1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
27
28 #include "i915_drv.h"
29
30 #ifdef CONFIG_SMP
31 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
32 #else
33 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
34 #endif
35
__intel_breadcrumbs_wakeup(struct intel_breadcrumbs * b)36 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
37 {
38 struct intel_wait *wait;
39 unsigned int result = 0;
40
41 lockdep_assert_held(&b->irq_lock);
42
43 wait = b->irq_wait;
44 if (wait) {
45 /*
46 * N.B. Since task_asleep() and ttwu are not atomic, the
47 * waiter may actually go to sleep after the check, causing
48 * us to suppress a valid wakeup. We prefer to reduce the
49 * number of false positive missed_breadcrumb() warnings
50 * at the expense of a few false negatives, as it it easy
51 * to trigger a false positive under heavy load. Enough
52 * signal should remain from genuine missed_breadcrumb()
53 * for us to detect in CI.
54 */
55 bool was_asleep = task_asleep(wait->tsk);
56
57 result = ENGINE_WAKEUP_WAITER;
58 if (wake_up_process(wait->tsk) && was_asleep)
59 result |= ENGINE_WAKEUP_ASLEEP;
60 }
61
62 return result;
63 }
64
intel_engine_wakeup(struct intel_engine_cs * engine)65 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
66 {
67 struct intel_breadcrumbs *b = &engine->breadcrumbs;
68 unsigned long flags;
69 unsigned int result;
70
71 spin_lock_irqsave(&b->irq_lock, flags);
72 result = __intel_breadcrumbs_wakeup(b);
73 spin_unlock_irqrestore(&b->irq_lock, flags);
74
75 return result;
76 }
77
wait_timeout(void)78 static unsigned long wait_timeout(void)
79 {
80 return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
81 }
82
missed_breadcrumb(struct intel_engine_cs * engine)83 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
84 {
85 if (GEM_SHOW_DEBUG()) {
86 struct drm_printer p = drm_debug_printer(__func__);
87
88 intel_engine_dump(engine, &p,
89 "%s missed breadcrumb at %pS\n",
90 engine->name, __builtin_return_address(0));
91 }
92
93 set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
94 }
95
intel_breadcrumbs_hangcheck(struct timer_list * t)96 static void intel_breadcrumbs_hangcheck(struct timer_list *t)
97 {
98 struct intel_engine_cs *engine =
99 from_timer(engine, t, breadcrumbs.hangcheck);
100 struct intel_breadcrumbs *b = &engine->breadcrumbs;
101 unsigned int irq_count;
102
103 if (!b->irq_armed)
104 return;
105
106 irq_count = READ_ONCE(b->irq_count);
107 if (b->hangcheck_interrupts != irq_count) {
108 b->hangcheck_interrupts = irq_count;
109 mod_timer(&b->hangcheck, wait_timeout());
110 return;
111 }
112
113 /* We keep the hangcheck timer alive until we disarm the irq, even
114 * if there are no waiters at present.
115 *
116 * If the waiter was currently running, assume it hasn't had a chance
117 * to process the pending interrupt (e.g, low priority task on a loaded
118 * system) and wait until it sleeps before declaring a missed interrupt.
119 *
120 * If the waiter was asleep (and not even pending a wakeup), then we
121 * must have missed an interrupt as the GPU has stopped advancing
122 * but we still have a waiter. Assuming all batches complete within
123 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
124 */
125 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
126 missed_breadcrumb(engine);
127 mod_timer(&b->fake_irq, jiffies + 1);
128 } else {
129 mod_timer(&b->hangcheck, wait_timeout());
130 }
131 }
132
intel_breadcrumbs_fake_irq(struct timer_list * t)133 static void intel_breadcrumbs_fake_irq(struct timer_list *t)
134 {
135 struct intel_engine_cs *engine =
136 from_timer(engine, t, breadcrumbs.fake_irq);
137 struct intel_breadcrumbs *b = &engine->breadcrumbs;
138
139 /*
140 * The timer persists in case we cannot enable interrupts,
141 * or if we have previously seen seqno/interrupt incoherency
142 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
143 * Here the worker will wake up every jiffie in order to kick the
144 * oldest waiter to do the coherent seqno check.
145 */
146
147 spin_lock_irq(&b->irq_lock);
148 if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
149 __intel_engine_disarm_breadcrumbs(engine);
150 spin_unlock_irq(&b->irq_lock);
151 if (!b->irq_armed)
152 return;
153
154 /* If the user has disabled the fake-irq, restore the hangchecking */
155 if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings)) {
156 mod_timer(&b->hangcheck, wait_timeout());
157 return;
158 }
159
160 mod_timer(&b->fake_irq, jiffies + 1);
161 }
162
irq_enable(struct intel_engine_cs * engine)163 static void irq_enable(struct intel_engine_cs *engine)
164 {
165 /*
166 * FIXME: Ideally we want this on the API boundary, but for the
167 * sake of testing with mock breadcrumbs (no HW so unable to
168 * enable irqs) we place it deep within the bowels, at the point
169 * of no return.
170 */
171 GEM_BUG_ON(!intel_irqs_enabled(engine->i915));
172
173 /* Enabling the IRQ may miss the generation of the interrupt, but
174 * we still need to force the barrier before reading the seqno,
175 * just in case.
176 */
177 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
178
179 /* Caller disables interrupts */
180 if (engine->irq_enable) {
181 spin_lock(&engine->i915->irq_lock);
182 engine->irq_enable(engine);
183 spin_unlock(&engine->i915->irq_lock);
184 }
185 }
186
irq_disable(struct intel_engine_cs * engine)187 static void irq_disable(struct intel_engine_cs *engine)
188 {
189 /* Caller disables interrupts */
190 if (engine->irq_disable) {
191 spin_lock(&engine->i915->irq_lock);
192 engine->irq_disable(engine);
193 spin_unlock(&engine->i915->irq_lock);
194 }
195 }
196
__intel_engine_disarm_breadcrumbs(struct intel_engine_cs * engine)197 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
198 {
199 struct intel_breadcrumbs *b = &engine->breadcrumbs;
200
201 lockdep_assert_held(&b->irq_lock);
202 GEM_BUG_ON(b->irq_wait);
203 GEM_BUG_ON(!b->irq_armed);
204
205 GEM_BUG_ON(!b->irq_enabled);
206 if (!--b->irq_enabled)
207 irq_disable(engine);
208
209 b->irq_armed = false;
210 }
211
intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs * engine)212 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
213 {
214 struct intel_breadcrumbs *b = &engine->breadcrumbs;
215
216 spin_lock_irq(&b->irq_lock);
217 if (!b->irq_enabled++)
218 irq_enable(engine);
219 GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
220 spin_unlock_irq(&b->irq_lock);
221 }
222
intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs * engine)223 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
224 {
225 struct intel_breadcrumbs *b = &engine->breadcrumbs;
226
227 spin_lock_irq(&b->irq_lock);
228 GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
229 if (!--b->irq_enabled)
230 irq_disable(engine);
231 spin_unlock_irq(&b->irq_lock);
232 }
233
intel_engine_disarm_breadcrumbs(struct intel_engine_cs * engine)234 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
235 {
236 struct intel_breadcrumbs *b = &engine->breadcrumbs;
237 struct intel_wait *wait, *n;
238
239 if (!b->irq_armed)
240 return;
241
242 /*
243 * We only disarm the irq when we are idle (all requests completed),
244 * so if the bottom-half remains asleep, it missed the request
245 * completion.
246 */
247 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
248 missed_breadcrumb(engine);
249
250 spin_lock_irq(&b->rb_lock);
251
252 spin_lock(&b->irq_lock);
253 b->irq_wait = NULL;
254 if (b->irq_armed)
255 __intel_engine_disarm_breadcrumbs(engine);
256 spin_unlock(&b->irq_lock);
257
258 rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
259 GEM_BUG_ON(!i915_seqno_passed(intel_engine_get_seqno(engine),
260 wait->seqno));
261 RB_CLEAR_NODE(&wait->node);
262 wake_up_process(wait->tsk);
263 }
264 b->waiters = RB_ROOT;
265
266 spin_unlock_irq(&b->rb_lock);
267 }
268
use_fake_irq(const struct intel_breadcrumbs * b)269 static bool use_fake_irq(const struct intel_breadcrumbs *b)
270 {
271 const struct intel_engine_cs *engine =
272 container_of(b, struct intel_engine_cs, breadcrumbs);
273
274 if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
275 return false;
276
277 /*
278 * Only start with the heavy weight fake irq timer if we have not
279 * seen any interrupts since enabling it the first time. If the
280 * interrupts are still arriving, it means we made a mistake in our
281 * engine->seqno_barrier(), a timing error that should be transient
282 * and unlikely to reoccur.
283 */
284 return READ_ONCE(b->irq_count) == b->hangcheck_interrupts;
285 }
286
enable_fake_irq(struct intel_breadcrumbs * b)287 static void enable_fake_irq(struct intel_breadcrumbs *b)
288 {
289 /* Ensure we never sleep indefinitely */
290 if (!b->irq_enabled || use_fake_irq(b))
291 mod_timer(&b->fake_irq, jiffies + 1);
292 else
293 mod_timer(&b->hangcheck, wait_timeout());
294 }
295
__intel_breadcrumbs_enable_irq(struct intel_breadcrumbs * b)296 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
297 {
298 struct intel_engine_cs *engine =
299 container_of(b, struct intel_engine_cs, breadcrumbs);
300 struct drm_i915_private *i915 = engine->i915;
301 bool enabled;
302
303 lockdep_assert_held(&b->irq_lock);
304 if (b->irq_armed)
305 return false;
306
307 /* The breadcrumb irq will be disarmed on the interrupt after the
308 * waiters are signaled. This gives us a single interrupt window in
309 * which we can add a new waiter and avoid the cost of re-enabling
310 * the irq.
311 */
312 b->irq_armed = true;
313
314 if (I915_SELFTEST_ONLY(b->mock)) {
315 /* For our mock objects we want to avoid interaction
316 * with the real hardware (which is not set up). So
317 * we simply pretend we have enabled the powerwell
318 * and the irq, and leave it up to the mock
319 * implementation to call intel_engine_wakeup()
320 * itself when it wants to simulate a user interrupt,
321 */
322 return true;
323 }
324
325 /* Since we are waiting on a request, the GPU should be busy
326 * and should have its own rpm reference. This is tracked
327 * by i915->gt.awake, we can forgo holding our own wakref
328 * for the interrupt as before i915->gt.awake is released (when
329 * the driver is idle) we disarm the breadcrumbs.
330 */
331
332 /* No interrupts? Kick the waiter every jiffie! */
333 enabled = false;
334 if (!b->irq_enabled++ &&
335 !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
336 irq_enable(engine);
337 enabled = true;
338 }
339
340 enable_fake_irq(b);
341 return enabled;
342 }
343
to_wait(struct rb_node * node)344 static inline struct intel_wait *to_wait(struct rb_node *node)
345 {
346 return rb_entry(node, struct intel_wait, node);
347 }
348
__intel_breadcrumbs_finish(struct intel_breadcrumbs * b,struct intel_wait * wait)349 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
350 struct intel_wait *wait)
351 {
352 lockdep_assert_held(&b->rb_lock);
353 GEM_BUG_ON(b->irq_wait == wait);
354
355 /*
356 * This request is completed, so remove it from the tree, mark it as
357 * complete, and *then* wake up the associated task. N.B. when the
358 * task wakes up, it will find the empty rb_node, discern that it
359 * has already been removed from the tree and skip the serialisation
360 * of the b->rb_lock and b->irq_lock. This means that the destruction
361 * of the intel_wait is not serialised with the interrupt handler
362 * by the waiter - it must instead be serialised by the caller.
363 */
364 rb_erase(&wait->node, &b->waiters);
365 RB_CLEAR_NODE(&wait->node);
366
367 if (wait->tsk->state != TASK_RUNNING)
368 wake_up_process(wait->tsk); /* implicit smp_wmb() */
369 }
370
__intel_breadcrumbs_next(struct intel_engine_cs * engine,struct rb_node * next)371 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
372 struct rb_node *next)
373 {
374 struct intel_breadcrumbs *b = &engine->breadcrumbs;
375
376 spin_lock(&b->irq_lock);
377 GEM_BUG_ON(!b->irq_armed);
378 GEM_BUG_ON(!b->irq_wait);
379 b->irq_wait = to_wait(next);
380 spin_unlock(&b->irq_lock);
381
382 /* We always wake up the next waiter that takes over as the bottom-half
383 * as we may delegate not only the irq-seqno barrier to the next waiter
384 * but also the task of waking up concurrent waiters.
385 */
386 if (next)
387 wake_up_process(to_wait(next)->tsk);
388 }
389
__intel_engine_add_wait(struct intel_engine_cs * engine,struct intel_wait * wait)390 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
391 struct intel_wait *wait)
392 {
393 struct intel_breadcrumbs *b = &engine->breadcrumbs;
394 struct rb_node **p, *parent, *completed;
395 bool first, armed;
396 u32 seqno;
397
398 GEM_BUG_ON(!wait->seqno);
399
400 /* Insert the request into the retirement ordered list
401 * of waiters by walking the rbtree. If we are the oldest
402 * seqno in the tree (the first to be retired), then
403 * set ourselves as the bottom-half.
404 *
405 * As we descend the tree, prune completed branches since we hold the
406 * spinlock we know that the first_waiter must be delayed and can
407 * reduce some of the sequential wake up latency if we take action
408 * ourselves and wake up the completed tasks in parallel. Also, by
409 * removing stale elements in the tree, we may be able to reduce the
410 * ping-pong between the old bottom-half and ourselves as first-waiter.
411 */
412 armed = false;
413 first = true;
414 parent = NULL;
415 completed = NULL;
416 seqno = intel_engine_get_seqno(engine);
417
418 /* If the request completed before we managed to grab the spinlock,
419 * return now before adding ourselves to the rbtree. We let the
420 * current bottom-half handle any pending wakeups and instead
421 * try and get out of the way quickly.
422 */
423 if (i915_seqno_passed(seqno, wait->seqno)) {
424 RB_CLEAR_NODE(&wait->node);
425 return first;
426 }
427
428 p = &b->waiters.rb_node;
429 while (*p) {
430 parent = *p;
431 if (wait->seqno == to_wait(parent)->seqno) {
432 /* We have multiple waiters on the same seqno, select
433 * the highest priority task (that with the smallest
434 * task->prio) to serve as the bottom-half for this
435 * group.
436 */
437 if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
438 p = &parent->rb_right;
439 first = false;
440 } else {
441 p = &parent->rb_left;
442 }
443 } else if (i915_seqno_passed(wait->seqno,
444 to_wait(parent)->seqno)) {
445 p = &parent->rb_right;
446 if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
447 completed = parent;
448 else
449 first = false;
450 } else {
451 p = &parent->rb_left;
452 }
453 }
454 rb_link_node(&wait->node, parent, p);
455 rb_insert_color(&wait->node, &b->waiters);
456
457 if (first) {
458 spin_lock(&b->irq_lock);
459 b->irq_wait = wait;
460 /* After assigning ourselves as the new bottom-half, we must
461 * perform a cursory check to prevent a missed interrupt.
462 * Either we miss the interrupt whilst programming the hardware,
463 * or if there was a previous waiter (for a later seqno) they
464 * may be woken instead of us (due to the inherent race
465 * in the unlocked read of b->irq_seqno_bh in the irq handler)
466 * and so we miss the wake up.
467 */
468 armed = __intel_breadcrumbs_enable_irq(b);
469 spin_unlock(&b->irq_lock);
470 }
471
472 if (completed) {
473 /* Advance the bottom-half (b->irq_wait) before we wake up
474 * the waiters who may scribble over their intel_wait
475 * just as the interrupt handler is dereferencing it via
476 * b->irq_wait.
477 */
478 if (!first) {
479 struct rb_node *next = rb_next(completed);
480 GEM_BUG_ON(next == &wait->node);
481 __intel_breadcrumbs_next(engine, next);
482 }
483
484 do {
485 struct intel_wait *crumb = to_wait(completed);
486 completed = rb_prev(completed);
487 __intel_breadcrumbs_finish(b, crumb);
488 } while (completed);
489 }
490
491 GEM_BUG_ON(!b->irq_wait);
492 GEM_BUG_ON(!b->irq_armed);
493 GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
494
495 return armed;
496 }
497
intel_engine_add_wait(struct intel_engine_cs * engine,struct intel_wait * wait)498 bool intel_engine_add_wait(struct intel_engine_cs *engine,
499 struct intel_wait *wait)
500 {
501 struct intel_breadcrumbs *b = &engine->breadcrumbs;
502 bool armed;
503
504 spin_lock_irq(&b->rb_lock);
505 armed = __intel_engine_add_wait(engine, wait);
506 spin_unlock_irq(&b->rb_lock);
507 if (armed)
508 return armed;
509
510 /* Make the caller recheck if its request has already started. */
511 return i915_seqno_passed(intel_engine_get_seqno(engine),
512 wait->seqno - 1);
513 }
514
chain_wakeup(struct rb_node * rb,int priority)515 static inline bool chain_wakeup(struct rb_node *rb, int priority)
516 {
517 return rb && to_wait(rb)->tsk->prio <= priority;
518 }
519
wakeup_priority(struct intel_breadcrumbs * b,struct task_struct * tsk)520 static inline int wakeup_priority(struct intel_breadcrumbs *b,
521 struct task_struct *tsk)
522 {
523 if (tsk == b->signaler)
524 return INT_MIN;
525 else
526 return tsk->prio;
527 }
528
__intel_engine_remove_wait(struct intel_engine_cs * engine,struct intel_wait * wait)529 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
530 struct intel_wait *wait)
531 {
532 struct intel_breadcrumbs *b = &engine->breadcrumbs;
533
534 lockdep_assert_held(&b->rb_lock);
535
536 if (RB_EMPTY_NODE(&wait->node))
537 goto out;
538
539 if (b->irq_wait == wait) {
540 const int priority = wakeup_priority(b, wait->tsk);
541 struct rb_node *next;
542
543 /* We are the current bottom-half. Find the next candidate,
544 * the first waiter in the queue on the remaining oldest
545 * request. As multiple seqnos may complete in the time it
546 * takes us to wake up and find the next waiter, we have to
547 * wake up that waiter for it to perform its own coherent
548 * completion check.
549 */
550 next = rb_next(&wait->node);
551 if (chain_wakeup(next, priority)) {
552 /* If the next waiter is already complete,
553 * wake it up and continue onto the next waiter. So
554 * if have a small herd, they will wake up in parallel
555 * rather than sequentially, which should reduce
556 * the overall latency in waking all the completed
557 * clients.
558 *
559 * However, waking up a chain adds extra latency to
560 * the first_waiter. This is undesirable if that
561 * waiter is a high priority task.
562 */
563 u32 seqno = intel_engine_get_seqno(engine);
564
565 while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
566 struct rb_node *n = rb_next(next);
567
568 __intel_breadcrumbs_finish(b, to_wait(next));
569 next = n;
570 if (!chain_wakeup(next, priority))
571 break;
572 }
573 }
574
575 __intel_breadcrumbs_next(engine, next);
576 } else {
577 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
578 }
579
580 GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
581 rb_erase(&wait->node, &b->waiters);
582 RB_CLEAR_NODE(&wait->node);
583
584 out:
585 GEM_BUG_ON(b->irq_wait == wait);
586 GEM_BUG_ON(rb_first(&b->waiters) !=
587 (b->irq_wait ? &b->irq_wait->node : NULL));
588 }
589
intel_engine_remove_wait(struct intel_engine_cs * engine,struct intel_wait * wait)590 void intel_engine_remove_wait(struct intel_engine_cs *engine,
591 struct intel_wait *wait)
592 {
593 struct intel_breadcrumbs *b = &engine->breadcrumbs;
594
595 /* Quick check to see if this waiter was already decoupled from
596 * the tree by the bottom-half to avoid contention on the spinlock
597 * by the herd.
598 */
599 if (RB_EMPTY_NODE(&wait->node)) {
600 GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
601 return;
602 }
603
604 spin_lock_irq(&b->rb_lock);
605 __intel_engine_remove_wait(engine, wait);
606 spin_unlock_irq(&b->rb_lock);
607 }
608
signaler_set_rtpriority(void)609 static void signaler_set_rtpriority(void)
610 {
611 struct sched_param param = { .sched_priority = 1 };
612
613 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
614 }
615
intel_breadcrumbs_signaler(void * arg)616 static int intel_breadcrumbs_signaler(void *arg)
617 {
618 struct intel_engine_cs *engine = arg;
619 struct intel_breadcrumbs *b = &engine->breadcrumbs;
620 struct i915_request *rq, *n;
621
622 /* Install ourselves with high priority to reduce signalling latency */
623 signaler_set_rtpriority();
624
625 do {
626 bool do_schedule = true;
627 LIST_HEAD(list);
628 u32 seqno;
629
630 set_current_state(TASK_INTERRUPTIBLE);
631 if (list_empty(&b->signals))
632 goto sleep;
633
634 /*
635 * We are either woken up by the interrupt bottom-half,
636 * or by a client adding a new signaller. In both cases,
637 * the GPU seqno may have advanced beyond our oldest signal.
638 * If it has, propagate the signal, remove the waiter and
639 * check again with the next oldest signal. Otherwise we
640 * need to wait for a new interrupt from the GPU or for
641 * a new client.
642 */
643 seqno = intel_engine_get_seqno(engine);
644
645 spin_lock_irq(&b->rb_lock);
646 list_for_each_entry_safe(rq, n, &b->signals, signaling.link) {
647 u32 this = rq->signaling.wait.seqno;
648
649 GEM_BUG_ON(!rq->signaling.wait.seqno);
650
651 if (!i915_seqno_passed(seqno, this))
652 break;
653
654 if (likely(this == i915_request_global_seqno(rq))) {
655 __intel_engine_remove_wait(engine,
656 &rq->signaling.wait);
657
658 rq->signaling.wait.seqno = 0;
659 __list_del_entry(&rq->signaling.link);
660
661 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
662 &rq->fence.flags)) {
663 list_add_tail(&rq->signaling.link,
664 &list);
665 i915_request_get(rq);
666 }
667 }
668 }
669 spin_unlock_irq(&b->rb_lock);
670
671 if (!list_empty(&list)) {
672 local_bh_disable();
673 list_for_each_entry_safe(rq, n, &list, signaling.link) {
674 dma_fence_signal(&rq->fence);
675 GEM_BUG_ON(!i915_request_completed(rq));
676 i915_request_put(rq);
677 }
678 local_bh_enable(); /* kick start the tasklets */
679
680 /*
681 * If the engine is saturated we may be continually
682 * processing completed requests. This angers the
683 * NMI watchdog if we never let anything else
684 * have access to the CPU. Let's pretend to be nice
685 * and relinquish the CPU if we burn through the
686 * entire RT timeslice!
687 */
688 do_schedule = need_resched();
689 }
690
691 if (unlikely(do_schedule)) {
692 /* Before we sleep, check for a missed seqno */
693 if (current->state & TASK_NORMAL &&
694 !list_empty(&b->signals) &&
695 engine->irq_seqno_barrier &&
696 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB,
697 &engine->irq_posted)) {
698 engine->irq_seqno_barrier(engine);
699 intel_engine_wakeup(engine);
700 }
701
702 sleep:
703 if (kthread_should_park())
704 kthread_parkme();
705
706 if (unlikely(kthread_should_stop()))
707 break;
708
709 schedule();
710 }
711 } while (1);
712 __set_current_state(TASK_RUNNING);
713
714 return 0;
715 }
716
insert_signal(struct intel_breadcrumbs * b,struct i915_request * request,const u32 seqno)717 static void insert_signal(struct intel_breadcrumbs *b,
718 struct i915_request *request,
719 const u32 seqno)
720 {
721 struct i915_request *iter;
722
723 lockdep_assert_held(&b->rb_lock);
724
725 /*
726 * A reasonable assumption is that we are called to add signals
727 * in sequence, as the requests are submitted for execution and
728 * assigned a global_seqno. This will be the case for the majority
729 * of internally generated signals (inter-engine signaling).
730 *
731 * Out of order waiters triggering random signaling enabling will
732 * be more problematic, but hopefully rare enough and the list
733 * small enough that the O(N) insertion sort is not an issue.
734 */
735
736 list_for_each_entry_reverse(iter, &b->signals, signaling.link)
737 if (i915_seqno_passed(seqno, iter->signaling.wait.seqno))
738 break;
739
740 list_add(&request->signaling.link, &iter->signaling.link);
741 }
742
intel_engine_enable_signaling(struct i915_request * request,bool wakeup)743 bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup)
744 {
745 struct intel_engine_cs *engine = request->engine;
746 struct intel_breadcrumbs *b = &engine->breadcrumbs;
747 struct intel_wait *wait = &request->signaling.wait;
748 u32 seqno;
749
750 /*
751 * Note that we may be called from an interrupt handler on another
752 * device (e.g. nouveau signaling a fence completion causing us
753 * to submit a request, and so enable signaling). As such,
754 * we need to make sure that all other users of b->rb_lock protect
755 * against interrupts, i.e. use spin_lock_irqsave.
756 */
757
758 /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
759 GEM_BUG_ON(!irqs_disabled());
760 lockdep_assert_held(&request->lock);
761
762 seqno = i915_request_global_seqno(request);
763 if (!seqno) /* will be enabled later upon execution */
764 return true;
765
766 GEM_BUG_ON(wait->seqno);
767 wait->tsk = b->signaler;
768 wait->request = request;
769 wait->seqno = seqno;
770
771 /*
772 * Add ourselves into the list of waiters, but registering our
773 * bottom-half as the signaller thread. As per usual, only the oldest
774 * waiter (not just signaller) is tasked as the bottom-half waking
775 * up all completed waiters after the user interrupt.
776 *
777 * If we are the oldest waiter, enable the irq (after which we
778 * must double check that the seqno did not complete).
779 */
780 spin_lock(&b->rb_lock);
781 insert_signal(b, request, seqno);
782 wakeup &= __intel_engine_add_wait(engine, wait);
783 spin_unlock(&b->rb_lock);
784
785 if (wakeup) {
786 wake_up_process(b->signaler);
787 return !intel_wait_complete(wait);
788 }
789
790 return true;
791 }
792
intel_engine_cancel_signaling(struct i915_request * request)793 void intel_engine_cancel_signaling(struct i915_request *request)
794 {
795 struct intel_engine_cs *engine = request->engine;
796 struct intel_breadcrumbs *b = &engine->breadcrumbs;
797
798 GEM_BUG_ON(!irqs_disabled());
799 lockdep_assert_held(&request->lock);
800
801 if (!READ_ONCE(request->signaling.wait.seqno))
802 return;
803
804 spin_lock(&b->rb_lock);
805 __intel_engine_remove_wait(engine, &request->signaling.wait);
806 if (fetch_and_zero(&request->signaling.wait.seqno))
807 __list_del_entry(&request->signaling.link);
808 spin_unlock(&b->rb_lock);
809 }
810
intel_engine_init_breadcrumbs(struct intel_engine_cs * engine)811 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
812 {
813 struct intel_breadcrumbs *b = &engine->breadcrumbs;
814 struct task_struct *tsk;
815
816 spin_lock_init(&b->rb_lock);
817 spin_lock_init(&b->irq_lock);
818
819 timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
820 timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
821
822 INIT_LIST_HEAD(&b->signals);
823
824 /* Spawn a thread to provide a common bottom-half for all signals.
825 * As this is an asynchronous interface we cannot steal the current
826 * task for handling the bottom-half to the user interrupt, therefore
827 * we create a thread to do the coherent seqno dance after the
828 * interrupt and then signal the waitqueue (via the dma-buf/fence).
829 */
830 tsk = kthread_run(intel_breadcrumbs_signaler, engine,
831 "i915/signal:%d", engine->id);
832 if (IS_ERR(tsk))
833 return PTR_ERR(tsk);
834
835 b->signaler = tsk;
836
837 return 0;
838 }
839
cancel_fake_irq(struct intel_engine_cs * engine)840 static void cancel_fake_irq(struct intel_engine_cs *engine)
841 {
842 struct intel_breadcrumbs *b = &engine->breadcrumbs;
843
844 del_timer_sync(&b->fake_irq); /* may queue b->hangcheck */
845 del_timer_sync(&b->hangcheck);
846 clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
847 }
848
intel_engine_reset_breadcrumbs(struct intel_engine_cs * engine)849 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
850 {
851 struct intel_breadcrumbs *b = &engine->breadcrumbs;
852 unsigned long flags;
853
854 spin_lock_irqsave(&b->irq_lock, flags);
855
856 /*
857 * Leave the fake_irq timer enabled (if it is running), but clear the
858 * bit so that it turns itself off on its next wake up and goes back
859 * to the long hangcheck interval if still required.
860 */
861 clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
862
863 if (b->irq_enabled)
864 irq_enable(engine);
865 else
866 irq_disable(engine);
867
868 /*
869 * We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
870 * GPU is active and may have already executed the MI_USER_INTERRUPT
871 * before the CPU is ready to receive. However, the engine is currently
872 * idle (we haven't started it yet), there is no possibility for a
873 * missed interrupt as we enabled the irq and so we can clear the
874 * immediate wakeup (until a real interrupt arrives for the waiter).
875 */
876 clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
877
878 spin_unlock_irqrestore(&b->irq_lock, flags);
879 }
880
intel_engine_fini_breadcrumbs(struct intel_engine_cs * engine)881 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
882 {
883 struct intel_breadcrumbs *b = &engine->breadcrumbs;
884
885 /* The engines should be idle and all requests accounted for! */
886 WARN_ON(READ_ONCE(b->irq_wait));
887 WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
888 WARN_ON(!list_empty(&b->signals));
889
890 if (!IS_ERR_OR_NULL(b->signaler))
891 kthread_stop(b->signaler);
892
893 cancel_fake_irq(engine);
894 }
895
896 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
897 #include "selftests/intel_breadcrumbs.c"
898 #endif
899