1 /*
2  * Support for IDE interfaces on PowerMacs.
3  *
4  * These IDE interfaces are memory-mapped and have a DBDMA channel
5  * for doing DMA.
6  *
7  *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8  *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
9  *
10  *  This program is free software; you can redistribute it and/or
11  *  modify it under the terms of the GNU General Public License
12  *  as published by the Free Software Foundation; either version
13  *  2 of the License, or (at your option) any later version.
14  *
15  * Some code taken from drivers/ide/ide-dma.c:
16  *
17  *  Copyright (c) 1995-1998  Mark Lord
18  *
19  * TODO: - Use pre-calculated (kauai) timing tables all the time and
20  * get rid of the "rounded" tables used previously, so we have the
21  * same table format for all controllers and can then just have one
22  * big table
23  *
24  */
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/module.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 
39 #include <asm/prom.h>
40 #include <asm/io.h>
41 #include <asm/dbdma.h>
42 #include <asm/ide.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
46 #include <asm/irq.h>
47 #include <asm/mediabay.h>
48 
49 #define DRV_NAME "ide-pmac"
50 
51 #undef IDE_PMAC_DEBUG
52 
53 #define DMA_WAIT_TIMEOUT	50
54 
55 typedef struct pmac_ide_hwif {
56 	unsigned long			regbase;
57 	int				irq;
58 	int				kind;
59 	int				aapl_bus_id;
60 	unsigned			broken_dma : 1;
61 	unsigned			broken_dma_warn : 1;
62 	struct device_node*		node;
63 	struct macio_dev		*mdev;
64 	u32				timings[4];
65 	volatile u32 __iomem *		*kauai_fcr;
66 	ide_hwif_t			*hwif;
67 
68 	/* Those fields are duplicating what is in hwif. We currently
69 	 * can't use the hwif ones because of some assumptions that are
70 	 * beeing done by the generic code about the kind of dma controller
71 	 * and format of the dma table. This will have to be fixed though.
72 	 */
73 	volatile struct dbdma_regs __iomem *	dma_regs;
74 	struct dbdma_cmd*		dma_table_cpu;
75 } pmac_ide_hwif_t;
76 
77 enum {
78 	controller_ohare,	/* OHare based */
79 	controller_heathrow,	/* Heathrow/Paddington */
80 	controller_kl_ata3,	/* KeyLargo ATA-3 */
81 	controller_kl_ata4,	/* KeyLargo ATA-4 */
82 	controller_un_ata6,	/* UniNorth2 ATA-6 */
83 	controller_k2_ata6,	/* K2 ATA-6 */
84 	controller_sh_ata6,	/* Shasta ATA-6 */
85 };
86 
87 static const char* model_name[] = {
88 	"OHare ATA",		/* OHare based */
89 	"Heathrow ATA",		/* Heathrow/Paddington */
90 	"KeyLargo ATA-3",	/* KeyLargo ATA-3 (MDMA only) */
91 	"KeyLargo ATA-4",	/* KeyLargo ATA-4 (UDMA/66) */
92 	"UniNorth ATA-6",	/* UniNorth2 ATA-6 (UDMA/100) */
93 	"K2 ATA-6",		/* K2 ATA-6 (UDMA/100) */
94 	"Shasta ATA-6",		/* Shasta ATA-6 (UDMA/133) */
95 };
96 
97 /*
98  * Extra registers, both 32-bit little-endian
99  */
100 #define IDE_TIMING_CONFIG	0x200
101 #define IDE_INTERRUPT		0x300
102 
103 /* Kauai (U2) ATA has different register setup */
104 #define IDE_KAUAI_PIO_CONFIG	0x200
105 #define IDE_KAUAI_ULTRA_CONFIG	0x210
106 #define IDE_KAUAI_POLL_CONFIG	0x220
107 
108 /*
109  * Timing configuration register definitions
110  */
111 
112 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
113 #define SYSCLK_TICKS(t)		(((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
114 #define SYSCLK_TICKS_66(t)	(((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
115 #define IDE_SYSCLK_NS		30	/* 33Mhz cell */
116 #define IDE_SYSCLK_66_NS	15	/* 66Mhz cell */
117 
118 /* 133Mhz cell, found in shasta.
119  * See comments about 100 Mhz Uninorth 2...
120  * Note that PIO_MASK and MDMA_MASK seem to overlap
121  */
122 #define TR_133_PIOREG_PIO_MASK		0xff000fff
123 #define TR_133_PIOREG_MDMA_MASK		0x00fff800
124 #define TR_133_UDMAREG_UDMA_MASK	0x0003ffff
125 #define TR_133_UDMAREG_UDMA_EN		0x00000001
126 
127 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
128  * this one yet, it appears as a pci device (106b/0033) on uninorth
129  * internal PCI bus and it's clock is controlled like gem or fw. It
130  * appears to be an evolution of keylargo ATA4 with a timing register
131  * extended to 2 32bits registers and a similar DBDMA channel. Other
132  * registers seem to exist but I can't tell much about them.
133  *
134  * So far, I'm using pre-calculated tables for this extracted from
135  * the values used by the MacOS X driver.
136  *
137  * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
138  * register controls the UDMA timings. At least, it seems bit 0
139  * of this one enables UDMA vs. MDMA, and bits 4..7 are the
140  * cycle time in units of 10ns. Bits 8..15 are used by I don't
141  * know their meaning yet
142  */
143 #define TR_100_PIOREG_PIO_MASK		0xff000fff
144 #define TR_100_PIOREG_MDMA_MASK		0x00fff000
145 #define TR_100_UDMAREG_UDMA_MASK	0x0000ffff
146 #define TR_100_UDMAREG_UDMA_EN		0x00000001
147 
148 
149 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
150  * 40 connector cable and to 4 on 80 connector one.
151  * Clock unit is 15ns (66Mhz)
152  *
153  * 3 Values can be programmed:
154  *  - Write data setup, which appears to match the cycle time. They
155  *    also call it DIOW setup.
156  *  - Ready to pause time (from spec)
157  *  - Address setup. That one is weird. I don't see where exactly
158  *    it fits in UDMA cycles, I got it's name from an obscure piece
159  *    of commented out code in Darwin. They leave it to 0, we do as
160  *    well, despite a comment that would lead to think it has a
161  *    min value of 45ns.
162  * Apple also add 60ns to the write data setup (or cycle time ?) on
163  * reads.
164  */
165 #define TR_66_UDMA_MASK			0xfff00000
166 #define TR_66_UDMA_EN			0x00100000 /* Enable Ultra mode for DMA */
167 #define TR_66_UDMA_ADDRSETUP_MASK	0xe0000000 /* Address setup */
168 #define TR_66_UDMA_ADDRSETUP_SHIFT	29
169 #define TR_66_UDMA_RDY2PAUS_MASK	0x1e000000 /* Ready 2 pause time */
170 #define TR_66_UDMA_RDY2PAUS_SHIFT	25
171 #define TR_66_UDMA_WRDATASETUP_MASK	0x01e00000 /* Write data setup time */
172 #define TR_66_UDMA_WRDATASETUP_SHIFT	21
173 #define TR_66_MDMA_MASK			0x000ffc00
174 #define TR_66_MDMA_RECOVERY_MASK	0x000f8000
175 #define TR_66_MDMA_RECOVERY_SHIFT	15
176 #define TR_66_MDMA_ACCESS_MASK		0x00007c00
177 #define TR_66_MDMA_ACCESS_SHIFT		10
178 #define TR_66_PIO_MASK			0x000003ff
179 #define TR_66_PIO_RECOVERY_MASK		0x000003e0
180 #define TR_66_PIO_RECOVERY_SHIFT	5
181 #define TR_66_PIO_ACCESS_MASK		0x0000001f
182 #define TR_66_PIO_ACCESS_SHIFT		0
183 
184 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
185  * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
186  *
187  * The access time and recovery time can be programmed. Some older
188  * Darwin code base limit OHare to 150ns cycle time. I decided to do
189  * the same here fore safety against broken old hardware ;)
190  * The HalfTick bit, when set, adds half a clock (15ns) to the access
191  * time and removes one from recovery. It's not supported on KeyLargo
192  * implementation afaik. The E bit appears to be set for PIO mode 0 and
193  * is used to reach long timings used in this mode.
194  */
195 #define TR_33_MDMA_MASK			0x003ff800
196 #define TR_33_MDMA_RECOVERY_MASK	0x001f0000
197 #define TR_33_MDMA_RECOVERY_SHIFT	16
198 #define TR_33_MDMA_ACCESS_MASK		0x0000f800
199 #define TR_33_MDMA_ACCESS_SHIFT		11
200 #define TR_33_MDMA_HALFTICK		0x00200000
201 #define TR_33_PIO_MASK			0x000007ff
202 #define TR_33_PIO_E			0x00000400
203 #define TR_33_PIO_RECOVERY_MASK		0x000003e0
204 #define TR_33_PIO_RECOVERY_SHIFT	5
205 #define TR_33_PIO_ACCESS_MASK		0x0000001f
206 #define TR_33_PIO_ACCESS_SHIFT		0
207 
208 /*
209  * Interrupt register definitions
210  */
211 #define IDE_INTR_DMA			0x80000000
212 #define IDE_INTR_DEVICE			0x40000000
213 
214 /*
215  * FCR Register on Kauai. Not sure what bit 0x4 is  ...
216  */
217 #define KAUAI_FCR_UATA_MAGIC		0x00000004
218 #define KAUAI_FCR_UATA_RESET_N		0x00000002
219 #define KAUAI_FCR_UATA_ENABLE		0x00000001
220 
221 /* Rounded Multiword DMA timings
222  *
223  * I gave up finding a generic formula for all controller
224  * types and instead, built tables based on timing values
225  * used by Apple in Darwin's implementation.
226  */
227 struct mdma_timings_t {
228 	int	accessTime;
229 	int	recoveryTime;
230 	int	cycleTime;
231 };
232 
233 struct mdma_timings_t mdma_timings_33[] =
234 {
235     { 240, 240, 480 },
236     { 180, 180, 360 },
237     { 135, 135, 270 },
238     { 120, 120, 240 },
239     { 105, 105, 210 },
240     {  90,  90, 180 },
241     {  75,  75, 150 },
242     {  75,  45, 120 },
243     {   0,   0,   0 }
244 };
245 
246 struct mdma_timings_t mdma_timings_33k[] =
247 {
248     { 240, 240, 480 },
249     { 180, 180, 360 },
250     { 150, 150, 300 },
251     { 120, 120, 240 },
252     {  90, 120, 210 },
253     {  90,  90, 180 },
254     {  90,  60, 150 },
255     {  90,  30, 120 },
256     {   0,   0,   0 }
257 };
258 
259 struct mdma_timings_t mdma_timings_66[] =
260 {
261     { 240, 240, 480 },
262     { 180, 180, 360 },
263     { 135, 135, 270 },
264     { 120, 120, 240 },
265     { 105, 105, 210 },
266     {  90,  90, 180 },
267     {  90,  75, 165 },
268     {  75,  45, 120 },
269     {   0,   0,   0 }
270 };
271 
272 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
273 struct {
274 	int	addrSetup; /* ??? */
275 	int	rdy2pause;
276 	int	wrDataSetup;
277 } kl66_udma_timings[] =
278 {
279     {   0, 180,  120 },	/* Mode 0 */
280     {   0, 150,  90 },	/*      1 */
281     {   0, 120,  60 },	/*      2 */
282     {   0, 90,   45 },	/*      3 */
283     {   0, 90,   30 }	/*      4 */
284 };
285 
286 /* UniNorth 2 ATA/100 timings */
287 struct kauai_timing {
288 	int	cycle_time;
289 	u32	timing_reg;
290 };
291 
292 static struct kauai_timing	kauai_pio_timings[] =
293 {
294 	{ 930	, 0x08000fff },
295 	{ 600	, 0x08000a92 },
296 	{ 383	, 0x0800060f },
297 	{ 360	, 0x08000492 },
298 	{ 330	, 0x0800048f },
299 	{ 300	, 0x080003cf },
300 	{ 270	, 0x080003cc },
301 	{ 240	, 0x0800038b },
302 	{ 239	, 0x0800030c },
303 	{ 180	, 0x05000249 },
304 	{ 120	, 0x04000148 },
305 	{ 0	, 0 },
306 };
307 
308 static struct kauai_timing	kauai_mdma_timings[] =
309 {
310 	{ 1260	, 0x00fff000 },
311 	{ 480	, 0x00618000 },
312 	{ 360	, 0x00492000 },
313 	{ 270	, 0x0038e000 },
314 	{ 240	, 0x0030c000 },
315 	{ 210	, 0x002cb000 },
316 	{ 180	, 0x00249000 },
317 	{ 150	, 0x00209000 },
318 	{ 120	, 0x00148000 },
319 	{ 0	, 0 },
320 };
321 
322 static struct kauai_timing	kauai_udma_timings[] =
323 {
324 	{ 120	, 0x000070c0 },
325 	{ 90	, 0x00005d80 },
326 	{ 60	, 0x00004a60 },
327 	{ 45	, 0x00003a50 },
328 	{ 30	, 0x00002a30 },
329 	{ 20	, 0x00002921 },
330 	{ 0	, 0 },
331 };
332 
333 static struct kauai_timing	shasta_pio_timings[] =
334 {
335 	{ 930	, 0x08000fff },
336 	{ 600	, 0x0A000c97 },
337 	{ 383	, 0x07000712 },
338 	{ 360	, 0x040003cd },
339 	{ 330	, 0x040003cd },
340 	{ 300	, 0x040003cd },
341 	{ 270	, 0x040003cd },
342 	{ 240	, 0x040003cd },
343 	{ 239	, 0x040003cd },
344 	{ 180	, 0x0400028b },
345 	{ 120	, 0x0400010a },
346 	{ 0	, 0 },
347 };
348 
349 static struct kauai_timing	shasta_mdma_timings[] =
350 {
351 	{ 1260	, 0x00fff000 },
352 	{ 480	, 0x00820800 },
353 	{ 360	, 0x00820800 },
354 	{ 270	, 0x00820800 },
355 	{ 240	, 0x00820800 },
356 	{ 210	, 0x00820800 },
357 	{ 180	, 0x00820800 },
358 	{ 150	, 0x0028b000 },
359 	{ 120	, 0x001ca000 },
360 	{ 0	, 0 },
361 };
362 
363 static struct kauai_timing	shasta_udma133_timings[] =
364 {
365 	{ 120   , 0x00035901, },
366 	{ 90    , 0x000348b1, },
367 	{ 60    , 0x00033881, },
368 	{ 45    , 0x00033861, },
369 	{ 30    , 0x00033841, },
370 	{ 20    , 0x00033031, },
371 	{ 15    , 0x00033021, },
372 	{ 0	, 0 },
373 };
374 
375 
376 static inline u32
kauai_lookup_timing(struct kauai_timing * table,int cycle_time)377 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
378 {
379 	int i;
380 
381 	for (i=0; table[i].cycle_time; i++)
382 		if (cycle_time > table[i+1].cycle_time)
383 			return table[i].timing_reg;
384 	BUG();
385 	return 0;
386 }
387 
388 /* allow up to 256 DBDMA commands per xfer */
389 #define MAX_DCMDS		256
390 
391 /*
392  * Wait 1s for disk to answer on IDE bus after a hard reset
393  * of the device (via GPIO/FCR).
394  *
395  * Some devices seem to "pollute" the bus even after dropping
396  * the BSY bit (typically some combo drives slave on the UDMA
397  * bus) after a hard reset. Since we hard reset all drives on
398  * KeyLargo ATA66, we have to keep that delay around. I may end
399  * up not hard resetting anymore on these and keep the delay only
400  * for older interfaces instead (we have to reset when coming
401  * from MacOS...) --BenH.
402  */
403 #define IDE_WAKEUP_DELAY	(1*HZ)
404 
405 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
406 
407 #define PMAC_IDE_REG(x) \
408 	((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
409 
410 /*
411  * Apply the timings of the proper unit (master/slave) to the shared
412  * timing register when selecting that unit. This version is for
413  * ASICs with a single timing register
414  */
pmac_ide_apply_timings(ide_drive_t * drive)415 static void pmac_ide_apply_timings(ide_drive_t *drive)
416 {
417 	ide_hwif_t *hwif = drive->hwif;
418 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
419 
420 	if (drive->dn & 1)
421 		writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
422 	else
423 		writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
424 	(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
425 }
426 
427 /*
428  * Apply the timings of the proper unit (master/slave) to the shared
429  * timing register when selecting that unit. This version is for
430  * ASICs with a dual timing register (Kauai)
431  */
pmac_ide_kauai_apply_timings(ide_drive_t * drive)432 static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
433 {
434 	ide_hwif_t *hwif = drive->hwif;
435 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
436 
437 	if (drive->dn & 1) {
438 		writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
439 		writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
440 	} else {
441 		writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
442 		writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
443 	}
444 	(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
445 }
446 
447 /*
448  * Force an update of controller timing values for a given drive
449  */
450 static void
pmac_ide_do_update_timings(ide_drive_t * drive)451 pmac_ide_do_update_timings(ide_drive_t *drive)
452 {
453 	ide_hwif_t *hwif = drive->hwif;
454 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
455 
456 	if (pmif->kind == controller_sh_ata6 ||
457 	    pmif->kind == controller_un_ata6 ||
458 	    pmif->kind == controller_k2_ata6)
459 		pmac_ide_kauai_apply_timings(drive);
460 	else
461 		pmac_ide_apply_timings(drive);
462 }
463 
pmac_dev_select(ide_drive_t * drive)464 static void pmac_dev_select(ide_drive_t *drive)
465 {
466 	pmac_ide_apply_timings(drive);
467 
468 	writeb(drive->select | ATA_DEVICE_OBS,
469 	       (void __iomem *)drive->hwif->io_ports.device_addr);
470 }
471 
pmac_kauai_dev_select(ide_drive_t * drive)472 static void pmac_kauai_dev_select(ide_drive_t *drive)
473 {
474 	pmac_ide_kauai_apply_timings(drive);
475 
476 	writeb(drive->select | ATA_DEVICE_OBS,
477 	       (void __iomem *)drive->hwif->io_ports.device_addr);
478 }
479 
pmac_exec_command(ide_hwif_t * hwif,u8 cmd)480 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
481 {
482 	writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
483 	(void)readl((void __iomem *)(hwif->io_ports.data_addr
484 				     + IDE_TIMING_CONFIG));
485 }
486 
pmac_write_devctl(ide_hwif_t * hwif,u8 ctl)487 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
488 {
489 	writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
490 	(void)readl((void __iomem *)(hwif->io_ports.data_addr
491 				     + IDE_TIMING_CONFIG));
492 }
493 
494 /*
495  * Old tuning functions (called on hdparm -p), sets up drive PIO timings
496  */
pmac_ide_set_pio_mode(ide_hwif_t * hwif,ide_drive_t * drive)497 static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
498 {
499 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
500 	const u8 pio = drive->pio_mode - XFER_PIO_0;
501 	struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
502 	u32 *timings, t;
503 	unsigned accessTicks, recTicks;
504 	unsigned accessTime, recTime;
505 	unsigned int cycle_time;
506 
507 	/* which drive is it ? */
508 	timings = &pmif->timings[drive->dn & 1];
509 	t = *timings;
510 
511 	cycle_time = ide_pio_cycle_time(drive, pio);
512 
513 	switch (pmif->kind) {
514 	case controller_sh_ata6: {
515 		/* 133Mhz cell */
516 		u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
517 		t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
518 		break;
519 		}
520 	case controller_un_ata6:
521 	case controller_k2_ata6: {
522 		/* 100Mhz cell */
523 		u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
524 		t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
525 		break;
526 		}
527 	case controller_kl_ata4:
528 		/* 66Mhz cell */
529 		recTime = cycle_time - tim->active - tim->setup;
530 		recTime = max(recTime, 150U);
531 		accessTime = tim->active;
532 		accessTime = max(accessTime, 150U);
533 		accessTicks = SYSCLK_TICKS_66(accessTime);
534 		accessTicks = min(accessTicks, 0x1fU);
535 		recTicks = SYSCLK_TICKS_66(recTime);
536 		recTicks = min(recTicks, 0x1fU);
537 		t = (t & ~TR_66_PIO_MASK) |
538 			(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
539 			(recTicks << TR_66_PIO_RECOVERY_SHIFT);
540 		break;
541 	default: {
542 		/* 33Mhz cell */
543 		int ebit = 0;
544 		recTime = cycle_time - tim->active - tim->setup;
545 		recTime = max(recTime, 150U);
546 		accessTime = tim->active;
547 		accessTime = max(accessTime, 150U);
548 		accessTicks = SYSCLK_TICKS(accessTime);
549 		accessTicks = min(accessTicks, 0x1fU);
550 		accessTicks = max(accessTicks, 4U);
551 		recTicks = SYSCLK_TICKS(recTime);
552 		recTicks = min(recTicks, 0x1fU);
553 		recTicks = max(recTicks, 5U) - 4;
554 		if (recTicks > 9) {
555 			recTicks--; /* guess, but it's only for PIO0, so... */
556 			ebit = 1;
557 		}
558 		t = (t & ~TR_33_PIO_MASK) |
559 				(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
560 				(recTicks << TR_33_PIO_RECOVERY_SHIFT);
561 		if (ebit)
562 			t |= TR_33_PIO_E;
563 		break;
564 		}
565 	}
566 
567 #ifdef IDE_PMAC_DEBUG
568 	printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
569 		drive->name, pio,  *timings);
570 #endif
571 
572 	*timings = t;
573 	pmac_ide_do_update_timings(drive);
574 }
575 
576 /*
577  * Calculate KeyLargo ATA/66 UDMA timings
578  */
579 static int
set_timings_udma_ata4(u32 * timings,u8 speed)580 set_timings_udma_ata4(u32 *timings, u8 speed)
581 {
582 	unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
583 
584 	if (speed > XFER_UDMA_4)
585 		return 1;
586 
587 	rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
588 	wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
589 	addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
590 
591 	*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
592 			(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
593 			(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
594 			(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
595 			TR_66_UDMA_EN;
596 #ifdef IDE_PMAC_DEBUG
597 	printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
598 		speed & 0xf,  *timings);
599 #endif
600 
601 	return 0;
602 }
603 
604 /*
605  * Calculate Kauai ATA/100 UDMA timings
606  */
607 static int
set_timings_udma_ata6(u32 * pio_timings,u32 * ultra_timings,u8 speed)608 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
609 {
610 	struct ide_timing *t = ide_timing_find_mode(speed);
611 	u32 tr;
612 
613 	if (speed > XFER_UDMA_5 || t == NULL)
614 		return 1;
615 	tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
616 	*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
617 	*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
618 
619 	return 0;
620 }
621 
622 /*
623  * Calculate Shasta ATA/133 UDMA timings
624  */
625 static int
set_timings_udma_shasta(u32 * pio_timings,u32 * ultra_timings,u8 speed)626 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
627 {
628 	struct ide_timing *t = ide_timing_find_mode(speed);
629 	u32 tr;
630 
631 	if (speed > XFER_UDMA_6 || t == NULL)
632 		return 1;
633 	tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
634 	*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
635 	*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
636 
637 	return 0;
638 }
639 
640 /*
641  * Calculate MDMA timings for all cells
642  */
643 static void
set_timings_mdma(ide_drive_t * drive,int intf_type,u32 * timings,u32 * timings2,u8 speed)644 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
645 		 	u8 speed)
646 {
647 	u16 *id = drive->id;
648 	int cycleTime, accessTime = 0, recTime = 0;
649 	unsigned accessTicks, recTicks;
650 	struct mdma_timings_t* tm = NULL;
651 	int i;
652 
653 	/* Get default cycle time for mode */
654 	switch(speed & 0xf) {
655 		case 0: cycleTime = 480; break;
656 		case 1: cycleTime = 150; break;
657 		case 2: cycleTime = 120; break;
658 		default:
659 			BUG();
660 			break;
661 	}
662 
663 	/* Check if drive provides explicit DMA cycle time */
664 	if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
665 		cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
666 
667 	/* OHare limits according to some old Apple sources */
668 	if ((intf_type == controller_ohare) && (cycleTime < 150))
669 		cycleTime = 150;
670 	/* Get the proper timing array for this controller */
671 	switch(intf_type) {
672 	        case controller_sh_ata6:
673 		case controller_un_ata6:
674 		case controller_k2_ata6:
675 			break;
676 		case controller_kl_ata4:
677 			tm = mdma_timings_66;
678 			break;
679 		case controller_kl_ata3:
680 			tm = mdma_timings_33k;
681 			break;
682 		default:
683 			tm = mdma_timings_33;
684 			break;
685 	}
686 	if (tm != NULL) {
687 		/* Lookup matching access & recovery times */
688 		i = -1;
689 		for (;;) {
690 			if (tm[i+1].cycleTime < cycleTime)
691 				break;
692 			i++;
693 		}
694 		cycleTime = tm[i].cycleTime;
695 		accessTime = tm[i].accessTime;
696 		recTime = tm[i].recoveryTime;
697 
698 #ifdef IDE_PMAC_DEBUG
699 		printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
700 			drive->name, cycleTime, accessTime, recTime);
701 #endif
702 	}
703 	switch(intf_type) {
704 	case controller_sh_ata6: {
705 		/* 133Mhz cell */
706 		u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
707 		*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
708 		*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
709 		}
710 		break;
711 	case controller_un_ata6:
712 	case controller_k2_ata6: {
713 		/* 100Mhz cell */
714 		u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
715 		*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
716 		*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
717 		}
718 		break;
719 	case controller_kl_ata4:
720 		/* 66Mhz cell */
721 		accessTicks = SYSCLK_TICKS_66(accessTime);
722 		accessTicks = min(accessTicks, 0x1fU);
723 		accessTicks = max(accessTicks, 0x1U);
724 		recTicks = SYSCLK_TICKS_66(recTime);
725 		recTicks = min(recTicks, 0x1fU);
726 		recTicks = max(recTicks, 0x3U);
727 		/* Clear out mdma bits and disable udma */
728 		*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
729 			(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
730 			(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
731 		break;
732 	case controller_kl_ata3:
733 		/* 33Mhz cell on KeyLargo */
734 		accessTicks = SYSCLK_TICKS(accessTime);
735 		accessTicks = max(accessTicks, 1U);
736 		accessTicks = min(accessTicks, 0x1fU);
737 		accessTime = accessTicks * IDE_SYSCLK_NS;
738 		recTicks = SYSCLK_TICKS(recTime);
739 		recTicks = max(recTicks, 1U);
740 		recTicks = min(recTicks, 0x1fU);
741 		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
742 				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
743 				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
744 		break;
745 	default: {
746 		/* 33Mhz cell on others */
747 		int halfTick = 0;
748 		int origAccessTime = accessTime;
749 		int origRecTime = recTime;
750 
751 		accessTicks = SYSCLK_TICKS(accessTime);
752 		accessTicks = max(accessTicks, 1U);
753 		accessTicks = min(accessTicks, 0x1fU);
754 		accessTime = accessTicks * IDE_SYSCLK_NS;
755 		recTicks = SYSCLK_TICKS(recTime);
756 		recTicks = max(recTicks, 2U) - 1;
757 		recTicks = min(recTicks, 0x1fU);
758 		recTime = (recTicks + 1) * IDE_SYSCLK_NS;
759 		if ((accessTicks > 1) &&
760 		    ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
761 		    ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
762             		halfTick = 1;
763 			accessTicks--;
764 		}
765 		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
766 				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
767 				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
768 		if (halfTick)
769 			*timings |= TR_33_MDMA_HALFTICK;
770 		}
771 	}
772 #ifdef IDE_PMAC_DEBUG
773 	printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
774 		drive->name, speed & 0xf,  *timings);
775 #endif
776 }
777 
pmac_ide_set_dma_mode(ide_hwif_t * hwif,ide_drive_t * drive)778 static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
779 {
780 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
781 	int ret = 0;
782 	u32 *timings, *timings2, tl[2];
783 	u8 unit = drive->dn & 1;
784 	const u8 speed = drive->dma_mode;
785 
786 	timings = &pmif->timings[unit];
787 	timings2 = &pmif->timings[unit+2];
788 
789 	/* Copy timings to local image */
790 	tl[0] = *timings;
791 	tl[1] = *timings2;
792 
793 	if (speed >= XFER_UDMA_0) {
794 		if (pmif->kind == controller_kl_ata4)
795 			ret = set_timings_udma_ata4(&tl[0], speed);
796 		else if (pmif->kind == controller_un_ata6
797 			 || pmif->kind == controller_k2_ata6)
798 			ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
799 		else if (pmif->kind == controller_sh_ata6)
800 			ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
801 		else
802 			ret = -1;
803 	} else
804 		set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
805 
806 	if (ret)
807 		return;
808 
809 	/* Apply timings to controller */
810 	*timings = tl[0];
811 	*timings2 = tl[1];
812 
813 	pmac_ide_do_update_timings(drive);
814 }
815 
816 /*
817  * Blast some well known "safe" values to the timing registers at init or
818  * wakeup from sleep time, before we do real calculation
819  */
820 static void
sanitize_timings(pmac_ide_hwif_t * pmif)821 sanitize_timings(pmac_ide_hwif_t *pmif)
822 {
823 	unsigned int value, value2 = 0;
824 
825 	switch(pmif->kind) {
826 		case controller_sh_ata6:
827 			value = 0x0a820c97;
828 			value2 = 0x00033031;
829 			break;
830 		case controller_un_ata6:
831 		case controller_k2_ata6:
832 			value = 0x08618a92;
833 			value2 = 0x00002921;
834 			break;
835 		case controller_kl_ata4:
836 			value = 0x0008438c;
837 			break;
838 		case controller_kl_ata3:
839 			value = 0x00084526;
840 			break;
841 		case controller_heathrow:
842 		case controller_ohare:
843 		default:
844 			value = 0x00074526;
845 			break;
846 	}
847 	pmif->timings[0] = pmif->timings[1] = value;
848 	pmif->timings[2] = pmif->timings[3] = value2;
849 }
850 
on_media_bay(pmac_ide_hwif_t * pmif)851 static int on_media_bay(pmac_ide_hwif_t *pmif)
852 {
853 	return pmif->mdev && pmif->mdev->media_bay != NULL;
854 }
855 
856 /* Suspend call back, should be called after the child devices
857  * have actually been suspended
858  */
pmac_ide_do_suspend(pmac_ide_hwif_t * pmif)859 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
860 {
861 	/* We clear the timings */
862 	pmif->timings[0] = 0;
863 	pmif->timings[1] = 0;
864 
865 	disable_irq(pmif->irq);
866 
867 	/* The media bay will handle itself just fine */
868 	if (on_media_bay(pmif))
869 		return 0;
870 
871 	/* Kauai has bus control FCRs directly here */
872 	if (pmif->kauai_fcr) {
873 		u32 fcr = readl(pmif->kauai_fcr);
874 		fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
875 		writel(fcr, pmif->kauai_fcr);
876 	}
877 
878 	/* Disable the bus on older machines and the cell on kauai */
879 	ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
880 			    0);
881 
882 	return 0;
883 }
884 
885 /* Resume call back, should be called before the child devices
886  * are resumed
887  */
pmac_ide_do_resume(pmac_ide_hwif_t * pmif)888 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
889 {
890 	/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
891 	if (!on_media_bay(pmif)) {
892 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
893 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
894 		msleep(10);
895 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
896 
897 		/* Kauai has it different */
898 		if (pmif->kauai_fcr) {
899 			u32 fcr = readl(pmif->kauai_fcr);
900 			fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
901 			writel(fcr, pmif->kauai_fcr);
902 		}
903 
904 		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
905 	}
906 
907 	/* Sanitize drive timings */
908 	sanitize_timings(pmif);
909 
910 	enable_irq(pmif->irq);
911 
912 	return 0;
913 }
914 
pmac_ide_cable_detect(ide_hwif_t * hwif)915 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
916 {
917 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
918 	struct device_node *np = pmif->node;
919 	const char *cable = of_get_property(np, "cable-type", NULL);
920 	struct device_node *root = of_find_node_by_path("/");
921 	const char *model = of_get_property(root, "model", NULL);
922 
923 	/* Get cable type from device-tree. */
924 	if (cable && !strncmp(cable, "80-", 3)) {
925 		/* Some drives fail to detect 80c cable in PowerBook */
926 		/* These machine use proprietary short IDE cable anyway */
927 		if (!strncmp(model, "PowerBook", 9))
928 			return ATA_CBL_PATA40_SHORT;
929 		else
930 			return ATA_CBL_PATA80;
931 	}
932 
933 	/*
934 	 * G5's seem to have incorrect cable type in device-tree.
935 	 * Let's assume they have a 80 conductor cable, this seem
936 	 * to be always the case unless the user mucked around.
937 	 */
938 	if (of_device_is_compatible(np, "K2-UATA") ||
939 	    of_device_is_compatible(np, "shasta-ata"))
940 		return ATA_CBL_PATA80;
941 
942 	return ATA_CBL_PATA40;
943 }
944 
pmac_ide_init_dev(ide_drive_t * drive)945 static void pmac_ide_init_dev(ide_drive_t *drive)
946 {
947 	ide_hwif_t *hwif = drive->hwif;
948 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
949 
950 	if (on_media_bay(pmif)) {
951 		if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
952 			drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
953 			return;
954 		}
955 		drive->dev_flags |= IDE_DFLAG_NOPROBE;
956 	}
957 }
958 
959 static const struct ide_tp_ops pmac_tp_ops = {
960 	.exec_command		= pmac_exec_command,
961 	.read_status		= ide_read_status,
962 	.read_altstatus		= ide_read_altstatus,
963 	.write_devctl		= pmac_write_devctl,
964 
965 	.dev_select		= pmac_dev_select,
966 	.tf_load		= ide_tf_load,
967 	.tf_read		= ide_tf_read,
968 
969 	.input_data		= ide_input_data,
970 	.output_data		= ide_output_data,
971 };
972 
973 static const struct ide_tp_ops pmac_ata6_tp_ops = {
974 	.exec_command		= pmac_exec_command,
975 	.read_status		= ide_read_status,
976 	.read_altstatus		= ide_read_altstatus,
977 	.write_devctl		= pmac_write_devctl,
978 
979 	.dev_select		= pmac_kauai_dev_select,
980 	.tf_load		= ide_tf_load,
981 	.tf_read		= ide_tf_read,
982 
983 	.input_data		= ide_input_data,
984 	.output_data		= ide_output_data,
985 };
986 
987 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
988 	.init_dev		= pmac_ide_init_dev,
989 	.set_pio_mode		= pmac_ide_set_pio_mode,
990 	.set_dma_mode		= pmac_ide_set_dma_mode,
991 	.cable_detect		= pmac_ide_cable_detect,
992 };
993 
994 static const struct ide_port_ops pmac_ide_port_ops = {
995 	.init_dev		= pmac_ide_init_dev,
996 	.set_pio_mode		= pmac_ide_set_pio_mode,
997 	.set_dma_mode		= pmac_ide_set_dma_mode,
998 };
999 
1000 static const struct ide_dma_ops pmac_dma_ops;
1001 
1002 static const struct ide_port_info pmac_port_info = {
1003 	.name			= DRV_NAME,
1004 	.init_dma		= pmac_ide_init_dma,
1005 	.chipset		= ide_pmac,
1006 	.tp_ops			= &pmac_tp_ops,
1007 	.port_ops		= &pmac_ide_port_ops,
1008 	.dma_ops		= &pmac_dma_ops,
1009 	.host_flags		= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1010 				  IDE_HFLAG_POST_SET_MODE |
1011 				  IDE_HFLAG_MMIO |
1012 				  IDE_HFLAG_UNMASK_IRQS,
1013 	.pio_mask		= ATA_PIO4,
1014 	.mwdma_mask		= ATA_MWDMA2,
1015 };
1016 
1017 /*
1018  * Setup, register & probe an IDE channel driven by this driver, this is
1019  * called by one of the 2 probe functions (macio or PCI).
1020  */
pmac_ide_setup_device(pmac_ide_hwif_t * pmif,struct ide_hw * hw)1021 static int pmac_ide_setup_device(pmac_ide_hwif_t *pmif, struct ide_hw *hw)
1022 {
1023 	struct device_node *np = pmif->node;
1024 	const int *bidp;
1025 	struct ide_host *host;
1026 	ide_hwif_t *hwif;
1027 	struct ide_hw *hws[] = { hw };
1028 	struct ide_port_info d = pmac_port_info;
1029 	int rc;
1030 
1031 	pmif->broken_dma = pmif->broken_dma_warn = 0;
1032 	if (of_device_is_compatible(np, "shasta-ata")) {
1033 		pmif->kind = controller_sh_ata6;
1034 		d.tp_ops = &pmac_ata6_tp_ops;
1035 		d.port_ops = &pmac_ide_ata4_port_ops;
1036 		d.udma_mask = ATA_UDMA6;
1037 	} else if (of_device_is_compatible(np, "kauai-ata")) {
1038 		pmif->kind = controller_un_ata6;
1039 		d.tp_ops = &pmac_ata6_tp_ops;
1040 		d.port_ops = &pmac_ide_ata4_port_ops;
1041 		d.udma_mask = ATA_UDMA5;
1042 	} else if (of_device_is_compatible(np, "K2-UATA")) {
1043 		pmif->kind = controller_k2_ata6;
1044 		d.tp_ops = &pmac_ata6_tp_ops;
1045 		d.port_ops = &pmac_ide_ata4_port_ops;
1046 		d.udma_mask = ATA_UDMA5;
1047 	} else if (of_device_is_compatible(np, "keylargo-ata")) {
1048 		if (strcmp(np->name, "ata-4") == 0) {
1049 			pmif->kind = controller_kl_ata4;
1050 			d.port_ops = &pmac_ide_ata4_port_ops;
1051 			d.udma_mask = ATA_UDMA4;
1052 		} else
1053 			pmif->kind = controller_kl_ata3;
1054 	} else if (of_device_is_compatible(np, "heathrow-ata")) {
1055 		pmif->kind = controller_heathrow;
1056 	} else {
1057 		pmif->kind = controller_ohare;
1058 		pmif->broken_dma = 1;
1059 	}
1060 
1061 	bidp = of_get_property(np, "AAPL,bus-id", NULL);
1062 	pmif->aapl_bus_id =  bidp ? *bidp : 0;
1063 
1064 	/* On Kauai-type controllers, we make sure the FCR is correct */
1065 	if (pmif->kauai_fcr)
1066 		writel(KAUAI_FCR_UATA_MAGIC |
1067 		       KAUAI_FCR_UATA_RESET_N |
1068 		       KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1069 
1070 	/* Make sure we have sane timings */
1071 	sanitize_timings(pmif);
1072 
1073 	/* If we are on a media bay, wait for it to settle and lock it */
1074 	if (pmif->mdev)
1075 		lock_media_bay(pmif->mdev->media_bay);
1076 
1077 	host = ide_host_alloc(&d, hws, 1);
1078 	if (host == NULL) {
1079 		rc = -ENOMEM;
1080 		goto bail;
1081 	}
1082 	hwif = pmif->hwif = host->ports[0];
1083 
1084 	if (on_media_bay(pmif)) {
1085 		/* Fixup bus ID for media bay */
1086 		if (!bidp)
1087 			pmif->aapl_bus_id = 1;
1088 	} else if (pmif->kind == controller_ohare) {
1089 		/* The code below is having trouble on some ohare machines
1090 		 * (timing related ?). Until I can put my hand on one of these
1091 		 * units, I keep the old way
1092 		 */
1093 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1094 	} else {
1095  		/* This is necessary to enable IDE when net-booting */
1096 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1097 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1098 		msleep(10);
1099 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1100 		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1101 	}
1102 
1103 	printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1104 	       "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1105 	       pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1106 	       on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1107 
1108 	rc = ide_host_register(host, &d, hws);
1109 	if (rc)
1110 		pmif->hwif = NULL;
1111 
1112 	if (pmif->mdev)
1113 		unlock_media_bay(pmif->mdev->media_bay);
1114 
1115  bail:
1116 	if (rc && host)
1117 		ide_host_free(host);
1118 	return rc;
1119 }
1120 
pmac_ide_init_ports(struct ide_hw * hw,unsigned long base)1121 static void pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1122 {
1123 	int i;
1124 
1125 	for (i = 0; i < 8; ++i)
1126 		hw->io_ports_array[i] = base + i * 0x10;
1127 
1128 	hw->io_ports.ctl_addr = base + 0x160;
1129 }
1130 
1131 /*
1132  * Attach to a macio probed interface
1133  */
pmac_ide_macio_attach(struct macio_dev * mdev,const struct of_device_id * match)1134 static int pmac_ide_macio_attach(struct macio_dev *mdev,
1135 				 const struct of_device_id *match)
1136 {
1137 	void __iomem *base;
1138 	unsigned long regbase;
1139 	pmac_ide_hwif_t *pmif;
1140 	int irq, rc;
1141 	struct ide_hw hw;
1142 
1143 	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1144 	if (pmif == NULL)
1145 		return -ENOMEM;
1146 
1147 	if (macio_resource_count(mdev) == 0) {
1148 		printk(KERN_WARNING "ide-pmac: no address for %pOF\n",
1149 				    mdev->ofdev.dev.of_node);
1150 		rc = -ENXIO;
1151 		goto out_free_pmif;
1152 	}
1153 
1154 	/* Request memory resource for IO ports */
1155 	if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1156 		printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1157 				"%pOF!\n", mdev->ofdev.dev.of_node);
1158 		rc = -EBUSY;
1159 		goto out_free_pmif;
1160 	}
1161 
1162 	/* XXX This is bogus. Should be fixed in the registry by checking
1163 	 * the kind of host interrupt controller, a bit like gatwick
1164 	 * fixes in irq.c. That works well enough for the single case
1165 	 * where that happens though...
1166 	 */
1167 	if (macio_irq_count(mdev) == 0) {
1168 		printk(KERN_WARNING "ide-pmac: no intrs for device %pOF, using "
1169 				    "13\n", mdev->ofdev.dev.of_node);
1170 		irq = irq_create_mapping(NULL, 13);
1171 	} else
1172 		irq = macio_irq(mdev, 0);
1173 
1174 	base = ioremap(macio_resource_start(mdev, 0), 0x400);
1175 	regbase = (unsigned long) base;
1176 
1177 	pmif->mdev = mdev;
1178 	pmif->node = mdev->ofdev.dev.of_node;
1179 	pmif->regbase = regbase;
1180 	pmif->irq = irq;
1181 	pmif->kauai_fcr = NULL;
1182 
1183 	if (macio_resource_count(mdev) >= 2) {
1184 		if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1185 			printk(KERN_WARNING "ide-pmac: can't request DMA "
1186 					    "resource for %pOF!\n",
1187 					    mdev->ofdev.dev.of_node);
1188 		else
1189 			pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1190 	} else
1191 		pmif->dma_regs = NULL;
1192 
1193 	dev_set_drvdata(&mdev->ofdev.dev, pmif);
1194 
1195 	memset(&hw, 0, sizeof(hw));
1196 	pmac_ide_init_ports(&hw, pmif->regbase);
1197 	hw.irq = irq;
1198 	hw.dev = &mdev->bus->pdev->dev;
1199 	hw.parent = &mdev->ofdev.dev;
1200 
1201 	rc = pmac_ide_setup_device(pmif, &hw);
1202 	if (rc != 0) {
1203 		/* The inteface is released to the common IDE layer */
1204 		dev_set_drvdata(&mdev->ofdev.dev, NULL);
1205 		iounmap(base);
1206 		if (pmif->dma_regs) {
1207 			iounmap(pmif->dma_regs);
1208 			macio_release_resource(mdev, 1);
1209 		}
1210 		macio_release_resource(mdev, 0);
1211 		kfree(pmif);
1212 	}
1213 
1214 	return rc;
1215 
1216 out_free_pmif:
1217 	kfree(pmif);
1218 	return rc;
1219 }
1220 
1221 static int
pmac_ide_macio_suspend(struct macio_dev * mdev,pm_message_t mesg)1222 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1223 {
1224 	pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1225 	int rc = 0;
1226 
1227 	if (mesg.event != mdev->ofdev.dev.power.power_state.event
1228 			&& (mesg.event & PM_EVENT_SLEEP)) {
1229 		rc = pmac_ide_do_suspend(pmif);
1230 		if (rc == 0)
1231 			mdev->ofdev.dev.power.power_state = mesg;
1232 	}
1233 
1234 	return rc;
1235 }
1236 
1237 static int
pmac_ide_macio_resume(struct macio_dev * mdev)1238 pmac_ide_macio_resume(struct macio_dev *mdev)
1239 {
1240 	pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1241 	int rc = 0;
1242 
1243 	if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1244 		rc = pmac_ide_do_resume(pmif);
1245 		if (rc == 0)
1246 			mdev->ofdev.dev.power.power_state = PMSG_ON;
1247 	}
1248 
1249 	return rc;
1250 }
1251 
1252 /*
1253  * Attach to a PCI probed interface
1254  */
pmac_ide_pci_attach(struct pci_dev * pdev,const struct pci_device_id * id)1255 static int pmac_ide_pci_attach(struct pci_dev *pdev,
1256 			       const struct pci_device_id *id)
1257 {
1258 	struct device_node *np;
1259 	pmac_ide_hwif_t *pmif;
1260 	void __iomem *base;
1261 	unsigned long rbase, rlen;
1262 	int rc;
1263 	struct ide_hw hw;
1264 
1265 	np = pci_device_to_OF_node(pdev);
1266 	if (np == NULL) {
1267 		printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1268 		return -ENODEV;
1269 	}
1270 
1271 	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1272 	if (pmif == NULL)
1273 		return -ENOMEM;
1274 
1275 	if (pci_enable_device(pdev)) {
1276 		printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1277 				    "%pOF\n", np);
1278 		rc = -ENXIO;
1279 		goto out_free_pmif;
1280 	}
1281 	pci_set_master(pdev);
1282 
1283 	if (pci_request_regions(pdev, "Kauai ATA")) {
1284 		printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1285 				"%pOF\n", np);
1286 		rc = -ENXIO;
1287 		goto out_free_pmif;
1288 	}
1289 
1290 	pmif->mdev = NULL;
1291 	pmif->node = np;
1292 
1293 	rbase = pci_resource_start(pdev, 0);
1294 	rlen = pci_resource_len(pdev, 0);
1295 
1296 	base = ioremap(rbase, rlen);
1297 	pmif->regbase = (unsigned long) base + 0x2000;
1298 	pmif->dma_regs = base + 0x1000;
1299 	pmif->kauai_fcr = base;
1300 	pmif->irq = pdev->irq;
1301 
1302 	pci_set_drvdata(pdev, pmif);
1303 
1304 	memset(&hw, 0, sizeof(hw));
1305 	pmac_ide_init_ports(&hw, pmif->regbase);
1306 	hw.irq = pdev->irq;
1307 	hw.dev = &pdev->dev;
1308 
1309 	rc = pmac_ide_setup_device(pmif, &hw);
1310 	if (rc != 0) {
1311 		/* The inteface is released to the common IDE layer */
1312 		iounmap(base);
1313 		pci_release_regions(pdev);
1314 		kfree(pmif);
1315 	}
1316 
1317 	return rc;
1318 
1319 out_free_pmif:
1320 	kfree(pmif);
1321 	return rc;
1322 }
1323 
1324 static int
pmac_ide_pci_suspend(struct pci_dev * pdev,pm_message_t mesg)1325 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1326 {
1327 	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1328 	int rc = 0;
1329 
1330 	if (mesg.event != pdev->dev.power.power_state.event
1331 			&& (mesg.event & PM_EVENT_SLEEP)) {
1332 		rc = pmac_ide_do_suspend(pmif);
1333 		if (rc == 0)
1334 			pdev->dev.power.power_state = mesg;
1335 	}
1336 
1337 	return rc;
1338 }
1339 
1340 static int
pmac_ide_pci_resume(struct pci_dev * pdev)1341 pmac_ide_pci_resume(struct pci_dev *pdev)
1342 {
1343 	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1344 	int rc = 0;
1345 
1346 	if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1347 		rc = pmac_ide_do_resume(pmif);
1348 		if (rc == 0)
1349 			pdev->dev.power.power_state = PMSG_ON;
1350 	}
1351 
1352 	return rc;
1353 }
1354 
1355 #ifdef CONFIG_PMAC_MEDIABAY
pmac_ide_macio_mb_event(struct macio_dev * mdev,int mb_state)1356 static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1357 {
1358 	pmac_ide_hwif_t *pmif = dev_get_drvdata(&mdev->ofdev.dev);
1359 
1360 	switch(mb_state) {
1361 	case MB_CD:
1362 		if (!pmif->hwif->present)
1363 			ide_port_scan(pmif->hwif);
1364 		break;
1365 	default:
1366 		if (pmif->hwif->present)
1367 			ide_port_unregister_devices(pmif->hwif);
1368 	}
1369 }
1370 #endif /* CONFIG_PMAC_MEDIABAY */
1371 
1372 
1373 static struct of_device_id pmac_ide_macio_match[] =
1374 {
1375 	{
1376 	.name 		= "IDE",
1377 	},
1378 	{
1379 	.name 		= "ATA",
1380 	},
1381 	{
1382 	.type		= "ide",
1383 	},
1384 	{
1385 	.type		= "ata",
1386 	},
1387 	{},
1388 };
1389 
1390 static struct macio_driver pmac_ide_macio_driver =
1391 {
1392 	.driver = {
1393 		.name 		= "ide-pmac",
1394 		.owner		= THIS_MODULE,
1395 		.of_match_table	= pmac_ide_macio_match,
1396 	},
1397 	.probe		= pmac_ide_macio_attach,
1398 	.suspend	= pmac_ide_macio_suspend,
1399 	.resume		= pmac_ide_macio_resume,
1400 #ifdef CONFIG_PMAC_MEDIABAY
1401 	.mediabay_event	= pmac_ide_macio_mb_event,
1402 #endif
1403 };
1404 
1405 static const struct pci_device_id pmac_ide_pci_match[] = {
1406 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),	0 },
1407 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),	0 },
1408 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),	0 },
1409 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),	0 },
1410 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),	0 },
1411 	{},
1412 };
1413 
1414 static struct pci_driver pmac_ide_pci_driver = {
1415 	.name		= "ide-pmac",
1416 	.id_table	= pmac_ide_pci_match,
1417 	.probe		= pmac_ide_pci_attach,
1418 	.suspend	= pmac_ide_pci_suspend,
1419 	.resume		= pmac_ide_pci_resume,
1420 };
1421 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1422 
pmac_ide_probe(void)1423 int __init pmac_ide_probe(void)
1424 {
1425 	int error;
1426 
1427 	if (!machine_is(powermac))
1428 		return -ENODEV;
1429 
1430 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1431 	error = pci_register_driver(&pmac_ide_pci_driver);
1432 	if (error)
1433 		goto out;
1434 	error = macio_register_driver(&pmac_ide_macio_driver);
1435 	if (error) {
1436 		pci_unregister_driver(&pmac_ide_pci_driver);
1437 		goto out;
1438 	}
1439 #else
1440 	error = macio_register_driver(&pmac_ide_macio_driver);
1441 	if (error)
1442 		goto out;
1443 	error = pci_register_driver(&pmac_ide_pci_driver);
1444 	if (error) {
1445 		macio_unregister_driver(&pmac_ide_macio_driver);
1446 		goto out;
1447 	}
1448 #endif
1449 out:
1450 	return error;
1451 }
1452 
1453 /*
1454  * pmac_ide_build_dmatable builds the DBDMA command list
1455  * for a transfer and sets the DBDMA channel to point to it.
1456  */
pmac_ide_build_dmatable(ide_drive_t * drive,struct ide_cmd * cmd)1457 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1458 {
1459 	ide_hwif_t *hwif = drive->hwif;
1460 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1461 	struct dbdma_cmd *table;
1462 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1463 	struct scatterlist *sg;
1464 	int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1465 	int i = cmd->sg_nents, count = 0;
1466 
1467 	/* DMA table is already aligned */
1468 	table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1469 
1470 	/* Make sure DMA controller is stopped (necessary ?) */
1471 	writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1472 	while (readl(&dma->status) & RUN)
1473 		udelay(1);
1474 
1475 	/* Build DBDMA commands list */
1476 	sg = hwif->sg_table;
1477 	while (i && sg_dma_len(sg)) {
1478 		u32 cur_addr;
1479 		u32 cur_len;
1480 
1481 		cur_addr = sg_dma_address(sg);
1482 		cur_len = sg_dma_len(sg);
1483 
1484 		if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1485 			if (pmif->broken_dma_warn == 0) {
1486 				printk(KERN_WARNING "%s: DMA on non aligned address, "
1487 				       "switching to PIO on Ohare chipset\n", drive->name);
1488 				pmif->broken_dma_warn = 1;
1489 			}
1490 			return 0;
1491 		}
1492 		while (cur_len) {
1493 			unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1494 
1495 			if (count++ >= MAX_DCMDS) {
1496 				printk(KERN_WARNING "%s: DMA table too small\n",
1497 				       drive->name);
1498 				return 0;
1499 			}
1500 			table->command = cpu_to_le16(wr? OUTPUT_MORE: INPUT_MORE);
1501 			table->req_count = cpu_to_le16(tc);
1502 			table->phy_addr = cpu_to_le32(cur_addr);
1503 			table->cmd_dep = 0;
1504 			table->xfer_status = 0;
1505 			table->res_count = 0;
1506 			cur_addr += tc;
1507 			cur_len -= tc;
1508 			++table;
1509 		}
1510 		sg = sg_next(sg);
1511 		i--;
1512 	}
1513 
1514 	/* convert the last command to an input/output last command */
1515 	if (count) {
1516 		table[-1].command = cpu_to_le16(wr? OUTPUT_LAST: INPUT_LAST);
1517 		/* add the stop command to the end of the list */
1518 		memset(table, 0, sizeof(struct dbdma_cmd));
1519 		table->command = cpu_to_le16(DBDMA_STOP);
1520 		mb();
1521 		writel(hwif->dmatable_dma, &dma->cmdptr);
1522 		return 1;
1523 	}
1524 
1525 	printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1526 
1527 	return 0; /* revert to PIO for this request */
1528 }
1529 
1530 /*
1531  * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1532  * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1533  */
pmac_ide_dma_setup(ide_drive_t * drive,struct ide_cmd * cmd)1534 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1535 {
1536 	ide_hwif_t *hwif = drive->hwif;
1537 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1538 	u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1539 	u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1540 
1541 	if (pmac_ide_build_dmatable(drive, cmd) == 0)
1542 		return 1;
1543 
1544 	/* Apple adds 60ns to wrDataSetup on reads */
1545 	if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1546 		writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1547 			PMAC_IDE_REG(IDE_TIMING_CONFIG));
1548 		(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 /*
1555  * Kick the DMA controller into life after the DMA command has been issued
1556  * to the drive.
1557  */
1558 static void
pmac_ide_dma_start(ide_drive_t * drive)1559 pmac_ide_dma_start(ide_drive_t *drive)
1560 {
1561 	ide_hwif_t *hwif = drive->hwif;
1562 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1563 	volatile struct dbdma_regs __iomem *dma;
1564 
1565 	dma = pmif->dma_regs;
1566 
1567 	writel((RUN << 16) | RUN, &dma->control);
1568 	/* Make sure it gets to the controller right now */
1569 	(void)readl(&dma->control);
1570 }
1571 
1572 /*
1573  * After a DMA transfer, make sure the controller is stopped
1574  */
1575 static int
pmac_ide_dma_end(ide_drive_t * drive)1576 pmac_ide_dma_end (ide_drive_t *drive)
1577 {
1578 	ide_hwif_t *hwif = drive->hwif;
1579 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1580 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1581 	u32 dstat;
1582 
1583 	dstat = readl(&dma->status);
1584 	writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1585 
1586 	/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1587 	 * in theory, but with ATAPI decices doing buffer underruns, that would
1588 	 * cause us to disable DMA, which isn't what we want
1589 	 */
1590 	return (dstat & (RUN|DEAD)) != RUN;
1591 }
1592 
1593 /*
1594  * Check out that the interrupt we got was for us. We can't always know this
1595  * for sure with those Apple interfaces (well, we could on the recent ones but
1596  * that's not implemented yet), on the other hand, we don't have shared interrupts
1597  * so it's not really a problem
1598  */
1599 static int
pmac_ide_dma_test_irq(ide_drive_t * drive)1600 pmac_ide_dma_test_irq (ide_drive_t *drive)
1601 {
1602 	ide_hwif_t *hwif = drive->hwif;
1603 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1604 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1605 	unsigned long status, timeout;
1606 
1607 	/* We have to things to deal with here:
1608 	 *
1609 	 * - The dbdma won't stop if the command was started
1610 	 * but completed with an error without transferring all
1611 	 * datas. This happens when bad blocks are met during
1612 	 * a multi-block transfer.
1613 	 *
1614 	 * - The dbdma fifo hasn't yet finished flushing to
1615 	 * to system memory when the disk interrupt occurs.
1616 	 *
1617 	 */
1618 
1619 	/* If ACTIVE is cleared, the STOP command have passed and
1620 	 * transfer is complete.
1621 	 */
1622 	status = readl(&dma->status);
1623 	if (!(status & ACTIVE))
1624 		return 1;
1625 
1626 	/* If dbdma didn't execute the STOP command yet, the
1627 	 * active bit is still set. We consider that we aren't
1628 	 * sharing interrupts (which is hopefully the case with
1629 	 * those controllers) and so we just try to flush the
1630 	 * channel for pending data in the fifo
1631 	 */
1632 	udelay(1);
1633 	writel((FLUSH << 16) | FLUSH, &dma->control);
1634 	timeout = 0;
1635 	for (;;) {
1636 		udelay(1);
1637 		status = readl(&dma->status);
1638 		if ((status & FLUSH) == 0)
1639 			break;
1640 		if (++timeout > 100) {
1641 			printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1642 			       hwif->index);
1643 			break;
1644 		}
1645 	}
1646 	return 1;
1647 }
1648 
pmac_ide_dma_host_set(ide_drive_t * drive,int on)1649 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1650 {
1651 }
1652 
1653 static void
pmac_ide_dma_lost_irq(ide_drive_t * drive)1654 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1655 {
1656 	ide_hwif_t *hwif = drive->hwif;
1657 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1658 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1659 	unsigned long status = readl(&dma->status);
1660 
1661 	printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1662 }
1663 
1664 static const struct ide_dma_ops pmac_dma_ops = {
1665 	.dma_host_set		= pmac_ide_dma_host_set,
1666 	.dma_setup		= pmac_ide_dma_setup,
1667 	.dma_start		= pmac_ide_dma_start,
1668 	.dma_end		= pmac_ide_dma_end,
1669 	.dma_test_irq		= pmac_ide_dma_test_irq,
1670 	.dma_lost_irq		= pmac_ide_dma_lost_irq,
1671 };
1672 
1673 /*
1674  * Allocate the data structures needed for using DMA with an interface
1675  * and fill the proper list of functions pointers
1676  */
pmac_ide_init_dma(ide_hwif_t * hwif,const struct ide_port_info * d)1677 static int pmac_ide_init_dma(ide_hwif_t *hwif, const struct ide_port_info *d)
1678 {
1679 	pmac_ide_hwif_t *pmif = dev_get_drvdata(hwif->gendev.parent);
1680 	struct pci_dev *dev = to_pci_dev(hwif->dev);
1681 
1682 	/* We won't need pci_dev if we switch to generic consistent
1683 	 * DMA routines ...
1684 	 */
1685 	if (dev == NULL || pmif->dma_regs == 0)
1686 		return -ENODEV;
1687 	/*
1688 	 * Allocate space for the DBDMA commands.
1689 	 * The +2 is +1 for the stop command and +1 to allow for
1690 	 * aligning the start address to a multiple of 16 bytes.
1691 	 */
1692 	pmif->dma_table_cpu = dma_alloc_coherent(&dev->dev,
1693 		(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1694 		&hwif->dmatable_dma, GFP_KERNEL);
1695 	if (pmif->dma_table_cpu == NULL) {
1696 		printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1697 		       hwif->name);
1698 		return -ENOMEM;
1699 	}
1700 
1701 	hwif->sg_max_nents = MAX_DCMDS;
1702 
1703 	return 0;
1704 }
1705 
1706 module_init(pmac_ide_probe);
1707 
1708 MODULE_LICENSE("GPL");
1709