1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/mm_types.h>
10 #include <linux/reservation.h>
11 #include <drm/drmP.h>
12 #include <drm/drm_encoder.h>
13 #include <drm/drm_gem_cma_helper.h>
14 #include <drm/drm_atomic.h>
15 #include <drm/drm_syncobj.h>
16
17 #include "uapi/drm/vc4_drm.h"
18
19 /* Don't forget to update vc4_bo.c: bo_type_names[] when adding to
20 * this.
21 */
22 enum vc4_kernel_bo_type {
23 /* Any kernel allocation (gem_create_object hook) before it
24 * gets another type set.
25 */
26 VC4_BO_TYPE_KERNEL,
27 VC4_BO_TYPE_V3D,
28 VC4_BO_TYPE_V3D_SHADER,
29 VC4_BO_TYPE_DUMB,
30 VC4_BO_TYPE_BIN,
31 VC4_BO_TYPE_RCL,
32 VC4_BO_TYPE_BCL,
33 VC4_BO_TYPE_KERNEL_CACHE,
34 VC4_BO_TYPE_COUNT
35 };
36
37 /* Performance monitor object. The perform lifetime is controlled by userspace
38 * using perfmon related ioctls. A perfmon can be attached to a submit_cl
39 * request, and when this is the case, HW perf counters will be activated just
40 * before the submit_cl is submitted to the GPU and disabled when the job is
41 * done. This way, only events related to a specific job will be counted.
42 */
43 struct vc4_perfmon {
44 /* Tracks the number of users of the perfmon, when this counter reaches
45 * zero the perfmon is destroyed.
46 */
47 refcount_t refcnt;
48
49 /* Number of counters activated in this perfmon instance
50 * (should be less than DRM_VC4_MAX_PERF_COUNTERS).
51 */
52 u8 ncounters;
53
54 /* Events counted by the HW perf counters. */
55 u8 events[DRM_VC4_MAX_PERF_COUNTERS];
56
57 /* Storage for counter values. Counters are incremented by the HW
58 * perf counter values every time the perfmon is attached to a GPU job.
59 * This way, perfmon users don't have to retrieve the results after
60 * each job if they want to track events covering several submissions.
61 * Note that counter values can't be reset, but you can fake a reset by
62 * destroying the perfmon and creating a new one.
63 */
64 u64 counters[0];
65 };
66
67 struct vc4_dev {
68 struct drm_device *dev;
69
70 struct vc4_hdmi *hdmi;
71 struct vc4_hvs *hvs;
72 struct vc4_v3d *v3d;
73 struct vc4_dpi *dpi;
74 struct vc4_dsi *dsi1;
75 struct vc4_vec *vec;
76 struct vc4_txp *txp;
77
78 struct vc4_hang_state *hang_state;
79
80 /* The kernel-space BO cache. Tracks buffers that have been
81 * unreferenced by all other users (refcounts of 0!) but not
82 * yet freed, so we can do cheap allocations.
83 */
84 struct vc4_bo_cache {
85 /* Array of list heads for entries in the BO cache,
86 * based on number of pages, so we can do O(1) lookups
87 * in the cache when allocating.
88 */
89 struct list_head *size_list;
90 uint32_t size_list_size;
91
92 /* List of all BOs in the cache, ordered by age, so we
93 * can do O(1) lookups when trying to free old
94 * buffers.
95 */
96 struct list_head time_list;
97 struct work_struct time_work;
98 struct timer_list time_timer;
99 } bo_cache;
100
101 u32 num_labels;
102 struct vc4_label {
103 const char *name;
104 u32 num_allocated;
105 u32 size_allocated;
106 } *bo_labels;
107
108 /* Protects bo_cache and bo_labels. */
109 struct mutex bo_lock;
110
111 /* Purgeable BO pool. All BOs in this pool can have their memory
112 * reclaimed if the driver is unable to allocate new BOs. We also
113 * keep stats related to the purge mechanism here.
114 */
115 struct {
116 struct list_head list;
117 unsigned int num;
118 size_t size;
119 unsigned int purged_num;
120 size_t purged_size;
121 struct mutex lock;
122 } purgeable;
123
124 uint64_t dma_fence_context;
125
126 /* Sequence number for the last job queued in bin_job_list.
127 * Starts at 0 (no jobs emitted).
128 */
129 uint64_t emit_seqno;
130
131 /* Sequence number for the last completed job on the GPU.
132 * Starts at 0 (no jobs completed).
133 */
134 uint64_t finished_seqno;
135
136 /* List of all struct vc4_exec_info for jobs to be executed in
137 * the binner. The first job in the list is the one currently
138 * programmed into ct0ca for execution.
139 */
140 struct list_head bin_job_list;
141
142 /* List of all struct vc4_exec_info for jobs that have
143 * completed binning and are ready for rendering. The first
144 * job in the list is the one currently programmed into ct1ca
145 * for execution.
146 */
147 struct list_head render_job_list;
148
149 /* List of the finished vc4_exec_infos waiting to be freed by
150 * job_done_work.
151 */
152 struct list_head job_done_list;
153 /* Spinlock used to synchronize the job_list and seqno
154 * accesses between the IRQ handler and GEM ioctls.
155 */
156 spinlock_t job_lock;
157 wait_queue_head_t job_wait_queue;
158 struct work_struct job_done_work;
159
160 /* Used to track the active perfmon if any. Access to this field is
161 * protected by job_lock.
162 */
163 struct vc4_perfmon *active_perfmon;
164
165 /* List of struct vc4_seqno_cb for callbacks to be made from a
166 * workqueue when the given seqno is passed.
167 */
168 struct list_head seqno_cb_list;
169
170 /* The memory used for storing binner tile alloc, tile state,
171 * and overflow memory allocations. This is freed when V3D
172 * powers down.
173 */
174 struct vc4_bo *bin_bo;
175
176 /* Size of blocks allocated within bin_bo. */
177 uint32_t bin_alloc_size;
178
179 /* Bitmask of the bin_alloc_size chunks in bin_bo that are
180 * used.
181 */
182 uint32_t bin_alloc_used;
183
184 /* Bitmask of the current bin_alloc used for overflow memory. */
185 uint32_t bin_alloc_overflow;
186
187 struct work_struct overflow_mem_work;
188
189 int power_refcount;
190
191 /* Mutex controlling the power refcount. */
192 struct mutex power_lock;
193
194 struct {
195 struct timer_list timer;
196 struct work_struct reset_work;
197 } hangcheck;
198
199 struct semaphore async_modeset;
200
201 struct drm_modeset_lock ctm_state_lock;
202 struct drm_private_obj ctm_manager;
203 };
204
205 static inline struct vc4_dev *
to_vc4_dev(struct drm_device * dev)206 to_vc4_dev(struct drm_device *dev)
207 {
208 return (struct vc4_dev *)dev->dev_private;
209 }
210
211 struct vc4_bo {
212 struct drm_gem_cma_object base;
213
214 /* seqno of the last job to render using this BO. */
215 uint64_t seqno;
216
217 /* seqno of the last job to use the RCL to write to this BO.
218 *
219 * Note that this doesn't include binner overflow memory
220 * writes.
221 */
222 uint64_t write_seqno;
223
224 bool t_format;
225
226 /* List entry for the BO's position in either
227 * vc4_exec_info->unref_list or vc4_dev->bo_cache.time_list
228 */
229 struct list_head unref_head;
230
231 /* Time in jiffies when the BO was put in vc4->bo_cache. */
232 unsigned long free_time;
233
234 /* List entry for the BO's position in vc4_dev->bo_cache.size_list */
235 struct list_head size_head;
236
237 /* Struct for shader validation state, if created by
238 * DRM_IOCTL_VC4_CREATE_SHADER_BO.
239 */
240 struct vc4_validated_shader_info *validated_shader;
241
242 /* normally (resv == &_resv) except for imported bo's */
243 struct reservation_object *resv;
244 struct reservation_object _resv;
245
246 /* One of enum vc4_kernel_bo_type, or VC4_BO_TYPE_COUNT + i
247 * for user-allocated labels.
248 */
249 int label;
250
251 /* Count the number of active users. This is needed to determine
252 * whether we can move the BO to the purgeable list or not (when the BO
253 * is used by the GPU or the display engine we can't purge it).
254 */
255 refcount_t usecnt;
256
257 /* Store purgeable/purged state here */
258 u32 madv;
259 struct mutex madv_lock;
260 };
261
262 static inline struct vc4_bo *
to_vc4_bo(struct drm_gem_object * bo)263 to_vc4_bo(struct drm_gem_object *bo)
264 {
265 return (struct vc4_bo *)bo;
266 }
267
268 struct vc4_fence {
269 struct dma_fence base;
270 struct drm_device *dev;
271 /* vc4 seqno for signaled() test */
272 uint64_t seqno;
273 };
274
275 static inline struct vc4_fence *
to_vc4_fence(struct dma_fence * fence)276 to_vc4_fence(struct dma_fence *fence)
277 {
278 return (struct vc4_fence *)fence;
279 }
280
281 struct vc4_seqno_cb {
282 struct work_struct work;
283 uint64_t seqno;
284 void (*func)(struct vc4_seqno_cb *cb);
285 };
286
287 struct vc4_v3d {
288 struct vc4_dev *vc4;
289 struct platform_device *pdev;
290 void __iomem *regs;
291 struct clk *clk;
292 };
293
294 struct vc4_hvs {
295 struct platform_device *pdev;
296 void __iomem *regs;
297 u32 __iomem *dlist;
298
299 /* Memory manager for CRTCs to allocate space in the display
300 * list. Units are dwords.
301 */
302 struct drm_mm dlist_mm;
303 /* Memory manager for the LBM memory used by HVS scaling. */
304 struct drm_mm lbm_mm;
305 spinlock_t mm_lock;
306
307 struct drm_mm_node mitchell_netravali_filter;
308 };
309
310 struct vc4_plane {
311 struct drm_plane base;
312 };
313
314 static inline struct vc4_plane *
to_vc4_plane(struct drm_plane * plane)315 to_vc4_plane(struct drm_plane *plane)
316 {
317 return (struct vc4_plane *)plane;
318 }
319
320 enum vc4_scaling_mode {
321 VC4_SCALING_NONE,
322 VC4_SCALING_TPZ,
323 VC4_SCALING_PPF,
324 };
325
326 struct vc4_plane_state {
327 struct drm_plane_state base;
328 /* System memory copy of the display list for this element, computed
329 * at atomic_check time.
330 */
331 u32 *dlist;
332 u32 dlist_size; /* Number of dwords allocated for the display list */
333 u32 dlist_count; /* Number of used dwords in the display list. */
334
335 /* Offset in the dlist to various words, for pageflip or
336 * cursor updates.
337 */
338 u32 pos0_offset;
339 u32 pos2_offset;
340 u32 ptr0_offset;
341
342 /* Offset where the plane's dlist was last stored in the
343 * hardware at vc4_crtc_atomic_flush() time.
344 */
345 u32 __iomem *hw_dlist;
346
347 /* Clipped coordinates of the plane on the display. */
348 int crtc_x, crtc_y, crtc_w, crtc_h;
349 /* Clipped area being scanned from in the FB. */
350 u32 src_x, src_y;
351
352 u32 src_w[2], src_h[2];
353
354 /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */
355 enum vc4_scaling_mode x_scaling[2], y_scaling[2];
356 bool is_unity;
357 bool is_yuv;
358
359 /* Offset to start scanning out from the start of the plane's
360 * BO.
361 */
362 u32 offsets[3];
363
364 /* Our allocation in LBM for temporary storage during scaling. */
365 struct drm_mm_node lbm;
366
367 /* Set when the plane has per-pixel alpha content or does not cover
368 * the entire screen. This is a hint to the CRTC that it might need
369 * to enable background color fill.
370 */
371 bool needs_bg_fill;
372 };
373
374 static inline struct vc4_plane_state *
to_vc4_plane_state(struct drm_plane_state * state)375 to_vc4_plane_state(struct drm_plane_state *state)
376 {
377 return (struct vc4_plane_state *)state;
378 }
379
380 enum vc4_encoder_type {
381 VC4_ENCODER_TYPE_NONE,
382 VC4_ENCODER_TYPE_HDMI,
383 VC4_ENCODER_TYPE_VEC,
384 VC4_ENCODER_TYPE_DSI0,
385 VC4_ENCODER_TYPE_DSI1,
386 VC4_ENCODER_TYPE_SMI,
387 VC4_ENCODER_TYPE_DPI,
388 };
389
390 struct vc4_encoder {
391 struct drm_encoder base;
392 enum vc4_encoder_type type;
393 u32 clock_select;
394 };
395
396 static inline struct vc4_encoder *
to_vc4_encoder(struct drm_encoder * encoder)397 to_vc4_encoder(struct drm_encoder *encoder)
398 {
399 return container_of(encoder, struct vc4_encoder, base);
400 }
401
402 struct vc4_crtc_data {
403 /* Which channel of the HVS this pixelvalve sources from. */
404 int hvs_channel;
405
406 enum vc4_encoder_type encoder_types[4];
407 };
408
409 struct vc4_crtc {
410 struct drm_crtc base;
411 const struct vc4_crtc_data *data;
412 void __iomem *regs;
413
414 /* Timestamp at start of vblank irq - unaffected by lock delays. */
415 ktime_t t_vblank;
416
417 /* Which HVS channel we're using for our CRTC. */
418 int channel;
419
420 u8 lut_r[256];
421 u8 lut_g[256];
422 u8 lut_b[256];
423 /* Size in pixels of the COB memory allocated to this CRTC. */
424 u32 cob_size;
425
426 struct drm_pending_vblank_event *event;
427 };
428
429 static inline struct vc4_crtc *
to_vc4_crtc(struct drm_crtc * crtc)430 to_vc4_crtc(struct drm_crtc *crtc)
431 {
432 return (struct vc4_crtc *)crtc;
433 }
434
435 #define V3D_READ(offset) readl(vc4->v3d->regs + offset)
436 #define V3D_WRITE(offset, val) writel(val, vc4->v3d->regs + offset)
437 #define HVS_READ(offset) readl(vc4->hvs->regs + offset)
438 #define HVS_WRITE(offset, val) writel(val, vc4->hvs->regs + offset)
439
440 struct vc4_exec_info {
441 /* Sequence number for this bin/render job. */
442 uint64_t seqno;
443
444 /* Latest write_seqno of any BO that binning depends on. */
445 uint64_t bin_dep_seqno;
446
447 struct dma_fence *fence;
448
449 /* Last current addresses the hardware was processing when the
450 * hangcheck timer checked on us.
451 */
452 uint32_t last_ct0ca, last_ct1ca;
453
454 /* Kernel-space copy of the ioctl arguments */
455 struct drm_vc4_submit_cl *args;
456
457 /* This is the array of BOs that were looked up at the start of exec.
458 * Command validation will use indices into this array.
459 */
460 struct drm_gem_cma_object **bo;
461 uint32_t bo_count;
462
463 /* List of BOs that are being written by the RCL. Other than
464 * the binner temporary storage, this is all the BOs written
465 * by the job.
466 */
467 struct drm_gem_cma_object *rcl_write_bo[4];
468 uint32_t rcl_write_bo_count;
469
470 /* Pointers for our position in vc4->job_list */
471 struct list_head head;
472
473 /* List of other BOs used in the job that need to be released
474 * once the job is complete.
475 */
476 struct list_head unref_list;
477
478 /* Current unvalidated indices into @bo loaded by the non-hardware
479 * VC4_PACKET_GEM_HANDLES.
480 */
481 uint32_t bo_index[2];
482
483 /* This is the BO where we store the validated command lists, shader
484 * records, and uniforms.
485 */
486 struct drm_gem_cma_object *exec_bo;
487
488 /**
489 * This tracks the per-shader-record state (packet 64) that
490 * determines the length of the shader record and the offset
491 * it's expected to be found at. It gets read in from the
492 * command lists.
493 */
494 struct vc4_shader_state {
495 uint32_t addr;
496 /* Maximum vertex index referenced by any primitive using this
497 * shader state.
498 */
499 uint32_t max_index;
500 } *shader_state;
501
502 /** How many shader states the user declared they were using. */
503 uint32_t shader_state_size;
504 /** How many shader state records the validator has seen. */
505 uint32_t shader_state_count;
506
507 bool found_tile_binning_mode_config_packet;
508 bool found_start_tile_binning_packet;
509 bool found_increment_semaphore_packet;
510 bool found_flush;
511 uint8_t bin_tiles_x, bin_tiles_y;
512 /* Physical address of the start of the tile alloc array
513 * (where each tile's binned CL will start)
514 */
515 uint32_t tile_alloc_offset;
516 /* Bitmask of which binner slots are freed when this job completes. */
517 uint32_t bin_slots;
518
519 /**
520 * Computed addresses pointing into exec_bo where we start the
521 * bin thread (ct0) and render thread (ct1).
522 */
523 uint32_t ct0ca, ct0ea;
524 uint32_t ct1ca, ct1ea;
525
526 /* Pointer to the unvalidated bin CL (if present). */
527 void *bin_u;
528
529 /* Pointers to the shader recs. These paddr gets incremented as CL
530 * packets are relocated in validate_gl_shader_state, and the vaddrs
531 * (u and v) get incremented and size decremented as the shader recs
532 * themselves are validated.
533 */
534 void *shader_rec_u;
535 void *shader_rec_v;
536 uint32_t shader_rec_p;
537 uint32_t shader_rec_size;
538
539 /* Pointers to the uniform data. These pointers are incremented, and
540 * size decremented, as each batch of uniforms is uploaded.
541 */
542 void *uniforms_u;
543 void *uniforms_v;
544 uint32_t uniforms_p;
545 uint32_t uniforms_size;
546
547 /* Pointer to a performance monitor object if the user requested it,
548 * NULL otherwise.
549 */
550 struct vc4_perfmon *perfmon;
551 };
552
553 /* Per-open file private data. Any driver-specific resource that has to be
554 * released when the DRM file is closed should be placed here.
555 */
556 struct vc4_file {
557 struct {
558 struct idr idr;
559 struct mutex lock;
560 } perfmon;
561 };
562
563 static inline struct vc4_exec_info *
vc4_first_bin_job(struct vc4_dev * vc4)564 vc4_first_bin_job(struct vc4_dev *vc4)
565 {
566 return list_first_entry_or_null(&vc4->bin_job_list,
567 struct vc4_exec_info, head);
568 }
569
570 static inline struct vc4_exec_info *
vc4_first_render_job(struct vc4_dev * vc4)571 vc4_first_render_job(struct vc4_dev *vc4)
572 {
573 return list_first_entry_or_null(&vc4->render_job_list,
574 struct vc4_exec_info, head);
575 }
576
577 static inline struct vc4_exec_info *
vc4_last_render_job(struct vc4_dev * vc4)578 vc4_last_render_job(struct vc4_dev *vc4)
579 {
580 if (list_empty(&vc4->render_job_list))
581 return NULL;
582 return list_last_entry(&vc4->render_job_list,
583 struct vc4_exec_info, head);
584 }
585
586 /**
587 * struct vc4_texture_sample_info - saves the offsets into the UBO for texture
588 * setup parameters.
589 *
590 * This will be used at draw time to relocate the reference to the texture
591 * contents in p0, and validate that the offset combined with
592 * width/height/stride/etc. from p1 and p2/p3 doesn't sample outside the BO.
593 * Note that the hardware treats unprovided config parameters as 0, so not all
594 * of them need to be set up for every texure sample, and we'll store ~0 as
595 * the offset to mark the unused ones.
596 *
597 * See the VC4 3D architecture guide page 41 ("Texture and Memory Lookup Unit
598 * Setup") for definitions of the texture parameters.
599 */
600 struct vc4_texture_sample_info {
601 bool is_direct;
602 uint32_t p_offset[4];
603 };
604
605 /**
606 * struct vc4_validated_shader_info - information about validated shaders that
607 * needs to be used from command list validation.
608 *
609 * For a given shader, each time a shader state record references it, we need
610 * to verify that the shader doesn't read more uniforms than the shader state
611 * record's uniform BO pointer can provide, and we need to apply relocations
612 * and validate the shader state record's uniforms that define the texture
613 * samples.
614 */
615 struct vc4_validated_shader_info {
616 uint32_t uniforms_size;
617 uint32_t uniforms_src_size;
618 uint32_t num_texture_samples;
619 struct vc4_texture_sample_info *texture_samples;
620
621 uint32_t num_uniform_addr_offsets;
622 uint32_t *uniform_addr_offsets;
623
624 bool is_threaded;
625 };
626
627 /**
628 * _wait_for - magic (register) wait macro
629 *
630 * Does the right thing for modeset paths when run under kdgb or similar atomic
631 * contexts. Note that it's important that we check the condition again after
632 * having timed out, since the timeout could be due to preemption or similar and
633 * we've never had a chance to check the condition before the timeout.
634 */
635 #define _wait_for(COND, MS, W) ({ \
636 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS) + 1; \
637 int ret__ = 0; \
638 while (!(COND)) { \
639 if (time_after(jiffies, timeout__)) { \
640 if (!(COND)) \
641 ret__ = -ETIMEDOUT; \
642 break; \
643 } \
644 if (W && drm_can_sleep()) { \
645 msleep(W); \
646 } else { \
647 cpu_relax(); \
648 } \
649 } \
650 ret__; \
651 })
652
653 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
654
655 /* vc4_bo.c */
656 struct drm_gem_object *vc4_create_object(struct drm_device *dev, size_t size);
657 void vc4_free_object(struct drm_gem_object *gem_obj);
658 struct vc4_bo *vc4_bo_create(struct drm_device *dev, size_t size,
659 bool from_cache, enum vc4_kernel_bo_type type);
660 int vc4_dumb_create(struct drm_file *file_priv,
661 struct drm_device *dev,
662 struct drm_mode_create_dumb *args);
663 struct dma_buf *vc4_prime_export(struct drm_device *dev,
664 struct drm_gem_object *obj, int flags);
665 int vc4_create_bo_ioctl(struct drm_device *dev, void *data,
666 struct drm_file *file_priv);
667 int vc4_create_shader_bo_ioctl(struct drm_device *dev, void *data,
668 struct drm_file *file_priv);
669 int vc4_mmap_bo_ioctl(struct drm_device *dev, void *data,
670 struct drm_file *file_priv);
671 int vc4_set_tiling_ioctl(struct drm_device *dev, void *data,
672 struct drm_file *file_priv);
673 int vc4_get_tiling_ioctl(struct drm_device *dev, void *data,
674 struct drm_file *file_priv);
675 int vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
676 struct drm_file *file_priv);
677 int vc4_label_bo_ioctl(struct drm_device *dev, void *data,
678 struct drm_file *file_priv);
679 vm_fault_t vc4_fault(struct vm_fault *vmf);
680 int vc4_mmap(struct file *filp, struct vm_area_struct *vma);
681 struct reservation_object *vc4_prime_res_obj(struct drm_gem_object *obj);
682 int vc4_prime_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma);
683 struct drm_gem_object *vc4_prime_import_sg_table(struct drm_device *dev,
684 struct dma_buf_attachment *attach,
685 struct sg_table *sgt);
686 void *vc4_prime_vmap(struct drm_gem_object *obj);
687 int vc4_bo_cache_init(struct drm_device *dev);
688 void vc4_bo_cache_destroy(struct drm_device *dev);
689 int vc4_bo_stats_debugfs(struct seq_file *m, void *arg);
690 int vc4_bo_inc_usecnt(struct vc4_bo *bo);
691 void vc4_bo_dec_usecnt(struct vc4_bo *bo);
692 void vc4_bo_add_to_purgeable_pool(struct vc4_bo *bo);
693 void vc4_bo_remove_from_purgeable_pool(struct vc4_bo *bo);
694
695 /* vc4_crtc.c */
696 extern struct platform_driver vc4_crtc_driver;
697 int vc4_crtc_debugfs_regs(struct seq_file *m, void *arg);
698 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
699 bool in_vblank_irq, int *vpos, int *hpos,
700 ktime_t *stime, ktime_t *etime,
701 const struct drm_display_mode *mode);
702 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc);
703 void vc4_crtc_txp_armed(struct drm_crtc_state *state);
704
705 /* vc4_debugfs.c */
706 int vc4_debugfs_init(struct drm_minor *minor);
707
708 /* vc4_drv.c */
709 void __iomem *vc4_ioremap_regs(struct platform_device *dev, int index);
710
711 /* vc4_dpi.c */
712 extern struct platform_driver vc4_dpi_driver;
713 int vc4_dpi_debugfs_regs(struct seq_file *m, void *unused);
714
715 /* vc4_dsi.c */
716 extern struct platform_driver vc4_dsi_driver;
717 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused);
718
719 /* vc4_fence.c */
720 extern const struct dma_fence_ops vc4_fence_ops;
721
722 /* vc4_gem.c */
723 void vc4_gem_init(struct drm_device *dev);
724 void vc4_gem_destroy(struct drm_device *dev);
725 int vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
726 struct drm_file *file_priv);
727 int vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
728 struct drm_file *file_priv);
729 int vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
730 struct drm_file *file_priv);
731 void vc4_submit_next_bin_job(struct drm_device *dev);
732 void vc4_submit_next_render_job(struct drm_device *dev);
733 void vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec);
734 int vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno,
735 uint64_t timeout_ns, bool interruptible);
736 void vc4_job_handle_completed(struct vc4_dev *vc4);
737 int vc4_queue_seqno_cb(struct drm_device *dev,
738 struct vc4_seqno_cb *cb, uint64_t seqno,
739 void (*func)(struct vc4_seqno_cb *cb));
740 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
741 struct drm_file *file_priv);
742
743 /* vc4_hdmi.c */
744 extern struct platform_driver vc4_hdmi_driver;
745 int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused);
746
747 /* vc4_vec.c */
748 extern struct platform_driver vc4_vec_driver;
749 int vc4_vec_debugfs_regs(struct seq_file *m, void *unused);
750
751 /* vc4_txp.c */
752 extern struct platform_driver vc4_txp_driver;
753 int vc4_txp_debugfs_regs(struct seq_file *m, void *unused);
754
755 /* vc4_irq.c */
756 irqreturn_t vc4_irq(int irq, void *arg);
757 void vc4_irq_preinstall(struct drm_device *dev);
758 int vc4_irq_postinstall(struct drm_device *dev);
759 void vc4_irq_uninstall(struct drm_device *dev);
760 void vc4_irq_reset(struct drm_device *dev);
761
762 /* vc4_hvs.c */
763 extern struct platform_driver vc4_hvs_driver;
764 void vc4_hvs_dump_state(struct drm_device *dev);
765 int vc4_hvs_debugfs_regs(struct seq_file *m, void *unused);
766
767 /* vc4_kms.c */
768 int vc4_kms_load(struct drm_device *dev);
769
770 /* vc4_plane.c */
771 struct drm_plane *vc4_plane_init(struct drm_device *dev,
772 enum drm_plane_type type);
773 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist);
774 u32 vc4_plane_dlist_size(const struct drm_plane_state *state);
775 void vc4_plane_async_set_fb(struct drm_plane *plane,
776 struct drm_framebuffer *fb);
777
778 /* vc4_v3d.c */
779 extern struct platform_driver vc4_v3d_driver;
780 int vc4_v3d_debugfs_ident(struct seq_file *m, void *unused);
781 int vc4_v3d_debugfs_regs(struct seq_file *m, void *unused);
782 int vc4_v3d_get_bin_slot(struct vc4_dev *vc4);
783
784 /* vc4_validate.c */
785 int
786 vc4_validate_bin_cl(struct drm_device *dev,
787 void *validated,
788 void *unvalidated,
789 struct vc4_exec_info *exec);
790
791 int
792 vc4_validate_shader_recs(struct drm_device *dev, struct vc4_exec_info *exec);
793
794 struct drm_gem_cma_object *vc4_use_bo(struct vc4_exec_info *exec,
795 uint32_t hindex);
796
797 int vc4_get_rcl(struct drm_device *dev, struct vc4_exec_info *exec);
798
799 bool vc4_check_tex_size(struct vc4_exec_info *exec,
800 struct drm_gem_cma_object *fbo,
801 uint32_t offset, uint8_t tiling_format,
802 uint32_t width, uint32_t height, uint8_t cpp);
803
804 /* vc4_validate_shader.c */
805 struct vc4_validated_shader_info *
806 vc4_validate_shader(struct drm_gem_cma_object *shader_obj);
807
808 /* vc4_perfmon.c */
809 void vc4_perfmon_get(struct vc4_perfmon *perfmon);
810 void vc4_perfmon_put(struct vc4_perfmon *perfmon);
811 void vc4_perfmon_start(struct vc4_dev *vc4, struct vc4_perfmon *perfmon);
812 void vc4_perfmon_stop(struct vc4_dev *vc4, struct vc4_perfmon *perfmon,
813 bool capture);
814 struct vc4_perfmon *vc4_perfmon_find(struct vc4_file *vc4file, int id);
815 void vc4_perfmon_open_file(struct vc4_file *vc4file);
816 void vc4_perfmon_close_file(struct vc4_file *vc4file);
817 int vc4_perfmon_create_ioctl(struct drm_device *dev, void *data,
818 struct drm_file *file_priv);
819 int vc4_perfmon_destroy_ioctl(struct drm_device *dev, void *data,
820 struct drm_file *file_priv);
821 int vc4_perfmon_get_values_ioctl(struct drm_device *dev, void *data,
822 struct drm_file *file_priv);
823