1 /*
2 * PowerMac G5 SMU driver
3 *
4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6 *
7 * Released under the term of the GNU GPL v2.
8 */
9
10 /*
11 * TODO:
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
15 * interrupts off)
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
20 */
21
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/poll.h>
36 #include <linux/mutex.h>
37 #include <linux/of_device.h>
38 #include <linux/of_irq.h>
39 #include <linux/of_platform.h>
40 #include <linux/slab.h>
41 #include <linux/memblock.h>
42 #include <linux/sched/signal.h>
43
44 #include <asm/byteorder.h>
45 #include <asm/io.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/pmac_feature.h>
49 #include <asm/smu.h>
50 #include <asm/sections.h>
51 #include <linux/uaccess.h>
52
53 #define VERSION "0.7"
54 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
55
56 #undef DEBUG_SMU
57
58 #ifdef DEBUG_SMU
59 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
60 #else
61 #define DPRINTK(fmt, args...) do { } while (0)
62 #endif
63
64 /*
65 * This is the command buffer passed to the SMU hardware
66 */
67 #define SMU_MAX_DATA 254
68
69 struct smu_cmd_buf {
70 u8 cmd;
71 u8 length;
72 u8 data[SMU_MAX_DATA];
73 };
74
75 struct smu_device {
76 spinlock_t lock;
77 struct device_node *of_node;
78 struct platform_device *of_dev;
79 int doorbell; /* doorbell gpio */
80 u32 __iomem *db_buf; /* doorbell buffer */
81 struct device_node *db_node;
82 unsigned int db_irq;
83 int msg;
84 struct device_node *msg_node;
85 unsigned int msg_irq;
86 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
87 u32 cmd_buf_abs; /* command buffer absolute */
88 struct list_head cmd_list;
89 struct smu_cmd *cmd_cur; /* pending command */
90 int broken_nap;
91 struct list_head cmd_i2c_list;
92 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
93 struct timer_list i2c_timer;
94 };
95
96 /*
97 * I don't think there will ever be more than one SMU, so
98 * for now, just hard code that
99 */
100 static DEFINE_MUTEX(smu_mutex);
101 static struct smu_device *smu;
102 static DEFINE_MUTEX(smu_part_access);
103 static int smu_irq_inited;
104 static unsigned long smu_cmdbuf_abs;
105
106 static void smu_i2c_retry(struct timer_list *t);
107
108 /*
109 * SMU driver low level stuff
110 */
111
smu_start_cmd(void)112 static void smu_start_cmd(void)
113 {
114 unsigned long faddr, fend;
115 struct smu_cmd *cmd;
116
117 if (list_empty(&smu->cmd_list))
118 return;
119
120 /* Fetch first command in queue */
121 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
122 smu->cmd_cur = cmd;
123 list_del(&cmd->link);
124
125 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
126 cmd->data_len);
127 DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
128
129 /* Fill the SMU command buffer */
130 smu->cmd_buf->cmd = cmd->cmd;
131 smu->cmd_buf->length = cmd->data_len;
132 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
133
134 /* Flush command and data to RAM */
135 faddr = (unsigned long)smu->cmd_buf;
136 fend = faddr + smu->cmd_buf->length + 2;
137 flush_inval_dcache_range(faddr, fend);
138
139
140 /* We also disable NAP mode for the duration of the command
141 * on U3 based machines.
142 * This is slightly racy as it can be written back to 1 by a sysctl
143 * but that never happens in practice. There seem to be an issue with
144 * U3 based machines such as the iMac G5 where napping for the
145 * whole duration of the command prevents the SMU from fetching it
146 * from memory. This might be related to the strange i2c based
147 * mechanism the SMU uses to access memory.
148 */
149 if (smu->broken_nap)
150 powersave_nap = 0;
151
152 /* This isn't exactly a DMA mapping here, I suspect
153 * the SMU is actually communicating with us via i2c to the
154 * northbridge or the CPU to access RAM.
155 */
156 writel(smu->cmd_buf_abs, smu->db_buf);
157
158 /* Ring the SMU doorbell */
159 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
160 }
161
162
smu_db_intr(int irq,void * arg)163 static irqreturn_t smu_db_intr(int irq, void *arg)
164 {
165 unsigned long flags;
166 struct smu_cmd *cmd;
167 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
168 void *misc = NULL;
169 u8 gpio;
170 int rc = 0;
171
172 /* SMU completed the command, well, we hope, let's make sure
173 * of it
174 */
175 spin_lock_irqsave(&smu->lock, flags);
176
177 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
178 if ((gpio & 7) != 7) {
179 spin_unlock_irqrestore(&smu->lock, flags);
180 return IRQ_HANDLED;
181 }
182
183 cmd = smu->cmd_cur;
184 smu->cmd_cur = NULL;
185 if (cmd == NULL)
186 goto bail;
187
188 if (rc == 0) {
189 unsigned long faddr;
190 int reply_len;
191 u8 ack;
192
193 /* CPU might have brought back the cache line, so we need
194 * to flush again before peeking at the SMU response. We
195 * flush the entire buffer for now as we haven't read the
196 * reply length (it's only 2 cache lines anyway)
197 */
198 faddr = (unsigned long)smu->cmd_buf;
199 flush_inval_dcache_range(faddr, faddr + 256);
200
201 /* Now check ack */
202 ack = (~cmd->cmd) & 0xff;
203 if (ack != smu->cmd_buf->cmd) {
204 DPRINTK("SMU: incorrect ack, want %x got %x\n",
205 ack, smu->cmd_buf->cmd);
206 rc = -EIO;
207 }
208 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
209 DPRINTK("SMU: reply len: %d\n", reply_len);
210 if (reply_len > cmd->reply_len) {
211 printk(KERN_WARNING "SMU: reply buffer too small,"
212 "got %d bytes for a %d bytes buffer\n",
213 reply_len, cmd->reply_len);
214 reply_len = cmd->reply_len;
215 }
216 cmd->reply_len = reply_len;
217 if (cmd->reply_buf && reply_len)
218 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
219 }
220
221 /* Now complete the command. Write status last in order as we lost
222 * ownership of the command structure as soon as it's no longer -1
223 */
224 done = cmd->done;
225 misc = cmd->misc;
226 mb();
227 cmd->status = rc;
228
229 /* Re-enable NAP mode */
230 if (smu->broken_nap)
231 powersave_nap = 1;
232 bail:
233 /* Start next command if any */
234 smu_start_cmd();
235 spin_unlock_irqrestore(&smu->lock, flags);
236
237 /* Call command completion handler if any */
238 if (done)
239 done(cmd, misc);
240
241 /* It's an edge interrupt, nothing to do */
242 return IRQ_HANDLED;
243 }
244
245
smu_msg_intr(int irq,void * arg)246 static irqreturn_t smu_msg_intr(int irq, void *arg)
247 {
248 /* I don't quite know what to do with this one, we seem to never
249 * receive it, so I suspect we have to arm it someway in the SMU
250 * to start getting events that way.
251 */
252
253 printk(KERN_INFO "SMU: message interrupt !\n");
254
255 /* It's an edge interrupt, nothing to do */
256 return IRQ_HANDLED;
257 }
258
259
260 /*
261 * Queued command management.
262 *
263 */
264
smu_queue_cmd(struct smu_cmd * cmd)265 int smu_queue_cmd(struct smu_cmd *cmd)
266 {
267 unsigned long flags;
268
269 if (smu == NULL)
270 return -ENODEV;
271 if (cmd->data_len > SMU_MAX_DATA ||
272 cmd->reply_len > SMU_MAX_DATA)
273 return -EINVAL;
274
275 cmd->status = 1;
276 spin_lock_irqsave(&smu->lock, flags);
277 list_add_tail(&cmd->link, &smu->cmd_list);
278 if (smu->cmd_cur == NULL)
279 smu_start_cmd();
280 spin_unlock_irqrestore(&smu->lock, flags);
281
282 /* Workaround for early calls when irq isn't available */
283 if (!smu_irq_inited || !smu->db_irq)
284 smu_spinwait_cmd(cmd);
285
286 return 0;
287 }
288 EXPORT_SYMBOL(smu_queue_cmd);
289
290
smu_queue_simple(struct smu_simple_cmd * scmd,u8 command,unsigned int data_len,void (* done)(struct smu_cmd * cmd,void * misc),void * misc,...)291 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
292 unsigned int data_len,
293 void (*done)(struct smu_cmd *cmd, void *misc),
294 void *misc, ...)
295 {
296 struct smu_cmd *cmd = &scmd->cmd;
297 va_list list;
298 int i;
299
300 if (data_len > sizeof(scmd->buffer))
301 return -EINVAL;
302
303 memset(scmd, 0, sizeof(*scmd));
304 cmd->cmd = command;
305 cmd->data_len = data_len;
306 cmd->data_buf = scmd->buffer;
307 cmd->reply_len = sizeof(scmd->buffer);
308 cmd->reply_buf = scmd->buffer;
309 cmd->done = done;
310 cmd->misc = misc;
311
312 va_start(list, misc);
313 for (i = 0; i < data_len; ++i)
314 scmd->buffer[i] = (u8)va_arg(list, int);
315 va_end(list);
316
317 return smu_queue_cmd(cmd);
318 }
319 EXPORT_SYMBOL(smu_queue_simple);
320
321
smu_poll(void)322 void smu_poll(void)
323 {
324 u8 gpio;
325
326 if (smu == NULL)
327 return;
328
329 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
330 if ((gpio & 7) == 7)
331 smu_db_intr(smu->db_irq, smu);
332 }
333 EXPORT_SYMBOL(smu_poll);
334
335
smu_done_complete(struct smu_cmd * cmd,void * misc)336 void smu_done_complete(struct smu_cmd *cmd, void *misc)
337 {
338 struct completion *comp = misc;
339
340 complete(comp);
341 }
342 EXPORT_SYMBOL(smu_done_complete);
343
344
smu_spinwait_cmd(struct smu_cmd * cmd)345 void smu_spinwait_cmd(struct smu_cmd *cmd)
346 {
347 while(cmd->status == 1)
348 smu_poll();
349 }
350 EXPORT_SYMBOL(smu_spinwait_cmd);
351
352
353 /* RTC low level commands */
bcd2hex(int n)354 static inline int bcd2hex (int n)
355 {
356 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
357 }
358
359
hex2bcd(int n)360 static inline int hex2bcd (int n)
361 {
362 return ((n / 10) << 4) + (n % 10);
363 }
364
365
smu_fill_set_rtc_cmd(struct smu_cmd_buf * cmd_buf,struct rtc_time * time)366 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
367 struct rtc_time *time)
368 {
369 cmd_buf->cmd = 0x8e;
370 cmd_buf->length = 8;
371 cmd_buf->data[0] = 0x80;
372 cmd_buf->data[1] = hex2bcd(time->tm_sec);
373 cmd_buf->data[2] = hex2bcd(time->tm_min);
374 cmd_buf->data[3] = hex2bcd(time->tm_hour);
375 cmd_buf->data[4] = time->tm_wday;
376 cmd_buf->data[5] = hex2bcd(time->tm_mday);
377 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
378 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
379 }
380
381
smu_get_rtc_time(struct rtc_time * time,int spinwait)382 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
383 {
384 struct smu_simple_cmd cmd;
385 int rc;
386
387 if (smu == NULL)
388 return -ENODEV;
389
390 memset(time, 0, sizeof(struct rtc_time));
391 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
392 SMU_CMD_RTC_GET_DATETIME);
393 if (rc)
394 return rc;
395 smu_spinwait_simple(&cmd);
396
397 time->tm_sec = bcd2hex(cmd.buffer[0]);
398 time->tm_min = bcd2hex(cmd.buffer[1]);
399 time->tm_hour = bcd2hex(cmd.buffer[2]);
400 time->tm_wday = bcd2hex(cmd.buffer[3]);
401 time->tm_mday = bcd2hex(cmd.buffer[4]);
402 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
403 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
404
405 return 0;
406 }
407
408
smu_set_rtc_time(struct rtc_time * time,int spinwait)409 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
410 {
411 struct smu_simple_cmd cmd;
412 int rc;
413
414 if (smu == NULL)
415 return -ENODEV;
416
417 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
418 SMU_CMD_RTC_SET_DATETIME,
419 hex2bcd(time->tm_sec),
420 hex2bcd(time->tm_min),
421 hex2bcd(time->tm_hour),
422 time->tm_wday,
423 hex2bcd(time->tm_mday),
424 hex2bcd(time->tm_mon) + 1,
425 hex2bcd(time->tm_year - 100));
426 if (rc)
427 return rc;
428 smu_spinwait_simple(&cmd);
429
430 return 0;
431 }
432
433
smu_shutdown(void)434 void smu_shutdown(void)
435 {
436 struct smu_simple_cmd cmd;
437
438 if (smu == NULL)
439 return;
440
441 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
442 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
443 return;
444 smu_spinwait_simple(&cmd);
445 for (;;)
446 ;
447 }
448
449
smu_restart(void)450 void smu_restart(void)
451 {
452 struct smu_simple_cmd cmd;
453
454 if (smu == NULL)
455 return;
456
457 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
458 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
459 return;
460 smu_spinwait_simple(&cmd);
461 for (;;)
462 ;
463 }
464
465
smu_present(void)466 int smu_present(void)
467 {
468 return smu != NULL;
469 }
470 EXPORT_SYMBOL(smu_present);
471
472
smu_init(void)473 int __init smu_init (void)
474 {
475 struct device_node *np;
476 const u32 *data;
477 int ret = 0;
478
479 np = of_find_node_by_type(NULL, "smu");
480 if (np == NULL)
481 return -ENODEV;
482
483 printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
484
485 /*
486 * SMU based G5s need some memory below 2Gb. Thankfully this is
487 * called at a time where memblock is still available.
488 */
489 smu_cmdbuf_abs = memblock_alloc_base(4096, 4096, 0x80000000UL);
490 if (smu_cmdbuf_abs == 0) {
491 printk(KERN_ERR "SMU: Command buffer allocation failed !\n");
492 ret = -EINVAL;
493 goto fail_np;
494 }
495
496 smu = alloc_bootmem(sizeof(struct smu_device));
497
498 spin_lock_init(&smu->lock);
499 INIT_LIST_HEAD(&smu->cmd_list);
500 INIT_LIST_HEAD(&smu->cmd_i2c_list);
501 smu->of_node = np;
502 smu->db_irq = 0;
503 smu->msg_irq = 0;
504
505 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
506 * 32 bits value safely
507 */
508 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
509 smu->cmd_buf = __va(smu_cmdbuf_abs);
510
511 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
512 if (smu->db_node == NULL) {
513 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
514 ret = -ENXIO;
515 goto fail_bootmem;
516 }
517 data = of_get_property(smu->db_node, "reg", NULL);
518 if (data == NULL) {
519 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
520 ret = -ENXIO;
521 goto fail_db_node;
522 }
523
524 /* Current setup has one doorbell GPIO that does both doorbell
525 * and ack. GPIOs are at 0x50, best would be to find that out
526 * in the device-tree though.
527 */
528 smu->doorbell = *data;
529 if (smu->doorbell < 0x50)
530 smu->doorbell += 0x50;
531
532 /* Now look for the smu-interrupt GPIO */
533 do {
534 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
535 if (smu->msg_node == NULL)
536 break;
537 data = of_get_property(smu->msg_node, "reg", NULL);
538 if (data == NULL) {
539 of_node_put(smu->msg_node);
540 smu->msg_node = NULL;
541 break;
542 }
543 smu->msg = *data;
544 if (smu->msg < 0x50)
545 smu->msg += 0x50;
546 } while(0);
547
548 /* Doorbell buffer is currently hard-coded, I didn't find a proper
549 * device-tree entry giving the address. Best would probably to use
550 * an offset for K2 base though, but let's do it that way for now.
551 */
552 smu->db_buf = ioremap(0x8000860c, 0x1000);
553 if (smu->db_buf == NULL) {
554 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
555 ret = -ENXIO;
556 goto fail_msg_node;
557 }
558
559 /* U3 has an issue with NAP mode when issuing SMU commands */
560 smu->broken_nap = pmac_get_uninorth_variant() < 4;
561 if (smu->broken_nap)
562 printk(KERN_INFO "SMU: using NAP mode workaround\n");
563
564 sys_ctrler = SYS_CTRLER_SMU;
565 return 0;
566
567 fail_msg_node:
568 of_node_put(smu->msg_node);
569 fail_db_node:
570 of_node_put(smu->db_node);
571 fail_bootmem:
572 free_bootmem(__pa(smu), sizeof(struct smu_device));
573 smu = NULL;
574 fail_np:
575 of_node_put(np);
576 return ret;
577 }
578
579
smu_late_init(void)580 static int smu_late_init(void)
581 {
582 if (!smu)
583 return 0;
584
585 timer_setup(&smu->i2c_timer, smu_i2c_retry, 0);
586
587 if (smu->db_node) {
588 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
589 if (!smu->db_irq)
590 printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
591 smu->db_node);
592 }
593 if (smu->msg_node) {
594 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
595 if (!smu->msg_irq)
596 printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
597 smu->msg_node);
598 }
599
600 /*
601 * Try to request the interrupts
602 */
603
604 if (smu->db_irq) {
605 if (request_irq(smu->db_irq, smu_db_intr,
606 IRQF_SHARED, "SMU doorbell", smu) < 0) {
607 printk(KERN_WARNING "SMU: can't "
608 "request interrupt %d\n",
609 smu->db_irq);
610 smu->db_irq = 0;
611 }
612 }
613
614 if (smu->msg_irq) {
615 if (request_irq(smu->msg_irq, smu_msg_intr,
616 IRQF_SHARED, "SMU message", smu) < 0) {
617 printk(KERN_WARNING "SMU: can't "
618 "request interrupt %d\n",
619 smu->msg_irq);
620 smu->msg_irq = 0;
621 }
622 }
623
624 smu_irq_inited = 1;
625 return 0;
626 }
627 /* This has to be before arch_initcall as the low i2c stuff relies on the
628 * above having been done before we reach arch_initcalls
629 */
630 core_initcall(smu_late_init);
631
632 /*
633 * sysfs visibility
634 */
635
smu_expose_childs(struct work_struct * unused)636 static void smu_expose_childs(struct work_struct *unused)
637 {
638 struct device_node *np;
639
640 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
641 if (of_device_is_compatible(np, "smu-sensors"))
642 of_platform_device_create(np, "smu-sensors",
643 &smu->of_dev->dev);
644 }
645
646 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
647
smu_platform_probe(struct platform_device * dev)648 static int smu_platform_probe(struct platform_device* dev)
649 {
650 if (!smu)
651 return -ENODEV;
652 smu->of_dev = dev;
653
654 /*
655 * Ok, we are matched, now expose all i2c busses. We have to defer
656 * that unfortunately or it would deadlock inside the device model
657 */
658 schedule_work(&smu_expose_childs_work);
659
660 return 0;
661 }
662
663 static const struct of_device_id smu_platform_match[] =
664 {
665 {
666 .type = "smu",
667 },
668 {},
669 };
670
671 static struct platform_driver smu_of_platform_driver =
672 {
673 .driver = {
674 .name = "smu",
675 .of_match_table = smu_platform_match,
676 },
677 .probe = smu_platform_probe,
678 };
679
smu_init_sysfs(void)680 static int __init smu_init_sysfs(void)
681 {
682 /*
683 * For now, we don't power manage machines with an SMU chip,
684 * I'm a bit too far from figuring out how that works with those
685 * new chipsets, but that will come back and bite us
686 */
687 platform_driver_register(&smu_of_platform_driver);
688 return 0;
689 }
690
691 device_initcall(smu_init_sysfs);
692
smu_get_ofdev(void)693 struct platform_device *smu_get_ofdev(void)
694 {
695 if (!smu)
696 return NULL;
697 return smu->of_dev;
698 }
699
700 EXPORT_SYMBOL_GPL(smu_get_ofdev);
701
702 /*
703 * i2c interface
704 */
705
smu_i2c_complete_command(struct smu_i2c_cmd * cmd,int fail)706 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
707 {
708 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
709 void *misc = cmd->misc;
710 unsigned long flags;
711
712 /* Check for read case */
713 if (!fail && cmd->read) {
714 if (cmd->pdata[0] < 1)
715 fail = 1;
716 else
717 memcpy(cmd->info.data, &cmd->pdata[1],
718 cmd->info.datalen);
719 }
720
721 DPRINTK("SMU: completing, success: %d\n", !fail);
722
723 /* Update status and mark no pending i2c command with lock
724 * held so nobody comes in while we dequeue an eventual
725 * pending next i2c command
726 */
727 spin_lock_irqsave(&smu->lock, flags);
728 smu->cmd_i2c_cur = NULL;
729 wmb();
730 cmd->status = fail ? -EIO : 0;
731
732 /* Is there another i2c command waiting ? */
733 if (!list_empty(&smu->cmd_i2c_list)) {
734 struct smu_i2c_cmd *newcmd;
735
736 /* Fetch it, new current, remove from list */
737 newcmd = list_entry(smu->cmd_i2c_list.next,
738 struct smu_i2c_cmd, link);
739 smu->cmd_i2c_cur = newcmd;
740 list_del(&cmd->link);
741
742 /* Queue with low level smu */
743 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
744 if (smu->cmd_cur == NULL)
745 smu_start_cmd();
746 }
747 spin_unlock_irqrestore(&smu->lock, flags);
748
749 /* Call command completion handler if any */
750 if (done)
751 done(cmd, misc);
752
753 }
754
755
smu_i2c_retry(struct timer_list * unused)756 static void smu_i2c_retry(struct timer_list *unused)
757 {
758 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
759
760 DPRINTK("SMU: i2c failure, requeuing...\n");
761
762 /* requeue command simply by resetting reply_len */
763 cmd->pdata[0] = 0xff;
764 cmd->scmd.reply_len = sizeof(cmd->pdata);
765 smu_queue_cmd(&cmd->scmd);
766 }
767
768
smu_i2c_low_completion(struct smu_cmd * scmd,void * misc)769 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
770 {
771 struct smu_i2c_cmd *cmd = misc;
772 int fail = 0;
773
774 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
775 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
776
777 /* Check for possible status */
778 if (scmd->status < 0)
779 fail = 1;
780 else if (cmd->read) {
781 if (cmd->stage == 0)
782 fail = cmd->pdata[0] != 0;
783 else
784 fail = cmd->pdata[0] >= 0x80;
785 } else {
786 fail = cmd->pdata[0] != 0;
787 }
788
789 /* Handle failures by requeuing command, after 5ms interval
790 */
791 if (fail && --cmd->retries > 0) {
792 DPRINTK("SMU: i2c failure, starting timer...\n");
793 BUG_ON(cmd != smu->cmd_i2c_cur);
794 if (!smu_irq_inited) {
795 mdelay(5);
796 smu_i2c_retry(NULL);
797 return;
798 }
799 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
800 return;
801 }
802
803 /* If failure or stage 1, command is complete */
804 if (fail || cmd->stage != 0) {
805 smu_i2c_complete_command(cmd, fail);
806 return;
807 }
808
809 DPRINTK("SMU: going to stage 1\n");
810
811 /* Ok, initial command complete, now poll status */
812 scmd->reply_buf = cmd->pdata;
813 scmd->reply_len = sizeof(cmd->pdata);
814 scmd->data_buf = cmd->pdata;
815 scmd->data_len = 1;
816 cmd->pdata[0] = 0;
817 cmd->stage = 1;
818 cmd->retries = 20;
819 smu_queue_cmd(scmd);
820 }
821
822
smu_queue_i2c(struct smu_i2c_cmd * cmd)823 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
824 {
825 unsigned long flags;
826
827 if (smu == NULL)
828 return -ENODEV;
829
830 /* Fill most fields of scmd */
831 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
832 cmd->scmd.done = smu_i2c_low_completion;
833 cmd->scmd.misc = cmd;
834 cmd->scmd.reply_buf = cmd->pdata;
835 cmd->scmd.reply_len = sizeof(cmd->pdata);
836 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
837 cmd->scmd.status = 1;
838 cmd->stage = 0;
839 cmd->pdata[0] = 0xff;
840 cmd->retries = 20;
841 cmd->status = 1;
842
843 /* Check transfer type, sanitize some "info" fields
844 * based on transfer type and do more checking
845 */
846 cmd->info.caddr = cmd->info.devaddr;
847 cmd->read = cmd->info.devaddr & 0x01;
848 switch(cmd->info.type) {
849 case SMU_I2C_TRANSFER_SIMPLE:
850 memset(&cmd->info.sublen, 0, 4);
851 break;
852 case SMU_I2C_TRANSFER_COMBINED:
853 cmd->info.devaddr &= 0xfe;
854 case SMU_I2C_TRANSFER_STDSUB:
855 if (cmd->info.sublen > 3)
856 return -EINVAL;
857 break;
858 default:
859 return -EINVAL;
860 }
861
862 /* Finish setting up command based on transfer direction
863 */
864 if (cmd->read) {
865 if (cmd->info.datalen > SMU_I2C_READ_MAX)
866 return -EINVAL;
867 memset(cmd->info.data, 0xff, cmd->info.datalen);
868 cmd->scmd.data_len = 9;
869 } else {
870 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
871 return -EINVAL;
872 cmd->scmd.data_len = 9 + cmd->info.datalen;
873 }
874
875 DPRINTK("SMU: i2c enqueuing command\n");
876 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
877 cmd->read ? "read" : "write", cmd->info.datalen,
878 cmd->info.bus, cmd->info.caddr,
879 cmd->info.subaddr[0], cmd->info.type);
880
881
882 /* Enqueue command in i2c list, and if empty, enqueue also in
883 * main command list
884 */
885 spin_lock_irqsave(&smu->lock, flags);
886 if (smu->cmd_i2c_cur == NULL) {
887 smu->cmd_i2c_cur = cmd;
888 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
889 if (smu->cmd_cur == NULL)
890 smu_start_cmd();
891 } else
892 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
893 spin_unlock_irqrestore(&smu->lock, flags);
894
895 return 0;
896 }
897
898 /*
899 * Handling of "partitions"
900 */
901
smu_read_datablock(u8 * dest,unsigned int addr,unsigned int len)902 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
903 {
904 DECLARE_COMPLETION_ONSTACK(comp);
905 unsigned int chunk;
906 struct smu_cmd cmd;
907 int rc;
908 u8 params[8];
909
910 /* We currently use a chunk size of 0xe. We could check the
911 * SMU firmware version and use bigger sizes though
912 */
913 chunk = 0xe;
914
915 while (len) {
916 unsigned int clen = min(len, chunk);
917
918 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
919 cmd.data_len = 7;
920 cmd.data_buf = params;
921 cmd.reply_len = chunk;
922 cmd.reply_buf = dest;
923 cmd.done = smu_done_complete;
924 cmd.misc = ∁
925 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
926 params[1] = 0x4;
927 *((u32 *)¶ms[2]) = addr;
928 params[6] = clen;
929
930 rc = smu_queue_cmd(&cmd);
931 if (rc)
932 return rc;
933 wait_for_completion(&comp);
934 if (cmd.status != 0)
935 return rc;
936 if (cmd.reply_len != clen) {
937 printk(KERN_DEBUG "SMU: short read in "
938 "smu_read_datablock, got: %d, want: %d\n",
939 cmd.reply_len, clen);
940 return -EIO;
941 }
942 len -= clen;
943 addr += clen;
944 dest += clen;
945 }
946 return 0;
947 }
948
smu_create_sdb_partition(int id)949 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
950 {
951 DECLARE_COMPLETION_ONSTACK(comp);
952 struct smu_simple_cmd cmd;
953 unsigned int addr, len, tlen;
954 struct smu_sdbp_header *hdr;
955 struct property *prop;
956
957 /* First query the partition info */
958 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
959 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
960 smu_done_complete, &comp,
961 SMU_CMD_PARTITION_LATEST, id);
962 wait_for_completion(&comp);
963 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
964 cmd.cmd.status, cmd.cmd.reply_len);
965
966 /* Partition doesn't exist (or other error) */
967 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
968 return NULL;
969
970 /* Fetch address and length from reply */
971 addr = *((u16 *)cmd.buffer);
972 len = cmd.buffer[3] << 2;
973 /* Calucluate total length to allocate, including the 17 bytes
974 * for "sdb-partition-XX" that we append at the end of the buffer
975 */
976 tlen = sizeof(struct property) + len + 18;
977
978 prop = kzalloc(tlen, GFP_KERNEL);
979 if (prop == NULL)
980 return NULL;
981 hdr = (struct smu_sdbp_header *)(prop + 1);
982 prop->name = ((char *)prop) + tlen - 18;
983 sprintf(prop->name, "sdb-partition-%02x", id);
984 prop->length = len;
985 prop->value = hdr;
986 prop->next = NULL;
987
988 /* Read the datablock */
989 if (smu_read_datablock((u8 *)hdr, addr, len)) {
990 printk(KERN_DEBUG "SMU: datablock read failed while reading "
991 "partition %02x !\n", id);
992 goto failure;
993 }
994
995 /* Got it, check a few things and create the property */
996 if (hdr->id != id) {
997 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
998 "%02x !\n", id, hdr->id);
999 goto failure;
1000 }
1001 if (of_add_property(smu->of_node, prop)) {
1002 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1003 "property !\n", id);
1004 goto failure;
1005 }
1006
1007 return hdr;
1008 failure:
1009 kfree(prop);
1010 return NULL;
1011 }
1012
1013 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1014 * when interruptible is 1
1015 */
__smu_get_sdb_partition(int id,unsigned int * size,int interruptible)1016 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1017 unsigned int *size, int interruptible)
1018 {
1019 char pname[32];
1020 const struct smu_sdbp_header *part;
1021
1022 if (!smu)
1023 return NULL;
1024
1025 sprintf(pname, "sdb-partition-%02x", id);
1026
1027 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1028
1029 if (interruptible) {
1030 int rc;
1031 rc = mutex_lock_interruptible(&smu_part_access);
1032 if (rc)
1033 return ERR_PTR(rc);
1034 } else
1035 mutex_lock(&smu_part_access);
1036
1037 part = of_get_property(smu->of_node, pname, size);
1038 if (part == NULL) {
1039 DPRINTK("trying to extract from SMU ...\n");
1040 part = smu_create_sdb_partition(id);
1041 if (part != NULL && size)
1042 *size = part->len << 2;
1043 }
1044 mutex_unlock(&smu_part_access);
1045 return part;
1046 }
1047
smu_get_sdb_partition(int id,unsigned int * size)1048 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1049 {
1050 return __smu_get_sdb_partition(id, size, 0);
1051 }
1052 EXPORT_SYMBOL(smu_get_sdb_partition);
1053
1054
1055 /*
1056 * Userland driver interface
1057 */
1058
1059
1060 static LIST_HEAD(smu_clist);
1061 static DEFINE_SPINLOCK(smu_clist_lock);
1062
1063 enum smu_file_mode {
1064 smu_file_commands,
1065 smu_file_events,
1066 smu_file_closing
1067 };
1068
1069 struct smu_private
1070 {
1071 struct list_head list;
1072 enum smu_file_mode mode;
1073 int busy;
1074 struct smu_cmd cmd;
1075 spinlock_t lock;
1076 wait_queue_head_t wait;
1077 u8 buffer[SMU_MAX_DATA];
1078 };
1079
1080
smu_open(struct inode * inode,struct file * file)1081 static int smu_open(struct inode *inode, struct file *file)
1082 {
1083 struct smu_private *pp;
1084 unsigned long flags;
1085
1086 pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1087 if (pp == 0)
1088 return -ENOMEM;
1089 spin_lock_init(&pp->lock);
1090 pp->mode = smu_file_commands;
1091 init_waitqueue_head(&pp->wait);
1092
1093 mutex_lock(&smu_mutex);
1094 spin_lock_irqsave(&smu_clist_lock, flags);
1095 list_add(&pp->list, &smu_clist);
1096 spin_unlock_irqrestore(&smu_clist_lock, flags);
1097 file->private_data = pp;
1098 mutex_unlock(&smu_mutex);
1099
1100 return 0;
1101 }
1102
1103
smu_user_cmd_done(struct smu_cmd * cmd,void * misc)1104 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1105 {
1106 struct smu_private *pp = misc;
1107
1108 wake_up_all(&pp->wait);
1109 }
1110
1111
smu_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1112 static ssize_t smu_write(struct file *file, const char __user *buf,
1113 size_t count, loff_t *ppos)
1114 {
1115 struct smu_private *pp = file->private_data;
1116 unsigned long flags;
1117 struct smu_user_cmd_hdr hdr;
1118 int rc = 0;
1119
1120 if (pp->busy)
1121 return -EBUSY;
1122 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1123 return -EFAULT;
1124 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1125 pp->mode = smu_file_events;
1126 return 0;
1127 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1128 const struct smu_sdbp_header *part;
1129 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1130 if (part == NULL)
1131 return -EINVAL;
1132 else if (IS_ERR(part))
1133 return PTR_ERR(part);
1134 return 0;
1135 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1136 return -EINVAL;
1137 else if (pp->mode != smu_file_commands)
1138 return -EBADFD;
1139 else if (hdr.data_len > SMU_MAX_DATA)
1140 return -EINVAL;
1141
1142 spin_lock_irqsave(&pp->lock, flags);
1143 if (pp->busy) {
1144 spin_unlock_irqrestore(&pp->lock, flags);
1145 return -EBUSY;
1146 }
1147 pp->busy = 1;
1148 pp->cmd.status = 1;
1149 spin_unlock_irqrestore(&pp->lock, flags);
1150
1151 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1152 pp->busy = 0;
1153 return -EFAULT;
1154 }
1155
1156 pp->cmd.cmd = hdr.cmd;
1157 pp->cmd.data_len = hdr.data_len;
1158 pp->cmd.reply_len = SMU_MAX_DATA;
1159 pp->cmd.data_buf = pp->buffer;
1160 pp->cmd.reply_buf = pp->buffer;
1161 pp->cmd.done = smu_user_cmd_done;
1162 pp->cmd.misc = pp;
1163 rc = smu_queue_cmd(&pp->cmd);
1164 if (rc < 0)
1165 return rc;
1166 return count;
1167 }
1168
1169
smu_read_command(struct file * file,struct smu_private * pp,char __user * buf,size_t count)1170 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1171 char __user *buf, size_t count)
1172 {
1173 DECLARE_WAITQUEUE(wait, current);
1174 struct smu_user_reply_hdr hdr;
1175 unsigned long flags;
1176 int size, rc = 0;
1177
1178 if (!pp->busy)
1179 return 0;
1180 if (count < sizeof(struct smu_user_reply_hdr))
1181 return -EOVERFLOW;
1182 spin_lock_irqsave(&pp->lock, flags);
1183 if (pp->cmd.status == 1) {
1184 if (file->f_flags & O_NONBLOCK) {
1185 spin_unlock_irqrestore(&pp->lock, flags);
1186 return -EAGAIN;
1187 }
1188 add_wait_queue(&pp->wait, &wait);
1189 for (;;) {
1190 set_current_state(TASK_INTERRUPTIBLE);
1191 rc = 0;
1192 if (pp->cmd.status != 1)
1193 break;
1194 rc = -ERESTARTSYS;
1195 if (signal_pending(current))
1196 break;
1197 spin_unlock_irqrestore(&pp->lock, flags);
1198 schedule();
1199 spin_lock_irqsave(&pp->lock, flags);
1200 }
1201 set_current_state(TASK_RUNNING);
1202 remove_wait_queue(&pp->wait, &wait);
1203 }
1204 spin_unlock_irqrestore(&pp->lock, flags);
1205 if (rc)
1206 return rc;
1207 if (pp->cmd.status != 0)
1208 pp->cmd.reply_len = 0;
1209 size = sizeof(hdr) + pp->cmd.reply_len;
1210 if (count < size)
1211 size = count;
1212 rc = size;
1213 hdr.status = pp->cmd.status;
1214 hdr.reply_len = pp->cmd.reply_len;
1215 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1216 return -EFAULT;
1217 size -= sizeof(hdr);
1218 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1219 return -EFAULT;
1220 pp->busy = 0;
1221
1222 return rc;
1223 }
1224
1225
smu_read_events(struct file * file,struct smu_private * pp,char __user * buf,size_t count)1226 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1227 char __user *buf, size_t count)
1228 {
1229 /* Not implemented */
1230 msleep_interruptible(1000);
1231 return 0;
1232 }
1233
1234
smu_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1235 static ssize_t smu_read(struct file *file, char __user *buf,
1236 size_t count, loff_t *ppos)
1237 {
1238 struct smu_private *pp = file->private_data;
1239
1240 if (pp->mode == smu_file_commands)
1241 return smu_read_command(file, pp, buf, count);
1242 if (pp->mode == smu_file_events)
1243 return smu_read_events(file, pp, buf, count);
1244
1245 return -EBADFD;
1246 }
1247
smu_fpoll(struct file * file,poll_table * wait)1248 static __poll_t smu_fpoll(struct file *file, poll_table *wait)
1249 {
1250 struct smu_private *pp = file->private_data;
1251 __poll_t mask = 0;
1252 unsigned long flags;
1253
1254 if (pp == 0)
1255 return 0;
1256
1257 if (pp->mode == smu_file_commands) {
1258 poll_wait(file, &pp->wait, wait);
1259
1260 spin_lock_irqsave(&pp->lock, flags);
1261 if (pp->busy && pp->cmd.status != 1)
1262 mask |= EPOLLIN;
1263 spin_unlock_irqrestore(&pp->lock, flags);
1264 }
1265 if (pp->mode == smu_file_events) {
1266 /* Not yet implemented */
1267 }
1268 return mask;
1269 }
1270
smu_release(struct inode * inode,struct file * file)1271 static int smu_release(struct inode *inode, struct file *file)
1272 {
1273 struct smu_private *pp = file->private_data;
1274 unsigned long flags;
1275 unsigned int busy;
1276
1277 if (pp == 0)
1278 return 0;
1279
1280 file->private_data = NULL;
1281
1282 /* Mark file as closing to avoid races with new request */
1283 spin_lock_irqsave(&pp->lock, flags);
1284 pp->mode = smu_file_closing;
1285 busy = pp->busy;
1286
1287 /* Wait for any pending request to complete */
1288 if (busy && pp->cmd.status == 1) {
1289 DECLARE_WAITQUEUE(wait, current);
1290
1291 add_wait_queue(&pp->wait, &wait);
1292 for (;;) {
1293 set_current_state(TASK_UNINTERRUPTIBLE);
1294 if (pp->cmd.status != 1)
1295 break;
1296 spin_unlock_irqrestore(&pp->lock, flags);
1297 schedule();
1298 spin_lock_irqsave(&pp->lock, flags);
1299 }
1300 set_current_state(TASK_RUNNING);
1301 remove_wait_queue(&pp->wait, &wait);
1302 }
1303 spin_unlock_irqrestore(&pp->lock, flags);
1304
1305 spin_lock_irqsave(&smu_clist_lock, flags);
1306 list_del(&pp->list);
1307 spin_unlock_irqrestore(&smu_clist_lock, flags);
1308 kfree(pp);
1309
1310 return 0;
1311 }
1312
1313
1314 static const struct file_operations smu_device_fops = {
1315 .llseek = no_llseek,
1316 .read = smu_read,
1317 .write = smu_write,
1318 .poll = smu_fpoll,
1319 .open = smu_open,
1320 .release = smu_release,
1321 };
1322
1323 static struct miscdevice pmu_device = {
1324 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1325 };
1326
smu_device_init(void)1327 static int smu_device_init(void)
1328 {
1329 if (!smu)
1330 return -ENODEV;
1331 if (misc_register(&pmu_device) < 0)
1332 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1333 return 0;
1334 }
1335 device_initcall(smu_device_init);
1336