1 /*
2 * Driver for Pondicherry2 memory controller.
3 *
4 * Copyright (c) 2016, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * [Derived from sb_edac.c]
16 *
17 * Translation of system physical addresses to DIMM addresses
18 * is a two stage process:
19 *
20 * First the Pondicherry 2 memory controller handles slice and channel interleaving
21 * in "sys2pmi()". This is (almost) completley common between platforms.
22 *
23 * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM,
24 * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters.
25 */
26
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <linux/pci_ids.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/edac.h>
34 #include <linux/mmzone.h>
35 #include <linux/smp.h>
36 #include <linux/bitmap.h>
37 #include <linux/math64.h>
38 #include <linux/mod_devicetable.h>
39 #include <asm/cpu_device_id.h>
40 #include <asm/intel-family.h>
41 #include <asm/processor.h>
42 #include <asm/mce.h>
43
44 #include "edac_mc.h"
45 #include "edac_module.h"
46 #include "pnd2_edac.h"
47
48 #define EDAC_MOD_STR "pnd2_edac"
49
50 #define APL_NUM_CHANNELS 4
51 #define DNV_NUM_CHANNELS 2
52 #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */
53
54 enum type {
55 APL,
56 DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */
57 };
58
59 struct dram_addr {
60 int chan;
61 int dimm;
62 int rank;
63 int bank;
64 int row;
65 int col;
66 };
67
68 struct pnd2_pvt {
69 int dimm_geom[APL_NUM_CHANNELS];
70 u64 tolm, tohm;
71 };
72
73 /*
74 * System address space is divided into multiple regions with
75 * different interleave rules in each. The as0/as1 regions
76 * have no interleaving at all. The as2 region is interleaved
77 * between two channels. The mot region is magic and may overlap
78 * other regions, with its interleave rules taking precedence.
79 * Addresses not in any of these regions are interleaved across
80 * all four channels.
81 */
82 static struct region {
83 u64 base;
84 u64 limit;
85 u8 enabled;
86 } mot, as0, as1, as2;
87
88 static struct dunit_ops {
89 char *name;
90 enum type type;
91 int pmiaddr_shift;
92 int pmiidx_shift;
93 int channels;
94 int dimms_per_channel;
95 int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name);
96 int (*get_registers)(void);
97 int (*check_ecc)(void);
98 void (*mk_region)(char *name, struct region *rp, void *asym);
99 void (*get_dimm_config)(struct mem_ctl_info *mci);
100 int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
101 struct dram_addr *daddr, char *msg);
102 } *ops;
103
104 static struct mem_ctl_info *pnd2_mci;
105
106 #define PND2_MSG_SIZE 256
107
108 /* Debug macros */
109 #define pnd2_printk(level, fmt, arg...) \
110 edac_printk(level, "pnd2", fmt, ##arg)
111
112 #define pnd2_mc_printk(mci, level, fmt, arg...) \
113 edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg)
114
115 #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12
116 #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13
117 #define SELECTOR_DISABLED (-1)
118 #define _4GB (1ul << 32)
119
120 #define PMI_ADDRESS_WIDTH 31
121 #define PND_MAX_PHYS_BIT 39
122
123 #define APL_ASYMSHIFT 28
124 #define DNV_ASYMSHIFT 31
125 #define CH_HASH_MASK_LSB 6
126 #define SLICE_HASH_MASK_LSB 6
127 #define MOT_SLC_INTLV_BIT 12
128 #define LOG2_PMI_ADDR_GRANULARITY 5
129 #define MOT_SHIFT 24
130
131 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
132 #define U64_LSHIFT(val, s) ((u64)(val) << (s))
133
134 /*
135 * On Apollo Lake we access memory controller registers via a
136 * side-band mailbox style interface in a hidden PCI device
137 * configuration space.
138 */
139 static struct pci_bus *p2sb_bus;
140 #define P2SB_DEVFN PCI_DEVFN(0xd, 0)
141 #define P2SB_ADDR_OFF 0xd0
142 #define P2SB_DATA_OFF 0xd4
143 #define P2SB_STAT_OFF 0xd8
144 #define P2SB_ROUT_OFF 0xda
145 #define P2SB_EADD_OFF 0xdc
146 #define P2SB_HIDE_OFF 0xe1
147
148 #define P2SB_BUSY 1
149
150 #define P2SB_READ(size, off, ptr) \
151 pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr)
152 #define P2SB_WRITE(size, off, val) \
153 pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val)
154
p2sb_is_busy(u16 * status)155 static bool p2sb_is_busy(u16 *status)
156 {
157 P2SB_READ(word, P2SB_STAT_OFF, status);
158
159 return !!(*status & P2SB_BUSY);
160 }
161
_apl_rd_reg(int port,int off,int op,u32 * data)162 static int _apl_rd_reg(int port, int off, int op, u32 *data)
163 {
164 int retries = 0xff, ret;
165 u16 status;
166 u8 hidden;
167
168 /* Unhide the P2SB device, if it's hidden */
169 P2SB_READ(byte, P2SB_HIDE_OFF, &hidden);
170 if (hidden)
171 P2SB_WRITE(byte, P2SB_HIDE_OFF, 0);
172
173 if (p2sb_is_busy(&status)) {
174 ret = -EAGAIN;
175 goto out;
176 }
177
178 P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off);
179 P2SB_WRITE(dword, P2SB_DATA_OFF, 0);
180 P2SB_WRITE(dword, P2SB_EADD_OFF, 0);
181 P2SB_WRITE(word, P2SB_ROUT_OFF, 0);
182 P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY);
183
184 while (p2sb_is_busy(&status)) {
185 if (retries-- == 0) {
186 ret = -EBUSY;
187 goto out;
188 }
189 }
190
191 P2SB_READ(dword, P2SB_DATA_OFF, data);
192 ret = (status >> 1) & 0x3;
193 out:
194 /* Hide the P2SB device, if it was hidden before */
195 if (hidden)
196 P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden);
197
198 return ret;
199 }
200
apl_rd_reg(int port,int off,int op,void * data,size_t sz,char * name)201 static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
202 {
203 int ret = 0;
204
205 edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op);
206 switch (sz) {
207 case 8:
208 ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4));
209 /* fall through */
210 case 4:
211 ret |= _apl_rd_reg(port, off, op, (u32 *)data);
212 pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name,
213 sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret);
214 break;
215 }
216
217 return ret;
218 }
219
get_mem_ctrl_hub_base_addr(void)220 static u64 get_mem_ctrl_hub_base_addr(void)
221 {
222 struct b_cr_mchbar_lo_pci lo;
223 struct b_cr_mchbar_hi_pci hi;
224 struct pci_dev *pdev;
225
226 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
227 if (pdev) {
228 pci_read_config_dword(pdev, 0x48, (u32 *)&lo);
229 pci_read_config_dword(pdev, 0x4c, (u32 *)&hi);
230 pci_dev_put(pdev);
231 } else {
232 return 0;
233 }
234
235 if (!lo.enable) {
236 edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n");
237 return 0;
238 }
239
240 return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15);
241 }
242
get_sideband_reg_base_addr(void)243 static u64 get_sideband_reg_base_addr(void)
244 {
245 struct pci_dev *pdev;
246 u32 hi, lo;
247 u8 hidden;
248
249 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL);
250 if (pdev) {
251 /* Unhide the P2SB device, if it's hidden */
252 pci_read_config_byte(pdev, 0xe1, &hidden);
253 if (hidden)
254 pci_write_config_byte(pdev, 0xe1, 0);
255
256 pci_read_config_dword(pdev, 0x10, &lo);
257 pci_read_config_dword(pdev, 0x14, &hi);
258 lo &= 0xfffffff0;
259
260 /* Hide the P2SB device, if it was hidden before */
261 if (hidden)
262 pci_write_config_byte(pdev, 0xe1, hidden);
263
264 pci_dev_put(pdev);
265 return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0));
266 } else {
267 return 0xfd000000;
268 }
269 }
270
dnv_rd_reg(int port,int off,int op,void * data,size_t sz,char * name)271 static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
272 {
273 struct pci_dev *pdev;
274 char *base;
275 u64 addr;
276
277 if (op == 4) {
278 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
279 if (!pdev)
280 return -ENODEV;
281
282 pci_read_config_dword(pdev, off, data);
283 pci_dev_put(pdev);
284 } else {
285 /* MMIO via memory controller hub base address */
286 if (op == 0 && port == 0x4c) {
287 addr = get_mem_ctrl_hub_base_addr();
288 if (!addr)
289 return -ENODEV;
290 } else {
291 /* MMIO via sideband register base address */
292 addr = get_sideband_reg_base_addr();
293 if (!addr)
294 return -ENODEV;
295 addr += (port << 16);
296 }
297
298 base = ioremap((resource_size_t)addr, 0x10000);
299 if (!base)
300 return -ENODEV;
301
302 if (sz == 8)
303 *(u32 *)(data + 4) = *(u32 *)(base + off + 4);
304 *(u32 *)data = *(u32 *)(base + off);
305
306 iounmap(base);
307 }
308
309 edac_dbg(2, "Read %s=%.8x_%.8x\n", name,
310 (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data);
311
312 return 0;
313 }
314
315 #define RD_REGP(regp, regname, port) \
316 ops->rd_reg(port, \
317 regname##_offset, \
318 regname##_r_opcode, \
319 regp, sizeof(struct regname), \
320 #regname)
321
322 #define RD_REG(regp, regname) \
323 ops->rd_reg(regname ## _port, \
324 regname##_offset, \
325 regname##_r_opcode, \
326 regp, sizeof(struct regname), \
327 #regname)
328
329 static u64 top_lm, top_hm;
330 static bool two_slices;
331 static bool two_channels; /* Both PMI channels in one slice enabled */
332
333 static u8 sym_chan_mask;
334 static u8 asym_chan_mask;
335 static u8 chan_mask;
336
337 static int slice_selector = -1;
338 static int chan_selector = -1;
339 static u64 slice_hash_mask;
340 static u64 chan_hash_mask;
341
mk_region(char * name,struct region * rp,u64 base,u64 limit)342 static void mk_region(char *name, struct region *rp, u64 base, u64 limit)
343 {
344 rp->enabled = 1;
345 rp->base = base;
346 rp->limit = limit;
347 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit);
348 }
349
mk_region_mask(char * name,struct region * rp,u64 base,u64 mask)350 static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask)
351 {
352 if (mask == 0) {
353 pr_info(FW_BUG "MOT mask cannot be zero\n");
354 return;
355 }
356 if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) {
357 pr_info(FW_BUG "MOT mask not power of two\n");
358 return;
359 }
360 if (base & ~mask) {
361 pr_info(FW_BUG "MOT region base/mask alignment error\n");
362 return;
363 }
364 rp->base = base;
365 rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0);
366 rp->enabled = 1;
367 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit);
368 }
369
in_region(struct region * rp,u64 addr)370 static bool in_region(struct region *rp, u64 addr)
371 {
372 if (!rp->enabled)
373 return false;
374
375 return rp->base <= addr && addr <= rp->limit;
376 }
377
gen_sym_mask(struct b_cr_slice_channel_hash * p)378 static int gen_sym_mask(struct b_cr_slice_channel_hash *p)
379 {
380 int mask = 0;
381
382 if (!p->slice_0_mem_disabled)
383 mask |= p->sym_slice0_channel_enabled;
384
385 if (!p->slice_1_disabled)
386 mask |= p->sym_slice1_channel_enabled << 2;
387
388 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
389 mask &= 0x5;
390
391 return mask;
392 }
393
gen_asym_mask(struct b_cr_slice_channel_hash * p,struct b_cr_asym_mem_region0_mchbar * as0,struct b_cr_asym_mem_region1_mchbar * as1,struct b_cr_asym_2way_mem_region_mchbar * as2way)394 static int gen_asym_mask(struct b_cr_slice_channel_hash *p,
395 struct b_cr_asym_mem_region0_mchbar *as0,
396 struct b_cr_asym_mem_region1_mchbar *as1,
397 struct b_cr_asym_2way_mem_region_mchbar *as2way)
398 {
399 const int intlv[] = { 0x5, 0xA, 0x3, 0xC };
400 int mask = 0;
401
402 if (as2way->asym_2way_interleave_enable)
403 mask = intlv[as2way->asym_2way_intlv_mode];
404 if (as0->slice0_asym_enable)
405 mask |= (1 << as0->slice0_asym_channel_select);
406 if (as1->slice1_asym_enable)
407 mask |= (4 << as1->slice1_asym_channel_select);
408 if (p->slice_0_mem_disabled)
409 mask &= 0xc;
410 if (p->slice_1_disabled)
411 mask &= 0x3;
412 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
413 mask &= 0x5;
414
415 return mask;
416 }
417
418 static struct b_cr_tolud_pci tolud;
419 static struct b_cr_touud_lo_pci touud_lo;
420 static struct b_cr_touud_hi_pci touud_hi;
421 static struct b_cr_asym_mem_region0_mchbar asym0;
422 static struct b_cr_asym_mem_region1_mchbar asym1;
423 static struct b_cr_asym_2way_mem_region_mchbar asym_2way;
424 static struct b_cr_mot_out_base_mchbar mot_base;
425 static struct b_cr_mot_out_mask_mchbar mot_mask;
426 static struct b_cr_slice_channel_hash chash;
427
428 /* Apollo Lake dunit */
429 /*
430 * Validated on board with just two DIMMs in the [0] and [2] positions
431 * in this array. Other port number matches documentation, but caution
432 * advised.
433 */
434 static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 };
435 static struct d_cr_drp0 drp0[APL_NUM_CHANNELS];
436
437 /* Denverton dunit */
438 static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 };
439 static struct d_cr_dsch dsch;
440 static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS];
441 static struct d_cr_drp drp[DNV_NUM_CHANNELS];
442 static struct d_cr_dmap dmap[DNV_NUM_CHANNELS];
443 static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS];
444 static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS];
445 static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS];
446 static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS];
447 static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS];
448
apl_mk_region(char * name,struct region * rp,void * asym)449 static void apl_mk_region(char *name, struct region *rp, void *asym)
450 {
451 struct b_cr_asym_mem_region0_mchbar *a = asym;
452
453 mk_region(name, rp,
454 U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT),
455 U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) +
456 GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
457 }
458
dnv_mk_region(char * name,struct region * rp,void * asym)459 static void dnv_mk_region(char *name, struct region *rp, void *asym)
460 {
461 struct b_cr_asym_mem_region_denverton *a = asym;
462
463 mk_region(name, rp,
464 U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT),
465 U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) +
466 GENMASK_ULL(DNV_ASYMSHIFT - 1, 0));
467 }
468
apl_get_registers(void)469 static int apl_get_registers(void)
470 {
471 int ret = -ENODEV;
472 int i;
473
474 if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar))
475 return -ENODEV;
476
477 /*
478 * RD_REGP() will fail for unpopulated or non-existent
479 * DIMM slots. Return success if we find at least one DIMM.
480 */
481 for (i = 0; i < APL_NUM_CHANNELS; i++)
482 if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i]))
483 ret = 0;
484
485 return ret;
486 }
487
dnv_get_registers(void)488 static int dnv_get_registers(void)
489 {
490 int i;
491
492 if (RD_REG(&dsch, d_cr_dsch))
493 return -ENODEV;
494
495 for (i = 0; i < DNV_NUM_CHANNELS; i++)
496 if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) ||
497 RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) ||
498 RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) ||
499 RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) ||
500 RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) ||
501 RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) ||
502 RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) ||
503 RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i]))
504 return -ENODEV;
505
506 return 0;
507 }
508
509 /*
510 * Read all the h/w config registers once here (they don't
511 * change at run time. Figure out which address ranges have
512 * which interleave characteristics.
513 */
get_registers(void)514 static int get_registers(void)
515 {
516 const int intlv[] = { 10, 11, 12, 12 };
517
518 if (RD_REG(&tolud, b_cr_tolud_pci) ||
519 RD_REG(&touud_lo, b_cr_touud_lo_pci) ||
520 RD_REG(&touud_hi, b_cr_touud_hi_pci) ||
521 RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) ||
522 RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) ||
523 RD_REG(&mot_base, b_cr_mot_out_base_mchbar) ||
524 RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) ||
525 RD_REG(&chash, b_cr_slice_channel_hash))
526 return -ENODEV;
527
528 if (ops->get_registers())
529 return -ENODEV;
530
531 if (ops->type == DNV) {
532 /* PMI channel idx (always 0) for asymmetric region */
533 asym0.slice0_asym_channel_select = 0;
534 asym1.slice1_asym_channel_select = 0;
535 /* PMI channel bitmap (always 1) for symmetric region */
536 chash.sym_slice0_channel_enabled = 0x1;
537 chash.sym_slice1_channel_enabled = 0x1;
538 }
539
540 if (asym0.slice0_asym_enable)
541 ops->mk_region("as0", &as0, &asym0);
542
543 if (asym1.slice1_asym_enable)
544 ops->mk_region("as1", &as1, &asym1);
545
546 if (asym_2way.asym_2way_interleave_enable) {
547 mk_region("as2way", &as2,
548 U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT),
549 U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) +
550 GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
551 }
552
553 if (mot_base.imr_en) {
554 mk_region_mask("mot", &mot,
555 U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT),
556 U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT));
557 }
558
559 top_lm = U64_LSHIFT(tolud.tolud, 20);
560 top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20);
561
562 two_slices = !chash.slice_1_disabled &&
563 !chash.slice_0_mem_disabled &&
564 (chash.sym_slice0_channel_enabled != 0) &&
565 (chash.sym_slice1_channel_enabled != 0);
566 two_channels = !chash.ch_1_disabled &&
567 !chash.enable_pmi_dual_data_mode &&
568 ((chash.sym_slice0_channel_enabled == 3) ||
569 (chash.sym_slice1_channel_enabled == 3));
570
571 sym_chan_mask = gen_sym_mask(&chash);
572 asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way);
573 chan_mask = sym_chan_mask | asym_chan_mask;
574
575 if (two_slices && !two_channels) {
576 if (chash.hvm_mode)
577 slice_selector = 29;
578 else
579 slice_selector = intlv[chash.interleave_mode];
580 } else if (!two_slices && two_channels) {
581 if (chash.hvm_mode)
582 chan_selector = 29;
583 else
584 chan_selector = intlv[chash.interleave_mode];
585 } else if (two_slices && two_channels) {
586 if (chash.hvm_mode) {
587 slice_selector = 29;
588 chan_selector = 30;
589 } else {
590 slice_selector = intlv[chash.interleave_mode];
591 chan_selector = intlv[chash.interleave_mode] + 1;
592 }
593 }
594
595 if (two_slices) {
596 if (!chash.hvm_mode)
597 slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB;
598 if (!two_channels)
599 slice_hash_mask |= BIT_ULL(slice_selector);
600 }
601
602 if (two_channels) {
603 if (!chash.hvm_mode)
604 chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB;
605 if (!two_slices)
606 chan_hash_mask |= BIT_ULL(chan_selector);
607 }
608
609 return 0;
610 }
611
612 /* Get a contiguous memory address (remove the MMIO gap) */
remove_mmio_gap(u64 sys)613 static u64 remove_mmio_gap(u64 sys)
614 {
615 return (sys < _4GB) ? sys : sys - (_4GB - top_lm);
616 }
617
618 /* Squeeze out one address bit, shift upper part down to fill gap */
remove_addr_bit(u64 * addr,int bitidx)619 static void remove_addr_bit(u64 *addr, int bitidx)
620 {
621 u64 mask;
622
623 if (bitidx == -1)
624 return;
625
626 mask = (1ull << bitidx) - 1;
627 *addr = ((*addr >> 1) & ~mask) | (*addr & mask);
628 }
629
630 /* XOR all the bits from addr specified in mask */
hash_by_mask(u64 addr,u64 mask)631 static int hash_by_mask(u64 addr, u64 mask)
632 {
633 u64 result = addr & mask;
634
635 result = (result >> 32) ^ result;
636 result = (result >> 16) ^ result;
637 result = (result >> 8) ^ result;
638 result = (result >> 4) ^ result;
639 result = (result >> 2) ^ result;
640 result = (result >> 1) ^ result;
641
642 return (int)result & 1;
643 }
644
645 /*
646 * First stage decode. Take the system address and figure out which
647 * second stage will deal with it based on interleave modes.
648 */
sys2pmi(const u64 addr,u32 * pmiidx,u64 * pmiaddr,char * msg)649 static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg)
650 {
651 u64 contig_addr, contig_base, contig_offset, contig_base_adj;
652 int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
653 MOT_CHAN_INTLV_BIT_1SLC_2CH;
654 int slice_intlv_bit_rm = SELECTOR_DISABLED;
655 int chan_intlv_bit_rm = SELECTOR_DISABLED;
656 /* Determine if address is in the MOT region. */
657 bool mot_hit = in_region(&mot, addr);
658 /* Calculate the number of symmetric regions enabled. */
659 int sym_channels = hweight8(sym_chan_mask);
660
661 /*
662 * The amount we need to shift the asym base can be determined by the
663 * number of enabled symmetric channels.
664 * NOTE: This can only work because symmetric memory is not supposed
665 * to do a 3-way interleave.
666 */
667 int sym_chan_shift = sym_channels >> 1;
668
669 /* Give up if address is out of range, or in MMIO gap */
670 if (addr >= (1ul << PND_MAX_PHYS_BIT) ||
671 (addr >= top_lm && addr < _4GB) || addr >= top_hm) {
672 snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr);
673 return -EINVAL;
674 }
675
676 /* Get a contiguous memory address (remove the MMIO gap) */
677 contig_addr = remove_mmio_gap(addr);
678
679 if (in_region(&as0, addr)) {
680 *pmiidx = asym0.slice0_asym_channel_select;
681
682 contig_base = remove_mmio_gap(as0.base);
683 contig_offset = contig_addr - contig_base;
684 contig_base_adj = (contig_base >> sym_chan_shift) *
685 ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1);
686 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
687 } else if (in_region(&as1, addr)) {
688 *pmiidx = 2u + asym1.slice1_asym_channel_select;
689
690 contig_base = remove_mmio_gap(as1.base);
691 contig_offset = contig_addr - contig_base;
692 contig_base_adj = (contig_base >> sym_chan_shift) *
693 ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1);
694 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
695 } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) {
696 bool channel1;
697
698 mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH;
699 *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1;
700 channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) :
701 hash_by_mask(contig_addr, chan_hash_mask);
702 *pmiidx |= (u32)channel1;
703
704 contig_base = remove_mmio_gap(as2.base);
705 chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector;
706 contig_offset = contig_addr - contig_base;
707 remove_addr_bit(&contig_offset, chan_intlv_bit_rm);
708 contig_addr = (contig_base >> sym_chan_shift) + contig_offset;
709 } else {
710 /* Otherwise we're in normal, boring symmetric mode. */
711 *pmiidx = 0u;
712
713 if (two_slices) {
714 bool slice1;
715
716 if (mot_hit) {
717 slice_intlv_bit_rm = MOT_SLC_INTLV_BIT;
718 slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1;
719 } else {
720 slice_intlv_bit_rm = slice_selector;
721 slice1 = hash_by_mask(addr, slice_hash_mask);
722 }
723
724 *pmiidx = (u32)slice1 << 1;
725 }
726
727 if (two_channels) {
728 bool channel1;
729
730 mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
731 MOT_CHAN_INTLV_BIT_1SLC_2CH;
732
733 if (mot_hit) {
734 chan_intlv_bit_rm = mot_intlv_bit;
735 channel1 = (addr >> mot_intlv_bit) & 1;
736 } else {
737 chan_intlv_bit_rm = chan_selector;
738 channel1 = hash_by_mask(contig_addr, chan_hash_mask);
739 }
740
741 *pmiidx |= (u32)channel1;
742 }
743 }
744
745 /* Remove the chan_selector bit first */
746 remove_addr_bit(&contig_addr, chan_intlv_bit_rm);
747 /* Remove the slice bit (we remove it second because it must be lower */
748 remove_addr_bit(&contig_addr, slice_intlv_bit_rm);
749 *pmiaddr = contig_addr;
750
751 return 0;
752 }
753
754 /* Translate PMI address to memory (rank, row, bank, column) */
755 #define C(n) (0x10 | (n)) /* column */
756 #define B(n) (0x20 | (n)) /* bank */
757 #define R(n) (0x40 | (n)) /* row */
758 #define RS (0x80) /* rank */
759
760 /* addrdec values */
761 #define AMAP_1KB 0
762 #define AMAP_2KB 1
763 #define AMAP_4KB 2
764 #define AMAP_RSVD 3
765
766 /* dden values */
767 #define DEN_4Gb 0
768 #define DEN_8Gb 2
769
770 /* dwid values */
771 #define X8 0
772 #define X16 1
773
774 static struct dimm_geometry {
775 u8 addrdec;
776 u8 dden;
777 u8 dwid;
778 u8 rowbits, colbits;
779 u16 bits[PMI_ADDRESS_WIDTH];
780 } dimms[] = {
781 {
782 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16,
783 .rowbits = 15, .colbits = 10,
784 .bits = {
785 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
786 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
787 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
788 0, 0, 0, 0
789 }
790 },
791 {
792 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8,
793 .rowbits = 16, .colbits = 10,
794 .bits = {
795 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
796 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
797 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
798 R(15), 0, 0, 0
799 }
800 },
801 {
802 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16,
803 .rowbits = 16, .colbits = 10,
804 .bits = {
805 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
806 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
807 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
808 R(15), 0, 0, 0
809 }
810 },
811 {
812 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8,
813 .rowbits = 16, .colbits = 11,
814 .bits = {
815 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
816 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
817 R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13),
818 R(14), R(15), 0, 0
819 }
820 },
821 {
822 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16,
823 .rowbits = 15, .colbits = 10,
824 .bits = {
825 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
826 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
827 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
828 0, 0, 0, 0
829 }
830 },
831 {
832 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8,
833 .rowbits = 16, .colbits = 10,
834 .bits = {
835 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
836 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
837 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
838 R(15), 0, 0, 0
839 }
840 },
841 {
842 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16,
843 .rowbits = 16, .colbits = 10,
844 .bits = {
845 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
846 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
847 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
848 R(15), 0, 0, 0
849 }
850 },
851 {
852 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8,
853 .rowbits = 16, .colbits = 11,
854 .bits = {
855 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
856 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
857 R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13),
858 R(14), R(15), 0, 0
859 }
860 },
861 {
862 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16,
863 .rowbits = 15, .colbits = 10,
864 .bits = {
865 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
866 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
867 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
868 0, 0, 0, 0
869 }
870 },
871 {
872 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8,
873 .rowbits = 16, .colbits = 10,
874 .bits = {
875 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
876 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
877 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
878 R(15), 0, 0, 0
879 }
880 },
881 {
882 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16,
883 .rowbits = 16, .colbits = 10,
884 .bits = {
885 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
886 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
887 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
888 R(15), 0, 0, 0
889 }
890 },
891 {
892 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8,
893 .rowbits = 16, .colbits = 11,
894 .bits = {
895 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
896 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
897 R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13),
898 R(14), R(15), 0, 0
899 }
900 }
901 };
902
bank_hash(u64 pmiaddr,int idx,int shft)903 static int bank_hash(u64 pmiaddr, int idx, int shft)
904 {
905 int bhash = 0;
906
907 switch (idx) {
908 case 0:
909 bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1;
910 break;
911 case 1:
912 bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1;
913 bhash ^= ((pmiaddr >> 22) & 1) << 1;
914 break;
915 case 2:
916 bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2;
917 break;
918 }
919
920 return bhash;
921 }
922
rank_hash(u64 pmiaddr)923 static int rank_hash(u64 pmiaddr)
924 {
925 return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1;
926 }
927
928 /* Second stage decode. Compute rank, bank, row & column. */
apl_pmi2mem(struct mem_ctl_info * mci,u64 pmiaddr,u32 pmiidx,struct dram_addr * daddr,char * msg)929 static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
930 struct dram_addr *daddr, char *msg)
931 {
932 struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx];
933 struct pnd2_pvt *pvt = mci->pvt_info;
934 int g = pvt->dimm_geom[pmiidx];
935 struct dimm_geometry *d = &dimms[g];
936 int column = 0, bank = 0, row = 0, rank = 0;
937 int i, idx, type, skiprs = 0;
938
939 for (i = 0; i < PMI_ADDRESS_WIDTH; i++) {
940 int bit = (pmiaddr >> i) & 1;
941
942 if (i + skiprs >= PMI_ADDRESS_WIDTH) {
943 snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n");
944 return -EINVAL;
945 }
946
947 type = d->bits[i + skiprs] & ~0xf;
948 idx = d->bits[i + skiprs] & 0xf;
949
950 /*
951 * On single rank DIMMs ignore the rank select bit
952 * and shift remainder of "bits[]" down one place.
953 */
954 if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) {
955 skiprs = 1;
956 type = d->bits[i + skiprs] & ~0xf;
957 idx = d->bits[i + skiprs] & 0xf;
958 }
959
960 switch (type) {
961 case C(0):
962 column |= (bit << idx);
963 break;
964 case B(0):
965 bank |= (bit << idx);
966 if (cr_drp0->bahen)
967 bank ^= bank_hash(pmiaddr, idx, d->addrdec);
968 break;
969 case R(0):
970 row |= (bit << idx);
971 break;
972 case RS:
973 rank = bit;
974 if (cr_drp0->rsien)
975 rank ^= rank_hash(pmiaddr);
976 break;
977 default:
978 if (bit) {
979 snprintf(msg, PND2_MSG_SIZE, "Bad translation\n");
980 return -EINVAL;
981 }
982 goto done;
983 }
984 }
985
986 done:
987 daddr->col = column;
988 daddr->bank = bank;
989 daddr->row = row;
990 daddr->rank = rank;
991 daddr->dimm = 0;
992
993 return 0;
994 }
995
996 /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */
997 #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out))
998
dnv_pmi2mem(struct mem_ctl_info * mci,u64 pmiaddr,u32 pmiidx,struct dram_addr * daddr,char * msg)999 static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
1000 struct dram_addr *daddr, char *msg)
1001 {
1002 /* Rank 0 or 1 */
1003 daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0);
1004 /* Rank 2 or 3 */
1005 daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1);
1006
1007 /*
1008 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we
1009 * flip them if DIMM1 is larger than DIMM0.
1010 */
1011 daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip;
1012
1013 daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0);
1014 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1);
1015 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2);
1016 if (dsch.ddr4en)
1017 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3);
1018 if (dmap1[pmiidx].bxor) {
1019 if (dsch.ddr4en) {
1020 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0);
1021 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1);
1022 if (dsch.chan_width == 0)
1023 /* 64/72 bit dram channel width */
1024 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
1025 else
1026 /* 32/40 bit dram channel width */
1027 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
1028 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3);
1029 } else {
1030 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0);
1031 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1);
1032 if (dsch.chan_width == 0)
1033 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
1034 else
1035 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
1036 }
1037 }
1038
1039 daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0);
1040 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1);
1041 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2);
1042 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3);
1043 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4);
1044 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5);
1045 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6);
1046 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7);
1047 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8);
1048 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9);
1049 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10);
1050 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11);
1051 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12);
1052 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13);
1053 if (dmap4[pmiidx].row14 != 31)
1054 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14);
1055 if (dmap4[pmiidx].row15 != 31)
1056 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15);
1057 if (dmap4[pmiidx].row16 != 31)
1058 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16);
1059 if (dmap4[pmiidx].row17 != 31)
1060 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17);
1061
1062 daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3);
1063 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4);
1064 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5);
1065 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6);
1066 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7);
1067 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8);
1068 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9);
1069 if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f)
1070 daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11);
1071
1072 return 0;
1073 }
1074
check_channel(int ch)1075 static int check_channel(int ch)
1076 {
1077 if (drp0[ch].dramtype != 0) {
1078 pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch);
1079 return 1;
1080 } else if (drp0[ch].eccen == 0) {
1081 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
1082 return 1;
1083 }
1084 return 0;
1085 }
1086
apl_check_ecc_active(void)1087 static int apl_check_ecc_active(void)
1088 {
1089 int i, ret = 0;
1090
1091 /* Check dramtype and ECC mode for each present DIMM */
1092 for (i = 0; i < APL_NUM_CHANNELS; i++)
1093 if (chan_mask & BIT(i))
1094 ret += check_channel(i);
1095 return ret ? -EINVAL : 0;
1096 }
1097
1098 #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3)
1099
check_unit(int ch)1100 static int check_unit(int ch)
1101 {
1102 struct d_cr_drp *d = &drp[ch];
1103
1104 if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) {
1105 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
1106 return 1;
1107 }
1108 return 0;
1109 }
1110
dnv_check_ecc_active(void)1111 static int dnv_check_ecc_active(void)
1112 {
1113 int i, ret = 0;
1114
1115 for (i = 0; i < DNV_NUM_CHANNELS; i++)
1116 ret += check_unit(i);
1117 return ret ? -EINVAL : 0;
1118 }
1119
get_memory_error_data(struct mem_ctl_info * mci,u64 addr,struct dram_addr * daddr,char * msg)1120 static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr,
1121 struct dram_addr *daddr, char *msg)
1122 {
1123 u64 pmiaddr;
1124 u32 pmiidx;
1125 int ret;
1126
1127 ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg);
1128 if (ret)
1129 return ret;
1130
1131 pmiaddr >>= ops->pmiaddr_shift;
1132 /* pmi channel idx to dimm channel idx */
1133 pmiidx >>= ops->pmiidx_shift;
1134 daddr->chan = pmiidx;
1135
1136 ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg);
1137 if (ret)
1138 return ret;
1139
1140 edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
1141 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col);
1142
1143 return 0;
1144 }
1145
pnd2_mce_output_error(struct mem_ctl_info * mci,const struct mce * m,struct dram_addr * daddr)1146 static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m,
1147 struct dram_addr *daddr)
1148 {
1149 enum hw_event_mc_err_type tp_event;
1150 char *optype, msg[PND2_MSG_SIZE];
1151 bool ripv = m->mcgstatus & MCG_STATUS_RIPV;
1152 bool overflow = m->status & MCI_STATUS_OVER;
1153 bool uc_err = m->status & MCI_STATUS_UC;
1154 bool recov = m->status & MCI_STATUS_S;
1155 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1156 u32 mscod = GET_BITFIELD(m->status, 16, 31);
1157 u32 errcode = GET_BITFIELD(m->status, 0, 15);
1158 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1159 int rc;
1160
1161 tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) :
1162 HW_EVENT_ERR_CORRECTED;
1163
1164 /*
1165 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1166 * memory errors should fit in this mask:
1167 * 000f 0000 1mmm cccc (binary)
1168 * where:
1169 * f = Correction Report Filtering Bit. If 1, subsequent errors
1170 * won't be shown
1171 * mmm = error type
1172 * cccc = channel
1173 * If the mask doesn't match, report an error to the parsing logic
1174 */
1175 if (!((errcode & 0xef80) == 0x80)) {
1176 optype = "Can't parse: it is not a mem";
1177 } else {
1178 switch (optypenum) {
1179 case 0:
1180 optype = "generic undef request error";
1181 break;
1182 case 1:
1183 optype = "memory read error";
1184 break;
1185 case 2:
1186 optype = "memory write error";
1187 break;
1188 case 3:
1189 optype = "addr/cmd error";
1190 break;
1191 case 4:
1192 optype = "memory scrubbing error";
1193 break;
1194 default:
1195 optype = "reserved";
1196 break;
1197 }
1198 }
1199
1200 /* Only decode errors with an valid address (ADDRV) */
1201 if (!(m->status & MCI_STATUS_ADDRV))
1202 return;
1203
1204 rc = get_memory_error_data(mci, m->addr, daddr, msg);
1205 if (rc)
1206 goto address_error;
1207
1208 snprintf(msg, sizeof(msg),
1209 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d",
1210 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod,
1211 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col);
1212
1213 edac_dbg(0, "%s\n", msg);
1214
1215 /* Call the helper to output message */
1216 edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT,
1217 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg);
1218
1219 return;
1220
1221 address_error:
1222 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, "");
1223 }
1224
apl_get_dimm_config(struct mem_ctl_info * mci)1225 static void apl_get_dimm_config(struct mem_ctl_info *mci)
1226 {
1227 struct pnd2_pvt *pvt = mci->pvt_info;
1228 struct dimm_info *dimm;
1229 struct d_cr_drp0 *d;
1230 u64 capacity;
1231 int i, g;
1232
1233 for (i = 0; i < APL_NUM_CHANNELS; i++) {
1234 if (!(chan_mask & BIT(i)))
1235 continue;
1236
1237 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0);
1238 if (!dimm) {
1239 edac_dbg(0, "No allocated DIMM for channel %d\n", i);
1240 continue;
1241 }
1242
1243 d = &drp0[i];
1244 for (g = 0; g < ARRAY_SIZE(dimms); g++)
1245 if (dimms[g].addrdec == d->addrdec &&
1246 dimms[g].dden == d->dden &&
1247 dimms[g].dwid == d->dwid)
1248 break;
1249
1250 if (g == ARRAY_SIZE(dimms)) {
1251 edac_dbg(0, "Channel %d: unrecognized DIMM\n", i);
1252 continue;
1253 }
1254
1255 pvt->dimm_geom[i] = g;
1256 capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) *
1257 (1ul << dimms[g].colbits);
1258 edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3));
1259 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
1260 dimm->grain = 32;
1261 dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16;
1262 dimm->mtype = MEM_DDR3;
1263 dimm->edac_mode = EDAC_SECDED;
1264 snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2);
1265 }
1266 }
1267
1268 static const int dnv_dtypes[] = {
1269 DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN
1270 };
1271
dnv_get_dimm_config(struct mem_ctl_info * mci)1272 static void dnv_get_dimm_config(struct mem_ctl_info *mci)
1273 {
1274 int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype;
1275 struct dimm_info *dimm;
1276 struct d_cr_drp *d;
1277 u64 capacity;
1278
1279 if (dsch.ddr4en) {
1280 memtype = MEM_DDR4;
1281 banks = 16;
1282 colbits = 10;
1283 } else {
1284 memtype = MEM_DDR3;
1285 banks = 8;
1286 }
1287
1288 for (i = 0; i < DNV_NUM_CHANNELS; i++) {
1289 if (dmap4[i].row14 == 31)
1290 rowbits = 14;
1291 else if (dmap4[i].row15 == 31)
1292 rowbits = 15;
1293 else if (dmap4[i].row16 == 31)
1294 rowbits = 16;
1295 else if (dmap4[i].row17 == 31)
1296 rowbits = 17;
1297 else
1298 rowbits = 18;
1299
1300 if (memtype == MEM_DDR3) {
1301 if (dmap1[i].ca11 != 0x3f)
1302 colbits = 12;
1303 else
1304 colbits = 10;
1305 }
1306
1307 d = &drp[i];
1308 /* DIMM0 is present if rank0 and/or rank1 is enabled */
1309 ranks_of_dimm[0] = d->rken0 + d->rken1;
1310 /* DIMM1 is present if rank2 and/or rank3 is enabled */
1311 ranks_of_dimm[1] = d->rken2 + d->rken3;
1312
1313 for (j = 0; j < DNV_MAX_DIMMS; j++) {
1314 if (!ranks_of_dimm[j])
1315 continue;
1316
1317 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1318 if (!dimm) {
1319 edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j);
1320 continue;
1321 }
1322
1323 capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits);
1324 edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3));
1325 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
1326 dimm->grain = 32;
1327 dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1];
1328 dimm->mtype = memtype;
1329 dimm->edac_mode = EDAC_SECDED;
1330 snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j);
1331 }
1332 }
1333 }
1334
pnd2_register_mci(struct mem_ctl_info ** ppmci)1335 static int pnd2_register_mci(struct mem_ctl_info **ppmci)
1336 {
1337 struct edac_mc_layer layers[2];
1338 struct mem_ctl_info *mci;
1339 struct pnd2_pvt *pvt;
1340 int rc;
1341
1342 rc = ops->check_ecc();
1343 if (rc < 0)
1344 return rc;
1345
1346 /* Allocate a new MC control structure */
1347 layers[0].type = EDAC_MC_LAYER_CHANNEL;
1348 layers[0].size = ops->channels;
1349 layers[0].is_virt_csrow = false;
1350 layers[1].type = EDAC_MC_LAYER_SLOT;
1351 layers[1].size = ops->dimms_per_channel;
1352 layers[1].is_virt_csrow = true;
1353 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1354 if (!mci)
1355 return -ENOMEM;
1356
1357 pvt = mci->pvt_info;
1358 memset(pvt, 0, sizeof(*pvt));
1359
1360 mci->mod_name = EDAC_MOD_STR;
1361 mci->dev_name = ops->name;
1362 mci->ctl_name = "Pondicherry2";
1363
1364 /* Get dimm basic config and the memory layout */
1365 ops->get_dimm_config(mci);
1366
1367 if (edac_mc_add_mc(mci)) {
1368 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1369 edac_mc_free(mci);
1370 return -EINVAL;
1371 }
1372
1373 *ppmci = mci;
1374
1375 return 0;
1376 }
1377
pnd2_unregister_mci(struct mem_ctl_info * mci)1378 static void pnd2_unregister_mci(struct mem_ctl_info *mci)
1379 {
1380 if (unlikely(!mci || !mci->pvt_info)) {
1381 pnd2_printk(KERN_ERR, "Couldn't find mci handler\n");
1382 return;
1383 }
1384
1385 /* Remove MC sysfs nodes */
1386 edac_mc_del_mc(NULL);
1387 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1388 edac_mc_free(mci);
1389 }
1390
1391 /*
1392 * Callback function registered with core kernel mce code.
1393 * Called once for each logged error.
1394 */
pnd2_mce_check_error(struct notifier_block * nb,unsigned long val,void * data)1395 static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data)
1396 {
1397 struct mce *mce = (struct mce *)data;
1398 struct mem_ctl_info *mci;
1399 struct dram_addr daddr;
1400 char *type;
1401
1402 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
1403 return NOTIFY_DONE;
1404
1405 mci = pnd2_mci;
1406 if (!mci)
1407 return NOTIFY_DONE;
1408
1409 /*
1410 * Just let mcelog handle it if the error is
1411 * outside the memory controller. A memory error
1412 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1413 * bit 12 has an special meaning.
1414 */
1415 if ((mce->status & 0xefff) >> 7 != 1)
1416 return NOTIFY_DONE;
1417
1418 if (mce->mcgstatus & MCG_STATUS_MCIP)
1419 type = "Exception";
1420 else
1421 type = "Event";
1422
1423 pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n");
1424 pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n",
1425 mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status);
1426 pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc);
1427 pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr);
1428 pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc);
1429 pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1430 mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid);
1431
1432 pnd2_mce_output_error(mci, mce, &daddr);
1433
1434 /* Advice mcelog that the error were handled */
1435 return NOTIFY_STOP;
1436 }
1437
1438 static struct notifier_block pnd2_mce_dec = {
1439 .notifier_call = pnd2_mce_check_error,
1440 };
1441
1442 #ifdef CONFIG_EDAC_DEBUG
1443 /*
1444 * Write an address to this file to exercise the address decode
1445 * logic in this driver.
1446 */
1447 static u64 pnd2_fake_addr;
1448 #define PND2_BLOB_SIZE 1024
1449 static char pnd2_result[PND2_BLOB_SIZE];
1450 static struct dentry *pnd2_test;
1451 static struct debugfs_blob_wrapper pnd2_blob = {
1452 .data = pnd2_result,
1453 .size = 0
1454 };
1455
debugfs_u64_set(void * data,u64 val)1456 static int debugfs_u64_set(void *data, u64 val)
1457 {
1458 struct dram_addr daddr;
1459 struct mce m;
1460
1461 *(u64 *)data = val;
1462 m.mcgstatus = 0;
1463 /* ADDRV + MemRd + Unknown channel */
1464 m.status = MCI_STATUS_ADDRV + 0x9f;
1465 m.addr = val;
1466 pnd2_mce_output_error(pnd2_mci, &m, &daddr);
1467 snprintf(pnd2_blob.data, PND2_BLOB_SIZE,
1468 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
1469 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col);
1470 pnd2_blob.size = strlen(pnd2_blob.data);
1471
1472 return 0;
1473 }
1474 DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1475
setup_pnd2_debug(void)1476 static void setup_pnd2_debug(void)
1477 {
1478 pnd2_test = edac_debugfs_create_dir("pnd2_test");
1479 edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test,
1480 &pnd2_fake_addr, &fops_u64_wo);
1481 debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob);
1482 }
1483
teardown_pnd2_debug(void)1484 static void teardown_pnd2_debug(void)
1485 {
1486 debugfs_remove_recursive(pnd2_test);
1487 }
1488 #else
setup_pnd2_debug(void)1489 static void setup_pnd2_debug(void) {}
teardown_pnd2_debug(void)1490 static void teardown_pnd2_debug(void) {}
1491 #endif /* CONFIG_EDAC_DEBUG */
1492
1493
pnd2_probe(void)1494 static int pnd2_probe(void)
1495 {
1496 int rc;
1497
1498 edac_dbg(2, "\n");
1499 rc = get_registers();
1500 if (rc)
1501 return rc;
1502
1503 return pnd2_register_mci(&pnd2_mci);
1504 }
1505
pnd2_remove(void)1506 static void pnd2_remove(void)
1507 {
1508 edac_dbg(0, "\n");
1509 pnd2_unregister_mci(pnd2_mci);
1510 }
1511
1512 static struct dunit_ops apl_ops = {
1513 .name = "pnd2/apl",
1514 .type = APL,
1515 .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY,
1516 .pmiidx_shift = 0,
1517 .channels = APL_NUM_CHANNELS,
1518 .dimms_per_channel = 1,
1519 .rd_reg = apl_rd_reg,
1520 .get_registers = apl_get_registers,
1521 .check_ecc = apl_check_ecc_active,
1522 .mk_region = apl_mk_region,
1523 .get_dimm_config = apl_get_dimm_config,
1524 .pmi2mem = apl_pmi2mem,
1525 };
1526
1527 static struct dunit_ops dnv_ops = {
1528 .name = "pnd2/dnv",
1529 .type = DNV,
1530 .pmiaddr_shift = 0,
1531 .pmiidx_shift = 1,
1532 .channels = DNV_NUM_CHANNELS,
1533 .dimms_per_channel = 2,
1534 .rd_reg = dnv_rd_reg,
1535 .get_registers = dnv_get_registers,
1536 .check_ecc = dnv_check_ecc_active,
1537 .mk_region = dnv_mk_region,
1538 .get_dimm_config = dnv_get_dimm_config,
1539 .pmi2mem = dnv_pmi2mem,
1540 };
1541
1542 static const struct x86_cpu_id pnd2_cpuids[] = {
1543 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops },
1544 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_DENVERTON, 0, (kernel_ulong_t)&dnv_ops },
1545 { }
1546 };
1547 MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids);
1548
pnd2_init(void)1549 static int __init pnd2_init(void)
1550 {
1551 const struct x86_cpu_id *id;
1552 const char *owner;
1553 int rc;
1554
1555 edac_dbg(2, "\n");
1556
1557 owner = edac_get_owner();
1558 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1559 return -EBUSY;
1560
1561 id = x86_match_cpu(pnd2_cpuids);
1562 if (!id)
1563 return -ENODEV;
1564
1565 ops = (struct dunit_ops *)id->driver_data;
1566
1567 if (ops->type == APL) {
1568 p2sb_bus = pci_find_bus(0, 0);
1569 if (!p2sb_bus)
1570 return -ENODEV;
1571 }
1572
1573 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1574 opstate_init();
1575
1576 rc = pnd2_probe();
1577 if (rc < 0) {
1578 pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc);
1579 return rc;
1580 }
1581
1582 if (!pnd2_mci)
1583 return -ENODEV;
1584
1585 mce_register_decode_chain(&pnd2_mce_dec);
1586 setup_pnd2_debug();
1587
1588 return 0;
1589 }
1590
pnd2_exit(void)1591 static void __exit pnd2_exit(void)
1592 {
1593 edac_dbg(2, "\n");
1594 teardown_pnd2_debug();
1595 mce_unregister_decode_chain(&pnd2_mce_dec);
1596 pnd2_remove();
1597 }
1598
1599 module_init(pnd2_init);
1600 module_exit(pnd2_exit);
1601
1602 module_param(edac_op_state, int, 0444);
1603 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1604
1605 MODULE_LICENSE("GPL v2");
1606 MODULE_AUTHOR("Tony Luck");
1607 MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");
1608