1 /*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16
17 #include <soc/tegra/pmc.h>
18
19 #include "dc.h"
20 #include "drm.h"
21 #include "gem.h"
22 #include "hub.h"
23 #include "plane.h"
24
25 #include <drm/drm_atomic.h>
26 #include <drm/drm_atomic_helper.h>
27 #include <drm/drm_plane_helper.h>
28
tegra_dc_stats_reset(struct tegra_dc_stats * stats)29 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
30 {
31 stats->frames = 0;
32 stats->vblank = 0;
33 stats->underflow = 0;
34 stats->overflow = 0;
35 }
36
37 /* Reads the active copy of a register. */
tegra_dc_readl_active(struct tegra_dc * dc,unsigned long offset)38 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
39 {
40 u32 value;
41
42 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
43 value = tegra_dc_readl(dc, offset);
44 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
45
46 return value;
47 }
48
tegra_plane_offset(struct tegra_plane * plane,unsigned int offset)49 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
50 unsigned int offset)
51 {
52 if (offset >= 0x500 && offset <= 0x638) {
53 offset = 0x000 + (offset - 0x500);
54 return plane->offset + offset;
55 }
56
57 if (offset >= 0x700 && offset <= 0x719) {
58 offset = 0x180 + (offset - 0x700);
59 return plane->offset + offset;
60 }
61
62 if (offset >= 0x800 && offset <= 0x839) {
63 offset = 0x1c0 + (offset - 0x800);
64 return plane->offset + offset;
65 }
66
67 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
68
69 return plane->offset + offset;
70 }
71
tegra_plane_readl(struct tegra_plane * plane,unsigned int offset)72 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
73 unsigned int offset)
74 {
75 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
76 }
77
tegra_plane_writel(struct tegra_plane * plane,u32 value,unsigned int offset)78 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
79 unsigned int offset)
80 {
81 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
82 }
83
tegra_dc_has_output(struct tegra_dc * dc,struct device * dev)84 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
85 {
86 struct device_node *np = dc->dev->of_node;
87 struct of_phandle_iterator it;
88 int err;
89
90 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
91 if (it.node == dev->of_node)
92 return true;
93
94 return false;
95 }
96
97 /*
98 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
99 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
100 * Latching happens mmediately if the display controller is in STOP mode or
101 * on the next frame boundary otherwise.
102 *
103 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
104 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
105 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
106 * into the ACTIVE copy, either immediately if the display controller is in
107 * STOP mode, or at the next frame boundary otherwise.
108 */
tegra_dc_commit(struct tegra_dc * dc)109 void tegra_dc_commit(struct tegra_dc *dc)
110 {
111 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
112 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
113 }
114
compute_dda_inc(unsigned int in,unsigned int out,bool v,unsigned int bpp)115 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
116 unsigned int bpp)
117 {
118 fixed20_12 outf = dfixed_init(out);
119 fixed20_12 inf = dfixed_init(in);
120 u32 dda_inc;
121 int max;
122
123 if (v)
124 max = 15;
125 else {
126 switch (bpp) {
127 case 2:
128 max = 8;
129 break;
130
131 default:
132 WARN_ON_ONCE(1);
133 /* fallthrough */
134 case 4:
135 max = 4;
136 break;
137 }
138 }
139
140 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
141 inf.full -= dfixed_const(1);
142
143 dda_inc = dfixed_div(inf, outf);
144 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
145
146 return dda_inc;
147 }
148
compute_initial_dda(unsigned int in)149 static inline u32 compute_initial_dda(unsigned int in)
150 {
151 fixed20_12 inf = dfixed_init(in);
152 return dfixed_frac(inf);
153 }
154
tegra_plane_setup_blending_legacy(struct tegra_plane * plane)155 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
156 {
157 u32 background[3] = {
158 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
159 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
160 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
161 };
162 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
163 BLEND_COLOR_KEY_NONE;
164 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
165 struct tegra_plane_state *state;
166 u32 blending[2];
167 unsigned int i;
168
169 /* disable blending for non-overlapping case */
170 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
171 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
172
173 state = to_tegra_plane_state(plane->base.state);
174
175 if (state->opaque) {
176 /*
177 * Since custom fix-weight blending isn't utilized and weight
178 * of top window is set to max, we can enforce dependent
179 * blending which in this case results in transparent bottom
180 * window if top window is opaque and if top window enables
181 * alpha blending, then bottom window is getting alpha value
182 * of 1 minus the sum of alpha components of the overlapping
183 * plane.
184 */
185 background[0] |= BLEND_CONTROL_DEPENDENT;
186 background[1] |= BLEND_CONTROL_DEPENDENT;
187
188 /*
189 * The region where three windows overlap is the intersection
190 * of the two regions where two windows overlap. It contributes
191 * to the area if all of the windows on top of it have an alpha
192 * component.
193 */
194 switch (state->base.normalized_zpos) {
195 case 0:
196 if (state->blending[0].alpha &&
197 state->blending[1].alpha)
198 background[2] |= BLEND_CONTROL_DEPENDENT;
199 break;
200
201 case 1:
202 background[2] |= BLEND_CONTROL_DEPENDENT;
203 break;
204 }
205 } else {
206 /*
207 * Enable alpha blending if pixel format has an alpha
208 * component.
209 */
210 foreground |= BLEND_CONTROL_ALPHA;
211
212 /*
213 * If any of the windows on top of this window is opaque, it
214 * will completely conceal this window within that area. If
215 * top window has an alpha component, it is blended over the
216 * bottom window.
217 */
218 for (i = 0; i < 2; i++) {
219 if (state->blending[i].alpha &&
220 state->blending[i].top)
221 background[i] |= BLEND_CONTROL_DEPENDENT;
222 }
223
224 switch (state->base.normalized_zpos) {
225 case 0:
226 if (state->blending[0].alpha &&
227 state->blending[1].alpha)
228 background[2] |= BLEND_CONTROL_DEPENDENT;
229 break;
230
231 case 1:
232 /*
233 * When both middle and topmost windows have an alpha,
234 * these windows a mixed together and then the result
235 * is blended over the bottom window.
236 */
237 if (state->blending[0].alpha &&
238 state->blending[0].top)
239 background[2] |= BLEND_CONTROL_ALPHA;
240
241 if (state->blending[1].alpha &&
242 state->blending[1].top)
243 background[2] |= BLEND_CONTROL_ALPHA;
244 break;
245 }
246 }
247
248 switch (state->base.normalized_zpos) {
249 case 0:
250 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
251 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
252 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
253 break;
254
255 case 1:
256 /*
257 * If window B / C is topmost, then X / Y registers are
258 * matching the order of blending[...] state indices,
259 * otherwise a swap is required.
260 */
261 if (!state->blending[0].top && state->blending[1].top) {
262 blending[0] = foreground;
263 blending[1] = background[1];
264 } else {
265 blending[0] = background[0];
266 blending[1] = foreground;
267 }
268
269 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
270 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
271 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
272 break;
273
274 case 2:
275 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
276 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
277 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
278 break;
279 }
280 }
281
tegra_plane_setup_blending(struct tegra_plane * plane,const struct tegra_dc_window * window)282 static void tegra_plane_setup_blending(struct tegra_plane *plane,
283 const struct tegra_dc_window *window)
284 {
285 u32 value;
286
287 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
288 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
289 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
290 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
291
292 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
296
297 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
298 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
299 }
300
301 static bool
tegra_plane_use_horizontal_filtering(struct tegra_plane * plane,const struct tegra_dc_window * window)302 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
303 const struct tegra_dc_window *window)
304 {
305 struct tegra_dc *dc = plane->dc;
306
307 if (window->src.w == window->dst.w)
308 return false;
309
310 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
311 return false;
312
313 return true;
314 }
315
316 static bool
tegra_plane_use_vertical_filtering(struct tegra_plane * plane,const struct tegra_dc_window * window)317 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
318 const struct tegra_dc_window *window)
319 {
320 struct tegra_dc *dc = plane->dc;
321
322 if (window->src.h == window->dst.h)
323 return false;
324
325 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
326 return false;
327
328 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
329 return false;
330
331 return true;
332 }
333
tegra_dc_setup_window(struct tegra_plane * plane,const struct tegra_dc_window * window)334 static void tegra_dc_setup_window(struct tegra_plane *plane,
335 const struct tegra_dc_window *window)
336 {
337 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
338 struct tegra_dc *dc = plane->dc;
339 bool yuv, planar;
340 u32 value;
341
342 /*
343 * For YUV planar modes, the number of bytes per pixel takes into
344 * account only the luma component and therefore is 1.
345 */
346 yuv = tegra_plane_format_is_yuv(window->format, &planar);
347 if (!yuv)
348 bpp = window->bits_per_pixel / 8;
349 else
350 bpp = planar ? 1 : 2;
351
352 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
353 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
354
355 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
356 tegra_plane_writel(plane, value, DC_WIN_POSITION);
357
358 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
359 tegra_plane_writel(plane, value, DC_WIN_SIZE);
360
361 h_offset = window->src.x * bpp;
362 v_offset = window->src.y;
363 h_size = window->src.w * bpp;
364 v_size = window->src.h;
365
366 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
367 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
368
369 /*
370 * For DDA computations the number of bytes per pixel for YUV planar
371 * modes needs to take into account all Y, U and V components.
372 */
373 if (yuv && planar)
374 bpp = 2;
375
376 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
377 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
378
379 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
380 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
381
382 h_dda = compute_initial_dda(window->src.x);
383 v_dda = compute_initial_dda(window->src.y);
384
385 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
386 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
387
388 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
389 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
390
391 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
392
393 if (yuv && planar) {
394 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
395 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
396 value = window->stride[1] << 16 | window->stride[0];
397 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
398 } else {
399 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
400 }
401
402 if (window->bottom_up)
403 v_offset += window->src.h - 1;
404
405 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
406 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
407
408 if (dc->soc->supports_block_linear) {
409 unsigned long height = window->tiling.value;
410
411 switch (window->tiling.mode) {
412 case TEGRA_BO_TILING_MODE_PITCH:
413 value = DC_WINBUF_SURFACE_KIND_PITCH;
414 break;
415
416 case TEGRA_BO_TILING_MODE_TILED:
417 value = DC_WINBUF_SURFACE_KIND_TILED;
418 break;
419
420 case TEGRA_BO_TILING_MODE_BLOCK:
421 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
422 DC_WINBUF_SURFACE_KIND_BLOCK;
423 break;
424 }
425
426 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
427 } else {
428 switch (window->tiling.mode) {
429 case TEGRA_BO_TILING_MODE_PITCH:
430 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
431 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
432 break;
433
434 case TEGRA_BO_TILING_MODE_TILED:
435 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
436 DC_WIN_BUFFER_ADDR_MODE_TILE;
437 break;
438
439 case TEGRA_BO_TILING_MODE_BLOCK:
440 /*
441 * No need to handle this here because ->atomic_check
442 * will already have filtered it out.
443 */
444 break;
445 }
446
447 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
448 }
449
450 value = WIN_ENABLE;
451
452 if (yuv) {
453 /* setup default colorspace conversion coefficients */
454 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
455 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
456 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
457 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
458 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
459 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
460 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
461 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
462
463 value |= CSC_ENABLE;
464 } else if (window->bits_per_pixel < 24) {
465 value |= COLOR_EXPAND;
466 }
467
468 if (window->bottom_up)
469 value |= V_DIRECTION;
470
471 if (tegra_plane_use_horizontal_filtering(plane, window)) {
472 /*
473 * Enable horizontal 6-tap filter and set filtering
474 * coefficients to the default values defined in TRM.
475 */
476 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
477 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
478 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
479 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
480 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
481 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
482 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
483 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
484 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
485 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
486 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
487 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
488 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
489 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
490 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
491 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
492
493 value |= H_FILTER;
494 }
495
496 if (tegra_plane_use_vertical_filtering(plane, window)) {
497 unsigned int i, k;
498
499 /*
500 * Enable vertical 2-tap filter and set filtering
501 * coefficients to the default values defined in TRM.
502 */
503 for (i = 0, k = 128; i < 16; i++, k -= 8)
504 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
505
506 value |= V_FILTER;
507 }
508
509 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
510
511 if (dc->soc->has_legacy_blending)
512 tegra_plane_setup_blending_legacy(plane);
513 else
514 tegra_plane_setup_blending(plane, window);
515 }
516
517 static const u32 tegra20_primary_formats[] = {
518 DRM_FORMAT_ARGB4444,
519 DRM_FORMAT_ARGB1555,
520 DRM_FORMAT_RGB565,
521 DRM_FORMAT_RGBA5551,
522 DRM_FORMAT_ABGR8888,
523 DRM_FORMAT_ARGB8888,
524 /* non-native formats */
525 DRM_FORMAT_XRGB1555,
526 DRM_FORMAT_RGBX5551,
527 DRM_FORMAT_XBGR8888,
528 DRM_FORMAT_XRGB8888,
529 };
530
531 static const u64 tegra20_modifiers[] = {
532 DRM_FORMAT_MOD_LINEAR,
533 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
534 DRM_FORMAT_MOD_INVALID
535 };
536
537 static const u32 tegra114_primary_formats[] = {
538 DRM_FORMAT_ARGB4444,
539 DRM_FORMAT_ARGB1555,
540 DRM_FORMAT_RGB565,
541 DRM_FORMAT_RGBA5551,
542 DRM_FORMAT_ABGR8888,
543 DRM_FORMAT_ARGB8888,
544 /* new on Tegra114 */
545 DRM_FORMAT_ABGR4444,
546 DRM_FORMAT_ABGR1555,
547 DRM_FORMAT_BGRA5551,
548 DRM_FORMAT_XRGB1555,
549 DRM_FORMAT_RGBX5551,
550 DRM_FORMAT_XBGR1555,
551 DRM_FORMAT_BGRX5551,
552 DRM_FORMAT_BGR565,
553 DRM_FORMAT_BGRA8888,
554 DRM_FORMAT_RGBA8888,
555 DRM_FORMAT_XRGB8888,
556 DRM_FORMAT_XBGR8888,
557 };
558
559 static const u32 tegra124_primary_formats[] = {
560 DRM_FORMAT_ARGB4444,
561 DRM_FORMAT_ARGB1555,
562 DRM_FORMAT_RGB565,
563 DRM_FORMAT_RGBA5551,
564 DRM_FORMAT_ABGR8888,
565 DRM_FORMAT_ARGB8888,
566 /* new on Tegra114 */
567 DRM_FORMAT_ABGR4444,
568 DRM_FORMAT_ABGR1555,
569 DRM_FORMAT_BGRA5551,
570 DRM_FORMAT_XRGB1555,
571 DRM_FORMAT_RGBX5551,
572 DRM_FORMAT_XBGR1555,
573 DRM_FORMAT_BGRX5551,
574 DRM_FORMAT_BGR565,
575 DRM_FORMAT_BGRA8888,
576 DRM_FORMAT_RGBA8888,
577 DRM_FORMAT_XRGB8888,
578 DRM_FORMAT_XBGR8888,
579 /* new on Tegra124 */
580 DRM_FORMAT_RGBX8888,
581 DRM_FORMAT_BGRX8888,
582 };
583
584 static const u64 tegra124_modifiers[] = {
585 DRM_FORMAT_MOD_LINEAR,
586 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
587 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
588 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
589 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
590 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
591 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
592 DRM_FORMAT_MOD_INVALID
593 };
594
tegra_plane_atomic_check(struct drm_plane * plane,struct drm_plane_state * state)595 static int tegra_plane_atomic_check(struct drm_plane *plane,
596 struct drm_plane_state *state)
597 {
598 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
599 unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
600 struct tegra_bo_tiling *tiling = &plane_state->tiling;
601 struct tegra_plane *tegra = to_tegra_plane(plane);
602 struct tegra_dc *dc = to_tegra_dc(state->crtc);
603 int err;
604
605 /* no need for further checks if the plane is being disabled */
606 if (!state->crtc)
607 return 0;
608
609 err = tegra_plane_format(state->fb->format->format,
610 &plane_state->format,
611 &plane_state->swap);
612 if (err < 0)
613 return err;
614
615 /*
616 * Tegra20 and Tegra30 are special cases here because they support
617 * only variants of specific formats with an alpha component, but not
618 * the corresponding opaque formats. However, the opaque formats can
619 * be emulated by disabling alpha blending for the plane.
620 */
621 if (dc->soc->has_legacy_blending) {
622 err = tegra_plane_setup_legacy_state(tegra, plane_state);
623 if (err < 0)
624 return err;
625 }
626
627 err = tegra_fb_get_tiling(state->fb, tiling);
628 if (err < 0)
629 return err;
630
631 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
632 !dc->soc->supports_block_linear) {
633 DRM_ERROR("hardware doesn't support block linear mode\n");
634 return -EINVAL;
635 }
636
637 rotation = drm_rotation_simplify(state->rotation, rotation);
638
639 if (rotation & DRM_MODE_REFLECT_Y)
640 plane_state->bottom_up = true;
641 else
642 plane_state->bottom_up = false;
643
644 /*
645 * Tegra doesn't support different strides for U and V planes so we
646 * error out if the user tries to display a framebuffer with such a
647 * configuration.
648 */
649 if (state->fb->format->num_planes > 2) {
650 if (state->fb->pitches[2] != state->fb->pitches[1]) {
651 DRM_ERROR("unsupported UV-plane configuration\n");
652 return -EINVAL;
653 }
654 }
655
656 err = tegra_plane_state_add(tegra, state);
657 if (err < 0)
658 return err;
659
660 return 0;
661 }
662
tegra_plane_atomic_disable(struct drm_plane * plane,struct drm_plane_state * old_state)663 static void tegra_plane_atomic_disable(struct drm_plane *plane,
664 struct drm_plane_state *old_state)
665 {
666 struct tegra_plane *p = to_tegra_plane(plane);
667 u32 value;
668
669 /* rien ne va plus */
670 if (!old_state || !old_state->crtc)
671 return;
672
673 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
674 value &= ~WIN_ENABLE;
675 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
676 }
677
tegra_plane_atomic_update(struct drm_plane * plane,struct drm_plane_state * old_state)678 static void tegra_plane_atomic_update(struct drm_plane *plane,
679 struct drm_plane_state *old_state)
680 {
681 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
682 struct drm_framebuffer *fb = plane->state->fb;
683 struct tegra_plane *p = to_tegra_plane(plane);
684 struct tegra_dc_window window;
685 unsigned int i;
686
687 /* rien ne va plus */
688 if (!plane->state->crtc || !plane->state->fb)
689 return;
690
691 if (!plane->state->visible)
692 return tegra_plane_atomic_disable(plane, old_state);
693
694 memset(&window, 0, sizeof(window));
695 window.src.x = plane->state->src.x1 >> 16;
696 window.src.y = plane->state->src.y1 >> 16;
697 window.src.w = drm_rect_width(&plane->state->src) >> 16;
698 window.src.h = drm_rect_height(&plane->state->src) >> 16;
699 window.dst.x = plane->state->dst.x1;
700 window.dst.y = plane->state->dst.y1;
701 window.dst.w = drm_rect_width(&plane->state->dst);
702 window.dst.h = drm_rect_height(&plane->state->dst);
703 window.bits_per_pixel = fb->format->cpp[0] * 8;
704 window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
705
706 /* copy from state */
707 window.zpos = plane->state->normalized_zpos;
708 window.tiling = state->tiling;
709 window.format = state->format;
710 window.swap = state->swap;
711
712 for (i = 0; i < fb->format->num_planes; i++) {
713 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
714
715 window.base[i] = bo->paddr + fb->offsets[i];
716
717 /*
718 * Tegra uses a shared stride for UV planes. Framebuffers are
719 * already checked for this in the tegra_plane_atomic_check()
720 * function, so it's safe to ignore the V-plane pitch here.
721 */
722 if (i < 2)
723 window.stride[i] = fb->pitches[i];
724 }
725
726 tegra_dc_setup_window(p, &window);
727 }
728
729 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
730 .atomic_check = tegra_plane_atomic_check,
731 .atomic_disable = tegra_plane_atomic_disable,
732 .atomic_update = tegra_plane_atomic_update,
733 };
734
tegra_plane_get_possible_crtcs(struct drm_device * drm)735 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
736 {
737 /*
738 * Ideally this would use drm_crtc_mask(), but that would require the
739 * CRTC to already be in the mode_config's list of CRTCs. However, it
740 * will only be added to that list in the drm_crtc_init_with_planes()
741 * (in tegra_dc_init()), which in turn requires registration of these
742 * planes. So we have ourselves a nice little chicken and egg problem
743 * here.
744 *
745 * We work around this by manually creating the mask from the number
746 * of CRTCs that have been registered, and should therefore always be
747 * the same as drm_crtc_index() after registration.
748 */
749 return 1 << drm->mode_config.num_crtc;
750 }
751
tegra_primary_plane_create(struct drm_device * drm,struct tegra_dc * dc)752 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
753 struct tegra_dc *dc)
754 {
755 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
756 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
757 struct tegra_plane *plane;
758 unsigned int num_formats;
759 const u64 *modifiers;
760 const u32 *formats;
761 int err;
762
763 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
764 if (!plane)
765 return ERR_PTR(-ENOMEM);
766
767 /* Always use window A as primary window */
768 plane->offset = 0xa00;
769 plane->index = 0;
770 plane->dc = dc;
771
772 num_formats = dc->soc->num_primary_formats;
773 formats = dc->soc->primary_formats;
774 modifiers = dc->soc->modifiers;
775
776 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
777 &tegra_plane_funcs, formats,
778 num_formats, modifiers, type, NULL);
779 if (err < 0) {
780 kfree(plane);
781 return ERR_PTR(err);
782 }
783
784 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
785 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
786
787 err = drm_plane_create_rotation_property(&plane->base,
788 DRM_MODE_ROTATE_0,
789 DRM_MODE_ROTATE_0 |
790 DRM_MODE_REFLECT_Y);
791 if (err < 0)
792 dev_err(dc->dev, "failed to create rotation property: %d\n",
793 err);
794
795 return &plane->base;
796 }
797
798 static const u32 tegra_cursor_plane_formats[] = {
799 DRM_FORMAT_RGBA8888,
800 };
801
tegra_cursor_atomic_check(struct drm_plane * plane,struct drm_plane_state * state)802 static int tegra_cursor_atomic_check(struct drm_plane *plane,
803 struct drm_plane_state *state)
804 {
805 struct tegra_plane *tegra = to_tegra_plane(plane);
806 int err;
807
808 /* no need for further checks if the plane is being disabled */
809 if (!state->crtc)
810 return 0;
811
812 /* scaling not supported for cursor */
813 if ((state->src_w >> 16 != state->crtc_w) ||
814 (state->src_h >> 16 != state->crtc_h))
815 return -EINVAL;
816
817 /* only square cursors supported */
818 if (state->src_w != state->src_h)
819 return -EINVAL;
820
821 if (state->crtc_w != 32 && state->crtc_w != 64 &&
822 state->crtc_w != 128 && state->crtc_w != 256)
823 return -EINVAL;
824
825 err = tegra_plane_state_add(tegra, state);
826 if (err < 0)
827 return err;
828
829 return 0;
830 }
831
tegra_cursor_atomic_update(struct drm_plane * plane,struct drm_plane_state * old_state)832 static void tegra_cursor_atomic_update(struct drm_plane *plane,
833 struct drm_plane_state *old_state)
834 {
835 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
836 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
837 struct drm_plane_state *state = plane->state;
838 u32 value = CURSOR_CLIP_DISPLAY;
839
840 /* rien ne va plus */
841 if (!plane->state->crtc || !plane->state->fb)
842 return;
843
844 switch (state->crtc_w) {
845 case 32:
846 value |= CURSOR_SIZE_32x32;
847 break;
848
849 case 64:
850 value |= CURSOR_SIZE_64x64;
851 break;
852
853 case 128:
854 value |= CURSOR_SIZE_128x128;
855 break;
856
857 case 256:
858 value |= CURSOR_SIZE_256x256;
859 break;
860
861 default:
862 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
863 state->crtc_h);
864 return;
865 }
866
867 value |= (bo->paddr >> 10) & 0x3fffff;
868 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
869
870 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
871 value = (bo->paddr >> 32) & 0x3;
872 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
873 #endif
874
875 /* enable cursor and set blend mode */
876 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
877 value |= CURSOR_ENABLE;
878 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
879
880 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
881 value &= ~CURSOR_DST_BLEND_MASK;
882 value &= ~CURSOR_SRC_BLEND_MASK;
883 value |= CURSOR_MODE_NORMAL;
884 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
885 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
886 value |= CURSOR_ALPHA;
887 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
888
889 /* position the cursor */
890 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
891 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
892 }
893
tegra_cursor_atomic_disable(struct drm_plane * plane,struct drm_plane_state * old_state)894 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
895 struct drm_plane_state *old_state)
896 {
897 struct tegra_dc *dc;
898 u32 value;
899
900 /* rien ne va plus */
901 if (!old_state || !old_state->crtc)
902 return;
903
904 dc = to_tegra_dc(old_state->crtc);
905
906 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
907 value &= ~CURSOR_ENABLE;
908 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
909 }
910
911 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
912 .atomic_check = tegra_cursor_atomic_check,
913 .atomic_update = tegra_cursor_atomic_update,
914 .atomic_disable = tegra_cursor_atomic_disable,
915 };
916
tegra_dc_cursor_plane_create(struct drm_device * drm,struct tegra_dc * dc)917 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
918 struct tegra_dc *dc)
919 {
920 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
921 struct tegra_plane *plane;
922 unsigned int num_formats;
923 const u32 *formats;
924 int err;
925
926 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
927 if (!plane)
928 return ERR_PTR(-ENOMEM);
929
930 /*
931 * This index is kind of fake. The cursor isn't a regular plane, but
932 * its update and activation request bits in DC_CMD_STATE_CONTROL do
933 * use the same programming. Setting this fake index here allows the
934 * code in tegra_add_plane_state() to do the right thing without the
935 * need to special-casing the cursor plane.
936 */
937 plane->index = 6;
938 plane->dc = dc;
939
940 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
941 formats = tegra_cursor_plane_formats;
942
943 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
944 &tegra_plane_funcs, formats,
945 num_formats, NULL,
946 DRM_PLANE_TYPE_CURSOR, NULL);
947 if (err < 0) {
948 kfree(plane);
949 return ERR_PTR(err);
950 }
951
952 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
953
954 return &plane->base;
955 }
956
957 static const u32 tegra20_overlay_formats[] = {
958 DRM_FORMAT_ARGB4444,
959 DRM_FORMAT_ARGB1555,
960 DRM_FORMAT_RGB565,
961 DRM_FORMAT_RGBA5551,
962 DRM_FORMAT_ABGR8888,
963 DRM_FORMAT_ARGB8888,
964 /* non-native formats */
965 DRM_FORMAT_XRGB1555,
966 DRM_FORMAT_RGBX5551,
967 DRM_FORMAT_XBGR8888,
968 DRM_FORMAT_XRGB8888,
969 /* planar formats */
970 DRM_FORMAT_UYVY,
971 DRM_FORMAT_YUYV,
972 DRM_FORMAT_YUV420,
973 DRM_FORMAT_YUV422,
974 };
975
976 static const u32 tegra114_overlay_formats[] = {
977 DRM_FORMAT_ARGB4444,
978 DRM_FORMAT_ARGB1555,
979 DRM_FORMAT_RGB565,
980 DRM_FORMAT_RGBA5551,
981 DRM_FORMAT_ABGR8888,
982 DRM_FORMAT_ARGB8888,
983 /* new on Tegra114 */
984 DRM_FORMAT_ABGR4444,
985 DRM_FORMAT_ABGR1555,
986 DRM_FORMAT_BGRA5551,
987 DRM_FORMAT_XRGB1555,
988 DRM_FORMAT_RGBX5551,
989 DRM_FORMAT_XBGR1555,
990 DRM_FORMAT_BGRX5551,
991 DRM_FORMAT_BGR565,
992 DRM_FORMAT_BGRA8888,
993 DRM_FORMAT_RGBA8888,
994 DRM_FORMAT_XRGB8888,
995 DRM_FORMAT_XBGR8888,
996 /* planar formats */
997 DRM_FORMAT_UYVY,
998 DRM_FORMAT_YUYV,
999 DRM_FORMAT_YUV420,
1000 DRM_FORMAT_YUV422,
1001 };
1002
1003 static const u32 tegra124_overlay_formats[] = {
1004 DRM_FORMAT_ARGB4444,
1005 DRM_FORMAT_ARGB1555,
1006 DRM_FORMAT_RGB565,
1007 DRM_FORMAT_RGBA5551,
1008 DRM_FORMAT_ABGR8888,
1009 DRM_FORMAT_ARGB8888,
1010 /* new on Tegra114 */
1011 DRM_FORMAT_ABGR4444,
1012 DRM_FORMAT_ABGR1555,
1013 DRM_FORMAT_BGRA5551,
1014 DRM_FORMAT_XRGB1555,
1015 DRM_FORMAT_RGBX5551,
1016 DRM_FORMAT_XBGR1555,
1017 DRM_FORMAT_BGRX5551,
1018 DRM_FORMAT_BGR565,
1019 DRM_FORMAT_BGRA8888,
1020 DRM_FORMAT_RGBA8888,
1021 DRM_FORMAT_XRGB8888,
1022 DRM_FORMAT_XBGR8888,
1023 /* new on Tegra124 */
1024 DRM_FORMAT_RGBX8888,
1025 DRM_FORMAT_BGRX8888,
1026 /* planar formats */
1027 DRM_FORMAT_UYVY,
1028 DRM_FORMAT_YUYV,
1029 DRM_FORMAT_YUV420,
1030 DRM_FORMAT_YUV422,
1031 };
1032
tegra_dc_overlay_plane_create(struct drm_device * drm,struct tegra_dc * dc,unsigned int index,bool cursor)1033 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1034 struct tegra_dc *dc,
1035 unsigned int index,
1036 bool cursor)
1037 {
1038 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1039 struct tegra_plane *plane;
1040 unsigned int num_formats;
1041 enum drm_plane_type type;
1042 const u32 *formats;
1043 int err;
1044
1045 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1046 if (!plane)
1047 return ERR_PTR(-ENOMEM);
1048
1049 plane->offset = 0xa00 + 0x200 * index;
1050 plane->index = index;
1051 plane->dc = dc;
1052
1053 num_formats = dc->soc->num_overlay_formats;
1054 formats = dc->soc->overlay_formats;
1055
1056 if (!cursor)
1057 type = DRM_PLANE_TYPE_OVERLAY;
1058 else
1059 type = DRM_PLANE_TYPE_CURSOR;
1060
1061 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1062 &tegra_plane_funcs, formats,
1063 num_formats, NULL, type, NULL);
1064 if (err < 0) {
1065 kfree(plane);
1066 return ERR_PTR(err);
1067 }
1068
1069 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1070 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1071
1072 err = drm_plane_create_rotation_property(&plane->base,
1073 DRM_MODE_ROTATE_0,
1074 DRM_MODE_ROTATE_0 |
1075 DRM_MODE_REFLECT_Y);
1076 if (err < 0)
1077 dev_err(dc->dev, "failed to create rotation property: %d\n",
1078 err);
1079
1080 return &plane->base;
1081 }
1082
tegra_dc_add_shared_planes(struct drm_device * drm,struct tegra_dc * dc)1083 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1084 struct tegra_dc *dc)
1085 {
1086 struct drm_plane *plane, *primary = NULL;
1087 unsigned int i, j;
1088
1089 for (i = 0; i < dc->soc->num_wgrps; i++) {
1090 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1091
1092 if (wgrp->dc == dc->pipe) {
1093 for (j = 0; j < wgrp->num_windows; j++) {
1094 unsigned int index = wgrp->windows[j];
1095
1096 plane = tegra_shared_plane_create(drm, dc,
1097 wgrp->index,
1098 index);
1099 if (IS_ERR(plane))
1100 return plane;
1101
1102 /*
1103 * Choose the first shared plane owned by this
1104 * head as the primary plane.
1105 */
1106 if (!primary) {
1107 plane->type = DRM_PLANE_TYPE_PRIMARY;
1108 primary = plane;
1109 }
1110 }
1111 }
1112 }
1113
1114 return primary;
1115 }
1116
tegra_dc_add_planes(struct drm_device * drm,struct tegra_dc * dc)1117 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1118 struct tegra_dc *dc)
1119 {
1120 struct drm_plane *planes[2], *primary;
1121 unsigned int planes_num;
1122 unsigned int i;
1123 int err;
1124
1125 primary = tegra_primary_plane_create(drm, dc);
1126 if (IS_ERR(primary))
1127 return primary;
1128
1129 if (dc->soc->supports_cursor)
1130 planes_num = 2;
1131 else
1132 planes_num = 1;
1133
1134 for (i = 0; i < planes_num; i++) {
1135 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1136 false);
1137 if (IS_ERR(planes[i])) {
1138 err = PTR_ERR(planes[i]);
1139
1140 while (i--)
1141 tegra_plane_funcs.destroy(planes[i]);
1142
1143 tegra_plane_funcs.destroy(primary);
1144 return ERR_PTR(err);
1145 }
1146 }
1147
1148 return primary;
1149 }
1150
tegra_dc_destroy(struct drm_crtc * crtc)1151 static void tegra_dc_destroy(struct drm_crtc *crtc)
1152 {
1153 drm_crtc_cleanup(crtc);
1154 }
1155
tegra_crtc_reset(struct drm_crtc * crtc)1156 static void tegra_crtc_reset(struct drm_crtc *crtc)
1157 {
1158 struct tegra_dc_state *state;
1159
1160 if (crtc->state)
1161 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1162
1163 kfree(crtc->state);
1164 crtc->state = NULL;
1165
1166 state = kzalloc(sizeof(*state), GFP_KERNEL);
1167 if (state) {
1168 crtc->state = &state->base;
1169 crtc->state->crtc = crtc;
1170 }
1171
1172 drm_crtc_vblank_reset(crtc);
1173 }
1174
1175 static struct drm_crtc_state *
tegra_crtc_atomic_duplicate_state(struct drm_crtc * crtc)1176 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1177 {
1178 struct tegra_dc_state *state = to_dc_state(crtc->state);
1179 struct tegra_dc_state *copy;
1180
1181 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1182 if (!copy)
1183 return NULL;
1184
1185 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1186 copy->clk = state->clk;
1187 copy->pclk = state->pclk;
1188 copy->div = state->div;
1189 copy->planes = state->planes;
1190
1191 return ©->base;
1192 }
1193
tegra_crtc_atomic_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)1194 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1195 struct drm_crtc_state *state)
1196 {
1197 __drm_atomic_helper_crtc_destroy_state(state);
1198 kfree(state);
1199 }
1200
1201 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1202
1203 static const struct debugfs_reg32 tegra_dc_regs[] = {
1204 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1205 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1206 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1207 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1208 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1209 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1210 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1211 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1212 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1213 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1214 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1215 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1216 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1217 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1218 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1219 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1220 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1221 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1222 DEBUGFS_REG32(DC_CMD_INT_MASK),
1223 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1224 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1225 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1226 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1227 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1228 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1229 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1230 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1231 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1232 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1233 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1234 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1235 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1236 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1237 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1238 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1239 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1240 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1241 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1242 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1243 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1244 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1245 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1246 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1247 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1248 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1249 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1250 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1251 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1252 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1253 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1254 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1255 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1256 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1257 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1258 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1259 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1260 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1261 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1262 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1263 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1264 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1265 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1266 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1267 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1268 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1269 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1270 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1271 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1272 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1273 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1274 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1275 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1276 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1277 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1278 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1279 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1280 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1281 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1282 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1283 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1284 DEBUGFS_REG32(DC_DISP_ACTIVE),
1285 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1286 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1287 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1288 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1289 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1290 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1291 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1292 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1293 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1294 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1295 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1296 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1297 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1298 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1299 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1300 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1301 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1302 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1303 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1304 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1305 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1306 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1307 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1308 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1309 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1310 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1311 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1312 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1313 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1314 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1315 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1316 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1317 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1318 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1319 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1320 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1321 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1322 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1323 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1324 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1325 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1326 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1327 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1328 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1329 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1330 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1331 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1332 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1333 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1334 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1335 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1336 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1337 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1338 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1339 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1340 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1341 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1342 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1343 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1344 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1345 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1346 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1347 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1348 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1349 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1350 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1351 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1352 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1353 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1354 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1355 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1356 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1357 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1358 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1359 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1360 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1361 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1362 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1363 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1364 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1365 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1366 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1367 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1368 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1369 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1370 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1371 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1372 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1373 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1374 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1375 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1376 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1377 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1378 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1379 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1380 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1381 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1382 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1383 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1384 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1385 DEBUGFS_REG32(DC_WIN_POSITION),
1386 DEBUGFS_REG32(DC_WIN_SIZE),
1387 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1388 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1389 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1390 DEBUGFS_REG32(DC_WIN_DDA_INC),
1391 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1392 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1393 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1394 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1395 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1396 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1397 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1398 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1399 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1400 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1401 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1402 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1403 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1404 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1405 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1406 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1407 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1408 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1409 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1410 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1411 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1412 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1413 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1414 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1415 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1416 };
1417
tegra_dc_show_regs(struct seq_file * s,void * data)1418 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1419 {
1420 struct drm_info_node *node = s->private;
1421 struct tegra_dc *dc = node->info_ent->data;
1422 unsigned int i;
1423 int err = 0;
1424
1425 drm_modeset_lock(&dc->base.mutex, NULL);
1426
1427 if (!dc->base.state->active) {
1428 err = -EBUSY;
1429 goto unlock;
1430 }
1431
1432 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1433 unsigned int offset = tegra_dc_regs[i].offset;
1434
1435 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1436 offset, tegra_dc_readl(dc, offset));
1437 }
1438
1439 unlock:
1440 drm_modeset_unlock(&dc->base.mutex);
1441 return err;
1442 }
1443
tegra_dc_show_crc(struct seq_file * s,void * data)1444 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1445 {
1446 struct drm_info_node *node = s->private;
1447 struct tegra_dc *dc = node->info_ent->data;
1448 int err = 0;
1449 u32 value;
1450
1451 drm_modeset_lock(&dc->base.mutex, NULL);
1452
1453 if (!dc->base.state->active) {
1454 err = -EBUSY;
1455 goto unlock;
1456 }
1457
1458 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1459 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1460 tegra_dc_commit(dc);
1461
1462 drm_crtc_wait_one_vblank(&dc->base);
1463 drm_crtc_wait_one_vblank(&dc->base);
1464
1465 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1466 seq_printf(s, "%08x\n", value);
1467
1468 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1469
1470 unlock:
1471 drm_modeset_unlock(&dc->base.mutex);
1472 return err;
1473 }
1474
tegra_dc_show_stats(struct seq_file * s,void * data)1475 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1476 {
1477 struct drm_info_node *node = s->private;
1478 struct tegra_dc *dc = node->info_ent->data;
1479
1480 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1481 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1482 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1483 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1484
1485 return 0;
1486 }
1487
1488 static struct drm_info_list debugfs_files[] = {
1489 { "regs", tegra_dc_show_regs, 0, NULL },
1490 { "crc", tegra_dc_show_crc, 0, NULL },
1491 { "stats", tegra_dc_show_stats, 0, NULL },
1492 };
1493
tegra_dc_late_register(struct drm_crtc * crtc)1494 static int tegra_dc_late_register(struct drm_crtc *crtc)
1495 {
1496 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1497 struct drm_minor *minor = crtc->dev->primary;
1498 struct dentry *root;
1499 struct tegra_dc *dc = to_tegra_dc(crtc);
1500 int err;
1501
1502 #ifdef CONFIG_DEBUG_FS
1503 root = crtc->debugfs_entry;
1504 #else
1505 root = NULL;
1506 #endif
1507
1508 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1509 GFP_KERNEL);
1510 if (!dc->debugfs_files)
1511 return -ENOMEM;
1512
1513 for (i = 0; i < count; i++)
1514 dc->debugfs_files[i].data = dc;
1515
1516 err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1517 if (err < 0)
1518 goto free;
1519
1520 return 0;
1521
1522 free:
1523 kfree(dc->debugfs_files);
1524 dc->debugfs_files = NULL;
1525
1526 return err;
1527 }
1528
tegra_dc_early_unregister(struct drm_crtc * crtc)1529 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1530 {
1531 unsigned int count = ARRAY_SIZE(debugfs_files);
1532 struct drm_minor *minor = crtc->dev->primary;
1533 struct tegra_dc *dc = to_tegra_dc(crtc);
1534
1535 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1536 kfree(dc->debugfs_files);
1537 dc->debugfs_files = NULL;
1538 }
1539
tegra_dc_get_vblank_counter(struct drm_crtc * crtc)1540 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1541 {
1542 struct tegra_dc *dc = to_tegra_dc(crtc);
1543
1544 /* XXX vblank syncpoints don't work with nvdisplay yet */
1545 if (dc->syncpt && !dc->soc->has_nvdisplay)
1546 return host1x_syncpt_read(dc->syncpt);
1547
1548 /* fallback to software emulated VBLANK counter */
1549 return (u32)drm_crtc_vblank_count(&dc->base);
1550 }
1551
tegra_dc_enable_vblank(struct drm_crtc * crtc)1552 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1553 {
1554 struct tegra_dc *dc = to_tegra_dc(crtc);
1555 u32 value;
1556
1557 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1558 value |= VBLANK_INT;
1559 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1560
1561 return 0;
1562 }
1563
tegra_dc_disable_vblank(struct drm_crtc * crtc)1564 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1565 {
1566 struct tegra_dc *dc = to_tegra_dc(crtc);
1567 u32 value;
1568
1569 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1570 value &= ~VBLANK_INT;
1571 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1572 }
1573
1574 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1575 .page_flip = drm_atomic_helper_page_flip,
1576 .set_config = drm_atomic_helper_set_config,
1577 .destroy = tegra_dc_destroy,
1578 .reset = tegra_crtc_reset,
1579 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1580 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1581 .late_register = tegra_dc_late_register,
1582 .early_unregister = tegra_dc_early_unregister,
1583 .get_vblank_counter = tegra_dc_get_vblank_counter,
1584 .enable_vblank = tegra_dc_enable_vblank,
1585 .disable_vblank = tegra_dc_disable_vblank,
1586 };
1587
tegra_dc_set_timings(struct tegra_dc * dc,struct drm_display_mode * mode)1588 static int tegra_dc_set_timings(struct tegra_dc *dc,
1589 struct drm_display_mode *mode)
1590 {
1591 unsigned int h_ref_to_sync = 1;
1592 unsigned int v_ref_to_sync = 1;
1593 unsigned long value;
1594
1595 if (!dc->soc->has_nvdisplay) {
1596 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1597
1598 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1599 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1600 }
1601
1602 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1603 ((mode->hsync_end - mode->hsync_start) << 0);
1604 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1605
1606 value = ((mode->vtotal - mode->vsync_end) << 16) |
1607 ((mode->htotal - mode->hsync_end) << 0);
1608 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1609
1610 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1611 ((mode->hsync_start - mode->hdisplay) << 0);
1612 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1613
1614 value = (mode->vdisplay << 16) | mode->hdisplay;
1615 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1616
1617 return 0;
1618 }
1619
1620 /**
1621 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1622 * state
1623 * @dc: display controller
1624 * @crtc_state: CRTC atomic state
1625 * @clk: parent clock for display controller
1626 * @pclk: pixel clock
1627 * @div: shift clock divider
1628 *
1629 * Returns:
1630 * 0 on success or a negative error-code on failure.
1631 */
tegra_dc_state_setup_clock(struct tegra_dc * dc,struct drm_crtc_state * crtc_state,struct clk * clk,unsigned long pclk,unsigned int div)1632 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1633 struct drm_crtc_state *crtc_state,
1634 struct clk *clk, unsigned long pclk,
1635 unsigned int div)
1636 {
1637 struct tegra_dc_state *state = to_dc_state(crtc_state);
1638
1639 if (!clk_has_parent(dc->clk, clk))
1640 return -EINVAL;
1641
1642 state->clk = clk;
1643 state->pclk = pclk;
1644 state->div = div;
1645
1646 return 0;
1647 }
1648
tegra_dc_commit_state(struct tegra_dc * dc,struct tegra_dc_state * state)1649 static void tegra_dc_commit_state(struct tegra_dc *dc,
1650 struct tegra_dc_state *state)
1651 {
1652 u32 value;
1653 int err;
1654
1655 err = clk_set_parent(dc->clk, state->clk);
1656 if (err < 0)
1657 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1658
1659 /*
1660 * Outputs may not want to change the parent clock rate. This is only
1661 * relevant to Tegra20 where only a single display PLL is available.
1662 * Since that PLL would typically be used for HDMI, an internal LVDS
1663 * panel would need to be driven by some other clock such as PLL_P
1664 * which is shared with other peripherals. Changing the clock rate
1665 * should therefore be avoided.
1666 */
1667 if (state->pclk > 0) {
1668 err = clk_set_rate(state->clk, state->pclk);
1669 if (err < 0)
1670 dev_err(dc->dev,
1671 "failed to set clock rate to %lu Hz\n",
1672 state->pclk);
1673 }
1674
1675 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1676 state->div);
1677 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1678
1679 if (!dc->soc->has_nvdisplay) {
1680 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1681 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1682 }
1683
1684 err = clk_set_rate(dc->clk, state->pclk);
1685 if (err < 0)
1686 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1687 dc->clk, state->pclk, err);
1688 }
1689
tegra_dc_stop(struct tegra_dc * dc)1690 static void tegra_dc_stop(struct tegra_dc *dc)
1691 {
1692 u32 value;
1693
1694 /* stop the display controller */
1695 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1696 value &= ~DISP_CTRL_MODE_MASK;
1697 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1698
1699 tegra_dc_commit(dc);
1700 }
1701
tegra_dc_idle(struct tegra_dc * dc)1702 static bool tegra_dc_idle(struct tegra_dc *dc)
1703 {
1704 u32 value;
1705
1706 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1707
1708 return (value & DISP_CTRL_MODE_MASK) == 0;
1709 }
1710
tegra_dc_wait_idle(struct tegra_dc * dc,unsigned long timeout)1711 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1712 {
1713 timeout = jiffies + msecs_to_jiffies(timeout);
1714
1715 while (time_before(jiffies, timeout)) {
1716 if (tegra_dc_idle(dc))
1717 return 0;
1718
1719 usleep_range(1000, 2000);
1720 }
1721
1722 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1723 return -ETIMEDOUT;
1724 }
1725
tegra_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)1726 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1727 struct drm_crtc_state *old_state)
1728 {
1729 struct tegra_dc *dc = to_tegra_dc(crtc);
1730 u32 value;
1731
1732 if (!tegra_dc_idle(dc)) {
1733 tegra_dc_stop(dc);
1734
1735 /*
1736 * Ignore the return value, there isn't anything useful to do
1737 * in case this fails.
1738 */
1739 tegra_dc_wait_idle(dc, 100);
1740 }
1741
1742 /*
1743 * This should really be part of the RGB encoder driver, but clearing
1744 * these bits has the side-effect of stopping the display controller.
1745 * When that happens no VBLANK interrupts will be raised. At the same
1746 * time the encoder is disabled before the display controller, so the
1747 * above code is always going to timeout waiting for the controller
1748 * to go idle.
1749 *
1750 * Given the close coupling between the RGB encoder and the display
1751 * controller doing it here is still kind of okay. None of the other
1752 * encoder drivers require these bits to be cleared.
1753 *
1754 * XXX: Perhaps given that the display controller is switched off at
1755 * this point anyway maybe clearing these bits isn't even useful for
1756 * the RGB encoder?
1757 */
1758 if (dc->rgb) {
1759 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1760 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1761 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1762 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1763 }
1764
1765 tegra_dc_stats_reset(&dc->stats);
1766 drm_crtc_vblank_off(crtc);
1767
1768 spin_lock_irq(&crtc->dev->event_lock);
1769
1770 if (crtc->state->event) {
1771 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1772 crtc->state->event = NULL;
1773 }
1774
1775 spin_unlock_irq(&crtc->dev->event_lock);
1776
1777 pm_runtime_put_sync(dc->dev);
1778 }
1779
tegra_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)1780 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1781 struct drm_crtc_state *old_state)
1782 {
1783 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1784 struct tegra_dc_state *state = to_dc_state(crtc->state);
1785 struct tegra_dc *dc = to_tegra_dc(crtc);
1786 u32 value;
1787
1788 pm_runtime_get_sync(dc->dev);
1789
1790 /* initialize display controller */
1791 if (dc->syncpt) {
1792 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1793
1794 if (dc->soc->has_nvdisplay)
1795 enable = 1 << 31;
1796 else
1797 enable = 1 << 8;
1798
1799 value = SYNCPT_CNTRL_NO_STALL;
1800 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1801
1802 value = enable | syncpt;
1803 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1804 }
1805
1806 if (dc->soc->has_nvdisplay) {
1807 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1808 DSC_OBUF_UF_INT;
1809 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1810
1811 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1812 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1813 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1814 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1815 VBLANK_INT | FRAME_END_INT;
1816 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1817
1818 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1819 FRAME_END_INT;
1820 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1821
1822 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1823 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1824
1825 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1826 } else {
1827 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1828 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1829 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1830
1831 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1832 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1833 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1834
1835 /* initialize timer */
1836 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1837 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1838 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1839
1840 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1841 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1842 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1843
1844 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1845 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1846 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1847
1848 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1849 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1850 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1851 }
1852
1853 if (dc->soc->supports_background_color)
1854 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1855 else
1856 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1857
1858 /* apply PLL and pixel clock changes */
1859 tegra_dc_commit_state(dc, state);
1860
1861 /* program display mode */
1862 tegra_dc_set_timings(dc, mode);
1863
1864 /* interlacing isn't supported yet, so disable it */
1865 if (dc->soc->supports_interlacing) {
1866 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1867 value &= ~INTERLACE_ENABLE;
1868 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1869 }
1870
1871 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1872 value &= ~DISP_CTRL_MODE_MASK;
1873 value |= DISP_CTRL_MODE_C_DISPLAY;
1874 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1875
1876 if (!dc->soc->has_nvdisplay) {
1877 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1878 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1879 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1880 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1881 }
1882
1883 /* enable underflow reporting and display red for missing pixels */
1884 if (dc->soc->has_nvdisplay) {
1885 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1886 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1887 }
1888
1889 tegra_dc_commit(dc);
1890
1891 drm_crtc_vblank_on(crtc);
1892 }
1893
tegra_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)1894 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1895 struct drm_crtc_state *old_crtc_state)
1896 {
1897 unsigned long flags;
1898
1899 if (crtc->state->event) {
1900 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1901
1902 if (drm_crtc_vblank_get(crtc) != 0)
1903 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1904 else
1905 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1906
1907 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1908
1909 crtc->state->event = NULL;
1910 }
1911 }
1912
tegra_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)1913 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1914 struct drm_crtc_state *old_crtc_state)
1915 {
1916 struct tegra_dc_state *state = to_dc_state(crtc->state);
1917 struct tegra_dc *dc = to_tegra_dc(crtc);
1918 u32 value;
1919
1920 value = state->planes << 8 | GENERAL_UPDATE;
1921 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1922 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1923
1924 value = state->planes | GENERAL_ACT_REQ;
1925 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1926 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1927 }
1928
1929 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1930 .atomic_begin = tegra_crtc_atomic_begin,
1931 .atomic_flush = tegra_crtc_atomic_flush,
1932 .atomic_enable = tegra_crtc_atomic_enable,
1933 .atomic_disable = tegra_crtc_atomic_disable,
1934 };
1935
tegra_dc_irq(int irq,void * data)1936 static irqreturn_t tegra_dc_irq(int irq, void *data)
1937 {
1938 struct tegra_dc *dc = data;
1939 unsigned long status;
1940
1941 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1942 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1943
1944 if (status & FRAME_END_INT) {
1945 /*
1946 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1947 */
1948 dc->stats.frames++;
1949 }
1950
1951 if (status & VBLANK_INT) {
1952 /*
1953 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1954 */
1955 drm_crtc_handle_vblank(&dc->base);
1956 dc->stats.vblank++;
1957 }
1958
1959 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1960 /*
1961 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1962 */
1963 dc->stats.underflow++;
1964 }
1965
1966 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1967 /*
1968 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1969 */
1970 dc->stats.overflow++;
1971 }
1972
1973 if (status & HEAD_UF_INT) {
1974 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1975 dc->stats.underflow++;
1976 }
1977
1978 return IRQ_HANDLED;
1979 }
1980
tegra_dc_init(struct host1x_client * client)1981 static int tegra_dc_init(struct host1x_client *client)
1982 {
1983 struct drm_device *drm = dev_get_drvdata(client->parent);
1984 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1985 struct tegra_dc *dc = host1x_client_to_dc(client);
1986 struct tegra_drm *tegra = drm->dev_private;
1987 struct drm_plane *primary = NULL;
1988 struct drm_plane *cursor = NULL;
1989 int err;
1990
1991 dc->syncpt = host1x_syncpt_request(client, flags);
1992 if (!dc->syncpt)
1993 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1994
1995 dc->group = host1x_client_iommu_attach(client, true);
1996 if (IS_ERR(dc->group)) {
1997 err = PTR_ERR(dc->group);
1998 dev_err(client->dev, "failed to attach to domain: %d\n", err);
1999 return err;
2000 }
2001
2002 if (dc->soc->wgrps)
2003 primary = tegra_dc_add_shared_planes(drm, dc);
2004 else
2005 primary = tegra_dc_add_planes(drm, dc);
2006
2007 if (IS_ERR(primary)) {
2008 err = PTR_ERR(primary);
2009 goto cleanup;
2010 }
2011
2012 if (dc->soc->supports_cursor) {
2013 cursor = tegra_dc_cursor_plane_create(drm, dc);
2014 if (IS_ERR(cursor)) {
2015 err = PTR_ERR(cursor);
2016 goto cleanup;
2017 }
2018 } else {
2019 /* dedicate one overlay to mouse cursor */
2020 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2021 if (IS_ERR(cursor)) {
2022 err = PTR_ERR(cursor);
2023 goto cleanup;
2024 }
2025 }
2026
2027 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2028 &tegra_crtc_funcs, NULL);
2029 if (err < 0)
2030 goto cleanup;
2031
2032 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2033
2034 /*
2035 * Keep track of the minimum pitch alignment across all display
2036 * controllers.
2037 */
2038 if (dc->soc->pitch_align > tegra->pitch_align)
2039 tegra->pitch_align = dc->soc->pitch_align;
2040
2041 err = tegra_dc_rgb_init(drm, dc);
2042 if (err < 0 && err != -ENODEV) {
2043 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2044 goto cleanup;
2045 }
2046
2047 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2048 dev_name(dc->dev), dc);
2049 if (err < 0) {
2050 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2051 err);
2052 goto cleanup;
2053 }
2054
2055 return 0;
2056
2057 cleanup:
2058 if (!IS_ERR_OR_NULL(cursor))
2059 drm_plane_cleanup(cursor);
2060
2061 if (!IS_ERR(primary))
2062 drm_plane_cleanup(primary);
2063
2064 host1x_client_iommu_detach(client, dc->group);
2065 host1x_syncpt_free(dc->syncpt);
2066
2067 return err;
2068 }
2069
tegra_dc_exit(struct host1x_client * client)2070 static int tegra_dc_exit(struct host1x_client *client)
2071 {
2072 struct tegra_dc *dc = host1x_client_to_dc(client);
2073 int err;
2074
2075 devm_free_irq(dc->dev, dc->irq, dc);
2076
2077 err = tegra_dc_rgb_exit(dc);
2078 if (err) {
2079 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2080 return err;
2081 }
2082
2083 host1x_client_iommu_detach(client, dc->group);
2084 host1x_syncpt_free(dc->syncpt);
2085
2086 return 0;
2087 }
2088
2089 static const struct host1x_client_ops dc_client_ops = {
2090 .init = tegra_dc_init,
2091 .exit = tegra_dc_exit,
2092 };
2093
2094 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2095 .supports_background_color = false,
2096 .supports_interlacing = false,
2097 .supports_cursor = false,
2098 .supports_block_linear = false,
2099 .has_legacy_blending = true,
2100 .pitch_align = 8,
2101 .has_powergate = false,
2102 .coupled_pm = true,
2103 .has_nvdisplay = false,
2104 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2105 .primary_formats = tegra20_primary_formats,
2106 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2107 .overlay_formats = tegra20_overlay_formats,
2108 .modifiers = tegra20_modifiers,
2109 .has_win_a_without_filters = true,
2110 .has_win_c_without_vert_filter = true,
2111 };
2112
2113 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2114 .supports_background_color = false,
2115 .supports_interlacing = false,
2116 .supports_cursor = false,
2117 .supports_block_linear = false,
2118 .has_legacy_blending = true,
2119 .pitch_align = 8,
2120 .has_powergate = false,
2121 .coupled_pm = false,
2122 .has_nvdisplay = false,
2123 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2124 .primary_formats = tegra20_primary_formats,
2125 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2126 .overlay_formats = tegra20_overlay_formats,
2127 .modifiers = tegra20_modifiers,
2128 .has_win_a_without_filters = false,
2129 .has_win_c_without_vert_filter = false,
2130 };
2131
2132 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2133 .supports_background_color = false,
2134 .supports_interlacing = false,
2135 .supports_cursor = false,
2136 .supports_block_linear = false,
2137 .has_legacy_blending = true,
2138 .pitch_align = 64,
2139 .has_powergate = true,
2140 .coupled_pm = false,
2141 .has_nvdisplay = false,
2142 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2143 .primary_formats = tegra114_primary_formats,
2144 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2145 .overlay_formats = tegra114_overlay_formats,
2146 .modifiers = tegra20_modifiers,
2147 .has_win_a_without_filters = false,
2148 .has_win_c_without_vert_filter = false,
2149 };
2150
2151 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2152 .supports_background_color = true,
2153 .supports_interlacing = true,
2154 .supports_cursor = true,
2155 .supports_block_linear = true,
2156 .has_legacy_blending = false,
2157 .pitch_align = 64,
2158 .has_powergate = true,
2159 .coupled_pm = false,
2160 .has_nvdisplay = false,
2161 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2162 .primary_formats = tegra124_primary_formats,
2163 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2164 .overlay_formats = tegra124_overlay_formats,
2165 .modifiers = tegra124_modifiers,
2166 .has_win_a_without_filters = false,
2167 .has_win_c_without_vert_filter = false,
2168 };
2169
2170 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2171 .supports_background_color = true,
2172 .supports_interlacing = true,
2173 .supports_cursor = true,
2174 .supports_block_linear = true,
2175 .has_legacy_blending = false,
2176 .pitch_align = 64,
2177 .has_powergate = true,
2178 .coupled_pm = false,
2179 .has_nvdisplay = false,
2180 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2181 .primary_formats = tegra114_primary_formats,
2182 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2183 .overlay_formats = tegra114_overlay_formats,
2184 .modifiers = tegra124_modifiers,
2185 .has_win_a_without_filters = false,
2186 .has_win_c_without_vert_filter = false,
2187 };
2188
2189 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2190 {
2191 .index = 0,
2192 .dc = 0,
2193 .windows = (const unsigned int[]) { 0 },
2194 .num_windows = 1,
2195 }, {
2196 .index = 1,
2197 .dc = 1,
2198 .windows = (const unsigned int[]) { 1 },
2199 .num_windows = 1,
2200 }, {
2201 .index = 2,
2202 .dc = 1,
2203 .windows = (const unsigned int[]) { 2 },
2204 .num_windows = 1,
2205 }, {
2206 .index = 3,
2207 .dc = 2,
2208 .windows = (const unsigned int[]) { 3 },
2209 .num_windows = 1,
2210 }, {
2211 .index = 4,
2212 .dc = 2,
2213 .windows = (const unsigned int[]) { 4 },
2214 .num_windows = 1,
2215 }, {
2216 .index = 5,
2217 .dc = 2,
2218 .windows = (const unsigned int[]) { 5 },
2219 .num_windows = 1,
2220 },
2221 };
2222
2223 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2224 .supports_background_color = true,
2225 .supports_interlacing = true,
2226 .supports_cursor = true,
2227 .supports_block_linear = true,
2228 .has_legacy_blending = false,
2229 .pitch_align = 64,
2230 .has_powergate = false,
2231 .coupled_pm = false,
2232 .has_nvdisplay = true,
2233 .wgrps = tegra186_dc_wgrps,
2234 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2235 };
2236
2237 static const struct of_device_id tegra_dc_of_match[] = {
2238 {
2239 .compatible = "nvidia,tegra186-dc",
2240 .data = &tegra186_dc_soc_info,
2241 }, {
2242 .compatible = "nvidia,tegra210-dc",
2243 .data = &tegra210_dc_soc_info,
2244 }, {
2245 .compatible = "nvidia,tegra124-dc",
2246 .data = &tegra124_dc_soc_info,
2247 }, {
2248 .compatible = "nvidia,tegra114-dc",
2249 .data = &tegra114_dc_soc_info,
2250 }, {
2251 .compatible = "nvidia,tegra30-dc",
2252 .data = &tegra30_dc_soc_info,
2253 }, {
2254 .compatible = "nvidia,tegra20-dc",
2255 .data = &tegra20_dc_soc_info,
2256 }, {
2257 /* sentinel */
2258 }
2259 };
2260 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2261
tegra_dc_parse_dt(struct tegra_dc * dc)2262 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2263 {
2264 struct device_node *np;
2265 u32 value = 0;
2266 int err;
2267
2268 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2269 if (err < 0) {
2270 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2271
2272 /*
2273 * If the nvidia,head property isn't present, try to find the
2274 * correct head number by looking up the position of this
2275 * display controller's node within the device tree. Assuming
2276 * that the nodes are ordered properly in the DTS file and
2277 * that the translation into a flattened device tree blob
2278 * preserves that ordering this will actually yield the right
2279 * head number.
2280 *
2281 * If those assumptions don't hold, this will still work for
2282 * cases where only a single display controller is used.
2283 */
2284 for_each_matching_node(np, tegra_dc_of_match) {
2285 if (np == dc->dev->of_node) {
2286 of_node_put(np);
2287 break;
2288 }
2289
2290 value++;
2291 }
2292 }
2293
2294 dc->pipe = value;
2295
2296 return 0;
2297 }
2298
tegra_dc_match_by_pipe(struct device * dev,void * data)2299 static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2300 {
2301 struct tegra_dc *dc = dev_get_drvdata(dev);
2302 unsigned int pipe = (unsigned long)data;
2303
2304 return dc->pipe == pipe;
2305 }
2306
tegra_dc_couple(struct tegra_dc * dc)2307 static int tegra_dc_couple(struct tegra_dc *dc)
2308 {
2309 /*
2310 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2311 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2312 * POWER_CONTROL registers during CRTC enabling.
2313 */
2314 if (dc->soc->coupled_pm && dc->pipe == 1) {
2315 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2316 struct device_link *link;
2317 struct device *partner;
2318
2319 partner = driver_find_device(dc->dev->driver, NULL, NULL,
2320 tegra_dc_match_by_pipe);
2321 if (!partner)
2322 return -EPROBE_DEFER;
2323
2324 link = device_link_add(dc->dev, partner, flags);
2325 if (!link) {
2326 dev_err(dc->dev, "failed to link controllers\n");
2327 return -EINVAL;
2328 }
2329
2330 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2331 }
2332
2333 return 0;
2334 }
2335
tegra_dc_probe(struct platform_device * pdev)2336 static int tegra_dc_probe(struct platform_device *pdev)
2337 {
2338 struct resource *regs;
2339 struct tegra_dc *dc;
2340 int err;
2341
2342 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2343 if (!dc)
2344 return -ENOMEM;
2345
2346 dc->soc = of_device_get_match_data(&pdev->dev);
2347
2348 INIT_LIST_HEAD(&dc->list);
2349 dc->dev = &pdev->dev;
2350
2351 err = tegra_dc_parse_dt(dc);
2352 if (err < 0)
2353 return err;
2354
2355 err = tegra_dc_couple(dc);
2356 if (err < 0)
2357 return err;
2358
2359 dc->clk = devm_clk_get(&pdev->dev, NULL);
2360 if (IS_ERR(dc->clk)) {
2361 dev_err(&pdev->dev, "failed to get clock\n");
2362 return PTR_ERR(dc->clk);
2363 }
2364
2365 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2366 if (IS_ERR(dc->rst)) {
2367 dev_err(&pdev->dev, "failed to get reset\n");
2368 return PTR_ERR(dc->rst);
2369 }
2370
2371 /* assert reset and disable clock */
2372 err = clk_prepare_enable(dc->clk);
2373 if (err < 0)
2374 return err;
2375
2376 usleep_range(2000, 4000);
2377
2378 err = reset_control_assert(dc->rst);
2379 if (err < 0)
2380 return err;
2381
2382 usleep_range(2000, 4000);
2383
2384 clk_disable_unprepare(dc->clk);
2385
2386 if (dc->soc->has_powergate) {
2387 if (dc->pipe == 0)
2388 dc->powergate = TEGRA_POWERGATE_DIS;
2389 else
2390 dc->powergate = TEGRA_POWERGATE_DISB;
2391
2392 tegra_powergate_power_off(dc->powergate);
2393 }
2394
2395 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2396 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2397 if (IS_ERR(dc->regs))
2398 return PTR_ERR(dc->regs);
2399
2400 dc->irq = platform_get_irq(pdev, 0);
2401 if (dc->irq < 0) {
2402 dev_err(&pdev->dev, "failed to get IRQ\n");
2403 return -ENXIO;
2404 }
2405
2406 err = tegra_dc_rgb_probe(dc);
2407 if (err < 0 && err != -ENODEV) {
2408 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2409 return err;
2410 }
2411
2412 platform_set_drvdata(pdev, dc);
2413 pm_runtime_enable(&pdev->dev);
2414
2415 INIT_LIST_HEAD(&dc->client.list);
2416 dc->client.ops = &dc_client_ops;
2417 dc->client.dev = &pdev->dev;
2418
2419 err = host1x_client_register(&dc->client);
2420 if (err < 0) {
2421 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2422 err);
2423 return err;
2424 }
2425
2426 return 0;
2427 }
2428
tegra_dc_remove(struct platform_device * pdev)2429 static int tegra_dc_remove(struct platform_device *pdev)
2430 {
2431 struct tegra_dc *dc = platform_get_drvdata(pdev);
2432 int err;
2433
2434 err = host1x_client_unregister(&dc->client);
2435 if (err < 0) {
2436 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2437 err);
2438 return err;
2439 }
2440
2441 err = tegra_dc_rgb_remove(dc);
2442 if (err < 0) {
2443 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2444 return err;
2445 }
2446
2447 pm_runtime_disable(&pdev->dev);
2448
2449 return 0;
2450 }
2451
2452 #ifdef CONFIG_PM
tegra_dc_suspend(struct device * dev)2453 static int tegra_dc_suspend(struct device *dev)
2454 {
2455 struct tegra_dc *dc = dev_get_drvdata(dev);
2456 int err;
2457
2458 err = reset_control_assert(dc->rst);
2459 if (err < 0) {
2460 dev_err(dev, "failed to assert reset: %d\n", err);
2461 return err;
2462 }
2463
2464 if (dc->soc->has_powergate)
2465 tegra_powergate_power_off(dc->powergate);
2466
2467 clk_disable_unprepare(dc->clk);
2468
2469 return 0;
2470 }
2471
tegra_dc_resume(struct device * dev)2472 static int tegra_dc_resume(struct device *dev)
2473 {
2474 struct tegra_dc *dc = dev_get_drvdata(dev);
2475 int err;
2476
2477 if (dc->soc->has_powergate) {
2478 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2479 dc->rst);
2480 if (err < 0) {
2481 dev_err(dev, "failed to power partition: %d\n", err);
2482 return err;
2483 }
2484 } else {
2485 err = clk_prepare_enable(dc->clk);
2486 if (err < 0) {
2487 dev_err(dev, "failed to enable clock: %d\n", err);
2488 return err;
2489 }
2490
2491 err = reset_control_deassert(dc->rst);
2492 if (err < 0) {
2493 dev_err(dev, "failed to deassert reset: %d\n", err);
2494 return err;
2495 }
2496 }
2497
2498 return 0;
2499 }
2500 #endif
2501
2502 static const struct dev_pm_ops tegra_dc_pm_ops = {
2503 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2504 };
2505
2506 struct platform_driver tegra_dc_driver = {
2507 .driver = {
2508 .name = "tegra-dc",
2509 .of_match_table = tegra_dc_of_match,
2510 .pm = &tegra_dc_pm_ops,
2511 },
2512 .probe = tegra_dc_probe,
2513 .remove = tegra_dc_remove,
2514 };
2515