1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
4 
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/intel-iommu.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
18 #include <asm/smp.h>
19 #include <asm/cpu.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22 #include <asm/msidef.h>
23 
24 #include "irq_remapping.h"
25 
26 enum irq_mode {
27 	IRQ_REMAPPING,
28 	IRQ_POSTING,
29 };
30 
31 struct ioapic_scope {
32 	struct intel_iommu *iommu;
33 	unsigned int id;
34 	unsigned int bus;	/* PCI bus number */
35 	unsigned int devfn;	/* PCI devfn number */
36 };
37 
38 struct hpet_scope {
39 	struct intel_iommu *iommu;
40 	u8 id;
41 	unsigned int bus;
42 	unsigned int devfn;
43 };
44 
45 struct irq_2_iommu {
46 	struct intel_iommu *iommu;
47 	u16 irte_index;
48 	u16 sub_handle;
49 	u8  irte_mask;
50 	enum irq_mode mode;
51 };
52 
53 struct intel_ir_data {
54 	struct irq_2_iommu			irq_2_iommu;
55 	struct irte				irte_entry;
56 	union {
57 		struct msi_msg			msi_entry;
58 	};
59 };
60 
61 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
62 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
63 
64 static int __read_mostly eim_mode;
65 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
66 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
67 
68 /*
69  * Lock ordering:
70  * ->dmar_global_lock
71  *	->irq_2_ir_lock
72  *		->qi->q_lock
73  *	->iommu->register_lock
74  * Note:
75  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
76  * in single-threaded environment with interrupt disabled, so no need to tabke
77  * the dmar_global_lock.
78  */
79 static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
80 static const struct irq_domain_ops intel_ir_domain_ops;
81 
82 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
83 static int __init parse_ioapics_under_ir(void);
84 
ir_pre_enabled(struct intel_iommu * iommu)85 static bool ir_pre_enabled(struct intel_iommu *iommu)
86 {
87 	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
88 }
89 
clear_ir_pre_enabled(struct intel_iommu * iommu)90 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
91 {
92 	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
93 }
94 
init_ir_status(struct intel_iommu * iommu)95 static void init_ir_status(struct intel_iommu *iommu)
96 {
97 	u32 gsts;
98 
99 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
100 	if (gsts & DMA_GSTS_IRES)
101 		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
102 }
103 
alloc_irte(struct intel_iommu * iommu,int irq,struct irq_2_iommu * irq_iommu,u16 count)104 static int alloc_irte(struct intel_iommu *iommu, int irq,
105 		      struct irq_2_iommu *irq_iommu, u16 count)
106 {
107 	struct ir_table *table = iommu->ir_table;
108 	unsigned int mask = 0;
109 	unsigned long flags;
110 	int index;
111 
112 	if (!count || !irq_iommu)
113 		return -1;
114 
115 	if (count > 1) {
116 		count = __roundup_pow_of_two(count);
117 		mask = ilog2(count);
118 	}
119 
120 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
121 		pr_err("Requested mask %x exceeds the max invalidation handle"
122 		       " mask value %Lx\n", mask,
123 		       ecap_max_handle_mask(iommu->ecap));
124 		return -1;
125 	}
126 
127 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
128 	index = bitmap_find_free_region(table->bitmap,
129 					INTR_REMAP_TABLE_ENTRIES, mask);
130 	if (index < 0) {
131 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
132 	} else {
133 		irq_iommu->iommu = iommu;
134 		irq_iommu->irte_index =  index;
135 		irq_iommu->sub_handle = 0;
136 		irq_iommu->irte_mask = mask;
137 		irq_iommu->mode = IRQ_REMAPPING;
138 	}
139 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
140 
141 	return index;
142 }
143 
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)144 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
145 {
146 	struct qi_desc desc;
147 
148 	desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
149 		   | QI_IEC_SELECTIVE;
150 	desc.high = 0;
151 
152 	return qi_submit_sync(&desc, iommu);
153 }
154 
modify_irte(struct irq_2_iommu * irq_iommu,struct irte * irte_modified)155 static int modify_irte(struct irq_2_iommu *irq_iommu,
156 		       struct irte *irte_modified)
157 {
158 	struct intel_iommu *iommu;
159 	unsigned long flags;
160 	struct irte *irte;
161 	int rc, index;
162 
163 	if (!irq_iommu)
164 		return -1;
165 
166 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
167 
168 	iommu = irq_iommu->iommu;
169 
170 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
171 	irte = &iommu->ir_table->base[index];
172 
173 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
174 	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
175 		bool ret;
176 
177 		ret = cmpxchg_double(&irte->low, &irte->high,
178 				     irte->low, irte->high,
179 				     irte_modified->low, irte_modified->high);
180 		/*
181 		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
182 		 * and it cannot be updated by the hardware or other processors
183 		 * behind us, so the return value of cmpxchg16 should be the
184 		 * same as the old value.
185 		 */
186 		WARN_ON(!ret);
187 	} else
188 #endif
189 	{
190 		set_64bit(&irte->low, irte_modified->low);
191 		set_64bit(&irte->high, irte_modified->high);
192 	}
193 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
194 
195 	rc = qi_flush_iec(iommu, index, 0);
196 
197 	/* Update iommu mode according to the IRTE mode */
198 	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
199 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
200 
201 	return rc;
202 }
203 
map_hpet_to_ir(u8 hpet_id)204 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
205 {
206 	int i;
207 
208 	for (i = 0; i < MAX_HPET_TBS; i++)
209 		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
210 			return ir_hpet[i].iommu;
211 	return NULL;
212 }
213 
map_ioapic_to_ir(int apic)214 static struct intel_iommu *map_ioapic_to_ir(int apic)
215 {
216 	int i;
217 
218 	for (i = 0; i < MAX_IO_APICS; i++)
219 		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
220 			return ir_ioapic[i].iommu;
221 	return NULL;
222 }
223 
map_dev_to_ir(struct pci_dev * dev)224 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
225 {
226 	struct dmar_drhd_unit *drhd;
227 
228 	drhd = dmar_find_matched_drhd_unit(dev);
229 	if (!drhd)
230 		return NULL;
231 
232 	return drhd->iommu;
233 }
234 
clear_entries(struct irq_2_iommu * irq_iommu)235 static int clear_entries(struct irq_2_iommu *irq_iommu)
236 {
237 	struct irte *start, *entry, *end;
238 	struct intel_iommu *iommu;
239 	int index;
240 
241 	if (irq_iommu->sub_handle)
242 		return 0;
243 
244 	iommu = irq_iommu->iommu;
245 	index = irq_iommu->irte_index;
246 
247 	start = iommu->ir_table->base + index;
248 	end = start + (1 << irq_iommu->irte_mask);
249 
250 	for (entry = start; entry < end; entry++) {
251 		set_64bit(&entry->low, 0);
252 		set_64bit(&entry->high, 0);
253 	}
254 	bitmap_release_region(iommu->ir_table->bitmap, index,
255 			      irq_iommu->irte_mask);
256 
257 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
258 }
259 
260 /*
261  * source validation type
262  */
263 #define SVT_NO_VERIFY		0x0  /* no verification is required */
264 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
265 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
266 
267 /*
268  * source-id qualifier
269  */
270 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
271 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
272 			      * the third least significant bit
273 			      */
274 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
275 			      * the second and third least significant bits
276 			      */
277 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
278 			      * the least three significant bits
279 			      */
280 
281 /*
282  * set SVT, SQ and SID fields of irte to verify
283  * source ids of interrupt requests
284  */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)285 static void set_irte_sid(struct irte *irte, unsigned int svt,
286 			 unsigned int sq, unsigned int sid)
287 {
288 	if (disable_sourceid_checking)
289 		svt = SVT_NO_VERIFY;
290 	irte->svt = svt;
291 	irte->sq = sq;
292 	irte->sid = sid;
293 }
294 
set_ioapic_sid(struct irte * irte,int apic)295 static int set_ioapic_sid(struct irte *irte, int apic)
296 {
297 	int i;
298 	u16 sid = 0;
299 
300 	if (!irte)
301 		return -1;
302 
303 	down_read(&dmar_global_lock);
304 	for (i = 0; i < MAX_IO_APICS; i++) {
305 		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
306 			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
307 			break;
308 		}
309 	}
310 	up_read(&dmar_global_lock);
311 
312 	if (sid == 0) {
313 		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
314 		return -1;
315 	}
316 
317 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
318 
319 	return 0;
320 }
321 
set_hpet_sid(struct irte * irte,u8 id)322 static int set_hpet_sid(struct irte *irte, u8 id)
323 {
324 	int i;
325 	u16 sid = 0;
326 
327 	if (!irte)
328 		return -1;
329 
330 	down_read(&dmar_global_lock);
331 	for (i = 0; i < MAX_HPET_TBS; i++) {
332 		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
333 			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
334 			break;
335 		}
336 	}
337 	up_read(&dmar_global_lock);
338 
339 	if (sid == 0) {
340 		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
341 		return -1;
342 	}
343 
344 	/*
345 	 * Should really use SQ_ALL_16. Some platforms are broken.
346 	 * While we figure out the right quirks for these broken platforms, use
347 	 * SQ_13_IGNORE_3 for now.
348 	 */
349 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
350 
351 	return 0;
352 }
353 
354 struct set_msi_sid_data {
355 	struct pci_dev *pdev;
356 	u16 alias;
357 };
358 
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)359 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
360 {
361 	struct set_msi_sid_data *data = opaque;
362 
363 	data->pdev = pdev;
364 	data->alias = alias;
365 
366 	return 0;
367 }
368 
set_msi_sid(struct irte * irte,struct pci_dev * dev)369 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
370 {
371 	struct set_msi_sid_data data;
372 
373 	if (!irte || !dev)
374 		return -1;
375 
376 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
377 
378 	/*
379 	 * DMA alias provides us with a PCI device and alias.  The only case
380 	 * where the it will return an alias on a different bus than the
381 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
382 	 * the subordinate bus.  In this case we can only verify the bus.
383 	 *
384 	 * If the alias device is on a different bus than our source device
385 	 * then we have a topology based alias, use it.
386 	 *
387 	 * Otherwise, the alias is for a device DMA quirk and we cannot
388 	 * assume that MSI uses the same requester ID.  Therefore use the
389 	 * original device.
390 	 */
391 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
392 		set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
393 			     PCI_DEVID(PCI_BUS_NUM(data.alias),
394 				       dev->bus->number));
395 	else if (data.pdev->bus->number != dev->bus->number)
396 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
397 	else
398 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
399 			     PCI_DEVID(dev->bus->number, dev->devfn));
400 
401 	return 0;
402 }
403 
iommu_load_old_irte(struct intel_iommu * iommu)404 static int iommu_load_old_irte(struct intel_iommu *iommu)
405 {
406 	struct irte *old_ir_table;
407 	phys_addr_t irt_phys;
408 	unsigned int i;
409 	size_t size;
410 	u64 irta;
411 
412 	/* Check whether the old ir-table has the same size as ours */
413 	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
414 	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
415 	     != INTR_REMAP_TABLE_REG_SIZE)
416 		return -EINVAL;
417 
418 	irt_phys = irta & VTD_PAGE_MASK;
419 	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
420 
421 	/* Map the old IR table */
422 	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
423 	if (!old_ir_table)
424 		return -ENOMEM;
425 
426 	/* Copy data over */
427 	memcpy(iommu->ir_table->base, old_ir_table, size);
428 
429 	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
430 
431 	/*
432 	 * Now check the table for used entries and mark those as
433 	 * allocated in the bitmap
434 	 */
435 	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
436 		if (iommu->ir_table->base[i].present)
437 			bitmap_set(iommu->ir_table->bitmap, i, 1);
438 	}
439 
440 	memunmap(old_ir_table);
441 
442 	return 0;
443 }
444 
445 
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)446 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
447 {
448 	unsigned long flags;
449 	u64 addr;
450 	u32 sts;
451 
452 	addr = virt_to_phys((void *)iommu->ir_table->base);
453 
454 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
455 
456 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
457 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
458 
459 	/* Set interrupt-remapping table pointer */
460 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
461 
462 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
463 		      readl, (sts & DMA_GSTS_IRTPS), sts);
464 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
465 
466 	/*
467 	 * Global invalidation of interrupt entry cache to make sure the
468 	 * hardware uses the new irq remapping table.
469 	 */
470 	qi_global_iec(iommu);
471 }
472 
iommu_enable_irq_remapping(struct intel_iommu * iommu)473 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
474 {
475 	unsigned long flags;
476 	u32 sts;
477 
478 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
479 
480 	/* Enable interrupt-remapping */
481 	iommu->gcmd |= DMA_GCMD_IRE;
482 	iommu->gcmd &= ~DMA_GCMD_CFI;  /* Block compatibility-format MSIs */
483 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
484 
485 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
486 		      readl, (sts & DMA_GSTS_IRES), sts);
487 
488 	/*
489 	 * With CFI clear in the Global Command register, we should be
490 	 * protected from dangerous (i.e. compatibility) interrupts
491 	 * regardless of x2apic status.  Check just to be sure.
492 	 */
493 	if (sts & DMA_GSTS_CFIS)
494 		WARN(1, KERN_WARNING
495 			"Compatibility-format IRQs enabled despite intr remapping;\n"
496 			"you are vulnerable to IRQ injection.\n");
497 
498 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
499 }
500 
intel_setup_irq_remapping(struct intel_iommu * iommu)501 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
502 {
503 	struct ir_table *ir_table;
504 	struct fwnode_handle *fn;
505 	unsigned long *bitmap;
506 	struct page *pages;
507 
508 	if (iommu->ir_table)
509 		return 0;
510 
511 	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
512 	if (!ir_table)
513 		return -ENOMEM;
514 
515 	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
516 				 INTR_REMAP_PAGE_ORDER);
517 	if (!pages) {
518 		pr_err("IR%d: failed to allocate pages of order %d\n",
519 		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
520 		goto out_free_table;
521 	}
522 
523 	bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES),
524 			 sizeof(long), GFP_ATOMIC);
525 	if (bitmap == NULL) {
526 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
527 		goto out_free_pages;
528 	}
529 
530 	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
531 	if (!fn)
532 		goto out_free_bitmap;
533 
534 	iommu->ir_domain =
535 		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
536 					    0, INTR_REMAP_TABLE_ENTRIES,
537 					    fn, &intel_ir_domain_ops,
538 					    iommu);
539 	irq_domain_free_fwnode(fn);
540 	if (!iommu->ir_domain) {
541 		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
542 		goto out_free_bitmap;
543 	}
544 	iommu->ir_msi_domain =
545 		arch_create_remap_msi_irq_domain(iommu->ir_domain,
546 						 "INTEL-IR-MSI",
547 						 iommu->seq_id);
548 
549 	ir_table->base = page_address(pages);
550 	ir_table->bitmap = bitmap;
551 	iommu->ir_table = ir_table;
552 
553 	/*
554 	 * If the queued invalidation is already initialized,
555 	 * shouldn't disable it.
556 	 */
557 	if (!iommu->qi) {
558 		/*
559 		 * Clear previous faults.
560 		 */
561 		dmar_fault(-1, iommu);
562 		dmar_disable_qi(iommu);
563 
564 		if (dmar_enable_qi(iommu)) {
565 			pr_err("Failed to enable queued invalidation\n");
566 			goto out_free_bitmap;
567 		}
568 	}
569 
570 	init_ir_status(iommu);
571 
572 	if (ir_pre_enabled(iommu)) {
573 		if (!is_kdump_kernel()) {
574 			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
575 				iommu->name);
576 			clear_ir_pre_enabled(iommu);
577 			iommu_disable_irq_remapping(iommu);
578 		} else if (iommu_load_old_irte(iommu))
579 			pr_err("Failed to copy IR table for %s from previous kernel\n",
580 			       iommu->name);
581 		else
582 			pr_info("Copied IR table for %s from previous kernel\n",
583 				iommu->name);
584 	}
585 
586 	iommu_set_irq_remapping(iommu, eim_mode);
587 
588 	return 0;
589 
590 out_free_bitmap:
591 	kfree(bitmap);
592 out_free_pages:
593 	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
594 out_free_table:
595 	kfree(ir_table);
596 
597 	iommu->ir_table  = NULL;
598 
599 	return -ENOMEM;
600 }
601 
intel_teardown_irq_remapping(struct intel_iommu * iommu)602 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
603 {
604 	if (iommu && iommu->ir_table) {
605 		if (iommu->ir_msi_domain) {
606 			irq_domain_remove(iommu->ir_msi_domain);
607 			iommu->ir_msi_domain = NULL;
608 		}
609 		if (iommu->ir_domain) {
610 			irq_domain_remove(iommu->ir_domain);
611 			iommu->ir_domain = NULL;
612 		}
613 		free_pages((unsigned long)iommu->ir_table->base,
614 			   INTR_REMAP_PAGE_ORDER);
615 		kfree(iommu->ir_table->bitmap);
616 		kfree(iommu->ir_table);
617 		iommu->ir_table = NULL;
618 	}
619 }
620 
621 /*
622  * Disable Interrupt Remapping.
623  */
iommu_disable_irq_remapping(struct intel_iommu * iommu)624 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
625 {
626 	unsigned long flags;
627 	u32 sts;
628 
629 	if (!ecap_ir_support(iommu->ecap))
630 		return;
631 
632 	/*
633 	 * global invalidation of interrupt entry cache before disabling
634 	 * interrupt-remapping.
635 	 */
636 	qi_global_iec(iommu);
637 
638 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
639 
640 	sts = readl(iommu->reg + DMAR_GSTS_REG);
641 	if (!(sts & DMA_GSTS_IRES))
642 		goto end;
643 
644 	iommu->gcmd &= ~DMA_GCMD_IRE;
645 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
646 
647 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
648 		      readl, !(sts & DMA_GSTS_IRES), sts);
649 
650 end:
651 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
652 }
653 
dmar_x2apic_optout(void)654 static int __init dmar_x2apic_optout(void)
655 {
656 	struct acpi_table_dmar *dmar;
657 	dmar = (struct acpi_table_dmar *)dmar_tbl;
658 	if (!dmar || no_x2apic_optout)
659 		return 0;
660 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
661 }
662 
intel_cleanup_irq_remapping(void)663 static void __init intel_cleanup_irq_remapping(void)
664 {
665 	struct dmar_drhd_unit *drhd;
666 	struct intel_iommu *iommu;
667 
668 	for_each_iommu(iommu, drhd) {
669 		if (ecap_ir_support(iommu->ecap)) {
670 			iommu_disable_irq_remapping(iommu);
671 			intel_teardown_irq_remapping(iommu);
672 		}
673 	}
674 
675 	if (x2apic_supported())
676 		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
677 }
678 
intel_prepare_irq_remapping(void)679 static int __init intel_prepare_irq_remapping(void)
680 {
681 	struct dmar_drhd_unit *drhd;
682 	struct intel_iommu *iommu;
683 	int eim = 0;
684 
685 	if (irq_remap_broken) {
686 		pr_warn("This system BIOS has enabled interrupt remapping\n"
687 			"on a chipset that contains an erratum making that\n"
688 			"feature unstable.  To maintain system stability\n"
689 			"interrupt remapping is being disabled.  Please\n"
690 			"contact your BIOS vendor for an update\n");
691 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
692 		return -ENODEV;
693 	}
694 
695 	if (dmar_table_init() < 0)
696 		return -ENODEV;
697 
698 	if (!dmar_ir_support())
699 		return -ENODEV;
700 
701 	if (parse_ioapics_under_ir()) {
702 		pr_info("Not enabling interrupt remapping\n");
703 		goto error;
704 	}
705 
706 	/* First make sure all IOMMUs support IRQ remapping */
707 	for_each_iommu(iommu, drhd)
708 		if (!ecap_ir_support(iommu->ecap))
709 			goto error;
710 
711 	/* Detect remapping mode: lapic or x2apic */
712 	if (x2apic_supported()) {
713 		eim = !dmar_x2apic_optout();
714 		if (!eim) {
715 			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
716 			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
717 		}
718 	}
719 
720 	for_each_iommu(iommu, drhd) {
721 		if (eim && !ecap_eim_support(iommu->ecap)) {
722 			pr_info("%s does not support EIM\n", iommu->name);
723 			eim = 0;
724 		}
725 	}
726 
727 	eim_mode = eim;
728 	if (eim)
729 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
730 
731 	/* Do the initializations early */
732 	for_each_iommu(iommu, drhd) {
733 		if (intel_setup_irq_remapping(iommu)) {
734 			pr_err("Failed to setup irq remapping for %s\n",
735 			       iommu->name);
736 			goto error;
737 		}
738 	}
739 
740 	return 0;
741 
742 error:
743 	intel_cleanup_irq_remapping();
744 	return -ENODEV;
745 }
746 
747 /*
748  * Set Posted-Interrupts capability.
749  */
set_irq_posting_cap(void)750 static inline void set_irq_posting_cap(void)
751 {
752 	struct dmar_drhd_unit *drhd;
753 	struct intel_iommu *iommu;
754 
755 	if (!disable_irq_post) {
756 		/*
757 		 * If IRTE is in posted format, the 'pda' field goes across the
758 		 * 64-bit boundary, we need use cmpxchg16b to atomically update
759 		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
760 		 * is supported. Actually, hardware platforms supporting PI
761 		 * should have X86_FEATURE_CX16 support, this has been confirmed
762 		 * with Intel hardware guys.
763 		 */
764 		if (boot_cpu_has(X86_FEATURE_CX16))
765 			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
766 
767 		for_each_iommu(iommu, drhd)
768 			if (!cap_pi_support(iommu->cap)) {
769 				intel_irq_remap_ops.capability &=
770 						~(1 << IRQ_POSTING_CAP);
771 				break;
772 			}
773 	}
774 }
775 
intel_enable_irq_remapping(void)776 static int __init intel_enable_irq_remapping(void)
777 {
778 	struct dmar_drhd_unit *drhd;
779 	struct intel_iommu *iommu;
780 	bool setup = false;
781 
782 	/*
783 	 * Setup Interrupt-remapping for all the DRHD's now.
784 	 */
785 	for_each_iommu(iommu, drhd) {
786 		if (!ir_pre_enabled(iommu))
787 			iommu_enable_irq_remapping(iommu);
788 		setup = true;
789 	}
790 
791 	if (!setup)
792 		goto error;
793 
794 	irq_remapping_enabled = 1;
795 
796 	set_irq_posting_cap();
797 
798 	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
799 
800 	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
801 
802 error:
803 	intel_cleanup_irq_remapping();
804 	return -1;
805 }
806 
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)807 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
808 				   struct intel_iommu *iommu,
809 				   struct acpi_dmar_hardware_unit *drhd)
810 {
811 	struct acpi_dmar_pci_path *path;
812 	u8 bus;
813 	int count, free = -1;
814 
815 	bus = scope->bus;
816 	path = (struct acpi_dmar_pci_path *)(scope + 1);
817 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
818 		/ sizeof(struct acpi_dmar_pci_path);
819 
820 	while (--count > 0) {
821 		/*
822 		 * Access PCI directly due to the PCI
823 		 * subsystem isn't initialized yet.
824 		 */
825 		bus = read_pci_config_byte(bus, path->device, path->function,
826 					   PCI_SECONDARY_BUS);
827 		path++;
828 	}
829 
830 	for (count = 0; count < MAX_HPET_TBS; count++) {
831 		if (ir_hpet[count].iommu == iommu &&
832 		    ir_hpet[count].id == scope->enumeration_id)
833 			return 0;
834 		else if (ir_hpet[count].iommu == NULL && free == -1)
835 			free = count;
836 	}
837 	if (free == -1) {
838 		pr_warn("Exceeded Max HPET blocks\n");
839 		return -ENOSPC;
840 	}
841 
842 	ir_hpet[free].iommu = iommu;
843 	ir_hpet[free].id    = scope->enumeration_id;
844 	ir_hpet[free].bus   = bus;
845 	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
846 	pr_info("HPET id %d under DRHD base 0x%Lx\n",
847 		scope->enumeration_id, drhd->address);
848 
849 	return 0;
850 }
851 
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)852 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
853 				     struct intel_iommu *iommu,
854 				     struct acpi_dmar_hardware_unit *drhd)
855 {
856 	struct acpi_dmar_pci_path *path;
857 	u8 bus;
858 	int count, free = -1;
859 
860 	bus = scope->bus;
861 	path = (struct acpi_dmar_pci_path *)(scope + 1);
862 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
863 		/ sizeof(struct acpi_dmar_pci_path);
864 
865 	while (--count > 0) {
866 		/*
867 		 * Access PCI directly due to the PCI
868 		 * subsystem isn't initialized yet.
869 		 */
870 		bus = read_pci_config_byte(bus, path->device, path->function,
871 					   PCI_SECONDARY_BUS);
872 		path++;
873 	}
874 
875 	for (count = 0; count < MAX_IO_APICS; count++) {
876 		if (ir_ioapic[count].iommu == iommu &&
877 		    ir_ioapic[count].id == scope->enumeration_id)
878 			return 0;
879 		else if (ir_ioapic[count].iommu == NULL && free == -1)
880 			free = count;
881 	}
882 	if (free == -1) {
883 		pr_warn("Exceeded Max IO APICS\n");
884 		return -ENOSPC;
885 	}
886 
887 	ir_ioapic[free].bus   = bus;
888 	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
889 	ir_ioapic[free].iommu = iommu;
890 	ir_ioapic[free].id    = scope->enumeration_id;
891 	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
892 		scope->enumeration_id, drhd->address, iommu->seq_id);
893 
894 	return 0;
895 }
896 
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)897 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
898 				      struct intel_iommu *iommu)
899 {
900 	int ret = 0;
901 	struct acpi_dmar_hardware_unit *drhd;
902 	struct acpi_dmar_device_scope *scope;
903 	void *start, *end;
904 
905 	drhd = (struct acpi_dmar_hardware_unit *)header;
906 	start = (void *)(drhd + 1);
907 	end = ((void *)drhd) + header->length;
908 
909 	while (start < end && ret == 0) {
910 		scope = start;
911 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
912 			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
913 		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
914 			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
915 		start += scope->length;
916 	}
917 
918 	return ret;
919 }
920 
ir_remove_ioapic_hpet_scope(struct intel_iommu * iommu)921 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
922 {
923 	int i;
924 
925 	for (i = 0; i < MAX_HPET_TBS; i++)
926 		if (ir_hpet[i].iommu == iommu)
927 			ir_hpet[i].iommu = NULL;
928 
929 	for (i = 0; i < MAX_IO_APICS; i++)
930 		if (ir_ioapic[i].iommu == iommu)
931 			ir_ioapic[i].iommu = NULL;
932 }
933 
934 /*
935  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
936  * hardware unit.
937  */
parse_ioapics_under_ir(void)938 static int __init parse_ioapics_under_ir(void)
939 {
940 	struct dmar_drhd_unit *drhd;
941 	struct intel_iommu *iommu;
942 	bool ir_supported = false;
943 	int ioapic_idx;
944 
945 	for_each_iommu(iommu, drhd) {
946 		int ret;
947 
948 		if (!ecap_ir_support(iommu->ecap))
949 			continue;
950 
951 		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
952 		if (ret)
953 			return ret;
954 
955 		ir_supported = true;
956 	}
957 
958 	if (!ir_supported)
959 		return -ENODEV;
960 
961 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
962 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
963 		if (!map_ioapic_to_ir(ioapic_id)) {
964 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
965 			       "interrupt remapping will be disabled\n",
966 			       ioapic_id);
967 			return -1;
968 		}
969 	}
970 
971 	return 0;
972 }
973 
ir_dev_scope_init(void)974 static int __init ir_dev_scope_init(void)
975 {
976 	int ret;
977 
978 	if (!irq_remapping_enabled)
979 		return 0;
980 
981 	down_write(&dmar_global_lock);
982 	ret = dmar_dev_scope_init();
983 	up_write(&dmar_global_lock);
984 
985 	return ret;
986 }
987 rootfs_initcall(ir_dev_scope_init);
988 
disable_irq_remapping(void)989 static void disable_irq_remapping(void)
990 {
991 	struct dmar_drhd_unit *drhd;
992 	struct intel_iommu *iommu = NULL;
993 
994 	/*
995 	 * Disable Interrupt-remapping for all the DRHD's now.
996 	 */
997 	for_each_iommu(iommu, drhd) {
998 		if (!ecap_ir_support(iommu->ecap))
999 			continue;
1000 
1001 		iommu_disable_irq_remapping(iommu);
1002 	}
1003 
1004 	/*
1005 	 * Clear Posted-Interrupts capability.
1006 	 */
1007 	if (!disable_irq_post)
1008 		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1009 }
1010 
reenable_irq_remapping(int eim)1011 static int reenable_irq_remapping(int eim)
1012 {
1013 	struct dmar_drhd_unit *drhd;
1014 	bool setup = false;
1015 	struct intel_iommu *iommu = NULL;
1016 
1017 	for_each_iommu(iommu, drhd)
1018 		if (iommu->qi)
1019 			dmar_reenable_qi(iommu);
1020 
1021 	/*
1022 	 * Setup Interrupt-remapping for all the DRHD's now.
1023 	 */
1024 	for_each_iommu(iommu, drhd) {
1025 		if (!ecap_ir_support(iommu->ecap))
1026 			continue;
1027 
1028 		/* Set up interrupt remapping for iommu.*/
1029 		iommu_set_irq_remapping(iommu, eim);
1030 		iommu_enable_irq_remapping(iommu);
1031 		setup = true;
1032 	}
1033 
1034 	if (!setup)
1035 		goto error;
1036 
1037 	set_irq_posting_cap();
1038 
1039 	return 0;
1040 
1041 error:
1042 	/*
1043 	 * handle error condition gracefully here!
1044 	 */
1045 	return -1;
1046 }
1047 
prepare_irte(struct irte * irte,int vector,unsigned int dest)1048 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1049 {
1050 	memset(irte, 0, sizeof(*irte));
1051 
1052 	irte->present = 1;
1053 	irte->dst_mode = apic->irq_dest_mode;
1054 	/*
1055 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1056 	 * actual level or edge trigger will be setup in the IO-APIC
1057 	 * RTE. This will help simplify level triggered irq migration.
1058 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1059 	 * irq migration in the presence of interrupt-remapping.
1060 	*/
1061 	irte->trigger_mode = 0;
1062 	irte->dlvry_mode = apic->irq_delivery_mode;
1063 	irte->vector = vector;
1064 	irte->dest_id = IRTE_DEST(dest);
1065 	irte->redir_hint = 1;
1066 }
1067 
intel_get_ir_irq_domain(struct irq_alloc_info * info)1068 static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
1069 {
1070 	struct intel_iommu *iommu = NULL;
1071 
1072 	if (!info)
1073 		return NULL;
1074 
1075 	switch (info->type) {
1076 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1077 		iommu = map_ioapic_to_ir(info->ioapic_id);
1078 		break;
1079 	case X86_IRQ_ALLOC_TYPE_HPET:
1080 		iommu = map_hpet_to_ir(info->hpet_id);
1081 		break;
1082 	case X86_IRQ_ALLOC_TYPE_MSI:
1083 	case X86_IRQ_ALLOC_TYPE_MSIX:
1084 		iommu = map_dev_to_ir(info->msi_dev);
1085 		break;
1086 	default:
1087 		BUG_ON(1);
1088 		break;
1089 	}
1090 
1091 	return iommu ? iommu->ir_domain : NULL;
1092 }
1093 
intel_get_irq_domain(struct irq_alloc_info * info)1094 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1095 {
1096 	struct intel_iommu *iommu;
1097 
1098 	if (!info)
1099 		return NULL;
1100 
1101 	switch (info->type) {
1102 	case X86_IRQ_ALLOC_TYPE_MSI:
1103 	case X86_IRQ_ALLOC_TYPE_MSIX:
1104 		iommu = map_dev_to_ir(info->msi_dev);
1105 		if (iommu)
1106 			return iommu->ir_msi_domain;
1107 		break;
1108 	default:
1109 		break;
1110 	}
1111 
1112 	return NULL;
1113 }
1114 
1115 struct irq_remap_ops intel_irq_remap_ops = {
1116 	.prepare		= intel_prepare_irq_remapping,
1117 	.enable			= intel_enable_irq_remapping,
1118 	.disable		= disable_irq_remapping,
1119 	.reenable		= reenable_irq_remapping,
1120 	.enable_faulting	= enable_drhd_fault_handling,
1121 	.get_ir_irq_domain	= intel_get_ir_irq_domain,
1122 	.get_irq_domain		= intel_get_irq_domain,
1123 };
1124 
intel_ir_reconfigure_irte(struct irq_data * irqd,bool force)1125 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1126 {
1127 	struct intel_ir_data *ir_data = irqd->chip_data;
1128 	struct irte *irte = &ir_data->irte_entry;
1129 	struct irq_cfg *cfg = irqd_cfg(irqd);
1130 
1131 	/*
1132 	 * Atomically updates the IRTE with the new destination, vector
1133 	 * and flushes the interrupt entry cache.
1134 	 */
1135 	irte->vector = cfg->vector;
1136 	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1137 
1138 	/* Update the hardware only if the interrupt is in remapped mode. */
1139 	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1140 		modify_irte(&ir_data->irq_2_iommu, irte);
1141 }
1142 
1143 /*
1144  * Migrate the IO-APIC irq in the presence of intr-remapping.
1145  *
1146  * For both level and edge triggered, irq migration is a simple atomic
1147  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1148  *
1149  * For level triggered, we eliminate the io-apic RTE modification (with the
1150  * updated vector information), by using a virtual vector (io-apic pin number).
1151  * Real vector that is used for interrupting cpu will be coming from
1152  * the interrupt-remapping table entry.
1153  *
1154  * As the migration is a simple atomic update of IRTE, the same mechanism
1155  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1156  */
1157 static int
intel_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1158 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1159 		      bool force)
1160 {
1161 	struct irq_data *parent = data->parent_data;
1162 	struct irq_cfg *cfg = irqd_cfg(data);
1163 	int ret;
1164 
1165 	ret = parent->chip->irq_set_affinity(parent, mask, force);
1166 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1167 		return ret;
1168 
1169 	intel_ir_reconfigure_irte(data, false);
1170 	/*
1171 	 * After this point, all the interrupts will start arriving
1172 	 * at the new destination. So, time to cleanup the previous
1173 	 * vector allocation.
1174 	 */
1175 	send_cleanup_vector(cfg);
1176 
1177 	return IRQ_SET_MASK_OK_DONE;
1178 }
1179 
intel_ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)1180 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1181 				     struct msi_msg *msg)
1182 {
1183 	struct intel_ir_data *ir_data = irq_data->chip_data;
1184 
1185 	*msg = ir_data->msi_entry;
1186 }
1187 
intel_ir_set_vcpu_affinity(struct irq_data * data,void * info)1188 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1189 {
1190 	struct intel_ir_data *ir_data = data->chip_data;
1191 	struct vcpu_data *vcpu_pi_info = info;
1192 
1193 	/* stop posting interrupts, back to remapping mode */
1194 	if (!vcpu_pi_info) {
1195 		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1196 	} else {
1197 		struct irte irte_pi;
1198 
1199 		/*
1200 		 * We are not caching the posted interrupt entry. We
1201 		 * copy the data from the remapped entry and modify
1202 		 * the fields which are relevant for posted mode. The
1203 		 * cached remapped entry is used for switching back to
1204 		 * remapped mode.
1205 		 */
1206 		memset(&irte_pi, 0, sizeof(irte_pi));
1207 		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1208 
1209 		/* Update the posted mode fields */
1210 		irte_pi.p_pst = 1;
1211 		irte_pi.p_urgent = 0;
1212 		irte_pi.p_vector = vcpu_pi_info->vector;
1213 		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1214 				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1215 		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1216 				~(-1UL << PDA_HIGH_BIT);
1217 
1218 		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 static struct irq_chip intel_ir_chip = {
1225 	.name			= "INTEL-IR",
1226 	.irq_ack		= apic_ack_irq,
1227 	.irq_set_affinity	= intel_ir_set_affinity,
1228 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1229 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1230 };
1231 
intel_irq_remapping_prepare_irte(struct intel_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int index,int sub_handle)1232 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1233 					     struct irq_cfg *irq_cfg,
1234 					     struct irq_alloc_info *info,
1235 					     int index, int sub_handle)
1236 {
1237 	struct IR_IO_APIC_route_entry *entry;
1238 	struct irte *irte = &data->irte_entry;
1239 	struct msi_msg *msg = &data->msi_entry;
1240 
1241 	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1242 	switch (info->type) {
1243 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1244 		/* Set source-id of interrupt request */
1245 		set_ioapic_sid(irte, info->ioapic_id);
1246 		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1247 			info->ioapic_id, irte->present, irte->fpd,
1248 			irte->dst_mode, irte->redir_hint,
1249 			irte->trigger_mode, irte->dlvry_mode,
1250 			irte->avail, irte->vector, irte->dest_id,
1251 			irte->sid, irte->sq, irte->svt);
1252 
1253 		entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
1254 		info->ioapic_entry = NULL;
1255 		memset(entry, 0, sizeof(*entry));
1256 		entry->index2	= (index >> 15) & 0x1;
1257 		entry->zero	= 0;
1258 		entry->format	= 1;
1259 		entry->index	= (index & 0x7fff);
1260 		/*
1261 		 * IO-APIC RTE will be configured with virtual vector.
1262 		 * irq handler will do the explicit EOI to the io-apic.
1263 		 */
1264 		entry->vector	= info->ioapic_pin;
1265 		entry->mask	= 0;			/* enable IRQ */
1266 		entry->trigger	= info->ioapic_trigger;
1267 		entry->polarity	= info->ioapic_polarity;
1268 		if (info->ioapic_trigger)
1269 			entry->mask = 1; /* Mask level triggered irqs. */
1270 		break;
1271 
1272 	case X86_IRQ_ALLOC_TYPE_HPET:
1273 	case X86_IRQ_ALLOC_TYPE_MSI:
1274 	case X86_IRQ_ALLOC_TYPE_MSIX:
1275 		if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1276 			set_hpet_sid(irte, info->hpet_id);
1277 		else
1278 			set_msi_sid(irte, info->msi_dev);
1279 
1280 		msg->address_hi = MSI_ADDR_BASE_HI;
1281 		msg->data = sub_handle;
1282 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1283 				  MSI_ADDR_IR_SHV |
1284 				  MSI_ADDR_IR_INDEX1(index) |
1285 				  MSI_ADDR_IR_INDEX2(index);
1286 		break;
1287 
1288 	default:
1289 		BUG_ON(1);
1290 		break;
1291 	}
1292 }
1293 
intel_free_irq_resources(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1294 static void intel_free_irq_resources(struct irq_domain *domain,
1295 				     unsigned int virq, unsigned int nr_irqs)
1296 {
1297 	struct irq_data *irq_data;
1298 	struct intel_ir_data *data;
1299 	struct irq_2_iommu *irq_iommu;
1300 	unsigned long flags;
1301 	int i;
1302 	for (i = 0; i < nr_irqs; i++) {
1303 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1304 		if (irq_data && irq_data->chip_data) {
1305 			data = irq_data->chip_data;
1306 			irq_iommu = &data->irq_2_iommu;
1307 			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1308 			clear_entries(irq_iommu);
1309 			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1310 			irq_domain_reset_irq_data(irq_data);
1311 			kfree(data);
1312 		}
1313 	}
1314 }
1315 
intel_irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1316 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1317 				     unsigned int virq, unsigned int nr_irqs,
1318 				     void *arg)
1319 {
1320 	struct intel_iommu *iommu = domain->host_data;
1321 	struct irq_alloc_info *info = arg;
1322 	struct intel_ir_data *data, *ird;
1323 	struct irq_data *irq_data;
1324 	struct irq_cfg *irq_cfg;
1325 	int i, ret, index;
1326 
1327 	if (!info || !iommu)
1328 		return -EINVAL;
1329 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
1330 	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
1331 		return -EINVAL;
1332 
1333 	/*
1334 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
1335 	 * to support multiple MSI interrupts.
1336 	 */
1337 	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1338 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1339 
1340 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1341 	if (ret < 0)
1342 		return ret;
1343 
1344 	ret = -ENOMEM;
1345 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1346 	if (!data)
1347 		goto out_free_parent;
1348 
1349 	down_read(&dmar_global_lock);
1350 	index = alloc_irte(iommu, virq, &data->irq_2_iommu, nr_irqs);
1351 	up_read(&dmar_global_lock);
1352 	if (index < 0) {
1353 		pr_warn("Failed to allocate IRTE\n");
1354 		kfree(data);
1355 		goto out_free_parent;
1356 	}
1357 
1358 	for (i = 0; i < nr_irqs; i++) {
1359 		irq_data = irq_domain_get_irq_data(domain, virq + i);
1360 		irq_cfg = irqd_cfg(irq_data);
1361 		if (!irq_data || !irq_cfg) {
1362 			ret = -EINVAL;
1363 			goto out_free_data;
1364 		}
1365 
1366 		if (i > 0) {
1367 			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1368 			if (!ird)
1369 				goto out_free_data;
1370 			/* Initialize the common data */
1371 			ird->irq_2_iommu = data->irq_2_iommu;
1372 			ird->irq_2_iommu.sub_handle = i;
1373 		} else {
1374 			ird = data;
1375 		}
1376 
1377 		irq_data->hwirq = (index << 16) + i;
1378 		irq_data->chip_data = ird;
1379 		irq_data->chip = &intel_ir_chip;
1380 		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1381 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1382 	}
1383 	return 0;
1384 
1385 out_free_data:
1386 	intel_free_irq_resources(domain, virq, i);
1387 out_free_parent:
1388 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1389 	return ret;
1390 }
1391 
intel_irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1392 static void intel_irq_remapping_free(struct irq_domain *domain,
1393 				     unsigned int virq, unsigned int nr_irqs)
1394 {
1395 	intel_free_irq_resources(domain, virq, nr_irqs);
1396 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1397 }
1398 
intel_irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)1399 static int intel_irq_remapping_activate(struct irq_domain *domain,
1400 					struct irq_data *irq_data, bool reserve)
1401 {
1402 	intel_ir_reconfigure_irte(irq_data, true);
1403 	return 0;
1404 }
1405 
intel_irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)1406 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1407 					   struct irq_data *irq_data)
1408 {
1409 	struct intel_ir_data *data = irq_data->chip_data;
1410 	struct irte entry;
1411 
1412 	memset(&entry, 0, sizeof(entry));
1413 	modify_irte(&data->irq_2_iommu, &entry);
1414 }
1415 
1416 static const struct irq_domain_ops intel_ir_domain_ops = {
1417 	.alloc = intel_irq_remapping_alloc,
1418 	.free = intel_irq_remapping_free,
1419 	.activate = intel_irq_remapping_activate,
1420 	.deactivate = intel_irq_remapping_deactivate,
1421 };
1422 
1423 /*
1424  * Support of Interrupt Remapping Unit Hotplug
1425  */
dmar_ir_add(struct dmar_drhd_unit * dmaru,struct intel_iommu * iommu)1426 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1427 {
1428 	int ret;
1429 	int eim = x2apic_enabled();
1430 
1431 	if (eim && !ecap_eim_support(iommu->ecap)) {
1432 		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1433 			iommu->reg_phys, iommu->ecap);
1434 		return -ENODEV;
1435 	}
1436 
1437 	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1438 		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1439 			iommu->reg_phys);
1440 		return -ENODEV;
1441 	}
1442 
1443 	/* TODO: check all IOAPICs are covered by IOMMU */
1444 
1445 	/* Setup Interrupt-remapping now. */
1446 	ret = intel_setup_irq_remapping(iommu);
1447 	if (ret) {
1448 		pr_err("Failed to setup irq remapping for %s\n",
1449 		       iommu->name);
1450 		intel_teardown_irq_remapping(iommu);
1451 		ir_remove_ioapic_hpet_scope(iommu);
1452 	} else {
1453 		iommu_enable_irq_remapping(iommu);
1454 	}
1455 
1456 	return ret;
1457 }
1458 
dmar_ir_hotplug(struct dmar_drhd_unit * dmaru,bool insert)1459 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1460 {
1461 	int ret = 0;
1462 	struct intel_iommu *iommu = dmaru->iommu;
1463 
1464 	if (!irq_remapping_enabled)
1465 		return 0;
1466 	if (iommu == NULL)
1467 		return -EINVAL;
1468 	if (!ecap_ir_support(iommu->ecap))
1469 		return 0;
1470 	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1471 	    !cap_pi_support(iommu->cap))
1472 		return -EBUSY;
1473 
1474 	if (insert) {
1475 		if (!iommu->ir_table)
1476 			ret = dmar_ir_add(dmaru, iommu);
1477 	} else {
1478 		if (iommu->ir_table) {
1479 			if (!bitmap_empty(iommu->ir_table->bitmap,
1480 					  INTR_REMAP_TABLE_ENTRIES)) {
1481 				ret = -EBUSY;
1482 			} else {
1483 				iommu_disable_irq_remapping(iommu);
1484 				intel_teardown_irq_remapping(iommu);
1485 				ir_remove_ioapic_hpet_scope(iommu);
1486 			}
1487 		}
1488 	}
1489 
1490 	return ret;
1491 }
1492