1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 
40 #define MAX_PREFETCH_LEN (4*1024*1024U)
41 
42 /* Timeout in ms to wait for an active mmu notifier to complete when handling
43  * a pagefault. */
44 #define MMU_NOTIFIER_TIMEOUT 1000
45 
46 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
47 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
48 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
49 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
50 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
51 
52 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
53 
54 static u64 mlx5_imr_ksm_entries;
55 
check_parent(struct ib_umem_odp * odp,struct mlx5_ib_mr * parent)56 static int check_parent(struct ib_umem_odp *odp,
57 			       struct mlx5_ib_mr *parent)
58 {
59 	struct mlx5_ib_mr *mr = odp->private;
60 
61 	return mr && mr->parent == parent && !odp->dying;
62 }
63 
odp_next(struct ib_umem_odp * odp)64 static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
65 {
66 	struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
67 	struct ib_ucontext *ctx = odp->umem->context;
68 	struct rb_node *rb;
69 
70 	down_read(&ctx->umem_rwsem);
71 	while (1) {
72 		rb = rb_next(&odp->interval_tree.rb);
73 		if (!rb)
74 			goto not_found;
75 		odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
76 		if (check_parent(odp, parent))
77 			goto end;
78 	}
79 not_found:
80 	odp = NULL;
81 end:
82 	up_read(&ctx->umem_rwsem);
83 	return odp;
84 }
85 
odp_lookup(struct ib_ucontext * ctx,u64 start,u64 length,struct mlx5_ib_mr * parent)86 static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
87 				      u64 start, u64 length,
88 				      struct mlx5_ib_mr *parent)
89 {
90 	struct ib_umem_odp *odp;
91 	struct rb_node *rb;
92 
93 	down_read(&ctx->umem_rwsem);
94 	odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
95 	if (!odp)
96 		goto end;
97 
98 	while (1) {
99 		if (check_parent(odp, parent))
100 			goto end;
101 		rb = rb_next(&odp->interval_tree.rb);
102 		if (!rb)
103 			goto not_found;
104 		odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
105 		if (ib_umem_start(odp->umem) > start + length)
106 			goto not_found;
107 	}
108 not_found:
109 	odp = NULL;
110 end:
111 	up_read(&ctx->umem_rwsem);
112 	return odp;
113 }
114 
mlx5_odp_populate_klm(struct mlx5_klm * pklm,size_t offset,size_t nentries,struct mlx5_ib_mr * mr,int flags)115 void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
116 			   size_t nentries, struct mlx5_ib_mr *mr, int flags)
117 {
118 	struct ib_pd *pd = mr->ibmr.pd;
119 	struct ib_ucontext *ctx = pd->uobject->context;
120 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
121 	struct ib_umem_odp *odp;
122 	unsigned long va;
123 	int i;
124 
125 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
126 		for (i = 0; i < nentries; i++, pklm++) {
127 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
128 			pklm->key = cpu_to_be32(dev->null_mkey);
129 			pklm->va = 0;
130 		}
131 		return;
132 	}
133 
134 	odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
135 			     nentries * MLX5_IMR_MTT_SIZE, mr);
136 
137 	for (i = 0; i < nentries; i++, pklm++) {
138 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
139 		va = (offset + i) * MLX5_IMR_MTT_SIZE;
140 		if (odp && odp->umem->address == va) {
141 			struct mlx5_ib_mr *mtt = odp->private;
142 
143 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
144 			odp = odp_next(odp);
145 		} else {
146 			pklm->key = cpu_to_be32(dev->null_mkey);
147 		}
148 		mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
149 			    i, va, be32_to_cpu(pklm->key));
150 	}
151 }
152 
mr_leaf_free_action(struct work_struct * work)153 static void mr_leaf_free_action(struct work_struct *work)
154 {
155 	struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
156 	int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
157 	struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
158 
159 	mr->parent = NULL;
160 	synchronize_srcu(&mr->dev->mr_srcu);
161 
162 	ib_umem_release(odp->umem);
163 	if (imr->live)
164 		mlx5_ib_update_xlt(imr, idx, 1, 0,
165 				   MLX5_IB_UPD_XLT_INDIRECT |
166 				   MLX5_IB_UPD_XLT_ATOMIC);
167 	mlx5_mr_cache_free(mr->dev, mr);
168 
169 	if (atomic_dec_and_test(&imr->num_leaf_free))
170 		wake_up(&imr->q_leaf_free);
171 }
172 
mlx5_ib_invalidate_range(struct ib_umem * umem,unsigned long start,unsigned long end)173 void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
174 			      unsigned long end)
175 {
176 	struct mlx5_ib_mr *mr;
177 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
178 				    sizeof(struct mlx5_mtt)) - 1;
179 	u64 idx = 0, blk_start_idx = 0;
180 	int in_block = 0;
181 	u64 addr;
182 
183 	if (!umem || !umem->odp_data) {
184 		pr_err("invalidation called on NULL umem or non-ODP umem\n");
185 		return;
186 	}
187 
188 	mr = umem->odp_data->private;
189 
190 	if (!mr || !mr->ibmr.pd)
191 		return;
192 
193 	start = max_t(u64, ib_umem_start(umem), start);
194 	end = min_t(u64, ib_umem_end(umem), end);
195 
196 	/*
197 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
198 	 * while we are doing the invalidation, no page fault will attempt to
199 	 * overwrite the same MTTs.  Concurent invalidations might race us,
200 	 * but they will write 0s as well, so no difference in the end result.
201 	 */
202 
203 	for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
204 		idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
205 		/*
206 		 * Strive to write the MTTs in chunks, but avoid overwriting
207 		 * non-existing MTTs. The huristic here can be improved to
208 		 * estimate the cost of another UMR vs. the cost of bigger
209 		 * UMR.
210 		 */
211 		if (umem->odp_data->dma_list[idx] &
212 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
213 			if (!in_block) {
214 				blk_start_idx = idx;
215 				in_block = 1;
216 			}
217 		} else {
218 			u64 umr_offset = idx & umr_block_mask;
219 
220 			if (in_block && umr_offset == 0) {
221 				mlx5_ib_update_xlt(mr, blk_start_idx,
222 						   idx - blk_start_idx, 0,
223 						   MLX5_IB_UPD_XLT_ZAP |
224 						   MLX5_IB_UPD_XLT_ATOMIC);
225 				in_block = 0;
226 			}
227 		}
228 	}
229 	if (in_block)
230 		mlx5_ib_update_xlt(mr, blk_start_idx,
231 				   idx - blk_start_idx + 1, 0,
232 				   MLX5_IB_UPD_XLT_ZAP |
233 				   MLX5_IB_UPD_XLT_ATOMIC);
234 	/*
235 	 * We are now sure that the device will not access the
236 	 * memory. We can safely unmap it, and mark it as dirty if
237 	 * needed.
238 	 */
239 
240 	ib_umem_odp_unmap_dma_pages(umem, start, end);
241 
242 	if (unlikely(!umem->npages && mr->parent &&
243 		     !umem->odp_data->dying)) {
244 		WRITE_ONCE(umem->odp_data->dying, 1);
245 		atomic_inc(&mr->parent->num_leaf_free);
246 		schedule_work(&umem->odp_data->work);
247 	}
248 }
249 
mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev * dev)250 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
251 {
252 	struct ib_odp_caps *caps = &dev->odp_caps;
253 
254 	memset(caps, 0, sizeof(*caps));
255 
256 	if (!MLX5_CAP_GEN(dev->mdev, pg))
257 		return;
258 
259 	caps->general_caps = IB_ODP_SUPPORT;
260 
261 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
262 		dev->odp_max_size = U64_MAX;
263 	else
264 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
265 
266 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
267 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
268 
269 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
270 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
271 
272 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
273 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
274 
275 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
276 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
277 
278 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
279 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
280 
281 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
282 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
283 
284 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
285 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
286 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
287 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
288 
289 	return;
290 }
291 
mlx5_ib_page_fault_resume(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,int error)292 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
293 				      struct mlx5_pagefault *pfault,
294 				      int error)
295 {
296 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
297 		     pfault->wqe.wq_num : pfault->token;
298 	int ret = mlx5_core_page_fault_resume(dev->mdev,
299 					      pfault->token,
300 					      wq_num,
301 					      pfault->type,
302 					      error);
303 	if (ret)
304 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
305 			    wq_num);
306 }
307 
implicit_mr_alloc(struct ib_pd * pd,struct ib_umem * umem,bool ksm,int access_flags)308 static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
309 					    struct ib_umem *umem,
310 					    bool ksm, int access_flags)
311 {
312 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
313 	struct mlx5_ib_mr *mr;
314 	int err;
315 
316 	mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
317 					    MLX5_IMR_MTT_CACHE_ENTRY);
318 
319 	if (IS_ERR(mr))
320 		return mr;
321 
322 	mr->ibmr.pd = pd;
323 
324 	mr->dev = dev;
325 	mr->access_flags = access_flags;
326 	mr->mmkey.iova = 0;
327 	mr->umem = umem;
328 
329 	if (ksm) {
330 		err = mlx5_ib_update_xlt(mr, 0,
331 					 mlx5_imr_ksm_entries,
332 					 MLX5_KSM_PAGE_SHIFT,
333 					 MLX5_IB_UPD_XLT_INDIRECT |
334 					 MLX5_IB_UPD_XLT_ZAP |
335 					 MLX5_IB_UPD_XLT_ENABLE);
336 
337 	} else {
338 		err = mlx5_ib_update_xlt(mr, 0,
339 					 MLX5_IMR_MTT_ENTRIES,
340 					 PAGE_SHIFT,
341 					 MLX5_IB_UPD_XLT_ZAP |
342 					 MLX5_IB_UPD_XLT_ENABLE |
343 					 MLX5_IB_UPD_XLT_ATOMIC);
344 	}
345 
346 	if (err)
347 		goto fail;
348 
349 	mr->ibmr.lkey = mr->mmkey.key;
350 	mr->ibmr.rkey = mr->mmkey.key;
351 
352 	mr->live = 1;
353 
354 	mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
355 		    mr->mmkey.key, dev->mdev, mr);
356 
357 	return mr;
358 
359 fail:
360 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
361 	mlx5_mr_cache_free(dev, mr);
362 
363 	return ERR_PTR(err);
364 }
365 
implicit_mr_get_data(struct mlx5_ib_mr * mr,u64 io_virt,size_t bcnt)366 static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
367 						u64 io_virt, size_t bcnt)
368 {
369 	struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
370 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
371 	struct ib_umem_odp *odp, *result = NULL;
372 	u64 addr = io_virt & MLX5_IMR_MTT_MASK;
373 	int nentries = 0, start_idx = 0, ret;
374 	struct mlx5_ib_mr *mtt;
375 	struct ib_umem *umem;
376 
377 	mutex_lock(&mr->umem->odp_data->umem_mutex);
378 	odp = odp_lookup(ctx, addr, 1, mr);
379 
380 	mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
381 		    io_virt, bcnt, addr, odp);
382 
383 next_mr:
384 	if (likely(odp)) {
385 		if (nentries)
386 			nentries++;
387 	} else {
388 		umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
389 		if (IS_ERR(umem)) {
390 			mutex_unlock(&mr->umem->odp_data->umem_mutex);
391 			return ERR_CAST(umem);
392 		}
393 
394 		mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
395 		if (IS_ERR(mtt)) {
396 			mutex_unlock(&mr->umem->odp_data->umem_mutex);
397 			ib_umem_release(umem);
398 			return ERR_CAST(mtt);
399 		}
400 
401 		odp = umem->odp_data;
402 		odp->private = mtt;
403 		mtt->umem = umem;
404 		mtt->mmkey.iova = addr;
405 		mtt->parent = mr;
406 		INIT_WORK(&odp->work, mr_leaf_free_action);
407 
408 		if (!nentries)
409 			start_idx = addr >> MLX5_IMR_MTT_SHIFT;
410 		nentries++;
411 	}
412 
413 	/* Return first odp if region not covered by single one */
414 	if (likely(!result))
415 		result = odp;
416 
417 	addr += MLX5_IMR_MTT_SIZE;
418 	if (unlikely(addr < io_virt + bcnt)) {
419 		odp = odp_next(odp);
420 		if (odp && odp->umem->address != addr)
421 			odp = NULL;
422 		goto next_mr;
423 	}
424 
425 	if (unlikely(nentries)) {
426 		ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
427 					 MLX5_IB_UPD_XLT_INDIRECT |
428 					 MLX5_IB_UPD_XLT_ATOMIC);
429 		if (ret) {
430 			mlx5_ib_err(dev, "Failed to update PAS\n");
431 			result = ERR_PTR(ret);
432 		}
433 	}
434 
435 	mutex_unlock(&mr->umem->odp_data->umem_mutex);
436 	return result;
437 }
438 
mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd * pd,int access_flags)439 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
440 					     int access_flags)
441 {
442 	struct ib_ucontext *ctx = pd->ibpd.uobject->context;
443 	struct mlx5_ib_mr *imr;
444 	struct ib_umem *umem;
445 
446 	umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
447 	if (IS_ERR(umem))
448 		return ERR_CAST(umem);
449 
450 	imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
451 	if (IS_ERR(imr)) {
452 		ib_umem_release(umem);
453 		return ERR_CAST(imr);
454 	}
455 
456 	imr->umem = umem;
457 	init_waitqueue_head(&imr->q_leaf_free);
458 	atomic_set(&imr->num_leaf_free, 0);
459 
460 	return imr;
461 }
462 
mr_leaf_free(struct ib_umem * umem,u64 start,u64 end,void * cookie)463 static int mr_leaf_free(struct ib_umem *umem, u64 start,
464 			u64 end, void *cookie)
465 {
466 	struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
467 
468 	if (mr->parent != imr)
469 		return 0;
470 
471 	ib_umem_odp_unmap_dma_pages(umem,
472 				    ib_umem_start(umem),
473 				    ib_umem_end(umem));
474 
475 	if (umem->odp_data->dying)
476 		return 0;
477 
478 	WRITE_ONCE(umem->odp_data->dying, 1);
479 	atomic_inc(&imr->num_leaf_free);
480 	schedule_work(&umem->odp_data->work);
481 
482 	return 0;
483 }
484 
mlx5_ib_free_implicit_mr(struct mlx5_ib_mr * imr)485 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
486 {
487 	struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
488 
489 	down_read(&ctx->umem_rwsem);
490 	rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
491 				      mr_leaf_free, true, imr);
492 	up_read(&ctx->umem_rwsem);
493 
494 	wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
495 }
496 
pagefault_mr(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr,u64 io_virt,size_t bcnt,u32 * bytes_mapped)497 static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
498 			u64 io_virt, size_t bcnt, u32 *bytes_mapped)
499 {
500 	u64 access_mask = ODP_READ_ALLOWED_BIT;
501 	int npages = 0, page_shift, np;
502 	u64 start_idx, page_mask;
503 	struct ib_umem_odp *odp;
504 	int current_seq;
505 	size_t size;
506 	int ret;
507 
508 	if (!mr->umem->odp_data->page_list) {
509 		odp = implicit_mr_get_data(mr, io_virt, bcnt);
510 
511 		if (IS_ERR(odp))
512 			return PTR_ERR(odp);
513 		mr = odp->private;
514 
515 	} else {
516 		odp = mr->umem->odp_data;
517 	}
518 
519 next_mr:
520 	size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
521 
522 	page_shift = mr->umem->page_shift;
523 	page_mask = ~(BIT(page_shift) - 1);
524 	start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
525 
526 	if (mr->umem->writable)
527 		access_mask |= ODP_WRITE_ALLOWED_BIT;
528 
529 	current_seq = READ_ONCE(odp->notifiers_seq);
530 	/*
531 	 * Ensure the sequence number is valid for some time before we call
532 	 * gup.
533 	 */
534 	smp_rmb();
535 
536 	ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
537 					access_mask, current_seq);
538 
539 	if (ret < 0)
540 		goto out;
541 
542 	np = ret;
543 
544 	mutex_lock(&odp->umem_mutex);
545 	if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
546 		/*
547 		 * No need to check whether the MTTs really belong to
548 		 * this MR, since ib_umem_odp_map_dma_pages already
549 		 * checks this.
550 		 */
551 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
552 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
553 	} else {
554 		ret = -EAGAIN;
555 	}
556 	mutex_unlock(&odp->umem_mutex);
557 
558 	if (ret < 0) {
559 		if (ret != -EAGAIN)
560 			mlx5_ib_err(dev, "Failed to update mkey page tables\n");
561 		goto out;
562 	}
563 
564 	if (bytes_mapped) {
565 		u32 new_mappings = (np << page_shift) -
566 			(io_virt - round_down(io_virt, 1 << page_shift));
567 		*bytes_mapped += min_t(u32, new_mappings, size);
568 	}
569 
570 	npages += np << (page_shift - PAGE_SHIFT);
571 	bcnt -= size;
572 
573 	if (unlikely(bcnt)) {
574 		struct ib_umem_odp *next;
575 
576 		io_virt += size;
577 		next = odp_next(odp);
578 		if (unlikely(!next || next->umem->address != io_virt)) {
579 			mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
580 				    io_virt, next);
581 			return -EAGAIN;
582 		}
583 		odp = next;
584 		mr = odp->private;
585 		goto next_mr;
586 	}
587 
588 	return npages;
589 
590 out:
591 	if (ret == -EAGAIN) {
592 		if (mr->parent || !odp->dying) {
593 			unsigned long timeout =
594 				msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
595 
596 			if (!wait_for_completion_timeout(
597 					&odp->notifier_completion,
598 					timeout)) {
599 				mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
600 					     current_seq, odp->notifiers_seq);
601 			}
602 		} else {
603 			/* The MR is being killed, kill the QP as well. */
604 			ret = -EFAULT;
605 		}
606 	}
607 
608 	return ret;
609 }
610 
611 struct pf_frame {
612 	struct pf_frame *next;
613 	u32 key;
614 	u64 io_virt;
615 	size_t bcnt;
616 	int depth;
617 };
618 
619 /*
620  * Handle a single data segment in a page-fault WQE or RDMA region.
621  *
622  * Returns number of OS pages retrieved on success. The caller may continue to
623  * the next data segment.
624  * Can return the following error codes:
625  * -EAGAIN to designate a temporary error. The caller will abort handling the
626  *  page fault and resolve it.
627  * -EFAULT when there's an error mapping the requested pages. The caller will
628  *  abort the page fault handling.
629  */
pagefault_single_data_segment(struct mlx5_ib_dev * dev,u32 key,u64 io_virt,size_t bcnt,u32 * bytes_committed,u32 * bytes_mapped)630 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
631 					 u32 key, u64 io_virt, size_t bcnt,
632 					 u32 *bytes_committed,
633 					 u32 *bytes_mapped)
634 {
635 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
636 	struct pf_frame *head = NULL, *frame;
637 	struct mlx5_core_mkey *mmkey;
638 	struct mlx5_ib_mw *mw;
639 	struct mlx5_ib_mr *mr;
640 	struct mlx5_klm *pklm;
641 	u32 *out = NULL;
642 	size_t offset;
643 
644 	srcu_key = srcu_read_lock(&dev->mr_srcu);
645 
646 	io_virt += *bytes_committed;
647 	bcnt -= *bytes_committed;
648 
649 next_mr:
650 	mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
651 	if (!mmkey || mmkey->key != key) {
652 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
653 		ret = -EFAULT;
654 		goto srcu_unlock;
655 	}
656 
657 	switch (mmkey->type) {
658 	case MLX5_MKEY_MR:
659 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
660 		if (!mr->live || !mr->ibmr.pd) {
661 			mlx5_ib_dbg(dev, "got dead MR\n");
662 			ret = -EFAULT;
663 			goto srcu_unlock;
664 		}
665 
666 		ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
667 		if (ret < 0)
668 			goto srcu_unlock;
669 
670 		npages += ret;
671 		ret = 0;
672 		break;
673 
674 	case MLX5_MKEY_MW:
675 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
676 
677 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
678 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
679 			ret = -EFAULT;
680 			goto srcu_unlock;
681 		}
682 
683 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
684 			sizeof(*pklm) * (mw->ndescs - 2);
685 
686 		if (outlen > cur_outlen) {
687 			kfree(out);
688 			out = kzalloc(outlen, GFP_KERNEL);
689 			if (!out) {
690 				ret = -ENOMEM;
691 				goto srcu_unlock;
692 			}
693 			cur_outlen = outlen;
694 		}
695 
696 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
697 						       bsf0_klm0_pas_mtt0_1);
698 
699 		ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
700 		if (ret)
701 			goto srcu_unlock;
702 
703 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
704 					      memory_key_mkey_entry.start_addr);
705 
706 		for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
707 			if (offset >= be32_to_cpu(pklm->bcount)) {
708 				offset -= be32_to_cpu(pklm->bcount);
709 				continue;
710 			}
711 
712 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
713 			if (!frame) {
714 				ret = -ENOMEM;
715 				goto srcu_unlock;
716 			}
717 
718 			frame->key = be32_to_cpu(pklm->key);
719 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
720 			frame->bcnt = min_t(size_t, bcnt,
721 					    be32_to_cpu(pklm->bcount) - offset);
722 			frame->depth = depth + 1;
723 			frame->next = head;
724 			head = frame;
725 
726 			bcnt -= frame->bcnt;
727 		}
728 		break;
729 
730 	default:
731 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
732 		ret = -EFAULT;
733 		goto srcu_unlock;
734 	}
735 
736 	if (head) {
737 		frame = head;
738 		head = frame->next;
739 
740 		key = frame->key;
741 		io_virt = frame->io_virt;
742 		bcnt = frame->bcnt;
743 		depth = frame->depth;
744 		kfree(frame);
745 
746 		goto next_mr;
747 	}
748 
749 srcu_unlock:
750 	while (head) {
751 		frame = head;
752 		head = frame->next;
753 		kfree(frame);
754 	}
755 	kfree(out);
756 
757 	srcu_read_unlock(&dev->mr_srcu, srcu_key);
758 	*bytes_committed = 0;
759 	return ret ? ret : npages;
760 }
761 
762 /**
763  * Parse a series of data segments for page fault handling.
764  *
765  * @qp the QP on which the fault occurred.
766  * @pfault contains page fault information.
767  * @wqe points at the first data segment in the WQE.
768  * @wqe_end points after the end of the WQE.
769  * @bytes_mapped receives the number of bytes that the function was able to
770  *               map. This allows the caller to decide intelligently whether
771  *               enough memory was mapped to resolve the page fault
772  *               successfully (e.g. enough for the next MTU, or the entire
773  *               WQE).
774  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
775  *                  the committed bytes).
776  *
777  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
778  * negative error code.
779  */
pagefault_data_segments(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,struct mlx5_ib_qp * qp,void * wqe,void * wqe_end,u32 * bytes_mapped,u32 * total_wqe_bytes,int receive_queue)780 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
781 				   struct mlx5_pagefault *pfault,
782 				   struct mlx5_ib_qp *qp, void *wqe,
783 				   void *wqe_end, u32 *bytes_mapped,
784 				   u32 *total_wqe_bytes, int receive_queue)
785 {
786 	int ret = 0, npages = 0;
787 	u64 io_virt;
788 	u32 key;
789 	u32 byte_count;
790 	size_t bcnt;
791 	int inline_segment;
792 
793 	/* Skip SRQ next-WQE segment. */
794 	if (receive_queue && qp->ibqp.srq)
795 		wqe += sizeof(struct mlx5_wqe_srq_next_seg);
796 
797 	if (bytes_mapped)
798 		*bytes_mapped = 0;
799 	if (total_wqe_bytes)
800 		*total_wqe_bytes = 0;
801 
802 	while (wqe < wqe_end) {
803 		struct mlx5_wqe_data_seg *dseg = wqe;
804 
805 		io_virt = be64_to_cpu(dseg->addr);
806 		key = be32_to_cpu(dseg->lkey);
807 		byte_count = be32_to_cpu(dseg->byte_count);
808 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
809 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
810 
811 		if (inline_segment) {
812 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
813 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
814 				     16);
815 		} else {
816 			wqe += sizeof(*dseg);
817 		}
818 
819 		/* receive WQE end of sg list. */
820 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
821 		    io_virt == 0)
822 			break;
823 
824 		if (!inline_segment && total_wqe_bytes) {
825 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
826 					pfault->bytes_committed);
827 		}
828 
829 		/* A zero length data segment designates a length of 2GB. */
830 		if (bcnt == 0)
831 			bcnt = 1U << 31;
832 
833 		if (inline_segment || bcnt <= pfault->bytes_committed) {
834 			pfault->bytes_committed -=
835 				min_t(size_t, bcnt,
836 				      pfault->bytes_committed);
837 			continue;
838 		}
839 
840 		ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
841 						    &pfault->bytes_committed,
842 						    bytes_mapped);
843 		if (ret < 0)
844 			break;
845 		npages += ret;
846 	}
847 
848 	return ret < 0 ? ret : npages;
849 }
850 
851 static const u32 mlx5_ib_odp_opcode_cap[] = {
852 	[MLX5_OPCODE_SEND]	       = IB_ODP_SUPPORT_SEND,
853 	[MLX5_OPCODE_SEND_IMM]	       = IB_ODP_SUPPORT_SEND,
854 	[MLX5_OPCODE_SEND_INVAL]       = IB_ODP_SUPPORT_SEND,
855 	[MLX5_OPCODE_RDMA_WRITE]       = IB_ODP_SUPPORT_WRITE,
856 	[MLX5_OPCODE_RDMA_WRITE_IMM]   = IB_ODP_SUPPORT_WRITE,
857 	[MLX5_OPCODE_RDMA_READ]	       = IB_ODP_SUPPORT_READ,
858 	[MLX5_OPCODE_ATOMIC_CS]	       = IB_ODP_SUPPORT_ATOMIC,
859 	[MLX5_OPCODE_ATOMIC_FA]	       = IB_ODP_SUPPORT_ATOMIC,
860 };
861 
862 /*
863  * Parse initiator WQE. Advances the wqe pointer to point at the
864  * scatter-gather list, and set wqe_end to the end of the WQE.
865  */
mlx5_ib_mr_initiator_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,struct mlx5_ib_qp * qp,void ** wqe,void ** wqe_end,int wqe_length)866 static int mlx5_ib_mr_initiator_pfault_handler(
867 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
868 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
869 {
870 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
871 	u16 wqe_index = pfault->wqe.wqe_index;
872 	u32 transport_caps;
873 	struct mlx5_base_av *av;
874 	unsigned ds, opcode;
875 #if defined(DEBUG)
876 	u32 ctrl_wqe_index, ctrl_qpn;
877 #endif
878 	u32 qpn = qp->trans_qp.base.mqp.qpn;
879 
880 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
881 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
882 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
883 			    ds, wqe_length);
884 		return -EFAULT;
885 	}
886 
887 	if (ds == 0) {
888 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
889 			    wqe_index, qpn);
890 		return -EFAULT;
891 	}
892 
893 #if defined(DEBUG)
894 	ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
895 			MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
896 			MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
897 	if (wqe_index != ctrl_wqe_index) {
898 		mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
899 			    wqe_index, qpn,
900 			    ctrl_wqe_index);
901 		return -EFAULT;
902 	}
903 
904 	ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
905 		MLX5_WQE_CTRL_QPN_SHIFT;
906 	if (qpn != ctrl_qpn) {
907 		mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
908 			    wqe_index, qpn,
909 			    ctrl_qpn);
910 		return -EFAULT;
911 	}
912 #endif /* DEBUG */
913 
914 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
915 	*wqe += sizeof(*ctrl);
916 
917 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
918 		 MLX5_WQE_CTRL_OPCODE_MASK;
919 
920 	switch (qp->ibqp.qp_type) {
921 	case IB_QPT_RC:
922 		transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
923 		break;
924 	case IB_QPT_UD:
925 		transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
926 		break;
927 	default:
928 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
929 			    qp->ibqp.qp_type);
930 		return -EFAULT;
931 	}
932 
933 	if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
934 		     !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
935 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
936 			    opcode);
937 		return -EFAULT;
938 	}
939 
940 	if (qp->ibqp.qp_type != IB_QPT_RC) {
941 		av = *wqe;
942 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
943 			*wqe += sizeof(struct mlx5_av);
944 		else
945 			*wqe += sizeof(struct mlx5_base_av);
946 	}
947 
948 	switch (opcode) {
949 	case MLX5_OPCODE_RDMA_WRITE:
950 	case MLX5_OPCODE_RDMA_WRITE_IMM:
951 	case MLX5_OPCODE_RDMA_READ:
952 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
953 		break;
954 	case MLX5_OPCODE_ATOMIC_CS:
955 	case MLX5_OPCODE_ATOMIC_FA:
956 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
957 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
958 		break;
959 	}
960 
961 	return 0;
962 }
963 
964 /*
965  * Parse responder WQE. Advances the wqe pointer to point at the
966  * scatter-gather list, and set wqe_end to the end of the WQE.
967  */
mlx5_ib_mr_responder_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault,struct mlx5_ib_qp * qp,void ** wqe,void ** wqe_end,int wqe_length)968 static int mlx5_ib_mr_responder_pfault_handler(
969 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
970 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
971 {
972 	struct mlx5_ib_wq *wq = &qp->rq;
973 	int wqe_size = 1 << wq->wqe_shift;
974 
975 	if (qp->ibqp.srq) {
976 		mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
977 		return -EFAULT;
978 	}
979 
980 	if (qp->wq_sig) {
981 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
982 		return -EFAULT;
983 	}
984 
985 	if (wqe_size > wqe_length) {
986 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
987 		return -EFAULT;
988 	}
989 
990 	switch (qp->ibqp.qp_type) {
991 	case IB_QPT_RC:
992 		if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
993 		      IB_ODP_SUPPORT_RECV))
994 			goto invalid_transport_or_opcode;
995 		break;
996 	default:
997 invalid_transport_or_opcode:
998 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
999 			    qp->ibqp.qp_type);
1000 		return -EFAULT;
1001 	}
1002 
1003 	*wqe_end = *wqe + wqe_size;
1004 
1005 	return 0;
1006 }
1007 
mlx5_ib_odp_find_qp(struct mlx5_ib_dev * dev,u32 wq_num)1008 static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
1009 					      u32 wq_num)
1010 {
1011 	struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
1012 
1013 	if (!mqp) {
1014 		mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
1015 		return NULL;
1016 	}
1017 
1018 	return to_mibqp(mqp);
1019 }
1020 
mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1021 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1022 					  struct mlx5_pagefault *pfault)
1023 {
1024 	int ret;
1025 	void *wqe, *wqe_end;
1026 	u32 bytes_mapped, total_wqe_bytes;
1027 	char *buffer = NULL;
1028 	int resume_with_error = 1;
1029 	u16 wqe_index = pfault->wqe.wqe_index;
1030 	int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
1031 	struct mlx5_ib_qp *qp;
1032 
1033 	buffer = (char *)__get_free_page(GFP_KERNEL);
1034 	if (!buffer) {
1035 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1036 		goto resolve_page_fault;
1037 	}
1038 
1039 	qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
1040 	if (!qp)
1041 		goto resolve_page_fault;
1042 
1043 	ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
1044 				    PAGE_SIZE, &qp->trans_qp.base);
1045 	if (ret < 0) {
1046 		mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
1047 			    ret, wqe_index, pfault->token);
1048 		goto resolve_page_fault;
1049 	}
1050 
1051 	wqe = buffer;
1052 	if (requestor)
1053 		ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
1054 							  &wqe_end, ret);
1055 	else
1056 		ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
1057 							  &wqe_end, ret);
1058 	if (ret < 0)
1059 		goto resolve_page_fault;
1060 
1061 	if (wqe >= wqe_end) {
1062 		mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
1063 		goto resolve_page_fault;
1064 	}
1065 
1066 	ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
1067 				      &bytes_mapped, &total_wqe_bytes,
1068 				      !requestor);
1069 	if (ret == -EAGAIN) {
1070 		resume_with_error = 0;
1071 		goto resolve_page_fault;
1072 	} else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
1073 		goto resolve_page_fault;
1074 	}
1075 
1076 	resume_with_error = 0;
1077 resolve_page_fault:
1078 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1079 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1080 		    pfault->wqe.wq_num, resume_with_error,
1081 		    pfault->type);
1082 	free_page((unsigned long)buffer);
1083 }
1084 
pages_in_range(u64 address,u32 length)1085 static int pages_in_range(u64 address, u32 length)
1086 {
1087 	return (ALIGN(address + length, PAGE_SIZE) -
1088 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1089 }
1090 
mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev * dev,struct mlx5_pagefault * pfault)1091 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1092 					   struct mlx5_pagefault *pfault)
1093 {
1094 	u64 address;
1095 	u32 length;
1096 	u32 prefetch_len = pfault->bytes_committed;
1097 	int prefetch_activated = 0;
1098 	u32 rkey = pfault->rdma.r_key;
1099 	int ret;
1100 
1101 	/* The RDMA responder handler handles the page fault in two parts.
1102 	 * First it brings the necessary pages for the current packet
1103 	 * (and uses the pfault context), and then (after resuming the QP)
1104 	 * prefetches more pages. The second operation cannot use the pfault
1105 	 * context and therefore uses the dummy_pfault context allocated on
1106 	 * the stack */
1107 	pfault->rdma.rdma_va += pfault->bytes_committed;
1108 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1109 					 pfault->rdma.rdma_op_len);
1110 	pfault->bytes_committed = 0;
1111 
1112 	address = pfault->rdma.rdma_va;
1113 	length  = pfault->rdma.rdma_op_len;
1114 
1115 	/* For some operations, the hardware cannot tell the exact message
1116 	 * length, and in those cases it reports zero. Use prefetch
1117 	 * logic. */
1118 	if (length == 0) {
1119 		prefetch_activated = 1;
1120 		length = pfault->rdma.packet_size;
1121 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1122 	}
1123 
1124 	ret = pagefault_single_data_segment(dev, rkey, address, length,
1125 					    &pfault->bytes_committed, NULL);
1126 	if (ret == -EAGAIN) {
1127 		/* We're racing with an invalidation, don't prefetch */
1128 		prefetch_activated = 0;
1129 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1130 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1131 		if (ret != -ENOENT)
1132 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1133 				    ret, pfault->token, pfault->type);
1134 		return;
1135 	}
1136 
1137 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1138 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1139 		    pfault->token, pfault->type,
1140 		    prefetch_activated);
1141 
1142 	/* At this point, there might be a new pagefault already arriving in
1143 	 * the eq, switch to the dummy pagefault for the rest of the
1144 	 * processing. We're still OK with the objects being alive as the
1145 	 * work-queue is being fenced. */
1146 
1147 	if (prefetch_activated) {
1148 		u32 bytes_committed = 0;
1149 
1150 		ret = pagefault_single_data_segment(dev, rkey, address,
1151 						    prefetch_len,
1152 						    &bytes_committed, NULL);
1153 		if (ret < 0 && ret != -EAGAIN) {
1154 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1155 				    ret, pfault->token, address, prefetch_len);
1156 		}
1157 	}
1158 }
1159 
mlx5_ib_pfault(struct mlx5_core_dev * mdev,void * context,struct mlx5_pagefault * pfault)1160 void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
1161 		    struct mlx5_pagefault *pfault)
1162 {
1163 	struct mlx5_ib_dev *dev = context;
1164 	u8 event_subtype = pfault->event_subtype;
1165 
1166 	switch (event_subtype) {
1167 	case MLX5_PFAULT_SUBTYPE_WQE:
1168 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1169 		break;
1170 	case MLX5_PFAULT_SUBTYPE_RDMA:
1171 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1172 		break;
1173 	default:
1174 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1175 			    event_subtype);
1176 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1177 	}
1178 }
1179 
mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent * ent)1180 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1181 {
1182 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1183 		return;
1184 
1185 	switch (ent->order - 2) {
1186 	case MLX5_IMR_MTT_CACHE_ENTRY:
1187 		ent->page = PAGE_SHIFT;
1188 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1189 			   sizeof(struct mlx5_mtt) /
1190 			   MLX5_IB_UMR_OCTOWORD;
1191 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1192 		ent->limit = 0;
1193 		break;
1194 
1195 	case MLX5_IMR_KSM_CACHE_ENTRY:
1196 		ent->page = MLX5_KSM_PAGE_SHIFT;
1197 		ent->xlt = mlx5_imr_ksm_entries *
1198 			   sizeof(struct mlx5_klm) /
1199 			   MLX5_IB_UMR_OCTOWORD;
1200 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1201 		ent->limit = 0;
1202 		break;
1203 	}
1204 }
1205 
mlx5_ib_odp_init_one(struct mlx5_ib_dev * dev)1206 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1207 {
1208 	int ret;
1209 
1210 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1211 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1212 		if (ret) {
1213 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1214 			return ret;
1215 		}
1216 	}
1217 
1218 	return 0;
1219 }
1220 
mlx5_ib_odp_init(void)1221 int mlx5_ib_odp_init(void)
1222 {
1223 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1224 				       MLX5_IMR_MTT_BITS);
1225 
1226 	return 0;
1227 }
1228 
1229