp(l, r) \
377 (fifo_idx(&c->journal.pin, btree_current_write(l)->journal) > \
378 fifo_idx(&(c)->journal.pin, btree_current_write(r)->journal))
379
btree_flush_write(struct cache_set * c)380 static void btree_flush_write(struct cache_set *c)
381 {
382 /*
383 * Try to find the btree node with that references the oldest journal
384 * entry, best is our current candidate and is locked if non NULL:
385 */
386 struct btree *b;
387 int i;
388
389 atomic_long_inc(&c->flush_write);
390
391 retry:
392 spin_lock(&c->journal.lock);
393 if (heap_empty(&c->flush_btree)) {
394 for_each_cached_btree(b, c, i)
395 if (btree_current_write(b)->journal) {
396 if (!heap_full(&c->flush_btree))
397 heap_add(&c->flush_btree, b,
398 journal_max_cmp);
399 else if (journal_max_cmp(b,
400 heap_peek(&c->flush_btree))) {
401 c->flush_btree.data[0] = b;
402 heap_sift(&c->flush_btree, 0,
403 journal_max_cmp);
404 }
405 }
406
407 for (i = c->flush_btree.used / 2 - 1; i >= 0; --i)
408 heap_sift(&c->flush_btree, i, journal_min_cmp);
409 }
410
411 b = NULL;
412 heap_pop(&c->flush_btree, b, journal_min_cmp);
413 spin_unlock(&c->journal.lock);
414
415 if (b) {
416 mutex_lock(&b->write_lock);
417 if (!btree_current_write(b)->journal) {
418 mutex_unlock(&b->write_lock);
419 /* We raced */
420 atomic_long_inc(&c->retry_flush_write);
421 goto retry;
422 }
423
424 __bch_btree_node_write(b, NULL);
425 mutex_unlock(&b->write_lock);
426 }
427 }
428
429 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1)
430
journal_discard_endio(struct bio * bio)431 static void journal_discard_endio(struct bio *bio)
432 {
433 struct journal_device *ja =
434 container_of(bio, struct journal_device, discard_bio);
435 struct cache *ca = container_of(ja, struct cache, journal);
436
437 atomic_set(&ja->discard_in_flight, DISCARD_DONE);
438
439 closure_wake_up(&ca->set->journal.wait);
440 closure_put(&ca->set->cl);
441 }
442
journal_discard_work(struct work_struct * work)443 static void journal_discard_work(struct work_struct *work)
444 {
445 struct journal_device *ja =
446 container_of(work, struct journal_device, discard_work);
447
448 submit_bio(&ja->discard_bio);
449 }
450
do_journal_discard(struct cache * ca)451 static void do_journal_discard(struct cache *ca)
452 {
453 struct journal_device *ja = &ca->journal;
454 struct bio *bio = &ja->discard_bio;
455
456 if (!ca->discard) {
457 ja->discard_idx = ja->last_idx;
458 return;
459 }
460
461 switch (atomic_read(&ja->discard_in_flight)) {
462 case DISCARD_IN_FLIGHT:
463 return;
464
465 case DISCARD_DONE:
466 ja->discard_idx = (ja->discard_idx + 1) %
467 ca->sb.njournal_buckets;
468
469 atomic_set(&ja->discard_in_flight, DISCARD_READY);
470 /* fallthrough */
471
472 case DISCARD_READY:
473 if (ja->discard_idx == ja->last_idx)
474 return;
475
476 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
477
478 bio_init(bio, bio->bi_inline_vecs, 1);
479 bio_set_op_attrs(bio, REQ_OP_DISCARD, 0);
480 bio->bi_iter.bi_sector = bucket_to_sector(ca->set,
481 ca->sb.d[ja->discard_idx]);
482 bio_set_dev(bio, ca->bdev);
483 bio->bi_iter.bi_size = bucket_bytes(ca);
484 bio->bi_end_io = journal_discard_endio;
485
486 closure_get(&ca->set->cl);
487 INIT_WORK(&ja->discard_work, journal_discard_work);
488 queue_work(bch_journal_wq, &ja->discard_work);
489 }
490 }
491
journal_reclaim(struct cache_set * c)492 static void journal_reclaim(struct cache_set *c)
493 {
494 struct bkey *k = &c->journal.key;
495 struct cache *ca;
496 uint64_t last_seq;
497 unsigned int iter, n = 0;
498 atomic_t p __maybe_unused;
499
500 atomic_long_inc(&c->reclaim);
501
502 while (!atomic_read(&fifo_front(&c->journal.pin)))
503 fifo_pop(&c->journal.pin, p);
504
505 last_seq = last_seq(&c->journal);
506
507 /* Update last_idx */
508
509 for_each_cache(ca, c, iter) {
510 struct journal_device *ja = &ca->journal;
511
512 while (ja->last_idx != ja->cur_idx &&
513 ja->seq[ja->last_idx] < last_seq)
514 ja->last_idx = (ja->last_idx + 1) %
515 ca->sb.njournal_buckets;
516 }
517
518 for_each_cache(ca, c, iter)
519 do_journal_discard(ca);
520
521 if (c->journal.blocks_free)
522 goto out;
523
524 /*
525 * Allocate:
526 * XXX: Sort by free journal space
527 */
528
529 for_each_cache(ca, c, iter) {
530 struct journal_device *ja = &ca->journal;
531 unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
532
533 /* No space available on this device */
534 if (next == ja->discard_idx)
535 continue;
536
537 ja->cur_idx = next;
538 k->ptr[n++] = MAKE_PTR(0,
539 bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
540 ca->sb.nr_this_dev);
541 }
542
543 bkey_init(k);
544 SET_KEY_PTRS(k, n);
545
546 if (n)
547 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
548 out:
549 if (!journal_full(&c->journal))
550 __closure_wake_up(&c->journal.wait);
551 }
552
bch_journal_next(struct journal * j)553 void bch_journal_next(struct journal *j)
554 {
555 atomic_t p = { 1 };
556
557 j->cur = (j->cur == j->w)
558 ? &j->w[1]
559 : &j->w[0];
560
561 /*
562 * The fifo_push() needs to happen at the same time as j->seq is
563 * incremented for last_seq() to be calculated correctly
564 */
565 BUG_ON(!fifo_push(&j->pin, p));
566 atomic_set(&fifo_back(&j->pin), 1);
567
568 j->cur->data->seq = ++j->seq;
569 j->cur->dirty = false;
570 j->cur->need_write = false;
571 j->cur->data->keys = 0;
572
573 if (fifo_full(&j->pin))
574 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin));
575 }
576
journal_write_endio(struct bio * bio)577 static void journal_write_endio(struct bio *bio)
578 {
579 struct journal_write *w = bio->bi_private;
580
581 cache_set_err_on(bio->bi_status, w->c, "journal io error");
582 closure_put(&w->c->journal.io);
583 }
584
585 static void journal_write(struct closure *cl);
586
journal_write_done(struct closure * cl)587 static void journal_write_done(struct closure *cl)
588 {
589 struct journal *j = container_of(cl, struct journal, io);
590 struct journal_write *w = (j->cur == j->w)
591 ? &j->w[1]
592 : &j->w[0];
593
594 __closure_wake_up(&w->wait);
595 continue_at_nobarrier(cl, journal_write, bch_journal_wq);
596 }
597
journal_write_unlock(struct closure * cl)598 static void journal_write_unlock(struct closure *cl)
599 __releases(&c->journal.lock)
600 {
601 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
602
603 c->journal.io_in_flight = 0;
604 spin_unlock(&c->journal.lock);
605 }
606
journal_write_unlocked(struct closure * cl)607 static void journal_write_unlocked(struct closure *cl)
608 __releases(c->journal.lock)
609 {
610 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
611 struct cache *ca;
612 struct journal_write *w = c->journal.cur;
613 struct bkey *k = &c->journal.key;
614 unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) *
615 c->sb.block_size;
616
617 struct bio *bio;
618 struct bio_list list;
619
620 bio_list_init(&list);
621
622 if (!w->need_write) {
623 closure_return_with_destructor(cl, journal_write_unlock);
624 return;
625 } else if (journal_full(&c->journal)) {
626 journal_reclaim(c);
627 spin_unlock(&c->journal.lock);
628
629 btree_flush_write(c);
630 continue_at(cl, journal_write, bch_journal_wq);
631 return;
632 }
633
634 c->journal.blocks_free -= set_blocks(w->data, block_bytes(c));
635
636 w->data->btree_level = c->root->level;
637
638 bkey_copy(&w->data->btree_root, &c->root->key);
639 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
640
641 for_each_cache(ca, c, i)
642 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
643
644 w->data->magic = jset_magic(&c->sb);
645 w->data->version = BCACHE_JSET_VERSION;
646 w->data->last_seq = last_seq(&c->journal);
647 w->data->csum = csum_set(w->data);
648
649 for (i = 0; i < KEY_PTRS(k); i++) {
650 ca = PTR_CACHE(c, k, i);
651 bio = &ca->journal.bio;
652
653 atomic_long_add(sectors, &ca->meta_sectors_written);
654
655 bio_reset(bio);
656 bio->bi_iter.bi_sector = PTR_OFFSET(k, i);
657 bio_set_dev(bio, ca->bdev);
658 bio->bi_iter.bi_size = sectors << 9;
659
660 bio->bi_end_io = journal_write_endio;
661 bio->bi_private = w;
662 bio_set_op_attrs(bio, REQ_OP_WRITE,
663 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
664 bch_bio_map(bio, w->data);
665
666 trace_bcache_journal_write(bio);
667 bio_list_add(&list, bio);
668
669 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
670
671 ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
672 }
673
674 atomic_dec_bug(&fifo_back(&c->journal.pin));
675 bch_journal_next(&c->journal);
676 journal_reclaim(c);
677
678 spin_unlock(&c->journal.lock);
679
680 while ((bio = bio_list_pop(&list)))
681 closure_bio_submit(c, bio, cl);
682
683 continue_at(cl, journal_write_done, NULL);
684 }
685
journal_write(struct closure * cl)686 static void journal_write(struct closure *cl)
687 {
688 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
689
690 spin_lock(&c->journal.lock);
691 journal_write_unlocked(cl);
692 }
693
journal_try_write(struct cache_set * c)694 static void journal_try_write(struct cache_set *c)
695 __releases(c->journal.lock)
696 {
697 struct closure *cl = &c->journal.io;
698 struct journal_write *w = c->journal.cur;
699
700 w->need_write = true;
701
702 if (!c->journal.io_in_flight) {
703 c->journal.io_in_flight = 1;
704 closure_call(cl, journal_write_unlocked, NULL, &c->cl);
705 } else {
706 spin_unlock(&c->journal.lock);
707 }
708 }
709
journal_wait_for_write(struct cache_set * c,unsigned int nkeys)710 static struct journal_write *journal_wait_for_write(struct cache_set *c,
711 unsigned int nkeys)
712 __acquires(&c->journal.lock)
713 {
714 size_t sectors;
715 struct closure cl;
716 bool wait = false;
717
718 closure_init_stack(&cl);
719
720 spin_lock(&c->journal.lock);
721
722 while (1) {
723 struct journal_write *w = c->journal.cur;
724
725 sectors = __set_blocks(w->data, w->data->keys + nkeys,
726 block_bytes(c)) * c->sb.block_size;
727
728 if (sectors <= min_t(size_t,
729 c->journal.blocks_free * c->sb.block_size,
730 PAGE_SECTORS << JSET_BITS))
731 return w;
732
733 if (wait)
734 closure_wait(&c->journal.wait, &cl);
735
736 if (!journal_full(&c->journal)) {
737 if (wait)
738 trace_bcache_journal_entry_full(c);
739
740 /*
741 * XXX: If we were inserting so many keys that they
742 * won't fit in an _empty_ journal write, we'll
743 * deadlock. For now, handle this in
744 * bch_keylist_realloc() - but something to think about.
745 */
746 BUG_ON(!w->data->keys);
747
748 journal_try_write(c); /* unlocks */
749 } else {
750 if (wait)
751 trace_bcache_journal_full(c);
752
753 journal_reclaim(c);
754 spin_unlock(&c->journal.lock);
755
756 btree_flush_write(c);
757 }
758
759 closure_sync(&cl);
760 spin_lock(&c->journal.lock);
761 wait = true;
762 }
763 }
764
journal_write_work(struct work_struct * work)765 static void journal_write_work(struct work_struct *work)
766 {
767 struct cache_set *c = container_of(to_delayed_work(work),
768 struct cache_set,
769 journal.work);
770 spin_lock(&c->journal.lock);
771 if (c->journal.cur->dirty)
772 journal_try_write(c);
773 else
774 spin_unlock(&c->journal.lock);
775 }
776
777 /*
778 * Entry point to the journalling code - bio_insert() and btree_invalidate()
779 * pass bch_journal() a list of keys to be journalled, and then
780 * bch_journal() hands those same keys off to btree_insert_async()
781 */
782
bch_journal(struct cache_set * c,struct keylist * keys,struct closure * parent)783 atomic_t *bch_journal(struct cache_set *c,
784 struct keylist *keys,
785 struct closure *parent)
786 {
787 struct journal_write *w;
788 atomic_t *ret;
789
790 if (!CACHE_SYNC(&c->sb))
791 return NULL;
792
793 w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
794
795 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
796 w->data->keys += bch_keylist_nkeys(keys);
797
798 ret = &fifo_back(&c->journal.pin);
799 atomic_inc(ret);
800
801 if (parent) {
802 closure_wait(&w->wait, parent);
803 journal_try_write(c);
804 } else if (!w->dirty) {
805 w->dirty = true;
806 schedule_delayed_work(&c->journal.work,
807 msecs_to_jiffies(c->journal_delay_ms));
808 spin_unlock(&c->journal.lock);
809 } else {
810 spin_unlock(&c->journal.lock);
811 }
812
813
814 return ret;
815 }
816
bch_journal_meta(struct cache_set * c,struct closure * cl)817 void bch_journal_meta(struct cache_set *c, struct closure *cl)
818 {
819 struct keylist keys;
820 atomic_t *ref;
821
822 bch_keylist_init(&keys);
823
824 ref = bch_journal(c, &keys, cl);
825 if (ref)
826 atomic_dec_bug(ref);
827 }
828
bch_journal_free(struct cache_set * c)829 void bch_journal_free(struct cache_set *c)
830 {
831 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
832 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
833 free_fifo(&c->journal.pin);
834 free_heap(&c->flush_btree);
835 }
836
bch_journal_alloc(struct cache_set * c)837 int bch_journal_alloc(struct cache_set *c)
838 {
839 struct journal *j = &c->journal;
840
841 spin_lock_init(&j->lock);
842 INIT_DELAYED_WORK(&j->work, journal_write_work);
843
844 c->journal_delay_ms = 100;
845
846 j->w[0].c = c;
847 j->w[1].c = c;
848
849 if (!(init_heap(&c->flush_btree, 128, GFP_KERNEL)) ||
850 !(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
851 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) ||
852 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)))
853 return -ENOMEM;
854
855 return 0;
856 }
857