1 /*
2 * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include "mdp5_kms.h"
15 #include "mdp5_ctl.h"
16
17 /*
18 * CTL - MDP Control Pool Manager
19 *
20 * Controls are shared between all display interfaces.
21 *
22 * They are intended to be used for data path configuration.
23 * The top level register programming describes the complete data path for
24 * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
25 *
26 * Hardware capabilities determine the number of concurrent data paths
27 *
28 * In certain use cases (high-resolution dual pipe), one single CTL can be
29 * shared across multiple CRTCs.
30 */
31
32 #define CTL_STAT_BUSY 0x1
33 #define CTL_STAT_BOOKED 0x2
34
35 struct mdp5_ctl {
36 struct mdp5_ctl_manager *ctlm;
37
38 u32 id;
39
40 /* CTL status bitmask */
41 u32 status;
42
43 bool encoder_enabled;
44
45 /* pending flush_mask bits */
46 u32 flush_mask;
47
48 /* REG_MDP5_CTL_*(<id>) registers access info + lock: */
49 spinlock_t hw_lock;
50 u32 reg_offset;
51
52 /* when do CTL registers need to be flushed? (mask of trigger bits) */
53 u32 pending_ctl_trigger;
54
55 bool cursor_on;
56
57 /* True if the current CTL has FLUSH bits pending for single FLUSH. */
58 bool flush_pending;
59
60 struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
61 };
62
63 struct mdp5_ctl_manager {
64 struct drm_device *dev;
65
66 /* number of CTL / Layer Mixers in this hw config: */
67 u32 nlm;
68 u32 nctl;
69
70 /* to filter out non-present bits in the current hardware config */
71 u32 flush_hw_mask;
72
73 /* status for single FLUSH */
74 bool single_flush_supported;
75 u32 single_flush_pending_mask;
76
77 /* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
78 spinlock_t pool_lock;
79 struct mdp5_ctl ctls[MAX_CTL];
80 };
81
82 static inline
get_kms(struct mdp5_ctl_manager * ctl_mgr)83 struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
84 {
85 struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
86
87 return to_mdp5_kms(to_mdp_kms(priv->kms));
88 }
89
90 static inline
ctl_write(struct mdp5_ctl * ctl,u32 reg,u32 data)91 void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
92 {
93 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
94
95 (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
96 mdp5_write(mdp5_kms, reg, data);
97 }
98
99 static inline
ctl_read(struct mdp5_ctl * ctl,u32 reg)100 u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
101 {
102 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
103
104 (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
105 return mdp5_read(mdp5_kms, reg);
106 }
107
set_display_intf(struct mdp5_kms * mdp5_kms,struct mdp5_interface * intf)108 static void set_display_intf(struct mdp5_kms *mdp5_kms,
109 struct mdp5_interface *intf)
110 {
111 unsigned long flags;
112 u32 intf_sel;
113
114 spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
115 intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
116
117 switch (intf->num) {
118 case 0:
119 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
120 intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
121 break;
122 case 1:
123 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
124 intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
125 break;
126 case 2:
127 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
128 intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
129 break;
130 case 3:
131 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
132 intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
133 break;
134 default:
135 BUG();
136 break;
137 }
138
139 mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
140 spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
141 }
142
set_ctl_op(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)143 static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
144 {
145 unsigned long flags;
146 struct mdp5_interface *intf = pipeline->intf;
147 u32 ctl_op = 0;
148
149 if (!mdp5_cfg_intf_is_virtual(intf->type))
150 ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
151
152 switch (intf->type) {
153 case INTF_DSI:
154 if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
155 ctl_op |= MDP5_CTL_OP_CMD_MODE;
156 break;
157
158 case INTF_WB:
159 if (intf->mode == MDP5_INTF_WB_MODE_LINE)
160 ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
161 break;
162
163 default:
164 break;
165 }
166
167 if (pipeline->r_mixer)
168 ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE |
169 MDP5_CTL_OP_PACK_3D(1);
170
171 spin_lock_irqsave(&ctl->hw_lock, flags);
172 ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
173 spin_unlock_irqrestore(&ctl->hw_lock, flags);
174 }
175
mdp5_ctl_set_pipeline(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)176 int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
177 {
178 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
179 struct mdp5_interface *intf = pipeline->intf;
180
181 /* Virtual interfaces need not set a display intf (e.g.: Writeback) */
182 if (!mdp5_cfg_intf_is_virtual(intf->type))
183 set_display_intf(mdp5_kms, intf);
184
185 set_ctl_op(ctl, pipeline);
186
187 return 0;
188 }
189
start_signal_needed(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)190 static bool start_signal_needed(struct mdp5_ctl *ctl,
191 struct mdp5_pipeline *pipeline)
192 {
193 struct mdp5_interface *intf = pipeline->intf;
194
195 if (!ctl->encoder_enabled)
196 return false;
197
198 switch (intf->type) {
199 case INTF_WB:
200 return true;
201 case INTF_DSI:
202 return intf->mode == MDP5_INTF_DSI_MODE_COMMAND;
203 default:
204 return false;
205 }
206 }
207
208 /*
209 * send_start_signal() - Overlay Processor Start Signal
210 *
211 * For a given control operation (display pipeline), a START signal needs to be
212 * executed in order to kick off operation and activate all layers.
213 * e.g.: DSI command mode, Writeback
214 */
send_start_signal(struct mdp5_ctl * ctl)215 static void send_start_signal(struct mdp5_ctl *ctl)
216 {
217 unsigned long flags;
218
219 spin_lock_irqsave(&ctl->hw_lock, flags);
220 ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
221 spin_unlock_irqrestore(&ctl->hw_lock, flags);
222 }
223
224 /**
225 * mdp5_ctl_set_encoder_state() - set the encoder state
226 *
227 * @enable: true, when encoder is ready for data streaming; false, otherwise.
228 *
229 * Note:
230 * This encoder state is needed to trigger START signal (data path kickoff).
231 */
mdp5_ctl_set_encoder_state(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,bool enabled)232 int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl,
233 struct mdp5_pipeline *pipeline,
234 bool enabled)
235 {
236 struct mdp5_interface *intf = pipeline->intf;
237
238 if (WARN_ON(!ctl))
239 return -EINVAL;
240
241 ctl->encoder_enabled = enabled;
242 DBG("intf_%d: %s", intf->num, enabled ? "on" : "off");
243
244 if (start_signal_needed(ctl, pipeline)) {
245 send_start_signal(ctl);
246 }
247
248 return 0;
249 }
250
251 /*
252 * Note:
253 * CTL registers need to be flushed after calling this function
254 * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
255 */
mdp5_ctl_set_cursor(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,int cursor_id,bool enable)256 int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
257 int cursor_id, bool enable)
258 {
259 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
260 unsigned long flags;
261 u32 blend_cfg;
262 struct mdp5_hw_mixer *mixer = pipeline->mixer;
263
264 if (unlikely(WARN_ON(!mixer))) {
265 dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM",
266 ctl->id);
267 return -EINVAL;
268 }
269
270 if (pipeline->r_mixer) {
271 dev_err(ctl_mgr->dev->dev, "unsupported configuration");
272 return -EINVAL;
273 }
274
275 spin_lock_irqsave(&ctl->hw_lock, flags);
276
277 blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm));
278
279 if (enable)
280 blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT;
281 else
282 blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
283
284 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
285 ctl->cursor_on = enable;
286
287 spin_unlock_irqrestore(&ctl->hw_lock, flags);
288
289 ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
290
291 return 0;
292 }
293
mdp_ctl_blend_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)294 static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
295 enum mdp_mixer_stage_id stage)
296 {
297 switch (pipe) {
298 case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
299 case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
300 case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
301 case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
302 case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
303 case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
304 case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
305 case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
306 case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
307 case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
308 case SSPP_CURSOR0:
309 case SSPP_CURSOR1:
310 default: return 0;
311 }
312 }
313
mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)314 static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
315 enum mdp_mixer_stage_id stage)
316 {
317 if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1))
318 return 0;
319
320 switch (pipe) {
321 case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
322 case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
323 case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
324 case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
325 case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
326 case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
327 case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
328 case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
329 case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
330 case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
331 case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage);
332 case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage);
333 default: return 0;
334 }
335 }
336
mdp5_ctl_reset_blend_regs(struct mdp5_ctl * ctl)337 static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl)
338 {
339 unsigned long flags;
340 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
341 int i;
342
343 spin_lock_irqsave(&ctl->hw_lock, flags);
344
345 for (i = 0; i < ctl_mgr->nlm; i++) {
346 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0);
347 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0);
348 }
349
350 spin_unlock_irqrestore(&ctl->hw_lock, flags);
351 }
352
353 #define PIPE_LEFT 0
354 #define PIPE_RIGHT 1
mdp5_ctl_blend(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,enum mdp5_pipe stage[][MAX_PIPE_STAGE],enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],u32 stage_cnt,u32 ctl_blend_op_flags)355 int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
356 enum mdp5_pipe stage[][MAX_PIPE_STAGE],
357 enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],
358 u32 stage_cnt, u32 ctl_blend_op_flags)
359 {
360 struct mdp5_hw_mixer *mixer = pipeline->mixer;
361 struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
362 unsigned long flags;
363 u32 blend_cfg = 0, blend_ext_cfg = 0;
364 u32 r_blend_cfg = 0, r_blend_ext_cfg = 0;
365 int i, start_stage;
366
367 mdp5_ctl_reset_blend_regs(ctl);
368
369 if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
370 start_stage = STAGE0;
371 blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
372 if (r_mixer)
373 r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
374 } else {
375 start_stage = STAGE_BASE;
376 }
377
378 for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) {
379 blend_cfg |=
380 mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) |
381 mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i);
382 blend_ext_cfg |=
383 mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) |
384 mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i);
385 if (r_mixer) {
386 r_blend_cfg |=
387 mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) |
388 mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i);
389 r_blend_ext_cfg |=
390 mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) |
391 mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i);
392 }
393 }
394
395 spin_lock_irqsave(&ctl->hw_lock, flags);
396 if (ctl->cursor_on)
397 blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT;
398
399 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
400 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm),
401 blend_ext_cfg);
402 if (r_mixer) {
403 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm),
404 r_blend_cfg);
405 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm),
406 r_blend_ext_cfg);
407 }
408 spin_unlock_irqrestore(&ctl->hw_lock, flags);
409
410 ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm);
411 if (r_mixer)
412 ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm);
413
414 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm,
415 blend_cfg, blend_ext_cfg);
416 if (r_mixer)
417 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x",
418 r_mixer->lm, r_blend_cfg, r_blend_ext_cfg);
419
420 return 0;
421 }
422
mdp_ctl_flush_mask_encoder(struct mdp5_interface * intf)423 u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
424 {
425 if (intf->type == INTF_WB)
426 return MDP5_CTL_FLUSH_WB;
427
428 switch (intf->num) {
429 case 0: return MDP5_CTL_FLUSH_TIMING_0;
430 case 1: return MDP5_CTL_FLUSH_TIMING_1;
431 case 2: return MDP5_CTL_FLUSH_TIMING_2;
432 case 3: return MDP5_CTL_FLUSH_TIMING_3;
433 default: return 0;
434 }
435 }
436
mdp_ctl_flush_mask_cursor(int cursor_id)437 u32 mdp_ctl_flush_mask_cursor(int cursor_id)
438 {
439 switch (cursor_id) {
440 case 0: return MDP5_CTL_FLUSH_CURSOR_0;
441 case 1: return MDP5_CTL_FLUSH_CURSOR_1;
442 default: return 0;
443 }
444 }
445
mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)446 u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
447 {
448 switch (pipe) {
449 case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
450 case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
451 case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
452 case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
453 case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
454 case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
455 case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
456 case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
457 case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
458 case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
459 case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0;
460 case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1;
461 default: return 0;
462 }
463 }
464
mdp_ctl_flush_mask_lm(int lm)465 u32 mdp_ctl_flush_mask_lm(int lm)
466 {
467 switch (lm) {
468 case 0: return MDP5_CTL_FLUSH_LM0;
469 case 1: return MDP5_CTL_FLUSH_LM1;
470 case 2: return MDP5_CTL_FLUSH_LM2;
471 case 3: return MDP5_CTL_FLUSH_LM3;
472 case 4: return MDP5_CTL_FLUSH_LM4;
473 case 5: return MDP5_CTL_FLUSH_LM5;
474 default: return 0;
475 }
476 }
477
fix_sw_flush(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,u32 flush_mask)478 static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
479 u32 flush_mask)
480 {
481 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
482 u32 sw_mask = 0;
483 #define BIT_NEEDS_SW_FIX(bit) \
484 (!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
485
486 /* for some targets, cursor bit is the same as LM bit */
487 if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
488 sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm);
489
490 return sw_mask;
491 }
492
fix_for_single_flush(struct mdp5_ctl * ctl,u32 * flush_mask,u32 * flush_id)493 static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
494 u32 *flush_id)
495 {
496 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
497
498 if (ctl->pair) {
499 DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
500 ctl->flush_pending = true;
501 ctl_mgr->single_flush_pending_mask |= (*flush_mask);
502 *flush_mask = 0;
503
504 if (ctl->pair->flush_pending) {
505 *flush_id = min_t(u32, ctl->id, ctl->pair->id);
506 *flush_mask = ctl_mgr->single_flush_pending_mask;
507
508 ctl->flush_pending = false;
509 ctl->pair->flush_pending = false;
510 ctl_mgr->single_flush_pending_mask = 0;
511
512 DBG("Single FLUSH mask %x,ID %d", *flush_mask,
513 *flush_id);
514 }
515 }
516 }
517
518 /**
519 * mdp5_ctl_commit() - Register Flush
520 *
521 * The flush register is used to indicate several registers are all
522 * programmed, and are safe to update to the back copy of the double
523 * buffered registers.
524 *
525 * Some registers FLUSH bits are shared when the hardware does not have
526 * dedicated bits for them; handling these is the job of fix_sw_flush().
527 *
528 * CTL registers need to be flushed in some circumstances; if that is the
529 * case, some trigger bits will be present in both flush mask and
530 * ctl->pending_ctl_trigger.
531 *
532 * Return H/W flushed bit mask.
533 */
mdp5_ctl_commit(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,u32 flush_mask,bool start)534 u32 mdp5_ctl_commit(struct mdp5_ctl *ctl,
535 struct mdp5_pipeline *pipeline,
536 u32 flush_mask, bool start)
537 {
538 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
539 unsigned long flags;
540 u32 flush_id = ctl->id;
541 u32 curr_ctl_flush_mask;
542
543 VERB("flush_mask=%x, trigger=%x", flush_mask, ctl->pending_ctl_trigger);
544
545 if (ctl->pending_ctl_trigger & flush_mask) {
546 flush_mask |= MDP5_CTL_FLUSH_CTL;
547 ctl->pending_ctl_trigger = 0;
548 }
549
550 flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask);
551
552 flush_mask &= ctl_mgr->flush_hw_mask;
553
554 curr_ctl_flush_mask = flush_mask;
555
556 fix_for_single_flush(ctl, &flush_mask, &flush_id);
557
558 if (!start) {
559 ctl->flush_mask |= flush_mask;
560 return curr_ctl_flush_mask;
561 } else {
562 flush_mask |= ctl->flush_mask;
563 ctl->flush_mask = 0;
564 }
565
566 if (flush_mask) {
567 spin_lock_irqsave(&ctl->hw_lock, flags);
568 ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
569 spin_unlock_irqrestore(&ctl->hw_lock, flags);
570 }
571
572 if (start_signal_needed(ctl, pipeline)) {
573 send_start_signal(ctl);
574 }
575
576 return curr_ctl_flush_mask;
577 }
578
mdp5_ctl_get_commit_status(struct mdp5_ctl * ctl)579 u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
580 {
581 return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
582 }
583
mdp5_ctl_get_ctl_id(struct mdp5_ctl * ctl)584 int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
585 {
586 return WARN_ON(!ctl) ? -EINVAL : ctl->id;
587 }
588
589 /*
590 * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
591 */
mdp5_ctl_pair(struct mdp5_ctl * ctlx,struct mdp5_ctl * ctly,bool enable)592 int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
593 {
594 struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
595 struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
596
597 /* do nothing silently if hw doesn't support */
598 if (!ctl_mgr->single_flush_supported)
599 return 0;
600
601 if (!enable) {
602 ctlx->pair = NULL;
603 ctly->pair = NULL;
604 mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
605 return 0;
606 } else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
607 dev_err(ctl_mgr->dev->dev, "CTLs already paired\n");
608 return -EINVAL;
609 } else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
610 dev_err(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
611 return -EINVAL;
612 }
613
614 ctlx->pair = ctly;
615 ctly->pair = ctlx;
616
617 mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
618 MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
619
620 return 0;
621 }
622
623 /*
624 * mdp5_ctl_request() - CTL allocation
625 *
626 * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
627 * If no CTL is available in preferred category, allocate from the other one.
628 *
629 * @return fail if no CTL is available.
630 */
mdp5_ctlm_request(struct mdp5_ctl_manager * ctl_mgr,int intf_num)631 struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
632 int intf_num)
633 {
634 struct mdp5_ctl *ctl = NULL;
635 const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
636 u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
637 unsigned long flags;
638 int c;
639
640 spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
641
642 /* search the preferred */
643 for (c = 0; c < ctl_mgr->nctl; c++)
644 if ((ctl_mgr->ctls[c].status & checkm) == match)
645 goto found;
646
647 dev_warn(ctl_mgr->dev->dev,
648 "fall back to the other CTL category for INTF %d!\n", intf_num);
649
650 match ^= CTL_STAT_BOOKED;
651 for (c = 0; c < ctl_mgr->nctl; c++)
652 if ((ctl_mgr->ctls[c].status & checkm) == match)
653 goto found;
654
655 dev_err(ctl_mgr->dev->dev, "No more CTL available!");
656 goto unlock;
657
658 found:
659 ctl = &ctl_mgr->ctls[c];
660 ctl->status |= CTL_STAT_BUSY;
661 ctl->pending_ctl_trigger = 0;
662 DBG("CTL %d allocated", ctl->id);
663
664 unlock:
665 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
666 return ctl;
667 }
668
mdp5_ctlm_hw_reset(struct mdp5_ctl_manager * ctl_mgr)669 void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
670 {
671 unsigned long flags;
672 int c;
673
674 for (c = 0; c < ctl_mgr->nctl; c++) {
675 struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
676
677 spin_lock_irqsave(&ctl->hw_lock, flags);
678 ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
679 spin_unlock_irqrestore(&ctl->hw_lock, flags);
680 }
681 }
682
mdp5_ctlm_destroy(struct mdp5_ctl_manager * ctl_mgr)683 void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
684 {
685 kfree(ctl_mgr);
686 }
687
mdp5_ctlm_init(struct drm_device * dev,void __iomem * mmio_base,struct mdp5_cfg_handler * cfg_hnd)688 struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
689 void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
690 {
691 struct mdp5_ctl_manager *ctl_mgr;
692 const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
693 int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
694 unsigned dsi_cnt = 0;
695 const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
696 unsigned long flags;
697 int c, ret;
698
699 ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
700 if (!ctl_mgr) {
701 dev_err(dev->dev, "failed to allocate CTL manager\n");
702 ret = -ENOMEM;
703 goto fail;
704 }
705
706 if (unlikely(WARN_ON(ctl_cfg->count > MAX_CTL))) {
707 dev_err(dev->dev, "Increase static pool size to at least %d\n",
708 ctl_cfg->count);
709 ret = -ENOSPC;
710 goto fail;
711 }
712
713 /* initialize the CTL manager: */
714 ctl_mgr->dev = dev;
715 ctl_mgr->nlm = hw_cfg->lm.count;
716 ctl_mgr->nctl = ctl_cfg->count;
717 ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
718 spin_lock_init(&ctl_mgr->pool_lock);
719
720 /* initialize each CTL of the pool: */
721 spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
722 for (c = 0; c < ctl_mgr->nctl; c++) {
723 struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
724
725 if (WARN_ON(!ctl_cfg->base[c])) {
726 dev_err(dev->dev, "CTL_%d: base is null!\n", c);
727 ret = -EINVAL;
728 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
729 goto fail;
730 }
731 ctl->ctlm = ctl_mgr;
732 ctl->id = c;
733 ctl->reg_offset = ctl_cfg->base[c];
734 ctl->status = 0;
735 spin_lock_init(&ctl->hw_lock);
736 }
737
738 /*
739 * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
740 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
741 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
742 * Single FLUSH is supported from hw rev v3.0.
743 */
744 for (c = 0; c < ARRAY_SIZE(hw_cfg->intf.connect); c++)
745 if (hw_cfg->intf.connect[c] == INTF_DSI)
746 dsi_cnt++;
747 if ((rev >= 3) && (dsi_cnt > 1)) {
748 ctl_mgr->single_flush_supported = true;
749 /* Reserve CTL0/1 for INTF1/2 */
750 ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
751 ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
752 }
753 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
754 DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
755
756 return ctl_mgr;
757
758 fail:
759 if (ctl_mgr)
760 mdp5_ctlm_destroy(ctl_mgr);
761
762 return ERR_PTR(ret);
763 }
764