1 /*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92 (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93 | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94 | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95 | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96 | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97 | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98 | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99 | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100 | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101 | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102 | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103 | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104 | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105 | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106 | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107 | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108 | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109 | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124 [sdma_state_s00_hw_down] = "s00_HwDown",
125 [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait",
126 [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127 [sdma_state_s20_idle] = "s20_Idle",
128 [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait",
129 [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait",
130 [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait",
131 [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait",
132 [sdma_state_s80_hw_freeze] = "s80_HwFreeze",
133 [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean",
134 [sdma_state_s99_running] = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139 [sdma_event_e00_go_hw_down] = "e00_GoHwDown",
140 [sdma_event_e10_go_hw_start] = "e10_GoHwStart",
141 [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142 [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143 [sdma_event_e30_go_running] = "e30_GoRunning",
144 [sdma_event_e40_sw_cleaned] = "e40_SwCleaned",
145 [sdma_event_e50_hw_cleaned] = "e50_HwCleaned",
146 [sdma_event_e60_hw_halted] = "e60_HwHalted",
147 [sdma_event_e70_go_idle] = "e70_GoIdle",
148 [sdma_event_e80_hw_freeze] = "e80_HwFreeze",
149 [sdma_event_e81_hw_frozen] = "e81_HwFrozen",
150 [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze",
151 [sdma_event_e85_link_down] = "e85_LinkDown",
152 [sdma_event_e90_sw_halted] = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157 [sdma_state_s00_hw_down] = {
158 .go_s99_running_tofalse = 1,
159 .op_enable = 0,
160 .op_intenable = 0,
161 .op_halt = 0,
162 .op_cleanup = 0,
163 },
164 [sdma_state_s10_hw_start_up_halt_wait] = {
165 .op_enable = 0,
166 .op_intenable = 0,
167 .op_halt = 1,
168 .op_cleanup = 0,
169 },
170 [sdma_state_s15_hw_start_up_clean_wait] = {
171 .op_enable = 0,
172 .op_intenable = 1,
173 .op_halt = 0,
174 .op_cleanup = 1,
175 },
176 [sdma_state_s20_idle] = {
177 .op_enable = 0,
178 .op_intenable = 1,
179 .op_halt = 0,
180 .op_cleanup = 0,
181 },
182 [sdma_state_s30_sw_clean_up_wait] = {
183 .op_enable = 0,
184 .op_intenable = 0,
185 .op_halt = 0,
186 .op_cleanup = 0,
187 },
188 [sdma_state_s40_hw_clean_up_wait] = {
189 .op_enable = 0,
190 .op_intenable = 0,
191 .op_halt = 0,
192 .op_cleanup = 1,
193 },
194 [sdma_state_s50_hw_halt_wait] = {
195 .op_enable = 0,
196 .op_intenable = 0,
197 .op_halt = 0,
198 .op_cleanup = 0,
199 },
200 [sdma_state_s60_idle_halt_wait] = {
201 .go_s99_running_tofalse = 1,
202 .op_enable = 0,
203 .op_intenable = 0,
204 .op_halt = 1,
205 .op_cleanup = 0,
206 },
207 [sdma_state_s80_hw_freeze] = {
208 .op_enable = 0,
209 .op_intenable = 0,
210 .op_halt = 0,
211 .op_cleanup = 0,
212 },
213 [sdma_state_s82_freeze_sw_clean] = {
214 .op_enable = 0,
215 .op_intenable = 0,
216 .op_halt = 0,
217 .op_cleanup = 0,
218 },
219 [sdma_state_s99_running] = {
220 .op_enable = 1,
221 .op_intenable = 1,
222 .op_halt = 0,
223 .op_cleanup = 0,
224 .go_s99_running_totrue = 1,
225 },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242 struct sdma_engine *sde,
243 enum sdma_events event);
244 static void __sdma_process_event(
245 struct sdma_engine *sde,
246 enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253 * sdma_state_name() - return state string from enum
254 * @state: state
255 */
sdma_state_name(enum sdma_states state)256 static const char *sdma_state_name(enum sdma_states state)
257 {
258 return sdma_state_names[state];
259 }
260
sdma_get(struct sdma_state * ss)261 static void sdma_get(struct sdma_state *ss)
262 {
263 kref_get(&ss->kref);
264 }
265
sdma_complete(struct kref * kref)266 static void sdma_complete(struct kref *kref)
267 {
268 struct sdma_state *ss =
269 container_of(kref, struct sdma_state, kref);
270
271 complete(&ss->comp);
272 }
273
sdma_put(struct sdma_state * ss)274 static void sdma_put(struct sdma_state *ss)
275 {
276 kref_put(&ss->kref, sdma_complete);
277 }
278
sdma_finalput(struct sdma_state * ss)279 static void sdma_finalput(struct sdma_state *ss)
280 {
281 sdma_put(ss);
282 wait_for_completion(&ss->comp);
283 }
284
write_sde_csr(struct sdma_engine * sde,u32 offset0,u64 value)285 static inline void write_sde_csr(
286 struct sdma_engine *sde,
287 u32 offset0,
288 u64 value)
289 {
290 write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
read_sde_csr(struct sdma_engine * sde,u32 offset0)293 static inline u64 read_sde_csr(
294 struct sdma_engine *sde,
295 u32 offset0)
296 {
297 return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302 * sdma engine 'sde' to drop to 0.
303 */
sdma_wait_for_packet_egress(struct sdma_engine * sde,int pause)304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305 int pause)
306 {
307 u64 off = 8 * sde->this_idx;
308 struct hfi1_devdata *dd = sde->dd;
309 int lcnt = 0;
310 u64 reg_prev;
311 u64 reg = 0;
312
313 while (1) {
314 reg_prev = reg;
315 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319 if (reg == 0)
320 break;
321 /* counter is reest if accupancy count changes */
322 if (reg != reg_prev)
323 lcnt = 0;
324 if (lcnt++ > 500) {
325 /* timed out - bounce the link */
326 dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327 __func__, sde->this_idx, (u32)reg);
328 queue_work(dd->pport->link_wq,
329 &dd->pport->link_bounce_work);
330 break;
331 }
332 udelay(1);
333 }
334 }
335
336 /*
337 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338 * and pause for credit return.
339 */
sdma_wait(struct hfi1_devdata * dd)340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342 int i;
343
344 for (i = 0; i < dd->num_sdma; i++) {
345 struct sdma_engine *sde = &dd->per_sdma[i];
346
347 sdma_wait_for_packet_egress(sde, 0);
348 }
349 }
350
sdma_set_desc_cnt(struct sdma_engine * sde,unsigned cnt)351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353 u64 reg;
354
355 if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356 return;
357 reg = cnt;
358 reg &= SD(DESC_CNT_CNT_MASK);
359 reg <<= SD(DESC_CNT_CNT_SHIFT);
360 write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
complete_tx(struct sdma_engine * sde,struct sdma_txreq * tx,int res)363 static inline void complete_tx(struct sdma_engine *sde,
364 struct sdma_txreq *tx,
365 int res)
366 {
367 /* protect against complete modifying */
368 struct iowait *wait = tx->wait;
369 callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372 trace_hfi1_sdma_out_sn(sde, tx->sn);
373 if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375 sde->head_sn, tx->sn);
376 sde->head_sn++;
377 #endif
378 __sdma_txclean(sde->dd, tx);
379 if (complete)
380 (*complete)(tx, res);
381 if (wait && iowait_sdma_dec(wait))
382 iowait_drain_wakeup(wait);
383 }
384
385 /*
386 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387 *
388 * Depending on timing there can be txreqs in two places:
389 * - in the descq ring
390 * - in the flush list
391 *
392 * To avoid ordering issues the descq ring needs to be flushed
393 * first followed by the flush list.
394 *
395 * This routine is called from two places
396 * - From a work queue item
397 * - Directly from the state machine just before setting the
398 * state to running
399 *
400 * Must be called with head_lock held
401 *
402 */
sdma_flush(struct sdma_engine * sde)403 static void sdma_flush(struct sdma_engine *sde)
404 {
405 struct sdma_txreq *txp, *txp_next;
406 LIST_HEAD(flushlist);
407 unsigned long flags;
408
409 /* flush from head to tail */
410 sdma_flush_descq(sde);
411 spin_lock_irqsave(&sde->flushlist_lock, flags);
412 /* copy flush list */
413 list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414 list_del_init(&txp->list);
415 list_add_tail(&txp->list, &flushlist);
416 }
417 spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418 /* flush from flush list */
419 list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 }
422
423 /*
424 * Fields a work request for flushing the descq ring
425 * and the flush list
426 *
427 * If the engine has been brought to running during
428 * the scheduling delay, the flush is ignored, assuming
429 * that the process of bringing the engine to running
430 * would have done this flush prior to going to running.
431 *
432 */
sdma_field_flush(struct work_struct * work)433 static void sdma_field_flush(struct work_struct *work)
434 {
435 unsigned long flags;
436 struct sdma_engine *sde =
437 container_of(work, struct sdma_engine, flush_worker);
438
439 write_seqlock_irqsave(&sde->head_lock, flags);
440 if (!__sdma_running(sde))
441 sdma_flush(sde);
442 write_sequnlock_irqrestore(&sde->head_lock, flags);
443 }
444
sdma_err_halt_wait(struct work_struct * work)445 static void sdma_err_halt_wait(struct work_struct *work)
446 {
447 struct sdma_engine *sde = container_of(work, struct sdma_engine,
448 err_halt_worker);
449 u64 statuscsr;
450 unsigned long timeout;
451
452 timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453 while (1) {
454 statuscsr = read_sde_csr(sde, SD(STATUS));
455 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456 if (statuscsr)
457 break;
458 if (time_after(jiffies, timeout)) {
459 dd_dev_err(sde->dd,
460 "SDMA engine %d - timeout waiting for engine to halt\n",
461 sde->this_idx);
462 /*
463 * Continue anyway. This could happen if there was
464 * an uncorrectable error in the wrong spot.
465 */
466 break;
467 }
468 usleep_range(80, 120);
469 }
470
471 sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472 }
473
sdma_err_progress_check_schedule(struct sdma_engine * sde)474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475 {
476 if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477 unsigned index;
478 struct hfi1_devdata *dd = sde->dd;
479
480 for (index = 0; index < dd->num_sdma; index++) {
481 struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483 if (curr_sdma != sde)
484 curr_sdma->progress_check_head =
485 curr_sdma->descq_head;
486 }
487 dd_dev_err(sde->dd,
488 "SDMA engine %d - check scheduled\n",
489 sde->this_idx);
490 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491 }
492 }
493
sdma_err_progress_check(struct timer_list * t)494 static void sdma_err_progress_check(struct timer_list *t)
495 {
496 unsigned index;
497 struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
498
499 dd_dev_err(sde->dd, "SDE progress check event\n");
500 for (index = 0; index < sde->dd->num_sdma; index++) {
501 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502 unsigned long flags;
503
504 /* check progress on each engine except the current one */
505 if (curr_sde == sde)
506 continue;
507 /*
508 * We must lock interrupts when acquiring sde->lock,
509 * to avoid a deadlock if interrupt triggers and spins on
510 * the same lock on same CPU
511 */
512 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513 write_seqlock(&curr_sde->head_lock);
514
515 /* skip non-running queues */
516 if (curr_sde->state.current_state != sdma_state_s99_running) {
517 write_sequnlock(&curr_sde->head_lock);
518 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519 continue;
520 }
521
522 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523 (curr_sde->descq_head ==
524 curr_sde->progress_check_head))
525 __sdma_process_event(curr_sde,
526 sdma_event_e90_sw_halted);
527 write_sequnlock(&curr_sde->head_lock);
528 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529 }
530 schedule_work(&sde->err_halt_worker);
531 }
532
sdma_hw_clean_up_task(unsigned long opaque)533 static void sdma_hw_clean_up_task(unsigned long opaque)
534 {
535 struct sdma_engine *sde = (struct sdma_engine *)opaque;
536 u64 statuscsr;
537
538 while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541 sde->this_idx, slashstrip(__FILE__), __LINE__,
542 __func__);
543 #endif
544 statuscsr = read_sde_csr(sde, SD(STATUS));
545 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546 if (statuscsr)
547 break;
548 udelay(10);
549 }
550
551 sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552 }
553
get_txhead(struct sdma_engine * sde)554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555 {
556 return sde->tx_ring[sde->tx_head & sde->sdma_mask];
557 }
558
559 /*
560 * flush ring for recovery
561 */
sdma_flush_descq(struct sdma_engine * sde)562 static void sdma_flush_descq(struct sdma_engine *sde)
563 {
564 u16 head, tail;
565 int progress = 0;
566 struct sdma_txreq *txp = get_txhead(sde);
567
568 /* The reason for some of the complexity of this code is that
569 * not all descriptors have corresponding txps. So, we have to
570 * be able to skip over descs until we wander into the range of
571 * the next txp on the list.
572 */
573 head = sde->descq_head & sde->sdma_mask;
574 tail = sde->descq_tail & sde->sdma_mask;
575 while (head != tail) {
576 /* advance head, wrap if needed */
577 head = ++sde->descq_head & sde->sdma_mask;
578 /* if now past this txp's descs, do the callback */
579 if (txp && txp->next_descq_idx == head) {
580 /* remove from list */
581 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
582 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
583 trace_hfi1_sdma_progress(sde, head, tail, txp);
584 txp = get_txhead(sde);
585 }
586 progress++;
587 }
588 if (progress)
589 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
590 }
591
sdma_sw_clean_up_task(unsigned long opaque)592 static void sdma_sw_clean_up_task(unsigned long opaque)
593 {
594 struct sdma_engine *sde = (struct sdma_engine *)opaque;
595 unsigned long flags;
596
597 spin_lock_irqsave(&sde->tail_lock, flags);
598 write_seqlock(&sde->head_lock);
599
600 /*
601 * At this point, the following should always be true:
602 * - We are halted, so no more descriptors are getting retired.
603 * - We are not running, so no one is submitting new work.
604 * - Only we can send the e40_sw_cleaned, so we can't start
605 * running again until we say so. So, the active list and
606 * descq are ours to play with.
607 */
608
609 /*
610 * In the error clean up sequence, software clean must be called
611 * before the hardware clean so we can use the hardware head in
612 * the progress routine. A hardware clean or SPC unfreeze will
613 * reset the hardware head.
614 *
615 * Process all retired requests. The progress routine will use the
616 * latest physical hardware head - we are not running so speed does
617 * not matter.
618 */
619 sdma_make_progress(sde, 0);
620
621 sdma_flush(sde);
622
623 /*
624 * Reset our notion of head and tail.
625 * Note that the HW registers have been reset via an earlier
626 * clean up.
627 */
628 sde->descq_tail = 0;
629 sde->descq_head = 0;
630 sde->desc_avail = sdma_descq_freecnt(sde);
631 *sde->head_dma = 0;
632
633 __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
634
635 write_sequnlock(&sde->head_lock);
636 spin_unlock_irqrestore(&sde->tail_lock, flags);
637 }
638
sdma_sw_tear_down(struct sdma_engine * sde)639 static void sdma_sw_tear_down(struct sdma_engine *sde)
640 {
641 struct sdma_state *ss = &sde->state;
642
643 /* Releasing this reference means the state machine has stopped. */
644 sdma_put(ss);
645
646 /* stop waiting for all unfreeze events to complete */
647 atomic_set(&sde->dd->sdma_unfreeze_count, -1);
648 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
649 }
650
sdma_start_hw_clean_up(struct sdma_engine * sde)651 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
652 {
653 tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
654 }
655
sdma_set_state(struct sdma_engine * sde,enum sdma_states next_state)656 static void sdma_set_state(struct sdma_engine *sde,
657 enum sdma_states next_state)
658 {
659 struct sdma_state *ss = &sde->state;
660 const struct sdma_set_state_action *action = sdma_action_table;
661 unsigned op = 0;
662
663 trace_hfi1_sdma_state(
664 sde,
665 sdma_state_names[ss->current_state],
666 sdma_state_names[next_state]);
667
668 /* debugging bookkeeping */
669 ss->previous_state = ss->current_state;
670 ss->previous_op = ss->current_op;
671 ss->current_state = next_state;
672
673 if (ss->previous_state != sdma_state_s99_running &&
674 next_state == sdma_state_s99_running)
675 sdma_flush(sde);
676
677 if (action[next_state].op_enable)
678 op |= SDMA_SENDCTRL_OP_ENABLE;
679
680 if (action[next_state].op_intenable)
681 op |= SDMA_SENDCTRL_OP_INTENABLE;
682
683 if (action[next_state].op_halt)
684 op |= SDMA_SENDCTRL_OP_HALT;
685
686 if (action[next_state].op_cleanup)
687 op |= SDMA_SENDCTRL_OP_CLEANUP;
688
689 if (action[next_state].go_s99_running_tofalse)
690 ss->go_s99_running = 0;
691
692 if (action[next_state].go_s99_running_totrue)
693 ss->go_s99_running = 1;
694
695 ss->current_op = op;
696 sdma_sendctrl(sde, ss->current_op);
697 }
698
699 /**
700 * sdma_get_descq_cnt() - called when device probed
701 *
702 * Return a validated descq count.
703 *
704 * This is currently only used in the verbs initialization to build the tx
705 * list.
706 *
707 * This will probably be deleted in favor of a more scalable approach to
708 * alloc tx's.
709 *
710 */
sdma_get_descq_cnt(void)711 u16 sdma_get_descq_cnt(void)
712 {
713 u16 count = sdma_descq_cnt;
714
715 if (!count)
716 return SDMA_DESCQ_CNT;
717 /* count must be a power of 2 greater than 64 and less than
718 * 32768. Otherwise return default.
719 */
720 if (!is_power_of_2(count))
721 return SDMA_DESCQ_CNT;
722 if (count < 64 || count > 32768)
723 return SDMA_DESCQ_CNT;
724 return count;
725 }
726
727 /**
728 * sdma_engine_get_vl() - return vl for a given sdma engine
729 * @sde: sdma engine
730 *
731 * This function returns the vl mapped to a given engine, or an error if
732 * the mapping can't be found. The mapping fields are protected by RCU.
733 */
sdma_engine_get_vl(struct sdma_engine * sde)734 int sdma_engine_get_vl(struct sdma_engine *sde)
735 {
736 struct hfi1_devdata *dd = sde->dd;
737 struct sdma_vl_map *m;
738 u8 vl;
739
740 if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
741 return -EINVAL;
742
743 rcu_read_lock();
744 m = rcu_dereference(dd->sdma_map);
745 if (unlikely(!m)) {
746 rcu_read_unlock();
747 return -EINVAL;
748 }
749 vl = m->engine_to_vl[sde->this_idx];
750 rcu_read_unlock();
751
752 return vl;
753 }
754
755 /**
756 * sdma_select_engine_vl() - select sdma engine
757 * @dd: devdata
758 * @selector: a spreading factor
759 * @vl: this vl
760 *
761 *
762 * This function returns an engine based on the selector and a vl. The
763 * mapping fields are protected by RCU.
764 */
sdma_select_engine_vl(struct hfi1_devdata * dd,u32 selector,u8 vl)765 struct sdma_engine *sdma_select_engine_vl(
766 struct hfi1_devdata *dd,
767 u32 selector,
768 u8 vl)
769 {
770 struct sdma_vl_map *m;
771 struct sdma_map_elem *e;
772 struct sdma_engine *rval;
773
774 /* NOTE This should only happen if SC->VL changed after the initial
775 * checks on the QP/AH
776 * Default will return engine 0 below
777 */
778 if (vl >= num_vls) {
779 rval = NULL;
780 goto done;
781 }
782
783 rcu_read_lock();
784 m = rcu_dereference(dd->sdma_map);
785 if (unlikely(!m)) {
786 rcu_read_unlock();
787 return &dd->per_sdma[0];
788 }
789 e = m->map[vl & m->mask];
790 rval = e->sde[selector & e->mask];
791 rcu_read_unlock();
792
793 done:
794 rval = !rval ? &dd->per_sdma[0] : rval;
795 trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
796 return rval;
797 }
798
799 /**
800 * sdma_select_engine_sc() - select sdma engine
801 * @dd: devdata
802 * @selector: a spreading factor
803 * @sc5: the 5 bit sc
804 *
805 *
806 * This function returns an engine based on the selector and an sc.
807 */
sdma_select_engine_sc(struct hfi1_devdata * dd,u32 selector,u8 sc5)808 struct sdma_engine *sdma_select_engine_sc(
809 struct hfi1_devdata *dd,
810 u32 selector,
811 u8 sc5)
812 {
813 u8 vl = sc_to_vlt(dd, sc5);
814
815 return sdma_select_engine_vl(dd, selector, vl);
816 }
817
818 struct sdma_rht_map_elem {
819 u32 mask;
820 u8 ctr;
821 struct sdma_engine *sde[0];
822 };
823
824 struct sdma_rht_node {
825 unsigned long cpu_id;
826 struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
827 struct rhash_head node;
828 };
829
830 #define NR_CPUS_HINT 192
831
832 static const struct rhashtable_params sdma_rht_params = {
833 .nelem_hint = NR_CPUS_HINT,
834 .head_offset = offsetof(struct sdma_rht_node, node),
835 .key_offset = offsetof(struct sdma_rht_node, cpu_id),
836 .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
837 .max_size = NR_CPUS,
838 .min_size = 8,
839 .automatic_shrinking = true,
840 };
841
842 /*
843 * sdma_select_user_engine() - select sdma engine based on user setup
844 * @dd: devdata
845 * @selector: a spreading factor
846 * @vl: this vl
847 *
848 * This function returns an sdma engine for a user sdma request.
849 * User defined sdma engine affinity setting is honored when applicable,
850 * otherwise system default sdma engine mapping is used. To ensure correct
851 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
852 */
sdma_select_user_engine(struct hfi1_devdata * dd,u32 selector,u8 vl)853 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
854 u32 selector, u8 vl)
855 {
856 struct sdma_rht_node *rht_node;
857 struct sdma_engine *sde = NULL;
858 const struct cpumask *current_mask = ¤t->cpus_allowed;
859 unsigned long cpu_id;
860
861 /*
862 * To ensure that always the same sdma engine(s) will be
863 * selected make sure the process is pinned to this CPU only.
864 */
865 if (cpumask_weight(current_mask) != 1)
866 goto out;
867
868 cpu_id = smp_processor_id();
869 rcu_read_lock();
870 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
871 sdma_rht_params);
872
873 if (rht_node && rht_node->map[vl]) {
874 struct sdma_rht_map_elem *map = rht_node->map[vl];
875
876 sde = map->sde[selector & map->mask];
877 }
878 rcu_read_unlock();
879
880 if (sde)
881 return sde;
882
883 out:
884 return sdma_select_engine_vl(dd, selector, vl);
885 }
886
sdma_populate_sde_map(struct sdma_rht_map_elem * map)887 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
888 {
889 int i;
890
891 for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
892 map->sde[map->ctr + i] = map->sde[i];
893 }
894
sdma_cleanup_sde_map(struct sdma_rht_map_elem * map,struct sdma_engine * sde)895 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
896 struct sdma_engine *sde)
897 {
898 unsigned int i, pow;
899
900 /* only need to check the first ctr entries for a match */
901 for (i = 0; i < map->ctr; i++) {
902 if (map->sde[i] == sde) {
903 memmove(&map->sde[i], &map->sde[i + 1],
904 (map->ctr - i - 1) * sizeof(map->sde[0]));
905 map->ctr--;
906 pow = roundup_pow_of_two(map->ctr ? : 1);
907 map->mask = pow - 1;
908 sdma_populate_sde_map(map);
909 break;
910 }
911 }
912 }
913
914 /*
915 * Prevents concurrent reads and writes of the sdma engine cpu_mask
916 */
917 static DEFINE_MUTEX(process_to_sde_mutex);
918
sdma_set_cpu_to_sde_map(struct sdma_engine * sde,const char * buf,size_t count)919 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
920 size_t count)
921 {
922 struct hfi1_devdata *dd = sde->dd;
923 cpumask_var_t mask, new_mask;
924 unsigned long cpu;
925 int ret, vl, sz;
926 struct sdma_rht_node *rht_node;
927
928 vl = sdma_engine_get_vl(sde);
929 if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
930 return -EINVAL;
931
932 ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933 if (!ret)
934 return -ENOMEM;
935
936 ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
937 if (!ret) {
938 free_cpumask_var(mask);
939 return -ENOMEM;
940 }
941 ret = cpulist_parse(buf, mask);
942 if (ret)
943 goto out_free;
944
945 if (!cpumask_subset(mask, cpu_online_mask)) {
946 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
947 ret = -EINVAL;
948 goto out_free;
949 }
950
951 sz = sizeof(struct sdma_rht_map_elem) +
952 (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953
954 mutex_lock(&process_to_sde_mutex);
955
956 for_each_cpu(cpu, mask) {
957 /* Check if we have this already mapped */
958 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
959 cpumask_set_cpu(cpu, new_mask);
960 continue;
961 }
962
963 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
964 sdma_rht_params);
965 if (!rht_node) {
966 rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
967 if (!rht_node) {
968 ret = -ENOMEM;
969 goto out;
970 }
971
972 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
973 if (!rht_node->map[vl]) {
974 kfree(rht_node);
975 ret = -ENOMEM;
976 goto out;
977 }
978 rht_node->cpu_id = cpu;
979 rht_node->map[vl]->mask = 0;
980 rht_node->map[vl]->ctr = 1;
981 rht_node->map[vl]->sde[0] = sde;
982
983 ret = rhashtable_insert_fast(dd->sdma_rht,
984 &rht_node->node,
985 sdma_rht_params);
986 if (ret) {
987 kfree(rht_node->map[vl]);
988 kfree(rht_node);
989 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
990 cpu);
991 goto out;
992 }
993
994 } else {
995 int ctr, pow;
996
997 /* Add new user mappings */
998 if (!rht_node->map[vl])
999 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1000
1001 if (!rht_node->map[vl]) {
1002 ret = -ENOMEM;
1003 goto out;
1004 }
1005
1006 rht_node->map[vl]->ctr++;
1007 ctr = rht_node->map[vl]->ctr;
1008 rht_node->map[vl]->sde[ctr - 1] = sde;
1009 pow = roundup_pow_of_two(ctr);
1010 rht_node->map[vl]->mask = pow - 1;
1011
1012 /* Populate the sde map table */
1013 sdma_populate_sde_map(rht_node->map[vl]);
1014 }
1015 cpumask_set_cpu(cpu, new_mask);
1016 }
1017
1018 /* Clean up old mappings */
1019 for_each_cpu(cpu, cpu_online_mask) {
1020 struct sdma_rht_node *rht_node;
1021
1022 /* Don't cleanup sdes that are set in the new mask */
1023 if (cpumask_test_cpu(cpu, mask))
1024 continue;
1025
1026 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1027 sdma_rht_params);
1028 if (rht_node) {
1029 bool empty = true;
1030 int i;
1031
1032 /* Remove mappings for old sde */
1033 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1034 if (rht_node->map[i])
1035 sdma_cleanup_sde_map(rht_node->map[i],
1036 sde);
1037
1038 /* Free empty hash table entries */
1039 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1040 if (!rht_node->map[i])
1041 continue;
1042
1043 if (rht_node->map[i]->ctr) {
1044 empty = false;
1045 break;
1046 }
1047 }
1048
1049 if (empty) {
1050 ret = rhashtable_remove_fast(dd->sdma_rht,
1051 &rht_node->node,
1052 sdma_rht_params);
1053 WARN_ON(ret);
1054
1055 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1056 kfree(rht_node->map[i]);
1057
1058 kfree(rht_node);
1059 }
1060 }
1061 }
1062
1063 cpumask_copy(&sde->cpu_mask, new_mask);
1064 out:
1065 mutex_unlock(&process_to_sde_mutex);
1066 out_free:
1067 free_cpumask_var(mask);
1068 free_cpumask_var(new_mask);
1069 return ret ? : strnlen(buf, PAGE_SIZE);
1070 }
1071
sdma_get_cpu_to_sde_map(struct sdma_engine * sde,char * buf)1072 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1073 {
1074 mutex_lock(&process_to_sde_mutex);
1075 if (cpumask_empty(&sde->cpu_mask))
1076 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1077 else
1078 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1079 mutex_unlock(&process_to_sde_mutex);
1080 return strnlen(buf, PAGE_SIZE);
1081 }
1082
sdma_rht_free(void * ptr,void * arg)1083 static void sdma_rht_free(void *ptr, void *arg)
1084 {
1085 struct sdma_rht_node *rht_node = ptr;
1086 int i;
1087
1088 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1089 kfree(rht_node->map[i]);
1090
1091 kfree(rht_node);
1092 }
1093
1094 /**
1095 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1096 * @s: seq file
1097 * @dd: hfi1_devdata
1098 * @cpuid: cpu id
1099 *
1100 * This routine dumps the process to sde mappings per cpu
1101 */
sdma_seqfile_dump_cpu_list(struct seq_file * s,struct hfi1_devdata * dd,unsigned long cpuid)1102 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1103 struct hfi1_devdata *dd,
1104 unsigned long cpuid)
1105 {
1106 struct sdma_rht_node *rht_node;
1107 int i, j;
1108
1109 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1110 sdma_rht_params);
1111 if (!rht_node)
1112 return;
1113
1114 seq_printf(s, "cpu%3lu: ", cpuid);
1115 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1116 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1117 continue;
1118
1119 seq_printf(s, " vl%d: [", i);
1120
1121 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1122 if (!rht_node->map[i]->sde[j])
1123 continue;
1124
1125 if (j > 0)
1126 seq_puts(s, ",");
1127
1128 seq_printf(s, " sdma%2d",
1129 rht_node->map[i]->sde[j]->this_idx);
1130 }
1131 seq_puts(s, " ]");
1132 }
1133
1134 seq_puts(s, "\n");
1135 }
1136
1137 /*
1138 * Free the indicated map struct
1139 */
sdma_map_free(struct sdma_vl_map * m)1140 static void sdma_map_free(struct sdma_vl_map *m)
1141 {
1142 int i;
1143
1144 for (i = 0; m && i < m->actual_vls; i++)
1145 kfree(m->map[i]);
1146 kfree(m);
1147 }
1148
1149 /*
1150 * Handle RCU callback
1151 */
sdma_map_rcu_callback(struct rcu_head * list)1152 static void sdma_map_rcu_callback(struct rcu_head *list)
1153 {
1154 struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1155
1156 sdma_map_free(m);
1157 }
1158
1159 /**
1160 * sdma_map_init - called when # vls change
1161 * @dd: hfi1_devdata
1162 * @port: port number
1163 * @num_vls: number of vls
1164 * @vl_engines: per vl engine mapping (optional)
1165 *
1166 * This routine changes the mapping based on the number of vls.
1167 *
1168 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1169 * implies auto computing the loading and giving each VLs a uniform
1170 * distribution of engines per VL.
1171 *
1172 * The auto algorithm computes the sde_per_vl and the number of extra
1173 * engines. Any extra engines are added from the last VL on down.
1174 *
1175 * rcu locking is used here to control access to the mapping fields.
1176 *
1177 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1178 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1179 * up to the next highest power of 2 and the first entry is reused
1180 * in a round robin fashion.
1181 *
1182 * If an error occurs the map change is not done and the mapping is
1183 * not changed.
1184 *
1185 */
sdma_map_init(struct hfi1_devdata * dd,u8 port,u8 num_vls,u8 * vl_engines)1186 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1187 {
1188 int i, j;
1189 int extra, sde_per_vl;
1190 int engine = 0;
1191 u8 lvl_engines[OPA_MAX_VLS];
1192 struct sdma_vl_map *oldmap, *newmap;
1193
1194 if (!(dd->flags & HFI1_HAS_SEND_DMA))
1195 return 0;
1196
1197 if (!vl_engines) {
1198 /* truncate divide */
1199 sde_per_vl = dd->num_sdma / num_vls;
1200 /* extras */
1201 extra = dd->num_sdma % num_vls;
1202 vl_engines = lvl_engines;
1203 /* add extras from last vl down */
1204 for (i = num_vls - 1; i >= 0; i--, extra--)
1205 vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1206 }
1207 /* build new map */
1208 newmap = kzalloc(
1209 sizeof(struct sdma_vl_map) +
1210 roundup_pow_of_two(num_vls) *
1211 sizeof(struct sdma_map_elem *),
1212 GFP_KERNEL);
1213 if (!newmap)
1214 goto bail;
1215 newmap->actual_vls = num_vls;
1216 newmap->vls = roundup_pow_of_two(num_vls);
1217 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1218 /* initialize back-map */
1219 for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1220 newmap->engine_to_vl[i] = -1;
1221 for (i = 0; i < newmap->vls; i++) {
1222 /* save for wrap around */
1223 int first_engine = engine;
1224
1225 if (i < newmap->actual_vls) {
1226 int sz = roundup_pow_of_two(vl_engines[i]);
1227
1228 /* only allocate once */
1229 newmap->map[i] = kzalloc(
1230 sizeof(struct sdma_map_elem) +
1231 sz * sizeof(struct sdma_engine *),
1232 GFP_KERNEL);
1233 if (!newmap->map[i])
1234 goto bail;
1235 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1236 /* assign engines */
1237 for (j = 0; j < sz; j++) {
1238 newmap->map[i]->sde[j] =
1239 &dd->per_sdma[engine];
1240 if (++engine >= first_engine + vl_engines[i])
1241 /* wrap back to first engine */
1242 engine = first_engine;
1243 }
1244 /* assign back-map */
1245 for (j = 0; j < vl_engines[i]; j++)
1246 newmap->engine_to_vl[first_engine + j] = i;
1247 } else {
1248 /* just re-use entry without allocating */
1249 newmap->map[i] = newmap->map[i % num_vls];
1250 }
1251 engine = first_engine + vl_engines[i];
1252 }
1253 /* newmap in hand, save old map */
1254 spin_lock_irq(&dd->sde_map_lock);
1255 oldmap = rcu_dereference_protected(dd->sdma_map,
1256 lockdep_is_held(&dd->sde_map_lock));
1257
1258 /* publish newmap */
1259 rcu_assign_pointer(dd->sdma_map, newmap);
1260
1261 spin_unlock_irq(&dd->sde_map_lock);
1262 /* success, free any old map after grace period */
1263 if (oldmap)
1264 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1265 return 0;
1266 bail:
1267 /* free any partial allocation */
1268 sdma_map_free(newmap);
1269 return -ENOMEM;
1270 }
1271
1272 /**
1273 * sdma_clean() Clean up allocated memory
1274 * @dd: struct hfi1_devdata
1275 * @num_engines: num sdma engines
1276 *
1277 * This routine can be called regardless of the success of
1278 * sdma_init()
1279 */
sdma_clean(struct hfi1_devdata * dd,size_t num_engines)1280 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1281 {
1282 size_t i;
1283 struct sdma_engine *sde;
1284
1285 if (dd->sdma_pad_dma) {
1286 dma_free_coherent(&dd->pcidev->dev, 4,
1287 (void *)dd->sdma_pad_dma,
1288 dd->sdma_pad_phys);
1289 dd->sdma_pad_dma = NULL;
1290 dd->sdma_pad_phys = 0;
1291 }
1292 if (dd->sdma_heads_dma) {
1293 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1294 (void *)dd->sdma_heads_dma,
1295 dd->sdma_heads_phys);
1296 dd->sdma_heads_dma = NULL;
1297 dd->sdma_heads_phys = 0;
1298 }
1299 for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1300 sde = &dd->per_sdma[i];
1301
1302 sde->head_dma = NULL;
1303 sde->head_phys = 0;
1304
1305 if (sde->descq) {
1306 dma_free_coherent(
1307 &dd->pcidev->dev,
1308 sde->descq_cnt * sizeof(u64[2]),
1309 sde->descq,
1310 sde->descq_phys
1311 );
1312 sde->descq = NULL;
1313 sde->descq_phys = 0;
1314 }
1315 kvfree(sde->tx_ring);
1316 sde->tx_ring = NULL;
1317 }
1318 spin_lock_irq(&dd->sde_map_lock);
1319 sdma_map_free(rcu_access_pointer(dd->sdma_map));
1320 RCU_INIT_POINTER(dd->sdma_map, NULL);
1321 spin_unlock_irq(&dd->sde_map_lock);
1322 synchronize_rcu();
1323 kfree(dd->per_sdma);
1324 dd->per_sdma = NULL;
1325
1326 if (dd->sdma_rht) {
1327 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1328 kfree(dd->sdma_rht);
1329 dd->sdma_rht = NULL;
1330 }
1331 }
1332
1333 /**
1334 * sdma_init() - called when device probed
1335 * @dd: hfi1_devdata
1336 * @port: port number (currently only zero)
1337 *
1338 * Initializes each sde and its csrs.
1339 * Interrupts are not required to be enabled.
1340 *
1341 * Returns:
1342 * 0 - success, -errno on failure
1343 */
sdma_init(struct hfi1_devdata * dd,u8 port)1344 int sdma_init(struct hfi1_devdata *dd, u8 port)
1345 {
1346 unsigned this_idx;
1347 struct sdma_engine *sde;
1348 struct rhashtable *tmp_sdma_rht;
1349 u16 descq_cnt;
1350 void *curr_head;
1351 struct hfi1_pportdata *ppd = dd->pport + port;
1352 u32 per_sdma_credits;
1353 uint idle_cnt = sdma_idle_cnt;
1354 size_t num_engines = chip_sdma_engines(dd);
1355 int ret = -ENOMEM;
1356
1357 if (!HFI1_CAP_IS_KSET(SDMA)) {
1358 HFI1_CAP_CLEAR(SDMA_AHG);
1359 return 0;
1360 }
1361 if (mod_num_sdma &&
1362 /* can't exceed chip support */
1363 mod_num_sdma <= chip_sdma_engines(dd) &&
1364 /* count must be >= vls */
1365 mod_num_sdma >= num_vls)
1366 num_engines = mod_num_sdma;
1367
1368 dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1369 dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1370 dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1371 chip_sdma_mem_size(dd));
1372
1373 per_sdma_credits =
1374 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1375
1376 /* set up freeze waitqueue */
1377 init_waitqueue_head(&dd->sdma_unfreeze_wq);
1378 atomic_set(&dd->sdma_unfreeze_count, 0);
1379
1380 descq_cnt = sdma_get_descq_cnt();
1381 dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1382 num_engines, descq_cnt);
1383
1384 /* alloc memory for array of send engines */
1385 dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1386 GFP_KERNEL, dd->node);
1387 if (!dd->per_sdma)
1388 return ret;
1389
1390 idle_cnt = ns_to_cclock(dd, idle_cnt);
1391 if (idle_cnt)
1392 dd->default_desc1 =
1393 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1394 else
1395 dd->default_desc1 =
1396 SDMA_DESC1_INT_REQ_FLAG;
1397
1398 if (!sdma_desct_intr)
1399 sdma_desct_intr = SDMA_DESC_INTR;
1400
1401 /* Allocate memory for SendDMA descriptor FIFOs */
1402 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1403 sde = &dd->per_sdma[this_idx];
1404 sde->dd = dd;
1405 sde->ppd = ppd;
1406 sde->this_idx = this_idx;
1407 sde->descq_cnt = descq_cnt;
1408 sde->desc_avail = sdma_descq_freecnt(sde);
1409 sde->sdma_shift = ilog2(descq_cnt);
1410 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1411
1412 /* Create a mask specifically for each interrupt source */
1413 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1414 this_idx);
1415 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1416 this_idx);
1417 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1418 this_idx);
1419 /* Create a combined mask to cover all 3 interrupt sources */
1420 sde->imask = sde->int_mask | sde->progress_mask |
1421 sde->idle_mask;
1422
1423 spin_lock_init(&sde->tail_lock);
1424 seqlock_init(&sde->head_lock);
1425 spin_lock_init(&sde->senddmactrl_lock);
1426 spin_lock_init(&sde->flushlist_lock);
1427 /* insure there is always a zero bit */
1428 sde->ahg_bits = 0xfffffffe00000000ULL;
1429
1430 sdma_set_state(sde, sdma_state_s00_hw_down);
1431
1432 /* set up reference counting */
1433 kref_init(&sde->state.kref);
1434 init_completion(&sde->state.comp);
1435
1436 INIT_LIST_HEAD(&sde->flushlist);
1437 INIT_LIST_HEAD(&sde->dmawait);
1438
1439 sde->tail_csr =
1440 get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1441
1442 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1443 (unsigned long)sde);
1444
1445 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1446 (unsigned long)sde);
1447 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1448 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1449
1450 sde->progress_check_head = 0;
1451
1452 timer_setup(&sde->err_progress_check_timer,
1453 sdma_err_progress_check, 0);
1454
1455 sde->descq = dma_zalloc_coherent(
1456 &dd->pcidev->dev,
1457 descq_cnt * sizeof(u64[2]),
1458 &sde->descq_phys,
1459 GFP_KERNEL
1460 );
1461 if (!sde->descq)
1462 goto bail;
1463 sde->tx_ring =
1464 kvzalloc_node(array_size(descq_cnt,
1465 sizeof(struct sdma_txreq *)),
1466 GFP_KERNEL, dd->node);
1467 if (!sde->tx_ring)
1468 goto bail;
1469 }
1470
1471 dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1472 /* Allocate memory for DMA of head registers to memory */
1473 dd->sdma_heads_dma = dma_zalloc_coherent(
1474 &dd->pcidev->dev,
1475 dd->sdma_heads_size,
1476 &dd->sdma_heads_phys,
1477 GFP_KERNEL
1478 );
1479 if (!dd->sdma_heads_dma) {
1480 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1481 goto bail;
1482 }
1483
1484 /* Allocate memory for pad */
1485 dd->sdma_pad_dma = dma_zalloc_coherent(
1486 &dd->pcidev->dev,
1487 sizeof(u32),
1488 &dd->sdma_pad_phys,
1489 GFP_KERNEL
1490 );
1491 if (!dd->sdma_pad_dma) {
1492 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1493 goto bail;
1494 }
1495
1496 /* assign each engine to different cacheline and init registers */
1497 curr_head = (void *)dd->sdma_heads_dma;
1498 for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1499 unsigned long phys_offset;
1500
1501 sde = &dd->per_sdma[this_idx];
1502
1503 sde->head_dma = curr_head;
1504 curr_head += L1_CACHE_BYTES;
1505 phys_offset = (unsigned long)sde->head_dma -
1506 (unsigned long)dd->sdma_heads_dma;
1507 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1508 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1509 }
1510 dd->flags |= HFI1_HAS_SEND_DMA;
1511 dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1512 dd->num_sdma = num_engines;
1513 ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1514 if (ret < 0)
1515 goto bail;
1516
1517 tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1518 if (!tmp_sdma_rht) {
1519 ret = -ENOMEM;
1520 goto bail;
1521 }
1522
1523 ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1524 if (ret < 0)
1525 goto bail;
1526 dd->sdma_rht = tmp_sdma_rht;
1527
1528 dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1529 return 0;
1530
1531 bail:
1532 sdma_clean(dd, num_engines);
1533 return ret;
1534 }
1535
1536 /**
1537 * sdma_all_running() - called when the link goes up
1538 * @dd: hfi1_devdata
1539 *
1540 * This routine moves all engines to the running state.
1541 */
sdma_all_running(struct hfi1_devdata * dd)1542 void sdma_all_running(struct hfi1_devdata *dd)
1543 {
1544 struct sdma_engine *sde;
1545 unsigned int i;
1546
1547 /* move all engines to running */
1548 for (i = 0; i < dd->num_sdma; ++i) {
1549 sde = &dd->per_sdma[i];
1550 sdma_process_event(sde, sdma_event_e30_go_running);
1551 }
1552 }
1553
1554 /**
1555 * sdma_all_idle() - called when the link goes down
1556 * @dd: hfi1_devdata
1557 *
1558 * This routine moves all engines to the idle state.
1559 */
sdma_all_idle(struct hfi1_devdata * dd)1560 void sdma_all_idle(struct hfi1_devdata *dd)
1561 {
1562 struct sdma_engine *sde;
1563 unsigned int i;
1564
1565 /* idle all engines */
1566 for (i = 0; i < dd->num_sdma; ++i) {
1567 sde = &dd->per_sdma[i];
1568 sdma_process_event(sde, sdma_event_e70_go_idle);
1569 }
1570 }
1571
1572 /**
1573 * sdma_start() - called to kick off state processing for all engines
1574 * @dd: hfi1_devdata
1575 *
1576 * This routine is for kicking off the state processing for all required
1577 * sdma engines. Interrupts need to be working at this point.
1578 *
1579 */
sdma_start(struct hfi1_devdata * dd)1580 void sdma_start(struct hfi1_devdata *dd)
1581 {
1582 unsigned i;
1583 struct sdma_engine *sde;
1584
1585 /* kick off the engines state processing */
1586 for (i = 0; i < dd->num_sdma; ++i) {
1587 sde = &dd->per_sdma[i];
1588 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1589 }
1590 }
1591
1592 /**
1593 * sdma_exit() - used when module is removed
1594 * @dd: hfi1_devdata
1595 */
sdma_exit(struct hfi1_devdata * dd)1596 void sdma_exit(struct hfi1_devdata *dd)
1597 {
1598 unsigned this_idx;
1599 struct sdma_engine *sde;
1600
1601 for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1602 ++this_idx) {
1603 sde = &dd->per_sdma[this_idx];
1604 if (!list_empty(&sde->dmawait))
1605 dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1606 sde->this_idx);
1607 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1608
1609 del_timer_sync(&sde->err_progress_check_timer);
1610
1611 /*
1612 * This waits for the state machine to exit so it is not
1613 * necessary to kill the sdma_sw_clean_up_task to make sure
1614 * it is not running.
1615 */
1616 sdma_finalput(&sde->state);
1617 }
1618 }
1619
1620 /*
1621 * unmap the indicated descriptor
1622 */
sdma_unmap_desc(struct hfi1_devdata * dd,struct sdma_desc * descp)1623 static inline void sdma_unmap_desc(
1624 struct hfi1_devdata *dd,
1625 struct sdma_desc *descp)
1626 {
1627 switch (sdma_mapping_type(descp)) {
1628 case SDMA_MAP_SINGLE:
1629 dma_unmap_single(
1630 &dd->pcidev->dev,
1631 sdma_mapping_addr(descp),
1632 sdma_mapping_len(descp),
1633 DMA_TO_DEVICE);
1634 break;
1635 case SDMA_MAP_PAGE:
1636 dma_unmap_page(
1637 &dd->pcidev->dev,
1638 sdma_mapping_addr(descp),
1639 sdma_mapping_len(descp),
1640 DMA_TO_DEVICE);
1641 break;
1642 }
1643 }
1644
1645 /*
1646 * return the mode as indicated by the first
1647 * descriptor in the tx.
1648 */
ahg_mode(struct sdma_txreq * tx)1649 static inline u8 ahg_mode(struct sdma_txreq *tx)
1650 {
1651 return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1652 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1653 }
1654
1655 /**
1656 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1657 * @dd: hfi1_devdata for unmapping
1658 * @tx: tx request to clean
1659 *
1660 * This is used in the progress routine to clean the tx or
1661 * by the ULP to toss an in-process tx build.
1662 *
1663 * The code can be called multiple times without issue.
1664 *
1665 */
__sdma_txclean(struct hfi1_devdata * dd,struct sdma_txreq * tx)1666 void __sdma_txclean(
1667 struct hfi1_devdata *dd,
1668 struct sdma_txreq *tx)
1669 {
1670 u16 i;
1671
1672 if (tx->num_desc) {
1673 u8 skip = 0, mode = ahg_mode(tx);
1674
1675 /* unmap first */
1676 sdma_unmap_desc(dd, &tx->descp[0]);
1677 /* determine number of AHG descriptors to skip */
1678 if (mode > SDMA_AHG_APPLY_UPDATE1)
1679 skip = mode >> 1;
1680 for (i = 1 + skip; i < tx->num_desc; i++)
1681 sdma_unmap_desc(dd, &tx->descp[i]);
1682 tx->num_desc = 0;
1683 }
1684 kfree(tx->coalesce_buf);
1685 tx->coalesce_buf = NULL;
1686 /* kmalloc'ed descp */
1687 if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1688 tx->desc_limit = ARRAY_SIZE(tx->descs);
1689 kfree(tx->descp);
1690 }
1691 }
1692
sdma_gethead(struct sdma_engine * sde)1693 static inline u16 sdma_gethead(struct sdma_engine *sde)
1694 {
1695 struct hfi1_devdata *dd = sde->dd;
1696 int use_dmahead;
1697 u16 hwhead;
1698
1699 #ifdef CONFIG_SDMA_VERBOSITY
1700 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1701 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1702 #endif
1703
1704 retry:
1705 use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1706 (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1707 hwhead = use_dmahead ?
1708 (u16)le64_to_cpu(*sde->head_dma) :
1709 (u16)read_sde_csr(sde, SD(HEAD));
1710
1711 if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1712 u16 cnt;
1713 u16 swtail;
1714 u16 swhead;
1715 int sane;
1716
1717 swhead = sde->descq_head & sde->sdma_mask;
1718 /* this code is really bad for cache line trading */
1719 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1720 cnt = sde->descq_cnt;
1721
1722 if (swhead < swtail)
1723 /* not wrapped */
1724 sane = (hwhead >= swhead) & (hwhead <= swtail);
1725 else if (swhead > swtail)
1726 /* wrapped around */
1727 sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1728 (hwhead <= swtail);
1729 else
1730 /* empty */
1731 sane = (hwhead == swhead);
1732
1733 if (unlikely(!sane)) {
1734 dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1735 sde->this_idx,
1736 use_dmahead ? "dma" : "kreg",
1737 hwhead, swhead, swtail, cnt);
1738 if (use_dmahead) {
1739 /* try one more time, using csr */
1740 use_dmahead = 0;
1741 goto retry;
1742 }
1743 /* proceed as if no progress */
1744 hwhead = swhead;
1745 }
1746 }
1747 return hwhead;
1748 }
1749
1750 /*
1751 * This is called when there are send DMA descriptors that might be
1752 * available.
1753 *
1754 * This is called with head_lock held.
1755 */
sdma_desc_avail(struct sdma_engine * sde,uint avail)1756 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1757 {
1758 struct iowait *wait, *nw;
1759 struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1760 uint i, n = 0, seq, max_idx = 0;
1761 struct sdma_txreq *stx;
1762 struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1763 u8 max_starved_cnt = 0;
1764
1765 #ifdef CONFIG_SDMA_VERBOSITY
1766 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1767 slashstrip(__FILE__), __LINE__, __func__);
1768 dd_dev_err(sde->dd, "avail: %u\n", avail);
1769 #endif
1770
1771 do {
1772 seq = read_seqbegin(&dev->iowait_lock);
1773 if (!list_empty(&sde->dmawait)) {
1774 /* at least one item */
1775 write_seqlock(&dev->iowait_lock);
1776 /* Harvest waiters wanting DMA descriptors */
1777 list_for_each_entry_safe(
1778 wait,
1779 nw,
1780 &sde->dmawait,
1781 list) {
1782 u16 num_desc = 0;
1783
1784 if (!wait->wakeup)
1785 continue;
1786 if (n == ARRAY_SIZE(waits))
1787 break;
1788 if (!list_empty(&wait->tx_head)) {
1789 stx = list_first_entry(
1790 &wait->tx_head,
1791 struct sdma_txreq,
1792 list);
1793 num_desc = stx->num_desc;
1794 }
1795 if (num_desc > avail)
1796 break;
1797 avail -= num_desc;
1798 /* Find the most starved wait memeber */
1799 iowait_starve_find_max(wait, &max_starved_cnt,
1800 n, &max_idx);
1801 list_del_init(&wait->list);
1802 waits[n++] = wait;
1803 }
1804 write_sequnlock(&dev->iowait_lock);
1805 break;
1806 }
1807 } while (read_seqretry(&dev->iowait_lock, seq));
1808
1809 /* Schedule the most starved one first */
1810 if (n)
1811 waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
1812
1813 for (i = 0; i < n; i++)
1814 if (i != max_idx)
1815 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1816 }
1817
1818 /* head_lock must be held */
sdma_make_progress(struct sdma_engine * sde,u64 status)1819 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1820 {
1821 struct sdma_txreq *txp = NULL;
1822 int progress = 0;
1823 u16 hwhead, swhead;
1824 int idle_check_done = 0;
1825
1826 hwhead = sdma_gethead(sde);
1827
1828 /* The reason for some of the complexity of this code is that
1829 * not all descriptors have corresponding txps. So, we have to
1830 * be able to skip over descs until we wander into the range of
1831 * the next txp on the list.
1832 */
1833
1834 retry:
1835 txp = get_txhead(sde);
1836 swhead = sde->descq_head & sde->sdma_mask;
1837 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1838 while (swhead != hwhead) {
1839 /* advance head, wrap if needed */
1840 swhead = ++sde->descq_head & sde->sdma_mask;
1841
1842 /* if now past this txp's descs, do the callback */
1843 if (txp && txp->next_descq_idx == swhead) {
1844 /* remove from list */
1845 sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1846 complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1847 /* see if there is another txp */
1848 txp = get_txhead(sde);
1849 }
1850 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1851 progress++;
1852 }
1853
1854 /*
1855 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1856 * to updates to the the dma_head location in host memory. The head
1857 * value read might not be fully up to date. If there are pending
1858 * descriptors and the SDMA idle interrupt fired then read from the
1859 * CSR SDMA head instead to get the latest value from the hardware.
1860 * The hardware SDMA head should be read at most once in this invocation
1861 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1862 */
1863 if ((status & sde->idle_mask) && !idle_check_done) {
1864 u16 swtail;
1865
1866 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1867 if (swtail != hwhead) {
1868 hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1869 idle_check_done = 1;
1870 goto retry;
1871 }
1872 }
1873
1874 sde->last_status = status;
1875 if (progress)
1876 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1877 }
1878
1879 /*
1880 * sdma_engine_interrupt() - interrupt handler for engine
1881 * @sde: sdma engine
1882 * @status: sdma interrupt reason
1883 *
1884 * Status is a mask of the 3 possible interrupts for this engine. It will
1885 * contain bits _only_ for this SDMA engine. It will contain at least one
1886 * bit, it may contain more.
1887 */
sdma_engine_interrupt(struct sdma_engine * sde,u64 status)1888 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1889 {
1890 trace_hfi1_sdma_engine_interrupt(sde, status);
1891 write_seqlock(&sde->head_lock);
1892 sdma_set_desc_cnt(sde, sdma_desct_intr);
1893 if (status & sde->idle_mask)
1894 sde->idle_int_cnt++;
1895 else if (status & sde->progress_mask)
1896 sde->progress_int_cnt++;
1897 else if (status & sde->int_mask)
1898 sde->sdma_int_cnt++;
1899 sdma_make_progress(sde, status);
1900 write_sequnlock(&sde->head_lock);
1901 }
1902
1903 /**
1904 * sdma_engine_error() - error handler for engine
1905 * @sde: sdma engine
1906 * @status: sdma interrupt reason
1907 */
sdma_engine_error(struct sdma_engine * sde,u64 status)1908 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1909 {
1910 unsigned long flags;
1911
1912 #ifdef CONFIG_SDMA_VERBOSITY
1913 dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1914 sde->this_idx,
1915 (unsigned long long)status,
1916 sdma_state_names[sde->state.current_state]);
1917 #endif
1918 spin_lock_irqsave(&sde->tail_lock, flags);
1919 write_seqlock(&sde->head_lock);
1920 if (status & ALL_SDMA_ENG_HALT_ERRS)
1921 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1922 if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1923 dd_dev_err(sde->dd,
1924 "SDMA (%u) engine error: 0x%llx state %s\n",
1925 sde->this_idx,
1926 (unsigned long long)status,
1927 sdma_state_names[sde->state.current_state]);
1928 dump_sdma_state(sde);
1929 }
1930 write_sequnlock(&sde->head_lock);
1931 spin_unlock_irqrestore(&sde->tail_lock, flags);
1932 }
1933
sdma_sendctrl(struct sdma_engine * sde,unsigned op)1934 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1935 {
1936 u64 set_senddmactrl = 0;
1937 u64 clr_senddmactrl = 0;
1938 unsigned long flags;
1939
1940 #ifdef CONFIG_SDMA_VERBOSITY
1941 dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1942 sde->this_idx,
1943 (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1944 (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1945 (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1946 (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1947 #endif
1948
1949 if (op & SDMA_SENDCTRL_OP_ENABLE)
1950 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1951 else
1952 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1953
1954 if (op & SDMA_SENDCTRL_OP_INTENABLE)
1955 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1956 else
1957 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1958
1959 if (op & SDMA_SENDCTRL_OP_HALT)
1960 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1961 else
1962 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1963
1964 spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1965
1966 sde->p_senddmactrl |= set_senddmactrl;
1967 sde->p_senddmactrl &= ~clr_senddmactrl;
1968
1969 if (op & SDMA_SENDCTRL_OP_CLEANUP)
1970 write_sde_csr(sde, SD(CTRL),
1971 sde->p_senddmactrl |
1972 SD(CTRL_SDMA_CLEANUP_SMASK));
1973 else
1974 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1975
1976 spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1977
1978 #ifdef CONFIG_SDMA_VERBOSITY
1979 sdma_dumpstate(sde);
1980 #endif
1981 }
1982
sdma_setlengen(struct sdma_engine * sde)1983 static void sdma_setlengen(struct sdma_engine *sde)
1984 {
1985 #ifdef CONFIG_SDMA_VERBOSITY
1986 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1987 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1988 #endif
1989
1990 /*
1991 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1992 * count to enable generation checking and load the internal
1993 * generation counter.
1994 */
1995 write_sde_csr(sde, SD(LEN_GEN),
1996 (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1997 write_sde_csr(sde, SD(LEN_GEN),
1998 ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1999 (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2000 }
2001
sdma_update_tail(struct sdma_engine * sde,u16 tail)2002 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2003 {
2004 /* Commit writes to memory and advance the tail on the chip */
2005 smp_wmb(); /* see get_txhead() */
2006 writeq(tail, sde->tail_csr);
2007 }
2008
2009 /*
2010 * This is called when changing to state s10_hw_start_up_halt_wait as
2011 * a result of send buffer errors or send DMA descriptor errors.
2012 */
sdma_hw_start_up(struct sdma_engine * sde)2013 static void sdma_hw_start_up(struct sdma_engine *sde)
2014 {
2015 u64 reg;
2016
2017 #ifdef CONFIG_SDMA_VERBOSITY
2018 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2019 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2020 #endif
2021
2022 sdma_setlengen(sde);
2023 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2024 *sde->head_dma = 0;
2025
2026 reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2027 SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2028 write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2029 }
2030
2031 /*
2032 * set_sdma_integrity
2033 *
2034 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2035 */
set_sdma_integrity(struct sdma_engine * sde)2036 static void set_sdma_integrity(struct sdma_engine *sde)
2037 {
2038 struct hfi1_devdata *dd = sde->dd;
2039
2040 write_sde_csr(sde, SD(CHECK_ENABLE),
2041 hfi1_pkt_base_sdma_integrity(dd));
2042 }
2043
init_sdma_regs(struct sdma_engine * sde,u32 credits,uint idle_cnt)2044 static void init_sdma_regs(
2045 struct sdma_engine *sde,
2046 u32 credits,
2047 uint idle_cnt)
2048 {
2049 u8 opval, opmask;
2050 #ifdef CONFIG_SDMA_VERBOSITY
2051 struct hfi1_devdata *dd = sde->dd;
2052
2053 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2054 sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2055 #endif
2056
2057 write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2058 sdma_setlengen(sde);
2059 sdma_update_tail(sde, 0); /* Set SendDmaTail */
2060 write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2061 write_sde_csr(sde, SD(DESC_CNT), 0);
2062 write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2063 write_sde_csr(sde, SD(MEMORY),
2064 ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2065 ((u64)(credits * sde->this_idx) <<
2066 SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2067 write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2068 set_sdma_integrity(sde);
2069 opmask = OPCODE_CHECK_MASK_DISABLED;
2070 opval = OPCODE_CHECK_VAL_DISABLED;
2071 write_sde_csr(sde, SD(CHECK_OPCODE),
2072 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2073 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2074 }
2075
2076 #ifdef CONFIG_SDMA_VERBOSITY
2077
2078 #define sdma_dumpstate_helper0(reg) do { \
2079 csr = read_csr(sde->dd, reg); \
2080 dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \
2081 } while (0)
2082
2083 #define sdma_dumpstate_helper(reg) do { \
2084 csr = read_sde_csr(sde, reg); \
2085 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2086 #reg, sde->this_idx, csr); \
2087 } while (0)
2088
2089 #define sdma_dumpstate_helper2(reg) do { \
2090 csr = read_csr(sde->dd, reg + (8 * i)); \
2091 dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \
2092 #reg, i, csr); \
2093 } while (0)
2094
sdma_dumpstate(struct sdma_engine * sde)2095 void sdma_dumpstate(struct sdma_engine *sde)
2096 {
2097 u64 csr;
2098 unsigned i;
2099
2100 sdma_dumpstate_helper(SD(CTRL));
2101 sdma_dumpstate_helper(SD(STATUS));
2102 sdma_dumpstate_helper0(SD(ERR_STATUS));
2103 sdma_dumpstate_helper0(SD(ERR_MASK));
2104 sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2105 sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2106
2107 for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2108 sdma_dumpstate_helper2(CCE_INT_STATUS);
2109 sdma_dumpstate_helper2(CCE_INT_MASK);
2110 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2111 }
2112
2113 sdma_dumpstate_helper(SD(TAIL));
2114 sdma_dumpstate_helper(SD(HEAD));
2115 sdma_dumpstate_helper(SD(PRIORITY_THLD));
2116 sdma_dumpstate_helper(SD(IDLE_CNT));
2117 sdma_dumpstate_helper(SD(RELOAD_CNT));
2118 sdma_dumpstate_helper(SD(DESC_CNT));
2119 sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2120 sdma_dumpstate_helper(SD(MEMORY));
2121 sdma_dumpstate_helper0(SD(ENGINES));
2122 sdma_dumpstate_helper0(SD(MEM_SIZE));
2123 /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */
2124 sdma_dumpstate_helper(SD(BASE_ADDR));
2125 sdma_dumpstate_helper(SD(LEN_GEN));
2126 sdma_dumpstate_helper(SD(HEAD_ADDR));
2127 sdma_dumpstate_helper(SD(CHECK_ENABLE));
2128 sdma_dumpstate_helper(SD(CHECK_VL));
2129 sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2130 sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2131 sdma_dumpstate_helper(SD(CHECK_SLID));
2132 sdma_dumpstate_helper(SD(CHECK_OPCODE));
2133 }
2134 #endif
2135
dump_sdma_state(struct sdma_engine * sde)2136 static void dump_sdma_state(struct sdma_engine *sde)
2137 {
2138 struct hw_sdma_desc *descqp;
2139 u64 desc[2];
2140 u64 addr;
2141 u8 gen;
2142 u16 len;
2143 u16 head, tail, cnt;
2144
2145 head = sde->descq_head & sde->sdma_mask;
2146 tail = sde->descq_tail & sde->sdma_mask;
2147 cnt = sdma_descq_freecnt(sde);
2148
2149 dd_dev_err(sde->dd,
2150 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2151 sde->this_idx, head, tail, cnt,
2152 !list_empty(&sde->flushlist));
2153
2154 /* print info for each entry in the descriptor queue */
2155 while (head != tail) {
2156 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2157
2158 descqp = &sde->descq[head];
2159 desc[0] = le64_to_cpu(descqp->qw[0]);
2160 desc[1] = le64_to_cpu(descqp->qw[1]);
2161 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2162 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2163 'H' : '-';
2164 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2165 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2166 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2167 & SDMA_DESC0_PHY_ADDR_MASK;
2168 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2169 & SDMA_DESC1_GENERATION_MASK;
2170 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2171 & SDMA_DESC0_BYTE_COUNT_MASK;
2172 dd_dev_err(sde->dd,
2173 "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2174 head, flags, addr, gen, len);
2175 dd_dev_err(sde->dd,
2176 "\tdesc0:0x%016llx desc1 0x%016llx\n",
2177 desc[0], desc[1]);
2178 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2179 dd_dev_err(sde->dd,
2180 "\taidx: %u amode: %u alen: %u\n",
2181 (u8)((desc[1] &
2182 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2183 SDMA_DESC1_HEADER_INDEX_SHIFT),
2184 (u8)((desc[1] &
2185 SDMA_DESC1_HEADER_MODE_SMASK) >>
2186 SDMA_DESC1_HEADER_MODE_SHIFT),
2187 (u8)((desc[1] &
2188 SDMA_DESC1_HEADER_DWS_SMASK) >>
2189 SDMA_DESC1_HEADER_DWS_SHIFT));
2190 head++;
2191 head &= sde->sdma_mask;
2192 }
2193 }
2194
2195 #define SDE_FMT \
2196 "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2197 /**
2198 * sdma_seqfile_dump_sde() - debugfs dump of sde
2199 * @s: seq file
2200 * @sde: send dma engine to dump
2201 *
2202 * This routine dumps the sde to the indicated seq file.
2203 */
sdma_seqfile_dump_sde(struct seq_file * s,struct sdma_engine * sde)2204 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2205 {
2206 u16 head, tail;
2207 struct hw_sdma_desc *descqp;
2208 u64 desc[2];
2209 u64 addr;
2210 u8 gen;
2211 u16 len;
2212
2213 head = sde->descq_head & sde->sdma_mask;
2214 tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2215 seq_printf(s, SDE_FMT, sde->this_idx,
2216 sde->cpu,
2217 sdma_state_name(sde->state.current_state),
2218 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2219 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2220 (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2221 (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2222 (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2223 (unsigned long long)le64_to_cpu(*sde->head_dma),
2224 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2225 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2226 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2227 (unsigned long long)sde->last_status,
2228 (unsigned long long)sde->ahg_bits,
2229 sde->tx_tail,
2230 sde->tx_head,
2231 sde->descq_tail,
2232 sde->descq_head,
2233 !list_empty(&sde->flushlist),
2234 sde->descq_full_count,
2235 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2236
2237 /* print info for each entry in the descriptor queue */
2238 while (head != tail) {
2239 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2240
2241 descqp = &sde->descq[head];
2242 desc[0] = le64_to_cpu(descqp->qw[0]);
2243 desc[1] = le64_to_cpu(descqp->qw[1]);
2244 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2245 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2246 'H' : '-';
2247 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2248 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2249 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2250 & SDMA_DESC0_PHY_ADDR_MASK;
2251 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2252 & SDMA_DESC1_GENERATION_MASK;
2253 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2254 & SDMA_DESC0_BYTE_COUNT_MASK;
2255 seq_printf(s,
2256 "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2257 head, flags, addr, gen, len);
2258 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2259 seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2260 (u8)((desc[1] &
2261 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2262 SDMA_DESC1_HEADER_INDEX_SHIFT),
2263 (u8)((desc[1] &
2264 SDMA_DESC1_HEADER_MODE_SMASK) >>
2265 SDMA_DESC1_HEADER_MODE_SHIFT));
2266 head = (head + 1) & sde->sdma_mask;
2267 }
2268 }
2269
2270 /*
2271 * add the generation number into
2272 * the qw1 and return
2273 */
add_gen(struct sdma_engine * sde,u64 qw1)2274 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2275 {
2276 u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2277
2278 qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2279 qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2280 << SDMA_DESC1_GENERATION_SHIFT;
2281 return qw1;
2282 }
2283
2284 /*
2285 * This routine submits the indicated tx
2286 *
2287 * Space has already been guaranteed and
2288 * tail side of ring is locked.
2289 *
2290 * The hardware tail update is done
2291 * in the caller and that is facilitated
2292 * by returning the new tail.
2293 *
2294 * There is special case logic for ahg
2295 * to not add the generation number for
2296 * up to 2 descriptors that follow the
2297 * first descriptor.
2298 *
2299 */
submit_tx(struct sdma_engine * sde,struct sdma_txreq * tx)2300 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2301 {
2302 int i;
2303 u16 tail;
2304 struct sdma_desc *descp = tx->descp;
2305 u8 skip = 0, mode = ahg_mode(tx);
2306
2307 tail = sde->descq_tail & sde->sdma_mask;
2308 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2309 sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2310 trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2311 tail, &sde->descq[tail]);
2312 tail = ++sde->descq_tail & sde->sdma_mask;
2313 descp++;
2314 if (mode > SDMA_AHG_APPLY_UPDATE1)
2315 skip = mode >> 1;
2316 for (i = 1; i < tx->num_desc; i++, descp++) {
2317 u64 qw1;
2318
2319 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2320 if (skip) {
2321 /* edits don't have generation */
2322 qw1 = descp->qw[1];
2323 skip--;
2324 } else {
2325 /* replace generation with real one for non-edits */
2326 qw1 = add_gen(sde, descp->qw[1]);
2327 }
2328 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2329 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2330 tail, &sde->descq[tail]);
2331 tail = ++sde->descq_tail & sde->sdma_mask;
2332 }
2333 tx->next_descq_idx = tail;
2334 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2335 tx->sn = sde->tail_sn++;
2336 trace_hfi1_sdma_in_sn(sde, tx->sn);
2337 WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2338 #endif
2339 sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2340 sde->desc_avail -= tx->num_desc;
2341 return tail;
2342 }
2343
2344 /*
2345 * Check for progress
2346 */
sdma_check_progress(struct sdma_engine * sde,struct iowait * wait,struct sdma_txreq * tx,bool pkts_sent)2347 static int sdma_check_progress(
2348 struct sdma_engine *sde,
2349 struct iowait *wait,
2350 struct sdma_txreq *tx,
2351 bool pkts_sent)
2352 {
2353 int ret;
2354
2355 sde->desc_avail = sdma_descq_freecnt(sde);
2356 if (tx->num_desc <= sde->desc_avail)
2357 return -EAGAIN;
2358 /* pulse the head_lock */
2359 if (wait && wait->sleep) {
2360 unsigned seq;
2361
2362 seq = raw_seqcount_begin(
2363 (const seqcount_t *)&sde->head_lock.seqcount);
2364 ret = wait->sleep(sde, wait, tx, seq, pkts_sent);
2365 if (ret == -EAGAIN)
2366 sde->desc_avail = sdma_descq_freecnt(sde);
2367 } else {
2368 ret = -EBUSY;
2369 }
2370 return ret;
2371 }
2372
2373 /**
2374 * sdma_send_txreq() - submit a tx req to ring
2375 * @sde: sdma engine to use
2376 * @wait: wait structure to use when full (may be NULL)
2377 * @tx: sdma_txreq to submit
2378 * @pkts_sent: has any packet been sent yet?
2379 *
2380 * The call submits the tx into the ring. If a iowait structure is non-NULL
2381 * the packet will be queued to the list in wait.
2382 *
2383 * Return:
2384 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2385 * ring (wait == NULL)
2386 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2387 */
sdma_send_txreq(struct sdma_engine * sde,struct iowait * wait,struct sdma_txreq * tx,bool pkts_sent)2388 int sdma_send_txreq(struct sdma_engine *sde,
2389 struct iowait *wait,
2390 struct sdma_txreq *tx,
2391 bool pkts_sent)
2392 {
2393 int ret = 0;
2394 u16 tail;
2395 unsigned long flags;
2396
2397 /* user should have supplied entire packet */
2398 if (unlikely(tx->tlen))
2399 return -EINVAL;
2400 tx->wait = wait;
2401 spin_lock_irqsave(&sde->tail_lock, flags);
2402 retry:
2403 if (unlikely(!__sdma_running(sde)))
2404 goto unlock_noconn;
2405 if (unlikely(tx->num_desc > sde->desc_avail))
2406 goto nodesc;
2407 tail = submit_tx(sde, tx);
2408 if (wait)
2409 iowait_sdma_inc(wait);
2410 sdma_update_tail(sde, tail);
2411 unlock:
2412 spin_unlock_irqrestore(&sde->tail_lock, flags);
2413 return ret;
2414 unlock_noconn:
2415 if (wait)
2416 iowait_sdma_inc(wait);
2417 tx->next_descq_idx = 0;
2418 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2419 tx->sn = sde->tail_sn++;
2420 trace_hfi1_sdma_in_sn(sde, tx->sn);
2421 #endif
2422 spin_lock(&sde->flushlist_lock);
2423 list_add_tail(&tx->list, &sde->flushlist);
2424 spin_unlock(&sde->flushlist_lock);
2425 if (wait) {
2426 wait->tx_count++;
2427 wait->count += tx->num_desc;
2428 }
2429 schedule_work(&sde->flush_worker);
2430 ret = -ECOMM;
2431 goto unlock;
2432 nodesc:
2433 ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2434 if (ret == -EAGAIN) {
2435 ret = 0;
2436 goto retry;
2437 }
2438 sde->descq_full_count++;
2439 goto unlock;
2440 }
2441
2442 /**
2443 * sdma_send_txlist() - submit a list of tx req to ring
2444 * @sde: sdma engine to use
2445 * @wait: wait structure to use when full (may be NULL)
2446 * @tx_list: list of sdma_txreqs to submit
2447 * @count: pointer to a u32 which, after return will contain the total number of
2448 * sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2449 * whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2450 * which are added to SDMA engine flush list if the SDMA engine state is
2451 * not running.
2452 *
2453 * The call submits the list into the ring.
2454 *
2455 * If the iowait structure is non-NULL and not equal to the iowait list
2456 * the unprocessed part of the list will be appended to the list in wait.
2457 *
2458 * In all cases, the tx_list will be updated so the head of the tx_list is
2459 * the list of descriptors that have yet to be transmitted.
2460 *
2461 * The intent of this call is to provide a more efficient
2462 * way of submitting multiple packets to SDMA while holding the tail
2463 * side locking.
2464 *
2465 * Return:
2466 * 0 - Success,
2467 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2468 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2469 */
sdma_send_txlist(struct sdma_engine * sde,struct iowait * wait,struct list_head * tx_list,u32 * count_out)2470 int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2471 struct list_head *tx_list, u32 *count_out)
2472 {
2473 struct sdma_txreq *tx, *tx_next;
2474 int ret = 0;
2475 unsigned long flags;
2476 u16 tail = INVALID_TAIL;
2477 u32 submit_count = 0, flush_count = 0, total_count;
2478
2479 spin_lock_irqsave(&sde->tail_lock, flags);
2480 retry:
2481 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2482 tx->wait = wait;
2483 if (unlikely(!__sdma_running(sde)))
2484 goto unlock_noconn;
2485 if (unlikely(tx->num_desc > sde->desc_avail))
2486 goto nodesc;
2487 if (unlikely(tx->tlen)) {
2488 ret = -EINVAL;
2489 goto update_tail;
2490 }
2491 list_del_init(&tx->list);
2492 tail = submit_tx(sde, tx);
2493 submit_count++;
2494 if (tail != INVALID_TAIL &&
2495 (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2496 sdma_update_tail(sde, tail);
2497 tail = INVALID_TAIL;
2498 }
2499 }
2500 update_tail:
2501 total_count = submit_count + flush_count;
2502 if (wait) {
2503 iowait_sdma_add(wait, total_count);
2504 iowait_starve_clear(submit_count > 0, wait);
2505 }
2506 if (tail != INVALID_TAIL)
2507 sdma_update_tail(sde, tail);
2508 spin_unlock_irqrestore(&sde->tail_lock, flags);
2509 *count_out = total_count;
2510 return ret;
2511 unlock_noconn:
2512 spin_lock(&sde->flushlist_lock);
2513 list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2514 tx->wait = wait;
2515 list_del_init(&tx->list);
2516 tx->next_descq_idx = 0;
2517 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2518 tx->sn = sde->tail_sn++;
2519 trace_hfi1_sdma_in_sn(sde, tx->sn);
2520 #endif
2521 list_add_tail(&tx->list, &sde->flushlist);
2522 flush_count++;
2523 if (wait) {
2524 wait->tx_count++;
2525 wait->count += tx->num_desc;
2526 }
2527 }
2528 spin_unlock(&sde->flushlist_lock);
2529 schedule_work(&sde->flush_worker);
2530 ret = -ECOMM;
2531 goto update_tail;
2532 nodesc:
2533 ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2534 if (ret == -EAGAIN) {
2535 ret = 0;
2536 goto retry;
2537 }
2538 sde->descq_full_count++;
2539 goto update_tail;
2540 }
2541
sdma_process_event(struct sdma_engine * sde,enum sdma_events event)2542 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2543 {
2544 unsigned long flags;
2545
2546 spin_lock_irqsave(&sde->tail_lock, flags);
2547 write_seqlock(&sde->head_lock);
2548
2549 __sdma_process_event(sde, event);
2550
2551 if (sde->state.current_state == sdma_state_s99_running)
2552 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2553
2554 write_sequnlock(&sde->head_lock);
2555 spin_unlock_irqrestore(&sde->tail_lock, flags);
2556 }
2557
__sdma_process_event(struct sdma_engine * sde,enum sdma_events event)2558 static void __sdma_process_event(struct sdma_engine *sde,
2559 enum sdma_events event)
2560 {
2561 struct sdma_state *ss = &sde->state;
2562 int need_progress = 0;
2563
2564 /* CONFIG SDMA temporary */
2565 #ifdef CONFIG_SDMA_VERBOSITY
2566 dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2567 sdma_state_names[ss->current_state],
2568 sdma_event_names[event]);
2569 #endif
2570
2571 switch (ss->current_state) {
2572 case sdma_state_s00_hw_down:
2573 switch (event) {
2574 case sdma_event_e00_go_hw_down:
2575 break;
2576 case sdma_event_e30_go_running:
2577 /*
2578 * If down, but running requested (usually result
2579 * of link up, then we need to start up.
2580 * This can happen when hw down is requested while
2581 * bringing the link up with traffic active on
2582 * 7220, e.g.
2583 */
2584 ss->go_s99_running = 1;
2585 /* fall through -- and start dma engine */
2586 case sdma_event_e10_go_hw_start:
2587 /* This reference means the state machine is started */
2588 sdma_get(&sde->state);
2589 sdma_set_state(sde,
2590 sdma_state_s10_hw_start_up_halt_wait);
2591 break;
2592 case sdma_event_e15_hw_halt_done:
2593 break;
2594 case sdma_event_e25_hw_clean_up_done:
2595 break;
2596 case sdma_event_e40_sw_cleaned:
2597 sdma_sw_tear_down(sde);
2598 break;
2599 case sdma_event_e50_hw_cleaned:
2600 break;
2601 case sdma_event_e60_hw_halted:
2602 break;
2603 case sdma_event_e70_go_idle:
2604 break;
2605 case sdma_event_e80_hw_freeze:
2606 break;
2607 case sdma_event_e81_hw_frozen:
2608 break;
2609 case sdma_event_e82_hw_unfreeze:
2610 break;
2611 case sdma_event_e85_link_down:
2612 break;
2613 case sdma_event_e90_sw_halted:
2614 break;
2615 }
2616 break;
2617
2618 case sdma_state_s10_hw_start_up_halt_wait:
2619 switch (event) {
2620 case sdma_event_e00_go_hw_down:
2621 sdma_set_state(sde, sdma_state_s00_hw_down);
2622 sdma_sw_tear_down(sde);
2623 break;
2624 case sdma_event_e10_go_hw_start:
2625 break;
2626 case sdma_event_e15_hw_halt_done:
2627 sdma_set_state(sde,
2628 sdma_state_s15_hw_start_up_clean_wait);
2629 sdma_start_hw_clean_up(sde);
2630 break;
2631 case sdma_event_e25_hw_clean_up_done:
2632 break;
2633 case sdma_event_e30_go_running:
2634 ss->go_s99_running = 1;
2635 break;
2636 case sdma_event_e40_sw_cleaned:
2637 break;
2638 case sdma_event_e50_hw_cleaned:
2639 break;
2640 case sdma_event_e60_hw_halted:
2641 schedule_work(&sde->err_halt_worker);
2642 break;
2643 case sdma_event_e70_go_idle:
2644 ss->go_s99_running = 0;
2645 break;
2646 case sdma_event_e80_hw_freeze:
2647 break;
2648 case sdma_event_e81_hw_frozen:
2649 break;
2650 case sdma_event_e82_hw_unfreeze:
2651 break;
2652 case sdma_event_e85_link_down:
2653 break;
2654 case sdma_event_e90_sw_halted:
2655 break;
2656 }
2657 break;
2658
2659 case sdma_state_s15_hw_start_up_clean_wait:
2660 switch (event) {
2661 case sdma_event_e00_go_hw_down:
2662 sdma_set_state(sde, sdma_state_s00_hw_down);
2663 sdma_sw_tear_down(sde);
2664 break;
2665 case sdma_event_e10_go_hw_start:
2666 break;
2667 case sdma_event_e15_hw_halt_done:
2668 break;
2669 case sdma_event_e25_hw_clean_up_done:
2670 sdma_hw_start_up(sde);
2671 sdma_set_state(sde, ss->go_s99_running ?
2672 sdma_state_s99_running :
2673 sdma_state_s20_idle);
2674 break;
2675 case sdma_event_e30_go_running:
2676 ss->go_s99_running = 1;
2677 break;
2678 case sdma_event_e40_sw_cleaned:
2679 break;
2680 case sdma_event_e50_hw_cleaned:
2681 break;
2682 case sdma_event_e60_hw_halted:
2683 break;
2684 case sdma_event_e70_go_idle:
2685 ss->go_s99_running = 0;
2686 break;
2687 case sdma_event_e80_hw_freeze:
2688 break;
2689 case sdma_event_e81_hw_frozen:
2690 break;
2691 case sdma_event_e82_hw_unfreeze:
2692 break;
2693 case sdma_event_e85_link_down:
2694 break;
2695 case sdma_event_e90_sw_halted:
2696 break;
2697 }
2698 break;
2699
2700 case sdma_state_s20_idle:
2701 switch (event) {
2702 case sdma_event_e00_go_hw_down:
2703 sdma_set_state(sde, sdma_state_s00_hw_down);
2704 sdma_sw_tear_down(sde);
2705 break;
2706 case sdma_event_e10_go_hw_start:
2707 break;
2708 case sdma_event_e15_hw_halt_done:
2709 break;
2710 case sdma_event_e25_hw_clean_up_done:
2711 break;
2712 case sdma_event_e30_go_running:
2713 sdma_set_state(sde, sdma_state_s99_running);
2714 ss->go_s99_running = 1;
2715 break;
2716 case sdma_event_e40_sw_cleaned:
2717 break;
2718 case sdma_event_e50_hw_cleaned:
2719 break;
2720 case sdma_event_e60_hw_halted:
2721 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2722 schedule_work(&sde->err_halt_worker);
2723 break;
2724 case sdma_event_e70_go_idle:
2725 break;
2726 case sdma_event_e85_link_down:
2727 /* fall through */
2728 case sdma_event_e80_hw_freeze:
2729 sdma_set_state(sde, sdma_state_s80_hw_freeze);
2730 atomic_dec(&sde->dd->sdma_unfreeze_count);
2731 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2732 break;
2733 case sdma_event_e81_hw_frozen:
2734 break;
2735 case sdma_event_e82_hw_unfreeze:
2736 break;
2737 case sdma_event_e90_sw_halted:
2738 break;
2739 }
2740 break;
2741
2742 case sdma_state_s30_sw_clean_up_wait:
2743 switch (event) {
2744 case sdma_event_e00_go_hw_down:
2745 sdma_set_state(sde, sdma_state_s00_hw_down);
2746 break;
2747 case sdma_event_e10_go_hw_start:
2748 break;
2749 case sdma_event_e15_hw_halt_done:
2750 break;
2751 case sdma_event_e25_hw_clean_up_done:
2752 break;
2753 case sdma_event_e30_go_running:
2754 ss->go_s99_running = 1;
2755 break;
2756 case sdma_event_e40_sw_cleaned:
2757 sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2758 sdma_start_hw_clean_up(sde);
2759 break;
2760 case sdma_event_e50_hw_cleaned:
2761 break;
2762 case sdma_event_e60_hw_halted:
2763 break;
2764 case sdma_event_e70_go_idle:
2765 ss->go_s99_running = 0;
2766 break;
2767 case sdma_event_e80_hw_freeze:
2768 break;
2769 case sdma_event_e81_hw_frozen:
2770 break;
2771 case sdma_event_e82_hw_unfreeze:
2772 break;
2773 case sdma_event_e85_link_down:
2774 ss->go_s99_running = 0;
2775 break;
2776 case sdma_event_e90_sw_halted:
2777 break;
2778 }
2779 break;
2780
2781 case sdma_state_s40_hw_clean_up_wait:
2782 switch (event) {
2783 case sdma_event_e00_go_hw_down:
2784 sdma_set_state(sde, sdma_state_s00_hw_down);
2785 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2786 break;
2787 case sdma_event_e10_go_hw_start:
2788 break;
2789 case sdma_event_e15_hw_halt_done:
2790 break;
2791 case sdma_event_e25_hw_clean_up_done:
2792 sdma_hw_start_up(sde);
2793 sdma_set_state(sde, ss->go_s99_running ?
2794 sdma_state_s99_running :
2795 sdma_state_s20_idle);
2796 break;
2797 case sdma_event_e30_go_running:
2798 ss->go_s99_running = 1;
2799 break;
2800 case sdma_event_e40_sw_cleaned:
2801 break;
2802 case sdma_event_e50_hw_cleaned:
2803 break;
2804 case sdma_event_e60_hw_halted:
2805 break;
2806 case sdma_event_e70_go_idle:
2807 ss->go_s99_running = 0;
2808 break;
2809 case sdma_event_e80_hw_freeze:
2810 break;
2811 case sdma_event_e81_hw_frozen:
2812 break;
2813 case sdma_event_e82_hw_unfreeze:
2814 break;
2815 case sdma_event_e85_link_down:
2816 ss->go_s99_running = 0;
2817 break;
2818 case sdma_event_e90_sw_halted:
2819 break;
2820 }
2821 break;
2822
2823 case sdma_state_s50_hw_halt_wait:
2824 switch (event) {
2825 case sdma_event_e00_go_hw_down:
2826 sdma_set_state(sde, sdma_state_s00_hw_down);
2827 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2828 break;
2829 case sdma_event_e10_go_hw_start:
2830 break;
2831 case sdma_event_e15_hw_halt_done:
2832 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2833 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2834 break;
2835 case sdma_event_e25_hw_clean_up_done:
2836 break;
2837 case sdma_event_e30_go_running:
2838 ss->go_s99_running = 1;
2839 break;
2840 case sdma_event_e40_sw_cleaned:
2841 break;
2842 case sdma_event_e50_hw_cleaned:
2843 break;
2844 case sdma_event_e60_hw_halted:
2845 schedule_work(&sde->err_halt_worker);
2846 break;
2847 case sdma_event_e70_go_idle:
2848 ss->go_s99_running = 0;
2849 break;
2850 case sdma_event_e80_hw_freeze:
2851 break;
2852 case sdma_event_e81_hw_frozen:
2853 break;
2854 case sdma_event_e82_hw_unfreeze:
2855 break;
2856 case sdma_event_e85_link_down:
2857 ss->go_s99_running = 0;
2858 break;
2859 case sdma_event_e90_sw_halted:
2860 break;
2861 }
2862 break;
2863
2864 case sdma_state_s60_idle_halt_wait:
2865 switch (event) {
2866 case sdma_event_e00_go_hw_down:
2867 sdma_set_state(sde, sdma_state_s00_hw_down);
2868 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2869 break;
2870 case sdma_event_e10_go_hw_start:
2871 break;
2872 case sdma_event_e15_hw_halt_done:
2873 sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2874 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2875 break;
2876 case sdma_event_e25_hw_clean_up_done:
2877 break;
2878 case sdma_event_e30_go_running:
2879 ss->go_s99_running = 1;
2880 break;
2881 case sdma_event_e40_sw_cleaned:
2882 break;
2883 case sdma_event_e50_hw_cleaned:
2884 break;
2885 case sdma_event_e60_hw_halted:
2886 schedule_work(&sde->err_halt_worker);
2887 break;
2888 case sdma_event_e70_go_idle:
2889 ss->go_s99_running = 0;
2890 break;
2891 case sdma_event_e80_hw_freeze:
2892 break;
2893 case sdma_event_e81_hw_frozen:
2894 break;
2895 case sdma_event_e82_hw_unfreeze:
2896 break;
2897 case sdma_event_e85_link_down:
2898 break;
2899 case sdma_event_e90_sw_halted:
2900 break;
2901 }
2902 break;
2903
2904 case sdma_state_s80_hw_freeze:
2905 switch (event) {
2906 case sdma_event_e00_go_hw_down:
2907 sdma_set_state(sde, sdma_state_s00_hw_down);
2908 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2909 break;
2910 case sdma_event_e10_go_hw_start:
2911 break;
2912 case sdma_event_e15_hw_halt_done:
2913 break;
2914 case sdma_event_e25_hw_clean_up_done:
2915 break;
2916 case sdma_event_e30_go_running:
2917 ss->go_s99_running = 1;
2918 break;
2919 case sdma_event_e40_sw_cleaned:
2920 break;
2921 case sdma_event_e50_hw_cleaned:
2922 break;
2923 case sdma_event_e60_hw_halted:
2924 break;
2925 case sdma_event_e70_go_idle:
2926 ss->go_s99_running = 0;
2927 break;
2928 case sdma_event_e80_hw_freeze:
2929 break;
2930 case sdma_event_e81_hw_frozen:
2931 sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2932 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2933 break;
2934 case sdma_event_e82_hw_unfreeze:
2935 break;
2936 case sdma_event_e85_link_down:
2937 break;
2938 case sdma_event_e90_sw_halted:
2939 break;
2940 }
2941 break;
2942
2943 case sdma_state_s82_freeze_sw_clean:
2944 switch (event) {
2945 case sdma_event_e00_go_hw_down:
2946 sdma_set_state(sde, sdma_state_s00_hw_down);
2947 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2948 break;
2949 case sdma_event_e10_go_hw_start:
2950 break;
2951 case sdma_event_e15_hw_halt_done:
2952 break;
2953 case sdma_event_e25_hw_clean_up_done:
2954 break;
2955 case sdma_event_e30_go_running:
2956 ss->go_s99_running = 1;
2957 break;
2958 case sdma_event_e40_sw_cleaned:
2959 /* notify caller this engine is done cleaning */
2960 atomic_dec(&sde->dd->sdma_unfreeze_count);
2961 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2962 break;
2963 case sdma_event_e50_hw_cleaned:
2964 break;
2965 case sdma_event_e60_hw_halted:
2966 break;
2967 case sdma_event_e70_go_idle:
2968 ss->go_s99_running = 0;
2969 break;
2970 case sdma_event_e80_hw_freeze:
2971 break;
2972 case sdma_event_e81_hw_frozen:
2973 break;
2974 case sdma_event_e82_hw_unfreeze:
2975 sdma_hw_start_up(sde);
2976 sdma_set_state(sde, ss->go_s99_running ?
2977 sdma_state_s99_running :
2978 sdma_state_s20_idle);
2979 break;
2980 case sdma_event_e85_link_down:
2981 break;
2982 case sdma_event_e90_sw_halted:
2983 break;
2984 }
2985 break;
2986
2987 case sdma_state_s99_running:
2988 switch (event) {
2989 case sdma_event_e00_go_hw_down:
2990 sdma_set_state(sde, sdma_state_s00_hw_down);
2991 tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2992 break;
2993 case sdma_event_e10_go_hw_start:
2994 break;
2995 case sdma_event_e15_hw_halt_done:
2996 break;
2997 case sdma_event_e25_hw_clean_up_done:
2998 break;
2999 case sdma_event_e30_go_running:
3000 break;
3001 case sdma_event_e40_sw_cleaned:
3002 break;
3003 case sdma_event_e50_hw_cleaned:
3004 break;
3005 case sdma_event_e60_hw_halted:
3006 need_progress = 1;
3007 sdma_err_progress_check_schedule(sde);
3008 /* fall through */
3009 case sdma_event_e90_sw_halted:
3010 /*
3011 * SW initiated halt does not perform engines
3012 * progress check
3013 */
3014 sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3015 schedule_work(&sde->err_halt_worker);
3016 break;
3017 case sdma_event_e70_go_idle:
3018 sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3019 break;
3020 case sdma_event_e85_link_down:
3021 ss->go_s99_running = 0;
3022 /* fall through */
3023 case sdma_event_e80_hw_freeze:
3024 sdma_set_state(sde, sdma_state_s80_hw_freeze);
3025 atomic_dec(&sde->dd->sdma_unfreeze_count);
3026 wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3027 break;
3028 case sdma_event_e81_hw_frozen:
3029 break;
3030 case sdma_event_e82_hw_unfreeze:
3031 break;
3032 }
3033 break;
3034 }
3035
3036 ss->last_event = event;
3037 if (need_progress)
3038 sdma_make_progress(sde, 0);
3039 }
3040
3041 /*
3042 * _extend_sdma_tx_descs() - helper to extend txreq
3043 *
3044 * This is called once the initial nominal allocation
3045 * of descriptors in the sdma_txreq is exhausted.
3046 *
3047 * The code will bump the allocation up to the max
3048 * of MAX_DESC (64) descriptors. There doesn't seem
3049 * much point in an interim step. The last descriptor
3050 * is reserved for coalesce buffer in order to support
3051 * cases where input packet has >MAX_DESC iovecs.
3052 *
3053 */
_extend_sdma_tx_descs(struct hfi1_devdata * dd,struct sdma_txreq * tx)3054 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3055 {
3056 int i;
3057
3058 /* Handle last descriptor */
3059 if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3060 /* if tlen is 0, it is for padding, release last descriptor */
3061 if (!tx->tlen) {
3062 tx->desc_limit = MAX_DESC;
3063 } else if (!tx->coalesce_buf) {
3064 /* allocate coalesce buffer with space for padding */
3065 tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3066 GFP_ATOMIC);
3067 if (!tx->coalesce_buf)
3068 goto enomem;
3069 tx->coalesce_idx = 0;
3070 }
3071 return 0;
3072 }
3073
3074 if (unlikely(tx->num_desc == MAX_DESC))
3075 goto enomem;
3076
3077 tx->descp = kmalloc_array(
3078 MAX_DESC,
3079 sizeof(struct sdma_desc),
3080 GFP_ATOMIC);
3081 if (!tx->descp)
3082 goto enomem;
3083
3084 /* reserve last descriptor for coalescing */
3085 tx->desc_limit = MAX_DESC - 1;
3086 /* copy ones already built */
3087 for (i = 0; i < tx->num_desc; i++)
3088 tx->descp[i] = tx->descs[i];
3089 return 0;
3090 enomem:
3091 __sdma_txclean(dd, tx);
3092 return -ENOMEM;
3093 }
3094
3095 /*
3096 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3097 *
3098 * This is called once the initial nominal allocation of descriptors
3099 * in the sdma_txreq is exhausted.
3100 *
3101 * This function calls _extend_sdma_tx_descs to extend or allocate
3102 * coalesce buffer. If there is a allocated coalesce buffer, it will
3103 * copy the input packet data into the coalesce buffer. It also adds
3104 * coalesce buffer descriptor once when whole packet is received.
3105 *
3106 * Return:
3107 * <0 - error
3108 * 0 - coalescing, don't populate descriptor
3109 * 1 - continue with populating descriptor
3110 */
ext_coal_sdma_tx_descs(struct hfi1_devdata * dd,struct sdma_txreq * tx,int type,void * kvaddr,struct page * page,unsigned long offset,u16 len)3111 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3112 int type, void *kvaddr, struct page *page,
3113 unsigned long offset, u16 len)
3114 {
3115 int pad_len, rval;
3116 dma_addr_t addr;
3117
3118 rval = _extend_sdma_tx_descs(dd, tx);
3119 if (rval) {
3120 __sdma_txclean(dd, tx);
3121 return rval;
3122 }
3123
3124 /* If coalesce buffer is allocated, copy data into it */
3125 if (tx->coalesce_buf) {
3126 if (type == SDMA_MAP_NONE) {
3127 __sdma_txclean(dd, tx);
3128 return -EINVAL;
3129 }
3130
3131 if (type == SDMA_MAP_PAGE) {
3132 kvaddr = kmap(page);
3133 kvaddr += offset;
3134 } else if (WARN_ON(!kvaddr)) {
3135 __sdma_txclean(dd, tx);
3136 return -EINVAL;
3137 }
3138
3139 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3140 tx->coalesce_idx += len;
3141 if (type == SDMA_MAP_PAGE)
3142 kunmap(page);
3143
3144 /* If there is more data, return */
3145 if (tx->tlen - tx->coalesce_idx)
3146 return 0;
3147
3148 /* Whole packet is received; add any padding */
3149 pad_len = tx->packet_len & (sizeof(u32) - 1);
3150 if (pad_len) {
3151 pad_len = sizeof(u32) - pad_len;
3152 memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3153 /* padding is taken care of for coalescing case */
3154 tx->packet_len += pad_len;
3155 tx->tlen += pad_len;
3156 }
3157
3158 /* dma map the coalesce buffer */
3159 addr = dma_map_single(&dd->pcidev->dev,
3160 tx->coalesce_buf,
3161 tx->tlen,
3162 DMA_TO_DEVICE);
3163
3164 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3165 __sdma_txclean(dd, tx);
3166 return -ENOSPC;
3167 }
3168
3169 /* Add descriptor for coalesce buffer */
3170 tx->desc_limit = MAX_DESC;
3171 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3172 addr, tx->tlen);
3173 }
3174
3175 return 1;
3176 }
3177
3178 /* Update sdes when the lmc changes */
sdma_update_lmc(struct hfi1_devdata * dd,u64 mask,u32 lid)3179 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3180 {
3181 struct sdma_engine *sde;
3182 int i;
3183 u64 sreg;
3184
3185 sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3186 SD(CHECK_SLID_MASK_SHIFT)) |
3187 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3188 SD(CHECK_SLID_VALUE_SHIFT));
3189
3190 for (i = 0; i < dd->num_sdma; i++) {
3191 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3192 i, (u32)sreg);
3193 sde = &dd->per_sdma[i];
3194 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3195 }
3196 }
3197
3198 /* tx not dword sized - pad */
_pad_sdma_tx_descs(struct hfi1_devdata * dd,struct sdma_txreq * tx)3199 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3200 {
3201 int rval = 0;
3202
3203 tx->num_desc++;
3204 if ((unlikely(tx->num_desc == tx->desc_limit))) {
3205 rval = _extend_sdma_tx_descs(dd, tx);
3206 if (rval) {
3207 __sdma_txclean(dd, tx);
3208 return rval;
3209 }
3210 }
3211 /* finish the one just added */
3212 make_tx_sdma_desc(
3213 tx,
3214 SDMA_MAP_NONE,
3215 dd->sdma_pad_phys,
3216 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3217 _sdma_close_tx(dd, tx);
3218 return rval;
3219 }
3220
3221 /*
3222 * Add ahg to the sdma_txreq
3223 *
3224 * The logic will consume up to 3
3225 * descriptors at the beginning of
3226 * sdma_txreq.
3227 */
_sdma_txreq_ahgadd(struct sdma_txreq * tx,u8 num_ahg,u8 ahg_entry,u32 * ahg,u8 ahg_hlen)3228 void _sdma_txreq_ahgadd(
3229 struct sdma_txreq *tx,
3230 u8 num_ahg,
3231 u8 ahg_entry,
3232 u32 *ahg,
3233 u8 ahg_hlen)
3234 {
3235 u32 i, shift = 0, desc = 0;
3236 u8 mode;
3237
3238 WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3239 /* compute mode */
3240 if (num_ahg == 1)
3241 mode = SDMA_AHG_APPLY_UPDATE1;
3242 else if (num_ahg <= 5)
3243 mode = SDMA_AHG_APPLY_UPDATE2;
3244 else
3245 mode = SDMA_AHG_APPLY_UPDATE3;
3246 tx->num_desc++;
3247 /* initialize to consumed descriptors to zero */
3248 switch (mode) {
3249 case SDMA_AHG_APPLY_UPDATE3:
3250 tx->num_desc++;
3251 tx->descs[2].qw[0] = 0;
3252 tx->descs[2].qw[1] = 0;
3253 /* FALLTHROUGH */
3254 case SDMA_AHG_APPLY_UPDATE2:
3255 tx->num_desc++;
3256 tx->descs[1].qw[0] = 0;
3257 tx->descs[1].qw[1] = 0;
3258 break;
3259 }
3260 ahg_hlen >>= 2;
3261 tx->descs[0].qw[1] |=
3262 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3263 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3264 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3265 << SDMA_DESC1_HEADER_DWS_SHIFT) |
3266 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3267 << SDMA_DESC1_HEADER_MODE_SHIFT) |
3268 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3269 << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3270 for (i = 0; i < (num_ahg - 1); i++) {
3271 if (!shift && !(i & 2))
3272 desc++;
3273 tx->descs[desc].qw[!!(i & 2)] |=
3274 (((u64)ahg[i + 1])
3275 << shift);
3276 shift = (shift + 32) & 63;
3277 }
3278 }
3279
3280 /**
3281 * sdma_ahg_alloc - allocate an AHG entry
3282 * @sde: engine to allocate from
3283 *
3284 * Return:
3285 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3286 * -ENOSPC if an entry is not available
3287 */
sdma_ahg_alloc(struct sdma_engine * sde)3288 int sdma_ahg_alloc(struct sdma_engine *sde)
3289 {
3290 int nr;
3291 int oldbit;
3292
3293 if (!sde) {
3294 trace_hfi1_ahg_allocate(sde, -EINVAL);
3295 return -EINVAL;
3296 }
3297 while (1) {
3298 nr = ffz(READ_ONCE(sde->ahg_bits));
3299 if (nr > 31) {
3300 trace_hfi1_ahg_allocate(sde, -ENOSPC);
3301 return -ENOSPC;
3302 }
3303 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3304 if (!oldbit)
3305 break;
3306 cpu_relax();
3307 }
3308 trace_hfi1_ahg_allocate(sde, nr);
3309 return nr;
3310 }
3311
3312 /**
3313 * sdma_ahg_free - free an AHG entry
3314 * @sde: engine to return AHG entry
3315 * @ahg_index: index to free
3316 *
3317 * This routine frees the indicate AHG entry.
3318 */
sdma_ahg_free(struct sdma_engine * sde,int ahg_index)3319 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3320 {
3321 if (!sde)
3322 return;
3323 trace_hfi1_ahg_deallocate(sde, ahg_index);
3324 if (ahg_index < 0 || ahg_index > 31)
3325 return;
3326 clear_bit(ahg_index, &sde->ahg_bits);
3327 }
3328
3329 /*
3330 * SPC freeze handling for SDMA engines. Called when the driver knows
3331 * the SPC is going into a freeze but before the freeze is fully
3332 * settled. Generally an error interrupt.
3333 *
3334 * This event will pull the engine out of running so no more entries can be
3335 * added to the engine's queue.
3336 */
sdma_freeze_notify(struct hfi1_devdata * dd,int link_down)3337 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3338 {
3339 int i;
3340 enum sdma_events event = link_down ? sdma_event_e85_link_down :
3341 sdma_event_e80_hw_freeze;
3342
3343 /* set up the wait but do not wait here */
3344 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3345
3346 /* tell all engines to stop running and wait */
3347 for (i = 0; i < dd->num_sdma; i++)
3348 sdma_process_event(&dd->per_sdma[i], event);
3349
3350 /* sdma_freeze() will wait for all engines to have stopped */
3351 }
3352
3353 /*
3354 * SPC freeze handling for SDMA engines. Called when the driver knows
3355 * the SPC is fully frozen.
3356 */
sdma_freeze(struct hfi1_devdata * dd)3357 void sdma_freeze(struct hfi1_devdata *dd)
3358 {
3359 int i;
3360 int ret;
3361
3362 /*
3363 * Make sure all engines have moved out of the running state before
3364 * continuing.
3365 */
3366 ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3367 atomic_read(&dd->sdma_unfreeze_count) <=
3368 0);
3369 /* interrupted or count is negative, then unloading - just exit */
3370 if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3371 return;
3372
3373 /* set up the count for the next wait */
3374 atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3375
3376 /* tell all engines that the SPC is frozen, they can start cleaning */
3377 for (i = 0; i < dd->num_sdma; i++)
3378 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3379
3380 /*
3381 * Wait for everyone to finish software clean before exiting. The
3382 * software clean will read engine CSRs, so must be completed before
3383 * the next step, which will clear the engine CSRs.
3384 */
3385 (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3386 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3387 /* no need to check results - done no matter what */
3388 }
3389
3390 /*
3391 * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen.
3392 *
3393 * The SPC freeze acts like a SDMA halt and a hardware clean combined. All
3394 * that is left is a software clean. We could do it after the SPC is fully
3395 * frozen, but then we'd have to add another state to wait for the unfreeze.
3396 * Instead, just defer the software clean until the unfreeze step.
3397 */
sdma_unfreeze(struct hfi1_devdata * dd)3398 void sdma_unfreeze(struct hfi1_devdata *dd)
3399 {
3400 int i;
3401
3402 /* tell all engines start freeze clean up */
3403 for (i = 0; i < dd->num_sdma; i++)
3404 sdma_process_event(&dd->per_sdma[i],
3405 sdma_event_e82_hw_unfreeze);
3406 }
3407
3408 /**
3409 * _sdma_engine_progress_schedule() - schedule progress on engine
3410 * @sde: sdma_engine to schedule progress
3411 *
3412 */
_sdma_engine_progress_schedule(struct sdma_engine * sde)3413 void _sdma_engine_progress_schedule(
3414 struct sdma_engine *sde)
3415 {
3416 trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3417 /* assume we have selected a good cpu */
3418 write_csr(sde->dd,
3419 CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3420 sde->progress_mask);
3421 }
3422