1 /*
2 * Freescale Memory Controller kernel module
3 *
4 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
5 * ARM-based Layerscape SoCs including LS2xxx. Originally split
6 * out from mpc85xx_edac EDAC driver.
7 *
8 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
9 *
10 * Author: Dave Jiang <djiang@mvista.com>
11 *
12 * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
13 * the terms of the GNU General Public License version 2. This program
14 * is licensed "as is" without any warranty of any kind, whether express
15 * or implied.
16 */
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/ctype.h>
21 #include <linux/io.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/edac.h>
24 #include <linux/smp.h>
25 #include <linux/gfp.h>
26
27 #include <linux/of_platform.h>
28 #include <linux/of_device.h>
29 #include <linux/of_address.h>
30 #include "edac_module.h"
31 #include "fsl_ddr_edac.h"
32
33 #define EDAC_MOD_STR "fsl_ddr_edac"
34
35 static int edac_mc_idx;
36
37 static u32 orig_ddr_err_disable;
38 static u32 orig_ddr_err_sbe;
39 static bool little_endian;
40
ddr_in32(void __iomem * addr)41 static inline u32 ddr_in32(void __iomem *addr)
42 {
43 return little_endian ? ioread32(addr) : ioread32be(addr);
44 }
45
ddr_out32(void __iomem * addr,u32 value)46 static inline void ddr_out32(void __iomem *addr, u32 value)
47 {
48 if (little_endian)
49 iowrite32(value, addr);
50 else
51 iowrite32be(value, addr);
52 }
53
54 /************************ MC SYSFS parts ***********************************/
55
56 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
57
fsl_mc_inject_data_hi_show(struct device * dev,struct device_attribute * mattr,char * data)58 static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
59 struct device_attribute *mattr,
60 char *data)
61 {
62 struct mem_ctl_info *mci = to_mci(dev);
63 struct fsl_mc_pdata *pdata = mci->pvt_info;
64 return sprintf(data, "0x%08x",
65 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
66 }
67
fsl_mc_inject_data_lo_show(struct device * dev,struct device_attribute * mattr,char * data)68 static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
69 struct device_attribute *mattr,
70 char *data)
71 {
72 struct mem_ctl_info *mci = to_mci(dev);
73 struct fsl_mc_pdata *pdata = mci->pvt_info;
74 return sprintf(data, "0x%08x",
75 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
76 }
77
fsl_mc_inject_ctrl_show(struct device * dev,struct device_attribute * mattr,char * data)78 static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
79 struct device_attribute *mattr,
80 char *data)
81 {
82 struct mem_ctl_info *mci = to_mci(dev);
83 struct fsl_mc_pdata *pdata = mci->pvt_info;
84 return sprintf(data, "0x%08x",
85 ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
86 }
87
fsl_mc_inject_data_hi_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)88 static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
89 struct device_attribute *mattr,
90 const char *data, size_t count)
91 {
92 struct mem_ctl_info *mci = to_mci(dev);
93 struct fsl_mc_pdata *pdata = mci->pvt_info;
94 unsigned long val;
95 int rc;
96
97 if (isdigit(*data)) {
98 rc = kstrtoul(data, 0, &val);
99 if (rc)
100 return rc;
101
102 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
103 return count;
104 }
105 return 0;
106 }
107
fsl_mc_inject_data_lo_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)108 static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
109 struct device_attribute *mattr,
110 const char *data, size_t count)
111 {
112 struct mem_ctl_info *mci = to_mci(dev);
113 struct fsl_mc_pdata *pdata = mci->pvt_info;
114 unsigned long val;
115 int rc;
116
117 if (isdigit(*data)) {
118 rc = kstrtoul(data, 0, &val);
119 if (rc)
120 return rc;
121
122 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
123 return count;
124 }
125 return 0;
126 }
127
fsl_mc_inject_ctrl_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)128 static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
129 struct device_attribute *mattr,
130 const char *data, size_t count)
131 {
132 struct mem_ctl_info *mci = to_mci(dev);
133 struct fsl_mc_pdata *pdata = mci->pvt_info;
134 unsigned long val;
135 int rc;
136
137 if (isdigit(*data)) {
138 rc = kstrtoul(data, 0, &val);
139 if (rc)
140 return rc;
141
142 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
143 return count;
144 }
145 return 0;
146 }
147
148 static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
149 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
150 static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
151 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
152 static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
153 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
154
155 static struct attribute *fsl_ddr_dev_attrs[] = {
156 &dev_attr_inject_data_hi.attr,
157 &dev_attr_inject_data_lo.attr,
158 &dev_attr_inject_ctrl.attr,
159 NULL
160 };
161
162 ATTRIBUTE_GROUPS(fsl_ddr_dev);
163
164 /**************************** MC Err device ***************************/
165
166 /*
167 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
168 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
169 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
170 * below correspond to Freescale's manuals.
171 */
172 static unsigned int ecc_table[16] = {
173 /* MSB LSB */
174 /* [0:31] [32:63] */
175 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
176 0x00ff00ff, 0x00fff0ff,
177 0x0f0f0f0f, 0x0f0fff00,
178 0x11113333, 0x7777000f,
179 0x22224444, 0x8888222f,
180 0x44448888, 0xffff4441,
181 0x8888ffff, 0x11118882,
182 0xffff1111, 0x22221114, /* Syndrome bit 0 */
183 };
184
185 /*
186 * Calculate the correct ECC value for a 64-bit value specified by high:low
187 */
calculate_ecc(u32 high,u32 low)188 static u8 calculate_ecc(u32 high, u32 low)
189 {
190 u32 mask_low;
191 u32 mask_high;
192 int bit_cnt;
193 u8 ecc = 0;
194 int i;
195 int j;
196
197 for (i = 0; i < 8; i++) {
198 mask_high = ecc_table[i * 2];
199 mask_low = ecc_table[i * 2 + 1];
200 bit_cnt = 0;
201
202 for (j = 0; j < 32; j++) {
203 if ((mask_high >> j) & 1)
204 bit_cnt ^= (high >> j) & 1;
205 if ((mask_low >> j) & 1)
206 bit_cnt ^= (low >> j) & 1;
207 }
208
209 ecc |= bit_cnt << i;
210 }
211
212 return ecc;
213 }
214
215 /*
216 * Create the syndrome code which is generated if the data line specified by
217 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
218 * User's Manual and 9-61 in the MPC8572 User's Manual.
219 */
syndrome_from_bit(unsigned int bit)220 static u8 syndrome_from_bit(unsigned int bit) {
221 int i;
222 u8 syndrome = 0;
223
224 /*
225 * Cycle through the upper or lower 32-bit portion of each value in
226 * ecc_table depending on if 'bit' is in the upper or lower half of
227 * 64-bit data.
228 */
229 for (i = bit < 32; i < 16; i += 2)
230 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
231
232 return syndrome;
233 }
234
235 /*
236 * Decode data and ecc syndrome to determine what went wrong
237 * Note: This can only decode single-bit errors
238 */
sbe_ecc_decode(u32 cap_high,u32 cap_low,u32 cap_ecc,int * bad_data_bit,int * bad_ecc_bit)239 static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
240 int *bad_data_bit, int *bad_ecc_bit)
241 {
242 int i;
243 u8 syndrome;
244
245 *bad_data_bit = -1;
246 *bad_ecc_bit = -1;
247
248 /*
249 * Calculate the ECC of the captured data and XOR it with the captured
250 * ECC to find an ECC syndrome value we can search for
251 */
252 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
253
254 /* Check if a data line is stuck... */
255 for (i = 0; i < 64; i++) {
256 if (syndrome == syndrome_from_bit(i)) {
257 *bad_data_bit = i;
258 return;
259 }
260 }
261
262 /* If data is correct, check ECC bits for errors... */
263 for (i = 0; i < 8; i++) {
264 if ((syndrome >> i) & 0x1) {
265 *bad_ecc_bit = i;
266 return;
267 }
268 }
269 }
270
271 #define make64(high, low) (((u64)(high) << 32) | (low))
272
fsl_mc_check(struct mem_ctl_info * mci)273 static void fsl_mc_check(struct mem_ctl_info *mci)
274 {
275 struct fsl_mc_pdata *pdata = mci->pvt_info;
276 struct csrow_info *csrow;
277 u32 bus_width;
278 u32 err_detect;
279 u32 syndrome;
280 u64 err_addr;
281 u32 pfn;
282 int row_index;
283 u32 cap_high;
284 u32 cap_low;
285 int bad_data_bit;
286 int bad_ecc_bit;
287
288 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
289 if (!err_detect)
290 return;
291
292 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
293 err_detect);
294
295 /* no more processing if not ECC bit errors */
296 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
297 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
298 return;
299 }
300
301 syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
302
303 /* Mask off appropriate bits of syndrome based on bus width */
304 bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
305 DSC_DBW_MASK) ? 32 : 64;
306 if (bus_width == 64)
307 syndrome &= 0xff;
308 else
309 syndrome &= 0xffff;
310
311 err_addr = make64(
312 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
313 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
314 pfn = err_addr >> PAGE_SHIFT;
315
316 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
317 csrow = mci->csrows[row_index];
318 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
319 break;
320 }
321
322 cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
323 cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
324
325 /*
326 * Analyze single-bit errors on 64-bit wide buses
327 * TODO: Add support for 32-bit wide buses
328 */
329 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
330 sbe_ecc_decode(cap_high, cap_low, syndrome,
331 &bad_data_bit, &bad_ecc_bit);
332
333 if (bad_data_bit != -1)
334 fsl_mc_printk(mci, KERN_ERR,
335 "Faulty Data bit: %d\n", bad_data_bit);
336 if (bad_ecc_bit != -1)
337 fsl_mc_printk(mci, KERN_ERR,
338 "Faulty ECC bit: %d\n", bad_ecc_bit);
339
340 fsl_mc_printk(mci, KERN_ERR,
341 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
342 cap_high ^ (1 << (bad_data_bit - 32)),
343 cap_low ^ (1 << bad_data_bit),
344 syndrome ^ (1 << bad_ecc_bit));
345 }
346
347 fsl_mc_printk(mci, KERN_ERR,
348 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
349 cap_high, cap_low, syndrome);
350 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
351 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
352
353 /* we are out of range */
354 if (row_index == mci->nr_csrows)
355 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
356
357 if (err_detect & DDR_EDE_SBE)
358 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
359 pfn, err_addr & ~PAGE_MASK, syndrome,
360 row_index, 0, -1,
361 mci->ctl_name, "");
362
363 if (err_detect & DDR_EDE_MBE)
364 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
365 pfn, err_addr & ~PAGE_MASK, syndrome,
366 row_index, 0, -1,
367 mci->ctl_name, "");
368
369 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
370 }
371
fsl_mc_isr(int irq,void * dev_id)372 static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
373 {
374 struct mem_ctl_info *mci = dev_id;
375 struct fsl_mc_pdata *pdata = mci->pvt_info;
376 u32 err_detect;
377
378 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
379 if (!err_detect)
380 return IRQ_NONE;
381
382 fsl_mc_check(mci);
383
384 return IRQ_HANDLED;
385 }
386
fsl_ddr_init_csrows(struct mem_ctl_info * mci)387 static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
388 {
389 struct fsl_mc_pdata *pdata = mci->pvt_info;
390 struct csrow_info *csrow;
391 struct dimm_info *dimm;
392 u32 sdram_ctl;
393 u32 sdtype;
394 enum mem_type mtype;
395 u32 cs_bnds;
396 int index;
397
398 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
399
400 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
401 if (sdram_ctl & DSC_RD_EN) {
402 switch (sdtype) {
403 case 0x02000000:
404 mtype = MEM_RDDR;
405 break;
406 case 0x03000000:
407 mtype = MEM_RDDR2;
408 break;
409 case 0x07000000:
410 mtype = MEM_RDDR3;
411 break;
412 case 0x05000000:
413 mtype = MEM_RDDR4;
414 break;
415 default:
416 mtype = MEM_UNKNOWN;
417 break;
418 }
419 } else {
420 switch (sdtype) {
421 case 0x02000000:
422 mtype = MEM_DDR;
423 break;
424 case 0x03000000:
425 mtype = MEM_DDR2;
426 break;
427 case 0x07000000:
428 mtype = MEM_DDR3;
429 break;
430 case 0x05000000:
431 mtype = MEM_DDR4;
432 break;
433 default:
434 mtype = MEM_UNKNOWN;
435 break;
436 }
437 }
438
439 for (index = 0; index < mci->nr_csrows; index++) {
440 u32 start;
441 u32 end;
442
443 csrow = mci->csrows[index];
444 dimm = csrow->channels[0]->dimm;
445
446 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
447 (index * FSL_MC_CS_BNDS_OFS));
448
449 start = (cs_bnds & 0xffff0000) >> 16;
450 end = (cs_bnds & 0x0000ffff);
451
452 if (start == end)
453 continue; /* not populated */
454
455 start <<= (24 - PAGE_SHIFT);
456 end <<= (24 - PAGE_SHIFT);
457 end |= (1 << (24 - PAGE_SHIFT)) - 1;
458
459 csrow->first_page = start;
460 csrow->last_page = end;
461
462 dimm->nr_pages = end + 1 - start;
463 dimm->grain = 8;
464 dimm->mtype = mtype;
465 dimm->dtype = DEV_UNKNOWN;
466 if (sdram_ctl & DSC_X32_EN)
467 dimm->dtype = DEV_X32;
468 dimm->edac_mode = EDAC_SECDED;
469 }
470 }
471
fsl_mc_err_probe(struct platform_device * op)472 int fsl_mc_err_probe(struct platform_device *op)
473 {
474 struct mem_ctl_info *mci;
475 struct edac_mc_layer layers[2];
476 struct fsl_mc_pdata *pdata;
477 struct resource r;
478 u32 sdram_ctl;
479 int res;
480
481 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
482 return -ENOMEM;
483
484 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
485 layers[0].size = 4;
486 layers[0].is_virt_csrow = true;
487 layers[1].type = EDAC_MC_LAYER_CHANNEL;
488 layers[1].size = 1;
489 layers[1].is_virt_csrow = false;
490 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
491 sizeof(*pdata));
492 if (!mci) {
493 devres_release_group(&op->dev, fsl_mc_err_probe);
494 return -ENOMEM;
495 }
496
497 pdata = mci->pvt_info;
498 pdata->name = "fsl_mc_err";
499 mci->pdev = &op->dev;
500 pdata->edac_idx = edac_mc_idx++;
501 dev_set_drvdata(mci->pdev, mci);
502 mci->ctl_name = pdata->name;
503 mci->dev_name = pdata->name;
504
505 /*
506 * Get the endianness of DDR controller registers.
507 * Default is big endian.
508 */
509 little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
510
511 res = of_address_to_resource(op->dev.of_node, 0, &r);
512 if (res) {
513 pr_err("%s: Unable to get resource for MC err regs\n",
514 __func__);
515 goto err;
516 }
517
518 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
519 pdata->name)) {
520 pr_err("%s: Error while requesting mem region\n",
521 __func__);
522 res = -EBUSY;
523 goto err;
524 }
525
526 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
527 if (!pdata->mc_vbase) {
528 pr_err("%s: Unable to setup MC err regs\n", __func__);
529 res = -ENOMEM;
530 goto err;
531 }
532
533 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
534 if (!(sdram_ctl & DSC_ECC_EN)) {
535 /* no ECC */
536 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
537 res = -ENODEV;
538 goto err;
539 }
540
541 edac_dbg(3, "init mci\n");
542 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
543 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
544 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
545 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
546 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
547 mci->edac_cap = EDAC_FLAG_SECDED;
548 mci->mod_name = EDAC_MOD_STR;
549
550 if (edac_op_state == EDAC_OPSTATE_POLL)
551 mci->edac_check = fsl_mc_check;
552
553 mci->ctl_page_to_phys = NULL;
554
555 mci->scrub_mode = SCRUB_SW_SRC;
556
557 fsl_ddr_init_csrows(mci);
558
559 /* store the original error disable bits */
560 orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
561 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
562
563 /* clear all error bits */
564 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
565
566 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
567 if (res) {
568 edac_dbg(3, "failed edac_mc_add_mc()\n");
569 goto err;
570 }
571
572 if (edac_op_state == EDAC_OPSTATE_INT) {
573 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
574 DDR_EIE_MBEE | DDR_EIE_SBEE);
575
576 /* store the original error management threshold */
577 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
578 FSL_MC_ERR_SBE) & 0xff0000;
579
580 /* set threshold to 1 error per interrupt */
581 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
582
583 /* register interrupts */
584 pdata->irq = platform_get_irq(op, 0);
585 res = devm_request_irq(&op->dev, pdata->irq,
586 fsl_mc_isr,
587 IRQF_SHARED,
588 "[EDAC] MC err", mci);
589 if (res < 0) {
590 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
591 __func__, pdata->irq);
592 res = -ENODEV;
593 goto err2;
594 }
595
596 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
597 pdata->irq);
598 }
599
600 devres_remove_group(&op->dev, fsl_mc_err_probe);
601 edac_dbg(3, "success\n");
602 pr_info(EDAC_MOD_STR " MC err registered\n");
603
604 return 0;
605
606 err2:
607 edac_mc_del_mc(&op->dev);
608 err:
609 devres_release_group(&op->dev, fsl_mc_err_probe);
610 edac_mc_free(mci);
611 return res;
612 }
613
fsl_mc_err_remove(struct platform_device * op)614 int fsl_mc_err_remove(struct platform_device *op)
615 {
616 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
617 struct fsl_mc_pdata *pdata = mci->pvt_info;
618
619 edac_dbg(0, "\n");
620
621 if (edac_op_state == EDAC_OPSTATE_INT) {
622 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
623 }
624
625 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
626 orig_ddr_err_disable);
627 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
628
629 edac_mc_del_mc(&op->dev);
630 edac_mc_free(mci);
631 return 0;
632 }
633