1 /*
2 * IPMMU VMSA
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 */
10
11 #include <linux/bitmap.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iommu.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_iommu.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/sizes.h>
27 #include <linux/slab.h>
28 #include <linux/sys_soc.h>
29
30 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
31 #include <asm/dma-iommu.h>
32 #include <asm/pgalloc.h>
33 #else
34 #define arm_iommu_create_mapping(...) NULL
35 #define arm_iommu_attach_device(...) -ENODEV
36 #define arm_iommu_release_mapping(...) do {} while (0)
37 #define arm_iommu_detach_device(...) do {} while (0)
38 #endif
39
40 #include "io-pgtable.h"
41
42 #define IPMMU_CTX_MAX 8
43
44 struct ipmmu_features {
45 bool use_ns_alias_offset;
46 bool has_cache_leaf_nodes;
47 unsigned int number_of_contexts;
48 bool setup_imbuscr;
49 bool twobit_imttbcr_sl0;
50 bool reserved_context;
51 };
52
53 struct ipmmu_vmsa_device {
54 struct device *dev;
55 void __iomem *base;
56 struct iommu_device iommu;
57 struct ipmmu_vmsa_device *root;
58 const struct ipmmu_features *features;
59 unsigned int num_utlbs;
60 unsigned int num_ctx;
61 spinlock_t lock; /* Protects ctx and domains[] */
62 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
63 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
64
65 struct iommu_group *group;
66 struct dma_iommu_mapping *mapping;
67 };
68
69 struct ipmmu_vmsa_domain {
70 struct ipmmu_vmsa_device *mmu;
71 struct iommu_domain io_domain;
72
73 struct io_pgtable_cfg cfg;
74 struct io_pgtable_ops *iop;
75
76 unsigned int context_id;
77 struct mutex mutex; /* Protects mappings */
78 };
79
to_vmsa_domain(struct iommu_domain * dom)80 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
81 {
82 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
83 }
84
to_ipmmu(struct device * dev)85 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
86 {
87 return dev->iommu_fwspec ? dev->iommu_fwspec->iommu_priv : NULL;
88 }
89
90 #define TLB_LOOP_TIMEOUT 100 /* 100us */
91
92 /* -----------------------------------------------------------------------------
93 * Registers Definition
94 */
95
96 #define IM_NS_ALIAS_OFFSET 0x800
97
98 #define IM_CTX_SIZE 0x40
99
100 #define IMCTR 0x0000
101 #define IMCTR_TRE (1 << 17)
102 #define IMCTR_AFE (1 << 16)
103 #define IMCTR_RTSEL_MASK (3 << 4)
104 #define IMCTR_RTSEL_SHIFT 4
105 #define IMCTR_TREN (1 << 3)
106 #define IMCTR_INTEN (1 << 2)
107 #define IMCTR_FLUSH (1 << 1)
108 #define IMCTR_MMUEN (1 << 0)
109
110 #define IMCAAR 0x0004
111
112 #define IMTTBCR 0x0008
113 #define IMTTBCR_EAE (1 << 31)
114 #define IMTTBCR_PMB (1 << 30)
115 #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
116 #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
117 #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
118 #define IMTTBCR_SH1_MASK (3 << 28)
119 #define IMTTBCR_ORGN1_NC (0 << 26)
120 #define IMTTBCR_ORGN1_WB_WA (1 << 26)
121 #define IMTTBCR_ORGN1_WT (2 << 26)
122 #define IMTTBCR_ORGN1_WB (3 << 26)
123 #define IMTTBCR_ORGN1_MASK (3 << 26)
124 #define IMTTBCR_IRGN1_NC (0 << 24)
125 #define IMTTBCR_IRGN1_WB_WA (1 << 24)
126 #define IMTTBCR_IRGN1_WT (2 << 24)
127 #define IMTTBCR_IRGN1_WB (3 << 24)
128 #define IMTTBCR_IRGN1_MASK (3 << 24)
129 #define IMTTBCR_TSZ1_MASK (7 << 16)
130 #define IMTTBCR_TSZ1_SHIFT 16
131 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
132 #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
133 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
134 #define IMTTBCR_SH0_MASK (3 << 12)
135 #define IMTTBCR_ORGN0_NC (0 << 10)
136 #define IMTTBCR_ORGN0_WB_WA (1 << 10)
137 #define IMTTBCR_ORGN0_WT (2 << 10)
138 #define IMTTBCR_ORGN0_WB (3 << 10)
139 #define IMTTBCR_ORGN0_MASK (3 << 10)
140 #define IMTTBCR_IRGN0_NC (0 << 8)
141 #define IMTTBCR_IRGN0_WB_WA (1 << 8)
142 #define IMTTBCR_IRGN0_WT (2 << 8)
143 #define IMTTBCR_IRGN0_WB (3 << 8)
144 #define IMTTBCR_IRGN0_MASK (3 << 8)
145 #define IMTTBCR_SL0_LVL_2 (0 << 4)
146 #define IMTTBCR_SL0_LVL_1 (1 << 4)
147 #define IMTTBCR_TSZ0_MASK (7 << 0)
148 #define IMTTBCR_TSZ0_SHIFT O
149
150 #define IMTTBCR_SL0_TWOBIT_LVL_3 (0 << 6)
151 #define IMTTBCR_SL0_TWOBIT_LVL_2 (1 << 6)
152 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6)
153
154 #define IMBUSCR 0x000c
155 #define IMBUSCR_DVM (1 << 2)
156 #define IMBUSCR_BUSSEL_SYS (0 << 0)
157 #define IMBUSCR_BUSSEL_CCI (1 << 0)
158 #define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
159 #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
160 #define IMBUSCR_BUSSEL_MASK (3 << 0)
161
162 #define IMTTLBR0 0x0010
163 #define IMTTUBR0 0x0014
164 #define IMTTLBR1 0x0018
165 #define IMTTUBR1 0x001c
166
167 #define IMSTR 0x0020
168 #define IMSTR_ERRLVL_MASK (3 << 12)
169 #define IMSTR_ERRLVL_SHIFT 12
170 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
171 #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
172 #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
173 #define IMSTR_ERRCODE_MASK (7 << 8)
174 #define IMSTR_MHIT (1 << 4)
175 #define IMSTR_ABORT (1 << 2)
176 #define IMSTR_PF (1 << 1)
177 #define IMSTR_TF (1 << 0)
178
179 #define IMMAIR0 0x0028
180 #define IMMAIR1 0x002c
181 #define IMMAIR_ATTR_MASK 0xff
182 #define IMMAIR_ATTR_DEVICE 0x04
183 #define IMMAIR_ATTR_NC 0x44
184 #define IMMAIR_ATTR_WBRWA 0xff
185 #define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
186 #define IMMAIR_ATTR_IDX_NC 0
187 #define IMMAIR_ATTR_IDX_WBRWA 1
188 #define IMMAIR_ATTR_IDX_DEV 2
189
190 #define IMEAR 0x0030
191
192 #define IMPCTR 0x0200
193 #define IMPSTR 0x0208
194 #define IMPEAR 0x020c
195 #define IMPMBA(n) (0x0280 + ((n) * 4))
196 #define IMPMBD(n) (0x02c0 + ((n) * 4))
197
198 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
199 #define IMUCTR0(n) (0x0300 + ((n) * 16))
200 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16))
201 #define IMUCTR_FIXADDEN (1 << 31)
202 #define IMUCTR_FIXADD_MASK (0xff << 16)
203 #define IMUCTR_FIXADD_SHIFT 16
204 #define IMUCTR_TTSEL_MMU(n) ((n) << 4)
205 #define IMUCTR_TTSEL_PMB (8 << 4)
206 #define IMUCTR_TTSEL_MASK (15 << 4)
207 #define IMUCTR_FLUSH (1 << 1)
208 #define IMUCTR_MMUEN (1 << 0)
209
210 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
211 #define IMUASID0(n) (0x0308 + ((n) * 16))
212 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16))
213 #define IMUASID_ASID8_MASK (0xff << 8)
214 #define IMUASID_ASID8_SHIFT 8
215 #define IMUASID_ASID0_MASK (0xff << 0)
216 #define IMUASID_ASID0_SHIFT 0
217
218 /* -----------------------------------------------------------------------------
219 * Root device handling
220 */
221
222 static struct platform_driver ipmmu_driver;
223
ipmmu_is_root(struct ipmmu_vmsa_device * mmu)224 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
225 {
226 return mmu->root == mmu;
227 }
228
__ipmmu_check_device(struct device * dev,void * data)229 static int __ipmmu_check_device(struct device *dev, void *data)
230 {
231 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
232 struct ipmmu_vmsa_device **rootp = data;
233
234 if (ipmmu_is_root(mmu))
235 *rootp = mmu;
236
237 return 0;
238 }
239
ipmmu_find_root(void)240 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
241 {
242 struct ipmmu_vmsa_device *root = NULL;
243
244 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
245 __ipmmu_check_device) == 0 ? root : NULL;
246 }
247
248 /* -----------------------------------------------------------------------------
249 * Read/Write Access
250 */
251
ipmmu_read(struct ipmmu_vmsa_device * mmu,unsigned int offset)252 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
253 {
254 return ioread32(mmu->base + offset);
255 }
256
ipmmu_write(struct ipmmu_vmsa_device * mmu,unsigned int offset,u32 data)257 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
258 u32 data)
259 {
260 iowrite32(data, mmu->base + offset);
261 }
262
ipmmu_ctx_read_root(struct ipmmu_vmsa_domain * domain,unsigned int reg)263 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
264 unsigned int reg)
265 {
266 return ipmmu_read(domain->mmu->root,
267 domain->context_id * IM_CTX_SIZE + reg);
268 }
269
ipmmu_ctx_write_root(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)270 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
271 unsigned int reg, u32 data)
272 {
273 ipmmu_write(domain->mmu->root,
274 domain->context_id * IM_CTX_SIZE + reg, data);
275 }
276
ipmmu_ctx_write_all(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)277 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
278 unsigned int reg, u32 data)
279 {
280 if (domain->mmu != domain->mmu->root)
281 ipmmu_write(domain->mmu,
282 domain->context_id * IM_CTX_SIZE + reg, data);
283
284 ipmmu_write(domain->mmu->root,
285 domain->context_id * IM_CTX_SIZE + reg, data);
286 }
287
288 /* -----------------------------------------------------------------------------
289 * TLB and microTLB Management
290 */
291
292 /* Wait for any pending TLB invalidations to complete */
ipmmu_tlb_sync(struct ipmmu_vmsa_domain * domain)293 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
294 {
295 unsigned int count = 0;
296
297 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
298 cpu_relax();
299 if (++count == TLB_LOOP_TIMEOUT) {
300 dev_err_ratelimited(domain->mmu->dev,
301 "TLB sync timed out -- MMU may be deadlocked\n");
302 return;
303 }
304 udelay(1);
305 }
306 }
307
ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain * domain)308 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
309 {
310 u32 reg;
311
312 reg = ipmmu_ctx_read_root(domain, IMCTR);
313 reg |= IMCTR_FLUSH;
314 ipmmu_ctx_write_all(domain, IMCTR, reg);
315
316 ipmmu_tlb_sync(domain);
317 }
318
319 /*
320 * Enable MMU translation for the microTLB.
321 */
ipmmu_utlb_enable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)322 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
323 unsigned int utlb)
324 {
325 struct ipmmu_vmsa_device *mmu = domain->mmu;
326
327 /*
328 * TODO: Reference-count the microTLB as several bus masters can be
329 * connected to the same microTLB.
330 */
331
332 /* TODO: What should we set the ASID to ? */
333 ipmmu_write(mmu, IMUASID(utlb), 0);
334 /* TODO: Do we need to flush the microTLB ? */
335 ipmmu_write(mmu, IMUCTR(utlb),
336 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
337 IMUCTR_MMUEN);
338 }
339
340 /*
341 * Disable MMU translation for the microTLB.
342 */
ipmmu_utlb_disable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)343 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
344 unsigned int utlb)
345 {
346 struct ipmmu_vmsa_device *mmu = domain->mmu;
347
348 ipmmu_write(mmu, IMUCTR(utlb), 0);
349 }
350
ipmmu_tlb_flush_all(void * cookie)351 static void ipmmu_tlb_flush_all(void *cookie)
352 {
353 struct ipmmu_vmsa_domain *domain = cookie;
354
355 ipmmu_tlb_invalidate(domain);
356 }
357
ipmmu_tlb_add_flush(unsigned long iova,size_t size,size_t granule,bool leaf,void * cookie)358 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
359 size_t granule, bool leaf, void *cookie)
360 {
361 /* The hardware doesn't support selective TLB flush. */
362 }
363
364 static const struct iommu_gather_ops ipmmu_gather_ops = {
365 .tlb_flush_all = ipmmu_tlb_flush_all,
366 .tlb_add_flush = ipmmu_tlb_add_flush,
367 .tlb_sync = ipmmu_tlb_flush_all,
368 };
369
370 /* -----------------------------------------------------------------------------
371 * Domain/Context Management
372 */
373
ipmmu_domain_allocate_context(struct ipmmu_vmsa_device * mmu,struct ipmmu_vmsa_domain * domain)374 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
375 struct ipmmu_vmsa_domain *domain)
376 {
377 unsigned long flags;
378 int ret;
379
380 spin_lock_irqsave(&mmu->lock, flags);
381
382 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
383 if (ret != mmu->num_ctx) {
384 mmu->domains[ret] = domain;
385 set_bit(ret, mmu->ctx);
386 } else
387 ret = -EBUSY;
388
389 spin_unlock_irqrestore(&mmu->lock, flags);
390
391 return ret;
392 }
393
ipmmu_domain_free_context(struct ipmmu_vmsa_device * mmu,unsigned int context_id)394 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
395 unsigned int context_id)
396 {
397 unsigned long flags;
398
399 spin_lock_irqsave(&mmu->lock, flags);
400
401 clear_bit(context_id, mmu->ctx);
402 mmu->domains[context_id] = NULL;
403
404 spin_unlock_irqrestore(&mmu->lock, flags);
405 }
406
ipmmu_domain_init_context(struct ipmmu_vmsa_domain * domain)407 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
408 {
409 u64 ttbr;
410 u32 tmp;
411 int ret;
412
413 /*
414 * Allocate the page table operations.
415 *
416 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
417 * access, Long-descriptor format" that the NStable bit being set in a
418 * table descriptor will result in the NStable and NS bits of all child
419 * entries being ignored and considered as being set. The IPMMU seems
420 * not to comply with this, as it generates a secure access page fault
421 * if any of the NStable and NS bits isn't set when running in
422 * non-secure mode.
423 */
424 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
425 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
426 domain->cfg.ias = 32;
427 domain->cfg.oas = 40;
428 domain->cfg.tlb = &ipmmu_gather_ops;
429 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
430 domain->io_domain.geometry.force_aperture = true;
431 /*
432 * TODO: Add support for coherent walk through CCI with DVM and remove
433 * cache handling. For now, delegate it to the io-pgtable code.
434 */
435 domain->cfg.iommu_dev = domain->mmu->root->dev;
436
437 /*
438 * Find an unused context.
439 */
440 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
441 if (ret < 0)
442 return ret;
443
444 domain->context_id = ret;
445
446 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
447 domain);
448 if (!domain->iop) {
449 ipmmu_domain_free_context(domain->mmu->root,
450 domain->context_id);
451 return -EINVAL;
452 }
453
454 /* TTBR0 */
455 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
456 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
457 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
458
459 /*
460 * TTBCR
461 * We use long descriptors with inner-shareable WBWA tables and allocate
462 * the whole 32-bit VA space to TTBR0.
463 */
464 if (domain->mmu->features->twobit_imttbcr_sl0)
465 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
466 else
467 tmp = IMTTBCR_SL0_LVL_1;
468
469 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
470 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
471 IMTTBCR_IRGN0_WB_WA | tmp);
472
473 /* MAIR0 */
474 ipmmu_ctx_write_root(domain, IMMAIR0,
475 domain->cfg.arm_lpae_s1_cfg.mair[0]);
476
477 /* IMBUSCR */
478 if (domain->mmu->features->setup_imbuscr)
479 ipmmu_ctx_write_root(domain, IMBUSCR,
480 ipmmu_ctx_read_root(domain, IMBUSCR) &
481 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
482
483 /*
484 * IMSTR
485 * Clear all interrupt flags.
486 */
487 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
488
489 /*
490 * IMCTR
491 * Enable the MMU and interrupt generation. The long-descriptor
492 * translation table format doesn't use TEX remapping. Don't enable AF
493 * software management as we have no use for it. Flush the TLB as
494 * required when modifying the context registers.
495 */
496 ipmmu_ctx_write_all(domain, IMCTR,
497 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
498
499 return 0;
500 }
501
ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain * domain)502 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
503 {
504 /*
505 * Disable the context. Flush the TLB as required when modifying the
506 * context registers.
507 *
508 * TODO: Is TLB flush really needed ?
509 */
510 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
511 ipmmu_tlb_sync(domain);
512 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
513 }
514
515 /* -----------------------------------------------------------------------------
516 * Fault Handling
517 */
518
ipmmu_domain_irq(struct ipmmu_vmsa_domain * domain)519 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
520 {
521 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
522 struct ipmmu_vmsa_device *mmu = domain->mmu;
523 u32 status;
524 u32 iova;
525
526 status = ipmmu_ctx_read_root(domain, IMSTR);
527 if (!(status & err_mask))
528 return IRQ_NONE;
529
530 iova = ipmmu_ctx_read_root(domain, IMEAR);
531
532 /*
533 * Clear the error status flags. Unlike traditional interrupt flag
534 * registers that must be cleared by writing 1, this status register
535 * seems to require 0. The error address register must be read before,
536 * otherwise its value will be 0.
537 */
538 ipmmu_ctx_write_root(domain, IMSTR, 0);
539
540 /* Log fatal errors. */
541 if (status & IMSTR_MHIT)
542 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
543 iova);
544 if (status & IMSTR_ABORT)
545 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
546 iova);
547
548 if (!(status & (IMSTR_PF | IMSTR_TF)))
549 return IRQ_NONE;
550
551 /*
552 * Try to handle page faults and translation faults.
553 *
554 * TODO: We need to look up the faulty device based on the I/O VA. Use
555 * the IOMMU device for now.
556 */
557 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
558 return IRQ_HANDLED;
559
560 dev_err_ratelimited(mmu->dev,
561 "Unhandled fault: status 0x%08x iova 0x%08x\n",
562 status, iova);
563
564 return IRQ_HANDLED;
565 }
566
ipmmu_irq(int irq,void * dev)567 static irqreturn_t ipmmu_irq(int irq, void *dev)
568 {
569 struct ipmmu_vmsa_device *mmu = dev;
570 irqreturn_t status = IRQ_NONE;
571 unsigned int i;
572 unsigned long flags;
573
574 spin_lock_irqsave(&mmu->lock, flags);
575
576 /*
577 * Check interrupts for all active contexts.
578 */
579 for (i = 0; i < mmu->num_ctx; i++) {
580 if (!mmu->domains[i])
581 continue;
582 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
583 status = IRQ_HANDLED;
584 }
585
586 spin_unlock_irqrestore(&mmu->lock, flags);
587
588 return status;
589 }
590
591 /* -----------------------------------------------------------------------------
592 * IOMMU Operations
593 */
594
__ipmmu_domain_alloc(unsigned type)595 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
596 {
597 struct ipmmu_vmsa_domain *domain;
598
599 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
600 if (!domain)
601 return NULL;
602
603 mutex_init(&domain->mutex);
604
605 return &domain->io_domain;
606 }
607
ipmmu_domain_alloc(unsigned type)608 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
609 {
610 struct iommu_domain *io_domain = NULL;
611
612 switch (type) {
613 case IOMMU_DOMAIN_UNMANAGED:
614 io_domain = __ipmmu_domain_alloc(type);
615 break;
616
617 case IOMMU_DOMAIN_DMA:
618 io_domain = __ipmmu_domain_alloc(type);
619 if (io_domain && iommu_get_dma_cookie(io_domain)) {
620 kfree(io_domain);
621 io_domain = NULL;
622 }
623 break;
624 }
625
626 return io_domain;
627 }
628
ipmmu_domain_free(struct iommu_domain * io_domain)629 static void ipmmu_domain_free(struct iommu_domain *io_domain)
630 {
631 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
632
633 /*
634 * Free the domain resources. We assume that all devices have already
635 * been detached.
636 */
637 iommu_put_dma_cookie(io_domain);
638 ipmmu_domain_destroy_context(domain);
639 free_io_pgtable_ops(domain->iop);
640 kfree(domain);
641 }
642
ipmmu_attach_device(struct iommu_domain * io_domain,struct device * dev)643 static int ipmmu_attach_device(struct iommu_domain *io_domain,
644 struct device *dev)
645 {
646 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
647 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
648 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
649 unsigned int i;
650 int ret = 0;
651
652 if (!mmu) {
653 dev_err(dev, "Cannot attach to IPMMU\n");
654 return -ENXIO;
655 }
656
657 mutex_lock(&domain->mutex);
658
659 if (!domain->mmu) {
660 /* The domain hasn't been used yet, initialize it. */
661 domain->mmu = mmu;
662 ret = ipmmu_domain_init_context(domain);
663 if (ret < 0) {
664 dev_err(dev, "Unable to initialize IPMMU context\n");
665 domain->mmu = NULL;
666 } else {
667 dev_info(dev, "Using IPMMU context %u\n",
668 domain->context_id);
669 }
670 } else if (domain->mmu != mmu) {
671 /*
672 * Something is wrong, we can't attach two devices using
673 * different IOMMUs to the same domain.
674 */
675 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
676 dev_name(mmu->dev), dev_name(domain->mmu->dev));
677 ret = -EINVAL;
678 } else
679 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
680
681 mutex_unlock(&domain->mutex);
682
683 if (ret < 0)
684 return ret;
685
686 for (i = 0; i < fwspec->num_ids; ++i)
687 ipmmu_utlb_enable(domain, fwspec->ids[i]);
688
689 return 0;
690 }
691
ipmmu_detach_device(struct iommu_domain * io_domain,struct device * dev)692 static void ipmmu_detach_device(struct iommu_domain *io_domain,
693 struct device *dev)
694 {
695 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
696 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
697 unsigned int i;
698
699 for (i = 0; i < fwspec->num_ids; ++i)
700 ipmmu_utlb_disable(domain, fwspec->ids[i]);
701
702 /*
703 * TODO: Optimize by disabling the context when no device is attached.
704 */
705 }
706
ipmmu_map(struct iommu_domain * io_domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)707 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
708 phys_addr_t paddr, size_t size, int prot)
709 {
710 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
711
712 if (!domain)
713 return -ENODEV;
714
715 return domain->iop->map(domain->iop, iova, paddr, size, prot);
716 }
717
ipmmu_unmap(struct iommu_domain * io_domain,unsigned long iova,size_t size)718 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
719 size_t size)
720 {
721 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
722
723 return domain->iop->unmap(domain->iop, iova, size);
724 }
725
ipmmu_iotlb_sync(struct iommu_domain * io_domain)726 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
727 {
728 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
729
730 if (domain->mmu)
731 ipmmu_tlb_flush_all(domain);
732 }
733
ipmmu_iova_to_phys(struct iommu_domain * io_domain,dma_addr_t iova)734 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
735 dma_addr_t iova)
736 {
737 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
738
739 /* TODO: Is locking needed ? */
740
741 return domain->iop->iova_to_phys(domain->iop, iova);
742 }
743
ipmmu_init_platform_device(struct device * dev,struct of_phandle_args * args)744 static int ipmmu_init_platform_device(struct device *dev,
745 struct of_phandle_args *args)
746 {
747 struct platform_device *ipmmu_pdev;
748
749 ipmmu_pdev = of_find_device_by_node(args->np);
750 if (!ipmmu_pdev)
751 return -ENODEV;
752
753 dev->iommu_fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
754 return 0;
755 }
756
ipmmu_slave_whitelist(struct device * dev)757 static bool ipmmu_slave_whitelist(struct device *dev)
758 {
759 /* By default, do not allow use of IPMMU */
760 return false;
761 }
762
763 static const struct soc_device_attribute soc_rcar_gen3[] = {
764 { .soc_id = "r8a7795", },
765 { .soc_id = "r8a7796", },
766 { .soc_id = "r8a77965", },
767 { .soc_id = "r8a77970", },
768 { .soc_id = "r8a77995", },
769 { /* sentinel */ }
770 };
771
ipmmu_of_xlate(struct device * dev,struct of_phandle_args * spec)772 static int ipmmu_of_xlate(struct device *dev,
773 struct of_phandle_args *spec)
774 {
775 /* For R-Car Gen3 use a white list to opt-in slave devices */
776 if (soc_device_match(soc_rcar_gen3) && !ipmmu_slave_whitelist(dev))
777 return -ENODEV;
778
779 iommu_fwspec_add_ids(dev, spec->args, 1);
780
781 /* Initialize once - xlate() will call multiple times */
782 if (to_ipmmu(dev))
783 return 0;
784
785 return ipmmu_init_platform_device(dev, spec);
786 }
787
ipmmu_init_arm_mapping(struct device * dev)788 static int ipmmu_init_arm_mapping(struct device *dev)
789 {
790 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
791 struct iommu_group *group;
792 int ret;
793
794 /* Create a device group and add the device to it. */
795 group = iommu_group_alloc();
796 if (IS_ERR(group)) {
797 dev_err(dev, "Failed to allocate IOMMU group\n");
798 return PTR_ERR(group);
799 }
800
801 ret = iommu_group_add_device(group, dev);
802 iommu_group_put(group);
803
804 if (ret < 0) {
805 dev_err(dev, "Failed to add device to IPMMU group\n");
806 return ret;
807 }
808
809 /*
810 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
811 * VAs. This will allocate a corresponding IOMMU domain.
812 *
813 * TODO:
814 * - Create one mapping per context (TLB).
815 * - Make the mapping size configurable ? We currently use a 2GB mapping
816 * at a 1GB offset to ensure that NULL VAs will fault.
817 */
818 if (!mmu->mapping) {
819 struct dma_iommu_mapping *mapping;
820
821 mapping = arm_iommu_create_mapping(&platform_bus_type,
822 SZ_1G, SZ_2G);
823 if (IS_ERR(mapping)) {
824 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
825 ret = PTR_ERR(mapping);
826 goto error;
827 }
828
829 mmu->mapping = mapping;
830 }
831
832 /* Attach the ARM VA mapping to the device. */
833 ret = arm_iommu_attach_device(dev, mmu->mapping);
834 if (ret < 0) {
835 dev_err(dev, "Failed to attach device to VA mapping\n");
836 goto error;
837 }
838
839 return 0;
840
841 error:
842 iommu_group_remove_device(dev);
843 if (mmu->mapping)
844 arm_iommu_release_mapping(mmu->mapping);
845
846 return ret;
847 }
848
ipmmu_add_device(struct device * dev)849 static int ipmmu_add_device(struct device *dev)
850 {
851 struct iommu_group *group;
852
853 /*
854 * Only let through devices that have been verified in xlate()
855 */
856 if (!to_ipmmu(dev))
857 return -ENODEV;
858
859 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
860 return ipmmu_init_arm_mapping(dev);
861
862 group = iommu_group_get_for_dev(dev);
863 if (IS_ERR(group))
864 return PTR_ERR(group);
865
866 iommu_group_put(group);
867 return 0;
868 }
869
ipmmu_remove_device(struct device * dev)870 static void ipmmu_remove_device(struct device *dev)
871 {
872 arm_iommu_detach_device(dev);
873 iommu_group_remove_device(dev);
874 }
875
ipmmu_find_group(struct device * dev)876 static struct iommu_group *ipmmu_find_group(struct device *dev)
877 {
878 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
879 struct iommu_group *group;
880
881 if (mmu->group)
882 return iommu_group_ref_get(mmu->group);
883
884 group = iommu_group_alloc();
885 if (!IS_ERR(group))
886 mmu->group = group;
887
888 return group;
889 }
890
891 static const struct iommu_ops ipmmu_ops = {
892 .domain_alloc = ipmmu_domain_alloc,
893 .domain_free = ipmmu_domain_free,
894 .attach_dev = ipmmu_attach_device,
895 .detach_dev = ipmmu_detach_device,
896 .map = ipmmu_map,
897 .unmap = ipmmu_unmap,
898 .flush_iotlb_all = ipmmu_iotlb_sync,
899 .iotlb_sync = ipmmu_iotlb_sync,
900 .iova_to_phys = ipmmu_iova_to_phys,
901 .add_device = ipmmu_add_device,
902 .remove_device = ipmmu_remove_device,
903 .device_group = ipmmu_find_group,
904 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
905 .of_xlate = ipmmu_of_xlate,
906 };
907
908 /* -----------------------------------------------------------------------------
909 * Probe/remove and init
910 */
911
ipmmu_device_reset(struct ipmmu_vmsa_device * mmu)912 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
913 {
914 unsigned int i;
915
916 /* Disable all contexts. */
917 for (i = 0; i < mmu->num_ctx; ++i)
918 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
919 }
920
921 static const struct ipmmu_features ipmmu_features_default = {
922 .use_ns_alias_offset = true,
923 .has_cache_leaf_nodes = false,
924 .number_of_contexts = 1, /* software only tested with one context */
925 .setup_imbuscr = true,
926 .twobit_imttbcr_sl0 = false,
927 .reserved_context = false,
928 };
929
930 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
931 .use_ns_alias_offset = false,
932 .has_cache_leaf_nodes = true,
933 .number_of_contexts = 8,
934 .setup_imbuscr = false,
935 .twobit_imttbcr_sl0 = true,
936 .reserved_context = true,
937 };
938
939 static const struct of_device_id ipmmu_of_ids[] = {
940 {
941 .compatible = "renesas,ipmmu-vmsa",
942 .data = &ipmmu_features_default,
943 }, {
944 .compatible = "renesas,ipmmu-r8a7795",
945 .data = &ipmmu_features_rcar_gen3,
946 }, {
947 .compatible = "renesas,ipmmu-r8a7796",
948 .data = &ipmmu_features_rcar_gen3,
949 }, {
950 .compatible = "renesas,ipmmu-r8a77965",
951 .data = &ipmmu_features_rcar_gen3,
952 }, {
953 .compatible = "renesas,ipmmu-r8a77970",
954 .data = &ipmmu_features_rcar_gen3,
955 }, {
956 .compatible = "renesas,ipmmu-r8a77995",
957 .data = &ipmmu_features_rcar_gen3,
958 }, {
959 /* Terminator */
960 },
961 };
962
963 MODULE_DEVICE_TABLE(of, ipmmu_of_ids);
964
ipmmu_probe(struct platform_device * pdev)965 static int ipmmu_probe(struct platform_device *pdev)
966 {
967 struct ipmmu_vmsa_device *mmu;
968 struct resource *res;
969 int irq;
970 int ret;
971
972 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
973 if (!mmu) {
974 dev_err(&pdev->dev, "cannot allocate device data\n");
975 return -ENOMEM;
976 }
977
978 mmu->dev = &pdev->dev;
979 mmu->num_utlbs = 48;
980 spin_lock_init(&mmu->lock);
981 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
982 mmu->features = of_device_get_match_data(&pdev->dev);
983 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
984
985 /* Map I/O memory and request IRQ. */
986 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
987 mmu->base = devm_ioremap_resource(&pdev->dev, res);
988 if (IS_ERR(mmu->base))
989 return PTR_ERR(mmu->base);
990
991 /*
992 * The IPMMU has two register banks, for secure and non-secure modes.
993 * The bank mapped at the beginning of the IPMMU address space
994 * corresponds to the running mode of the CPU. When running in secure
995 * mode the non-secure register bank is also available at an offset.
996 *
997 * Secure mode operation isn't clearly documented and is thus currently
998 * not implemented in the driver. Furthermore, preliminary tests of
999 * non-secure operation with the main register bank were not successful.
1000 * Offset the registers base unconditionally to point to the non-secure
1001 * alias space for now.
1002 */
1003 if (mmu->features->use_ns_alias_offset)
1004 mmu->base += IM_NS_ALIAS_OFFSET;
1005
1006 mmu->num_ctx = min_t(unsigned int, IPMMU_CTX_MAX,
1007 mmu->features->number_of_contexts);
1008
1009 irq = platform_get_irq(pdev, 0);
1010
1011 /*
1012 * Determine if this IPMMU instance is a root device by checking for
1013 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1014 */
1015 if (!mmu->features->has_cache_leaf_nodes ||
1016 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1017 mmu->root = mmu;
1018 else
1019 mmu->root = ipmmu_find_root();
1020
1021 /*
1022 * Wait until the root device has been registered for sure.
1023 */
1024 if (!mmu->root)
1025 return -EPROBE_DEFER;
1026
1027 /* Root devices have mandatory IRQs */
1028 if (ipmmu_is_root(mmu)) {
1029 if (irq < 0) {
1030 dev_err(&pdev->dev, "no IRQ found\n");
1031 return irq;
1032 }
1033
1034 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1035 dev_name(&pdev->dev), mmu);
1036 if (ret < 0) {
1037 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1038 return ret;
1039 }
1040
1041 ipmmu_device_reset(mmu);
1042
1043 if (mmu->features->reserved_context) {
1044 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1045 set_bit(0, mmu->ctx);
1046 }
1047 }
1048
1049 /*
1050 * Register the IPMMU to the IOMMU subsystem in the following cases:
1051 * - R-Car Gen2 IPMMU (all devices registered)
1052 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1053 */
1054 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1055 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1056 dev_name(&pdev->dev));
1057 if (ret)
1058 return ret;
1059
1060 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1061 iommu_device_set_fwnode(&mmu->iommu,
1062 &pdev->dev.of_node->fwnode);
1063
1064 ret = iommu_device_register(&mmu->iommu);
1065 if (ret)
1066 return ret;
1067
1068 #if defined(CONFIG_IOMMU_DMA)
1069 if (!iommu_present(&platform_bus_type))
1070 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1071 #endif
1072 }
1073
1074 /*
1075 * We can't create the ARM mapping here as it requires the bus to have
1076 * an IOMMU, which only happens when bus_set_iommu() is called in
1077 * ipmmu_init() after the probe function returns.
1078 */
1079
1080 platform_set_drvdata(pdev, mmu);
1081
1082 return 0;
1083 }
1084
ipmmu_remove(struct platform_device * pdev)1085 static int ipmmu_remove(struct platform_device *pdev)
1086 {
1087 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1088
1089 iommu_device_sysfs_remove(&mmu->iommu);
1090 iommu_device_unregister(&mmu->iommu);
1091
1092 arm_iommu_release_mapping(mmu->mapping);
1093
1094 ipmmu_device_reset(mmu);
1095
1096 return 0;
1097 }
1098
1099 static struct platform_driver ipmmu_driver = {
1100 .driver = {
1101 .name = "ipmmu-vmsa",
1102 .of_match_table = of_match_ptr(ipmmu_of_ids),
1103 },
1104 .probe = ipmmu_probe,
1105 .remove = ipmmu_remove,
1106 };
1107
ipmmu_init(void)1108 static int __init ipmmu_init(void)
1109 {
1110 struct device_node *np;
1111 static bool setup_done;
1112 int ret;
1113
1114 if (setup_done)
1115 return 0;
1116
1117 np = of_find_matching_node(NULL, ipmmu_of_ids);
1118 if (!np)
1119 return 0;
1120
1121 of_node_put(np);
1122
1123 ret = platform_driver_register(&ipmmu_driver);
1124 if (ret < 0)
1125 return ret;
1126
1127 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1128 if (!iommu_present(&platform_bus_type))
1129 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1130 #endif
1131
1132 setup_done = true;
1133 return 0;
1134 }
1135
ipmmu_exit(void)1136 static void __exit ipmmu_exit(void)
1137 {
1138 return platform_driver_unregister(&ipmmu_driver);
1139 }
1140
1141 subsys_initcall(ipmmu_init);
1142 module_exit(ipmmu_exit);
1143
1144 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1145 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1146 MODULE_LICENSE("GPL v2");
1147