1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
34 #include <linux/sched/mm.h>
35 
36 struct i915_mm_struct {
37 	struct mm_struct *mm;
38 	struct drm_i915_private *i915;
39 	struct i915_mmu_notifier *mn;
40 	struct hlist_node node;
41 	struct kref kref;
42 	struct work_struct work;
43 };
44 
45 #if defined(CONFIG_MMU_NOTIFIER)
46 #include <linux/interval_tree.h>
47 
48 struct i915_mmu_notifier {
49 	spinlock_t lock;
50 	struct hlist_node node;
51 	struct mmu_notifier mn;
52 	struct rb_root_cached objects;
53 	struct workqueue_struct *wq;
54 };
55 
56 struct i915_mmu_object {
57 	struct i915_mmu_notifier *mn;
58 	struct drm_i915_gem_object *obj;
59 	struct interval_tree_node it;
60 	struct list_head link;
61 	struct work_struct work;
62 	bool attached;
63 };
64 
cancel_userptr(struct work_struct * work)65 static void cancel_userptr(struct work_struct *work)
66 {
67 	struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
68 	struct drm_i915_gem_object *obj = mo->obj;
69 	struct work_struct *active;
70 
71 	/* Cancel any active worker and force us to re-evaluate gup */
72 	mutex_lock(&obj->mm.lock);
73 	active = fetch_and_zero(&obj->userptr.work);
74 	mutex_unlock(&obj->mm.lock);
75 	if (active)
76 		goto out;
77 
78 	i915_gem_object_wait(obj, I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT, NULL);
79 
80 	mutex_lock(&obj->base.dev->struct_mutex);
81 
82 	/* We are inside a kthread context and can't be interrupted */
83 	if (i915_gem_object_unbind(obj) == 0)
84 		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
85 	WARN_ONCE(i915_gem_object_has_pages(obj),
86 		  "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_global=%d\n",
87 		  obj->bind_count,
88 		  atomic_read(&obj->mm.pages_pin_count),
89 		  obj->pin_global);
90 
91 	mutex_unlock(&obj->base.dev->struct_mutex);
92 
93 out:
94 	i915_gem_object_put(obj);
95 }
96 
add_object(struct i915_mmu_object * mo)97 static void add_object(struct i915_mmu_object *mo)
98 {
99 	if (mo->attached)
100 		return;
101 
102 	interval_tree_insert(&mo->it, &mo->mn->objects);
103 	mo->attached = true;
104 }
105 
del_object(struct i915_mmu_object * mo)106 static void del_object(struct i915_mmu_object *mo)
107 {
108 	if (!mo->attached)
109 		return;
110 
111 	interval_tree_remove(&mo->it, &mo->mn->objects);
112 	mo->attached = false;
113 }
114 
i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier * _mn,struct mm_struct * mm,unsigned long start,unsigned long end,bool blockable)115 static int i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
116 						       struct mm_struct *mm,
117 						       unsigned long start,
118 						       unsigned long end,
119 						       bool blockable)
120 {
121 	struct i915_mmu_notifier *mn =
122 		container_of(_mn, struct i915_mmu_notifier, mn);
123 	struct i915_mmu_object *mo;
124 	struct interval_tree_node *it;
125 	LIST_HEAD(cancelled);
126 
127 	if (RB_EMPTY_ROOT(&mn->objects.rb_root))
128 		return 0;
129 
130 	/* interval ranges are inclusive, but invalidate range is exclusive */
131 	end--;
132 
133 	spin_lock(&mn->lock);
134 	it = interval_tree_iter_first(&mn->objects, start, end);
135 	while (it) {
136 		if (!blockable) {
137 			spin_unlock(&mn->lock);
138 			return -EAGAIN;
139 		}
140 		/* The mmu_object is released late when destroying the
141 		 * GEM object so it is entirely possible to gain a
142 		 * reference on an object in the process of being freed
143 		 * since our serialisation is via the spinlock and not
144 		 * the struct_mutex - and consequently use it after it
145 		 * is freed and then double free it. To prevent that
146 		 * use-after-free we only acquire a reference on the
147 		 * object if it is not in the process of being destroyed.
148 		 */
149 		mo = container_of(it, struct i915_mmu_object, it);
150 		if (kref_get_unless_zero(&mo->obj->base.refcount))
151 			queue_work(mn->wq, &mo->work);
152 
153 		list_add(&mo->link, &cancelled);
154 		it = interval_tree_iter_next(it, start, end);
155 	}
156 	list_for_each_entry(mo, &cancelled, link)
157 		del_object(mo);
158 	spin_unlock(&mn->lock);
159 
160 	if (!list_empty(&cancelled))
161 		flush_workqueue(mn->wq);
162 
163 	return 0;
164 }
165 
166 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
167 	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
168 };
169 
170 static struct i915_mmu_notifier *
i915_mmu_notifier_create(struct mm_struct * mm)171 i915_mmu_notifier_create(struct mm_struct *mm)
172 {
173 	struct i915_mmu_notifier *mn;
174 
175 	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
176 	if (mn == NULL)
177 		return ERR_PTR(-ENOMEM);
178 
179 	spin_lock_init(&mn->lock);
180 	mn->mn.ops = &i915_gem_userptr_notifier;
181 	mn->objects = RB_ROOT_CACHED;
182 	mn->wq = alloc_workqueue("i915-userptr-release",
183 				 WQ_UNBOUND | WQ_MEM_RECLAIM,
184 				 0);
185 	if (mn->wq == NULL) {
186 		kfree(mn);
187 		return ERR_PTR(-ENOMEM);
188 	}
189 
190 	return mn;
191 }
192 
193 static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object * obj)194 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
195 {
196 	struct i915_mmu_object *mo;
197 
198 	mo = obj->userptr.mmu_object;
199 	if (mo == NULL)
200 		return;
201 
202 	spin_lock(&mo->mn->lock);
203 	del_object(mo);
204 	spin_unlock(&mo->mn->lock);
205 	kfree(mo);
206 
207 	obj->userptr.mmu_object = NULL;
208 }
209 
210 static struct i915_mmu_notifier *
i915_mmu_notifier_find(struct i915_mm_struct * mm)211 i915_mmu_notifier_find(struct i915_mm_struct *mm)
212 {
213 	struct i915_mmu_notifier *mn;
214 	int err = 0;
215 
216 	mn = mm->mn;
217 	if (mn)
218 		return mn;
219 
220 	mn = i915_mmu_notifier_create(mm->mm);
221 	if (IS_ERR(mn))
222 		err = PTR_ERR(mn);
223 
224 	down_write(&mm->mm->mmap_sem);
225 	mutex_lock(&mm->i915->mm_lock);
226 	if (mm->mn == NULL && !err) {
227 		/* Protected by mmap_sem (write-lock) */
228 		err = __mmu_notifier_register(&mn->mn, mm->mm);
229 		if (!err) {
230 			/* Protected by mm_lock */
231 			mm->mn = fetch_and_zero(&mn);
232 		}
233 	} else if (mm->mn) {
234 		/*
235 		 * Someone else raced and successfully installed the mmu
236 		 * notifier, we can cancel our own errors.
237 		 */
238 		err = 0;
239 	}
240 	mutex_unlock(&mm->i915->mm_lock);
241 	up_write(&mm->mm->mmap_sem);
242 
243 	if (mn && !IS_ERR(mn)) {
244 		destroy_workqueue(mn->wq);
245 		kfree(mn);
246 	}
247 
248 	return err ? ERR_PTR(err) : mm->mn;
249 }
250 
251 static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object * obj,unsigned flags)252 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
253 				    unsigned flags)
254 {
255 	struct i915_mmu_notifier *mn;
256 	struct i915_mmu_object *mo;
257 
258 	if (flags & I915_USERPTR_UNSYNCHRONIZED)
259 		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
260 
261 	if (WARN_ON(obj->userptr.mm == NULL))
262 		return -EINVAL;
263 
264 	mn = i915_mmu_notifier_find(obj->userptr.mm);
265 	if (IS_ERR(mn))
266 		return PTR_ERR(mn);
267 
268 	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
269 	if (mo == NULL)
270 		return -ENOMEM;
271 
272 	mo->mn = mn;
273 	mo->obj = obj;
274 	mo->it.start = obj->userptr.ptr;
275 	mo->it.last = obj->userptr.ptr + obj->base.size - 1;
276 	INIT_WORK(&mo->work, cancel_userptr);
277 
278 	obj->userptr.mmu_object = mo;
279 	return 0;
280 }
281 
282 static void
i915_mmu_notifier_free(struct i915_mmu_notifier * mn,struct mm_struct * mm)283 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
284 		       struct mm_struct *mm)
285 {
286 	if (mn == NULL)
287 		return;
288 
289 	mmu_notifier_unregister(&mn->mn, mm);
290 	destroy_workqueue(mn->wq);
291 	kfree(mn);
292 }
293 
294 #else
295 
296 static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object * obj)297 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
298 {
299 }
300 
301 static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object * obj,unsigned flags)302 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
303 				    unsigned flags)
304 {
305 	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
306 		return -ENODEV;
307 
308 	if (!capable(CAP_SYS_ADMIN))
309 		return -EPERM;
310 
311 	return 0;
312 }
313 
314 static void
i915_mmu_notifier_free(struct i915_mmu_notifier * mn,struct mm_struct * mm)315 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
316 		       struct mm_struct *mm)
317 {
318 }
319 
320 #endif
321 
322 static struct i915_mm_struct *
__i915_mm_struct_find(struct drm_i915_private * dev_priv,struct mm_struct * real)323 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
324 {
325 	struct i915_mm_struct *mm;
326 
327 	/* Protected by dev_priv->mm_lock */
328 	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
329 		if (mm->mm == real)
330 			return mm;
331 
332 	return NULL;
333 }
334 
335 static int
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object * obj)336 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
337 {
338 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
339 	struct i915_mm_struct *mm;
340 	int ret = 0;
341 
342 	/* During release of the GEM object we hold the struct_mutex. This
343 	 * precludes us from calling mmput() at that time as that may be
344 	 * the last reference and so call exit_mmap(). exit_mmap() will
345 	 * attempt to reap the vma, and if we were holding a GTT mmap
346 	 * would then call drm_gem_vm_close() and attempt to reacquire
347 	 * the struct mutex. So in order to avoid that recursion, we have
348 	 * to defer releasing the mm reference until after we drop the
349 	 * struct_mutex, i.e. we need to schedule a worker to do the clean
350 	 * up.
351 	 */
352 	mutex_lock(&dev_priv->mm_lock);
353 	mm = __i915_mm_struct_find(dev_priv, current->mm);
354 	if (mm == NULL) {
355 		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
356 		if (mm == NULL) {
357 			ret = -ENOMEM;
358 			goto out;
359 		}
360 
361 		kref_init(&mm->kref);
362 		mm->i915 = to_i915(obj->base.dev);
363 
364 		mm->mm = current->mm;
365 		mmgrab(current->mm);
366 
367 		mm->mn = NULL;
368 
369 		/* Protected by dev_priv->mm_lock */
370 		hash_add(dev_priv->mm_structs,
371 			 &mm->node, (unsigned long)mm->mm);
372 	} else
373 		kref_get(&mm->kref);
374 
375 	obj->userptr.mm = mm;
376 out:
377 	mutex_unlock(&dev_priv->mm_lock);
378 	return ret;
379 }
380 
381 static void
__i915_mm_struct_free__worker(struct work_struct * work)382 __i915_mm_struct_free__worker(struct work_struct *work)
383 {
384 	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
385 	i915_mmu_notifier_free(mm->mn, mm->mm);
386 	mmdrop(mm->mm);
387 	kfree(mm);
388 }
389 
390 static void
__i915_mm_struct_free(struct kref * kref)391 __i915_mm_struct_free(struct kref *kref)
392 {
393 	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
394 
395 	/* Protected by dev_priv->mm_lock */
396 	hash_del(&mm->node);
397 	mutex_unlock(&mm->i915->mm_lock);
398 
399 	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
400 	queue_work(mm->i915->mm.userptr_wq, &mm->work);
401 }
402 
403 static void
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object * obj)404 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
405 {
406 	if (obj->userptr.mm == NULL)
407 		return;
408 
409 	kref_put_mutex(&obj->userptr.mm->kref,
410 		       __i915_mm_struct_free,
411 		       &to_i915(obj->base.dev)->mm_lock);
412 	obj->userptr.mm = NULL;
413 }
414 
415 struct get_pages_work {
416 	struct work_struct work;
417 	struct drm_i915_gem_object *obj;
418 	struct task_struct *task;
419 };
420 
421 static struct sg_table *
__i915_gem_userptr_alloc_pages(struct drm_i915_gem_object * obj,struct page ** pvec,int num_pages)422 __i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj,
423 			       struct page **pvec, int num_pages)
424 {
425 	unsigned int max_segment = i915_sg_segment_size();
426 	struct sg_table *st;
427 	unsigned int sg_page_sizes;
428 	int ret;
429 
430 	st = kmalloc(sizeof(*st), GFP_KERNEL);
431 	if (!st)
432 		return ERR_PTR(-ENOMEM);
433 
434 alloc_table:
435 	ret = __sg_alloc_table_from_pages(st, pvec, num_pages,
436 					  0, num_pages << PAGE_SHIFT,
437 					  max_segment,
438 					  GFP_KERNEL);
439 	if (ret) {
440 		kfree(st);
441 		return ERR_PTR(ret);
442 	}
443 
444 	ret = i915_gem_gtt_prepare_pages(obj, st);
445 	if (ret) {
446 		sg_free_table(st);
447 
448 		if (max_segment > PAGE_SIZE) {
449 			max_segment = PAGE_SIZE;
450 			goto alloc_table;
451 		}
452 
453 		kfree(st);
454 		return ERR_PTR(ret);
455 	}
456 
457 	sg_page_sizes = i915_sg_page_sizes(st->sgl);
458 
459 	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
460 
461 	return st;
462 }
463 
464 static int
__i915_gem_userptr_set_active(struct drm_i915_gem_object * obj,bool value)465 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
466 			      bool value)
467 {
468 	int ret = 0;
469 
470 	/* During mm_invalidate_range we need to cancel any userptr that
471 	 * overlaps the range being invalidated. Doing so requires the
472 	 * struct_mutex, and that risks recursion. In order to cause
473 	 * recursion, the user must alias the userptr address space with
474 	 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
475 	 * to invalidate that mmaping, mm_invalidate_range is called with
476 	 * the userptr address *and* the struct_mutex held.  To prevent that
477 	 * we set a flag under the i915_mmu_notifier spinlock to indicate
478 	 * whether this object is valid.
479 	 */
480 #if defined(CONFIG_MMU_NOTIFIER)
481 	if (obj->userptr.mmu_object == NULL)
482 		return 0;
483 
484 	spin_lock(&obj->userptr.mmu_object->mn->lock);
485 	/* In order to serialise get_pages with an outstanding
486 	 * cancel_userptr, we must drop the struct_mutex and try again.
487 	 */
488 	if (!value)
489 		del_object(obj->userptr.mmu_object);
490 	else if (!work_pending(&obj->userptr.mmu_object->work))
491 		add_object(obj->userptr.mmu_object);
492 	else
493 		ret = -EAGAIN;
494 	spin_unlock(&obj->userptr.mmu_object->mn->lock);
495 #endif
496 
497 	return ret;
498 }
499 
500 static void
__i915_gem_userptr_get_pages_worker(struct work_struct * _work)501 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
502 {
503 	struct get_pages_work *work = container_of(_work, typeof(*work), work);
504 	struct drm_i915_gem_object *obj = work->obj;
505 	const int npages = obj->base.size >> PAGE_SHIFT;
506 	struct page **pvec;
507 	int pinned, ret;
508 
509 	ret = -ENOMEM;
510 	pinned = 0;
511 
512 	pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
513 	if (pvec != NULL) {
514 		struct mm_struct *mm = obj->userptr.mm->mm;
515 		unsigned int flags = 0;
516 
517 		if (!i915_gem_object_is_readonly(obj))
518 			flags |= FOLL_WRITE;
519 
520 		ret = -EFAULT;
521 		if (mmget_not_zero(mm)) {
522 			down_read(&mm->mmap_sem);
523 			while (pinned < npages) {
524 				ret = get_user_pages_remote
525 					(work->task, mm,
526 					 obj->userptr.ptr + pinned * PAGE_SIZE,
527 					 npages - pinned,
528 					 flags,
529 					 pvec + pinned, NULL, NULL);
530 				if (ret < 0)
531 					break;
532 
533 				pinned += ret;
534 			}
535 			up_read(&mm->mmap_sem);
536 			mmput(mm);
537 		}
538 	}
539 
540 	mutex_lock(&obj->mm.lock);
541 	if (obj->userptr.work == &work->work) {
542 		struct sg_table *pages = ERR_PTR(ret);
543 
544 		if (pinned == npages) {
545 			pages = __i915_gem_userptr_alloc_pages(obj, pvec,
546 							       npages);
547 			if (!IS_ERR(pages)) {
548 				pinned = 0;
549 				pages = NULL;
550 			}
551 		}
552 
553 		obj->userptr.work = ERR_CAST(pages);
554 		if (IS_ERR(pages))
555 			__i915_gem_userptr_set_active(obj, false);
556 	}
557 	mutex_unlock(&obj->mm.lock);
558 
559 	release_pages(pvec, pinned);
560 	kvfree(pvec);
561 
562 	i915_gem_object_put(obj);
563 	put_task_struct(work->task);
564 	kfree(work);
565 }
566 
567 static struct sg_table *
__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object * obj)568 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
569 {
570 	struct get_pages_work *work;
571 
572 	/* Spawn a worker so that we can acquire the
573 	 * user pages without holding our mutex. Access
574 	 * to the user pages requires mmap_sem, and we have
575 	 * a strict lock ordering of mmap_sem, struct_mutex -
576 	 * we already hold struct_mutex here and so cannot
577 	 * call gup without encountering a lock inversion.
578 	 *
579 	 * Userspace will keep on repeating the operation
580 	 * (thanks to EAGAIN) until either we hit the fast
581 	 * path or the worker completes. If the worker is
582 	 * cancelled or superseded, the task is still run
583 	 * but the results ignored. (This leads to
584 	 * complications that we may have a stray object
585 	 * refcount that we need to be wary of when
586 	 * checking for existing objects during creation.)
587 	 * If the worker encounters an error, it reports
588 	 * that error back to this function through
589 	 * obj->userptr.work = ERR_PTR.
590 	 */
591 	work = kmalloc(sizeof(*work), GFP_KERNEL);
592 	if (work == NULL)
593 		return ERR_PTR(-ENOMEM);
594 
595 	obj->userptr.work = &work->work;
596 
597 	work->obj = i915_gem_object_get(obj);
598 
599 	work->task = current;
600 	get_task_struct(work->task);
601 
602 	INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
603 	queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
604 
605 	return ERR_PTR(-EAGAIN);
606 }
607 
i915_gem_userptr_get_pages(struct drm_i915_gem_object * obj)608 static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
609 {
610 	const int num_pages = obj->base.size >> PAGE_SHIFT;
611 	struct mm_struct *mm = obj->userptr.mm->mm;
612 	struct page **pvec;
613 	struct sg_table *pages;
614 	bool active;
615 	int pinned;
616 
617 	/* If userspace should engineer that these pages are replaced in
618 	 * the vma between us binding this page into the GTT and completion
619 	 * of rendering... Their loss. If they change the mapping of their
620 	 * pages they need to create a new bo to point to the new vma.
621 	 *
622 	 * However, that still leaves open the possibility of the vma
623 	 * being copied upon fork. Which falls under the same userspace
624 	 * synchronisation issue as a regular bo, except that this time
625 	 * the process may not be expecting that a particular piece of
626 	 * memory is tied to the GPU.
627 	 *
628 	 * Fortunately, we can hook into the mmu_notifier in order to
629 	 * discard the page references prior to anything nasty happening
630 	 * to the vma (discard or cloning) which should prevent the more
631 	 * egregious cases from causing harm.
632 	 */
633 
634 	if (obj->userptr.work) {
635 		/* active flag should still be held for the pending work */
636 		if (IS_ERR(obj->userptr.work))
637 			return PTR_ERR(obj->userptr.work);
638 		else
639 			return -EAGAIN;
640 	}
641 
642 	pvec = NULL;
643 	pinned = 0;
644 
645 	if (mm == current->mm) {
646 		pvec = kvmalloc_array(num_pages, sizeof(struct page *),
647 				      GFP_KERNEL |
648 				      __GFP_NORETRY |
649 				      __GFP_NOWARN);
650 		if (pvec) /* defer to worker if malloc fails */
651 			pinned = __get_user_pages_fast(obj->userptr.ptr,
652 						       num_pages,
653 						       !i915_gem_object_is_readonly(obj),
654 						       pvec);
655 	}
656 
657 	active = false;
658 	if (pinned < 0) {
659 		pages = ERR_PTR(pinned);
660 		pinned = 0;
661 	} else if (pinned < num_pages) {
662 		pages = __i915_gem_userptr_get_pages_schedule(obj);
663 		active = pages == ERR_PTR(-EAGAIN);
664 	} else {
665 		pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages);
666 		active = !IS_ERR(pages);
667 	}
668 	if (active)
669 		__i915_gem_userptr_set_active(obj, true);
670 
671 	if (IS_ERR(pages))
672 		release_pages(pvec, pinned);
673 	kvfree(pvec);
674 
675 	return PTR_ERR_OR_ZERO(pages);
676 }
677 
678 static void
i915_gem_userptr_put_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)679 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
680 			   struct sg_table *pages)
681 {
682 	struct sgt_iter sgt_iter;
683 	struct page *page;
684 
685 	BUG_ON(obj->userptr.work != NULL);
686 	__i915_gem_userptr_set_active(obj, false);
687 
688 	if (obj->mm.madv != I915_MADV_WILLNEED)
689 		obj->mm.dirty = false;
690 
691 	i915_gem_gtt_finish_pages(obj, pages);
692 
693 	for_each_sgt_page(page, sgt_iter, pages) {
694 		if (obj->mm.dirty)
695 			set_page_dirty(page);
696 
697 		mark_page_accessed(page);
698 		put_page(page);
699 	}
700 	obj->mm.dirty = false;
701 
702 	sg_free_table(pages);
703 	kfree(pages);
704 }
705 
706 static void
i915_gem_userptr_release(struct drm_i915_gem_object * obj)707 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
708 {
709 	i915_gem_userptr_release__mmu_notifier(obj);
710 	i915_gem_userptr_release__mm_struct(obj);
711 }
712 
713 static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object * obj)714 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
715 {
716 	if (obj->userptr.mmu_object)
717 		return 0;
718 
719 	return i915_gem_userptr_init__mmu_notifier(obj, 0);
720 }
721 
722 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
723 	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
724 		 I915_GEM_OBJECT_IS_SHRINKABLE,
725 	.get_pages = i915_gem_userptr_get_pages,
726 	.put_pages = i915_gem_userptr_put_pages,
727 	.dmabuf_export = i915_gem_userptr_dmabuf_export,
728 	.release = i915_gem_userptr_release,
729 };
730 
731 /*
732  * Creates a new mm object that wraps some normal memory from the process
733  * context - user memory.
734  *
735  * We impose several restrictions upon the memory being mapped
736  * into the GPU.
737  * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
738  * 2. It must be normal system memory, not a pointer into another map of IO
739  *    space (e.g. it must not be a GTT mmapping of another object).
740  * 3. We only allow a bo as large as we could in theory map into the GTT,
741  *    that is we limit the size to the total size of the GTT.
742  * 4. The bo is marked as being snoopable. The backing pages are left
743  *    accessible directly by the CPU, but reads and writes by the GPU may
744  *    incur the cost of a snoop (unless you have an LLC architecture).
745  *
746  * Synchronisation between multiple users and the GPU is left to userspace
747  * through the normal set-domain-ioctl. The kernel will enforce that the
748  * GPU relinquishes the VMA before it is returned back to the system
749  * i.e. upon free(), munmap() or process termination. However, the userspace
750  * malloc() library may not immediately relinquish the VMA after free() and
751  * instead reuse it whilst the GPU is still reading and writing to the VMA.
752  * Caveat emptor.
753  *
754  * Also note, that the object created here is not currently a "first class"
755  * object, in that several ioctls are banned. These are the CPU access
756  * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
757  * direct access via your pointer rather than use those ioctls. Another
758  * restriction is that we do not allow userptr surfaces to be pinned to the
759  * hardware and so we reject any attempt to create a framebuffer out of a
760  * userptr.
761  *
762  * If you think this is a good interface to use to pass GPU memory between
763  * drivers, please use dma-buf instead. In fact, wherever possible use
764  * dma-buf instead.
765  */
766 int
i915_gem_userptr_ioctl(struct drm_device * dev,void * data,struct drm_file * file)767 i915_gem_userptr_ioctl(struct drm_device *dev,
768 		       void *data,
769 		       struct drm_file *file)
770 {
771 	struct drm_i915_private *dev_priv = to_i915(dev);
772 	struct drm_i915_gem_userptr *args = data;
773 	struct drm_i915_gem_object *obj;
774 	int ret;
775 	u32 handle;
776 
777 	if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
778 		/* We cannot support coherent userptr objects on hw without
779 		 * LLC and broken snooping.
780 		 */
781 		return -ENODEV;
782 	}
783 
784 	if (args->flags & ~(I915_USERPTR_READ_ONLY |
785 			    I915_USERPTR_UNSYNCHRONIZED))
786 		return -EINVAL;
787 
788 	if (!args->user_size)
789 		return -EINVAL;
790 
791 	if (offset_in_page(args->user_ptr | args->user_size))
792 		return -EINVAL;
793 
794 	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
795 		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
796 		return -EFAULT;
797 
798 	if (args->flags & I915_USERPTR_READ_ONLY) {
799 		struct i915_hw_ppgtt *ppgtt;
800 
801 		/*
802 		 * On almost all of the older hw, we cannot tell the GPU that
803 		 * a page is readonly.
804 		 */
805 		ppgtt = dev_priv->kernel_context->ppgtt;
806 		if (!ppgtt || !ppgtt->vm.has_read_only)
807 			return -ENODEV;
808 	}
809 
810 	obj = i915_gem_object_alloc(dev_priv);
811 	if (obj == NULL)
812 		return -ENOMEM;
813 
814 	drm_gem_private_object_init(dev, &obj->base, args->user_size);
815 	i915_gem_object_init(obj, &i915_gem_userptr_ops);
816 	obj->read_domains = I915_GEM_DOMAIN_CPU;
817 	obj->write_domain = I915_GEM_DOMAIN_CPU;
818 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
819 
820 	obj->userptr.ptr = args->user_ptr;
821 	if (args->flags & I915_USERPTR_READ_ONLY)
822 		i915_gem_object_set_readonly(obj);
823 
824 	/* And keep a pointer to the current->mm for resolving the user pages
825 	 * at binding. This means that we need to hook into the mmu_notifier
826 	 * in order to detect if the mmu is destroyed.
827 	 */
828 	ret = i915_gem_userptr_init__mm_struct(obj);
829 	if (ret == 0)
830 		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
831 	if (ret == 0)
832 		ret = drm_gem_handle_create(file, &obj->base, &handle);
833 
834 	/* drop reference from allocate - handle holds it now */
835 	i915_gem_object_put(obj);
836 	if (ret)
837 		return ret;
838 
839 	args->handle = handle;
840 	return 0;
841 }
842 
i915_gem_init_userptr(struct drm_i915_private * dev_priv)843 int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
844 {
845 	mutex_init(&dev_priv->mm_lock);
846 	hash_init(dev_priv->mm_structs);
847 
848 	dev_priv->mm.userptr_wq =
849 		alloc_workqueue("i915-userptr-acquire",
850 				WQ_HIGHPRI | WQ_UNBOUND,
851 				0);
852 	if (!dev_priv->mm.userptr_wq)
853 		return -ENOMEM;
854 
855 	return 0;
856 }
857 
i915_gem_cleanup_userptr(struct drm_i915_private * dev_priv)858 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
859 {
860 	destroy_workqueue(dev_priv->mm.userptr_wq);
861 }
862