1 /*
2 * Copyright (C) 2012 Invensense, Inc.
3 *
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/delay.h>
18 #include <linux/sysfs.h>
19 #include <linux/jiffies.h>
20 #include <linux/irq.h>
21 #include <linux/interrupt.h>
22 #include <linux/poll.h>
23 #include <linux/math64.h>
24 #include <asm/unaligned.h>
25 #include "inv_mpu_iio.h"
26
27 /**
28 * inv_mpu6050_update_period() - Update chip internal period estimation
29 *
30 * @st: driver state
31 * @timestamp: the interrupt timestamp
32 * @nb: number of data set in the fifo
33 *
34 * This function uses interrupt timestamps to estimate the chip period and
35 * to choose the data timestamp to come.
36 */
inv_mpu6050_update_period(struct inv_mpu6050_state * st,s64 timestamp,size_t nb)37 static void inv_mpu6050_update_period(struct inv_mpu6050_state *st,
38 s64 timestamp, size_t nb)
39 {
40 /* Period boundaries for accepting timestamp */
41 const s64 period_min =
42 (NSEC_PER_MSEC * (100 - INV_MPU6050_TS_PERIOD_JITTER)) / 100;
43 const s64 period_max =
44 (NSEC_PER_MSEC * (100 + INV_MPU6050_TS_PERIOD_JITTER)) / 100;
45 const s32 divider = INV_MPU6050_FREQ_DIVIDER(st);
46 s64 delta, interval;
47 bool use_it_timestamp = false;
48
49 if (st->it_timestamp == 0) {
50 /* not initialized, forced to use it_timestamp */
51 use_it_timestamp = true;
52 } else if (nb == 1) {
53 /*
54 * Validate the use of it timestamp by checking if interrupt
55 * has been delayed.
56 * nb > 1 means interrupt was delayed for more than 1 sample,
57 * so it's obviously not good.
58 * Compute the chip period between 2 interrupts for validating.
59 */
60 delta = div_s64(timestamp - st->it_timestamp, divider);
61 if (delta > period_min && delta < period_max) {
62 /* update chip period and use it timestamp */
63 st->chip_period = (st->chip_period + delta) / 2;
64 use_it_timestamp = true;
65 }
66 }
67
68 if (use_it_timestamp) {
69 /*
70 * Manage case of multiple samples in the fifo (nb > 1):
71 * compute timestamp corresponding to the first sample using
72 * estimated chip period.
73 */
74 interval = (nb - 1) * st->chip_period * divider;
75 st->data_timestamp = timestamp - interval;
76 }
77
78 /* save it timestamp */
79 st->it_timestamp = timestamp;
80 }
81
82 /**
83 * inv_mpu6050_get_timestamp() - Return the current data timestamp
84 *
85 * @st: driver state
86 * @return: current data timestamp
87 *
88 * This function returns the current data timestamp and prepares for next one.
89 */
inv_mpu6050_get_timestamp(struct inv_mpu6050_state * st)90 static s64 inv_mpu6050_get_timestamp(struct inv_mpu6050_state *st)
91 {
92 s64 ts;
93
94 /* return current data timestamp and increment */
95 ts = st->data_timestamp;
96 st->data_timestamp += st->chip_period * INV_MPU6050_FREQ_DIVIDER(st);
97
98 return ts;
99 }
100
inv_reset_fifo(struct iio_dev * indio_dev)101 int inv_reset_fifo(struct iio_dev *indio_dev)
102 {
103 int result;
104 u8 d;
105 struct inv_mpu6050_state *st = iio_priv(indio_dev);
106
107 /* reset it timestamp validation */
108 st->it_timestamp = 0;
109
110 /* disable interrupt */
111 result = regmap_write(st->map, st->reg->int_enable, 0);
112 if (result) {
113 dev_err(regmap_get_device(st->map), "int_enable failed %d\n",
114 result);
115 return result;
116 }
117 /* disable the sensor output to FIFO */
118 result = regmap_write(st->map, st->reg->fifo_en, 0);
119 if (result)
120 goto reset_fifo_fail;
121 /* disable fifo reading */
122 result = regmap_write(st->map, st->reg->user_ctrl,
123 st->chip_config.user_ctrl);
124 if (result)
125 goto reset_fifo_fail;
126
127 /* reset FIFO*/
128 d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_RST;
129 result = regmap_write(st->map, st->reg->user_ctrl, d);
130 if (result)
131 goto reset_fifo_fail;
132
133 /* enable interrupt */
134 if (st->chip_config.accl_fifo_enable ||
135 st->chip_config.gyro_fifo_enable) {
136 result = regmap_write(st->map, st->reg->int_enable,
137 INV_MPU6050_BIT_DATA_RDY_EN);
138 if (result)
139 return result;
140 }
141 /* enable FIFO reading */
142 d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_EN;
143 result = regmap_write(st->map, st->reg->user_ctrl, d);
144 if (result)
145 goto reset_fifo_fail;
146 /* enable sensor output to FIFO */
147 d = 0;
148 if (st->chip_config.gyro_fifo_enable)
149 d |= INV_MPU6050_BITS_GYRO_OUT;
150 if (st->chip_config.accl_fifo_enable)
151 d |= INV_MPU6050_BIT_ACCEL_OUT;
152 result = regmap_write(st->map, st->reg->fifo_en, d);
153 if (result)
154 goto reset_fifo_fail;
155
156 return 0;
157
158 reset_fifo_fail:
159 dev_err(regmap_get_device(st->map), "reset fifo failed %d\n", result);
160 result = regmap_write(st->map, st->reg->int_enable,
161 INV_MPU6050_BIT_DATA_RDY_EN);
162
163 return result;
164 }
165
166 /**
167 * inv_mpu6050_read_fifo() - Transfer data from hardware FIFO to KFIFO.
168 */
inv_mpu6050_read_fifo(int irq,void * p)169 irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
170 {
171 struct iio_poll_func *pf = p;
172 struct iio_dev *indio_dev = pf->indio_dev;
173 struct inv_mpu6050_state *st = iio_priv(indio_dev);
174 size_t bytes_per_datum;
175 int result;
176 u8 data[INV_MPU6050_OUTPUT_DATA_SIZE];
177 u16 fifo_count;
178 s64 timestamp;
179 int int_status;
180 size_t i, nb;
181
182 mutex_lock(&st->lock);
183
184 /* ack interrupt and check status */
185 result = regmap_read(st->map, st->reg->int_status, &int_status);
186 if (result) {
187 dev_err(regmap_get_device(st->map),
188 "failed to ack interrupt\n");
189 goto flush_fifo;
190 }
191 /* handle fifo overflow by reseting fifo */
192 if (int_status & INV_MPU6050_BIT_FIFO_OVERFLOW_INT)
193 goto flush_fifo;
194 if (!(int_status & INV_MPU6050_BIT_RAW_DATA_RDY_INT)) {
195 dev_warn(regmap_get_device(st->map),
196 "spurious interrupt with status 0x%x\n", int_status);
197 goto end_session;
198 }
199
200 if (!(st->chip_config.accl_fifo_enable |
201 st->chip_config.gyro_fifo_enable))
202 goto end_session;
203 bytes_per_datum = 0;
204 if (st->chip_config.accl_fifo_enable)
205 bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
206
207 if (st->chip_config.gyro_fifo_enable)
208 bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
209
210 /*
211 * read fifo_count register to know how many bytes are inside the FIFO
212 * right now
213 */
214 result = regmap_bulk_read(st->map, st->reg->fifo_count_h, data,
215 INV_MPU6050_FIFO_COUNT_BYTE);
216 if (result)
217 goto end_session;
218 fifo_count = get_unaligned_be16(&data[0]);
219 /* compute and process all complete datum */
220 nb = fifo_count / bytes_per_datum;
221 inv_mpu6050_update_period(st, pf->timestamp, nb);
222 for (i = 0; i < nb; ++i) {
223 result = regmap_bulk_read(st->map, st->reg->fifo_r_w,
224 data, bytes_per_datum);
225 if (result)
226 goto flush_fifo;
227 /* skip first samples if needed */
228 if (st->skip_samples) {
229 st->skip_samples--;
230 continue;
231 }
232 timestamp = inv_mpu6050_get_timestamp(st);
233 iio_push_to_buffers_with_timestamp(indio_dev, data, timestamp);
234 }
235
236 end_session:
237 mutex_unlock(&st->lock);
238 iio_trigger_notify_done(indio_dev->trig);
239
240 return IRQ_HANDLED;
241
242 flush_fifo:
243 /* Flush HW and SW FIFOs. */
244 inv_reset_fifo(indio_dev);
245 mutex_unlock(&st->lock);
246 iio_trigger_notify_done(indio_dev->trig);
247
248 return IRQ_HANDLED;
249 }
250