1 /*
2  * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
3  *
4  * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
5  *
6  * This file add support for MD5 and SHA1.
7  *
8  * You could find the datasheet in Documentation/arm/sunxi/README
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 #include "sun4i-ss.h"
16 #include <linux/scatterlist.h>
17 
18 /* This is a totally arbitrary value */
19 #define SS_TIMEOUT 100
20 
sun4i_hash_crainit(struct crypto_tfm * tfm)21 int sun4i_hash_crainit(struct crypto_tfm *tfm)
22 {
23 	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
24 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
25 	struct sun4i_ss_alg_template *algt;
26 
27 	memset(op, 0, sizeof(struct sun4i_tfm_ctx));
28 
29 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
30 	op->ss = algt->ss;
31 
32 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
33 				 sizeof(struct sun4i_req_ctx));
34 	return 0;
35 }
36 
37 /* sun4i_hash_init: initialize request context */
sun4i_hash_init(struct ahash_request * areq)38 int sun4i_hash_init(struct ahash_request *areq)
39 {
40 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
41 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
42 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
43 	struct sun4i_ss_alg_template *algt;
44 
45 	memset(op, 0, sizeof(struct sun4i_req_ctx));
46 
47 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
48 	op->mode = algt->mode;
49 
50 	return 0;
51 }
52 
sun4i_hash_export_md5(struct ahash_request * areq,void * out)53 int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
54 {
55 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
56 	struct md5_state *octx = out;
57 	int i;
58 
59 	octx->byte_count = op->byte_count + op->len;
60 
61 	memcpy(octx->block, op->buf, op->len);
62 
63 	if (op->byte_count) {
64 		for (i = 0; i < 4; i++)
65 			octx->hash[i] = op->hash[i];
66 	} else {
67 		octx->hash[0] = SHA1_H0;
68 		octx->hash[1] = SHA1_H1;
69 		octx->hash[2] = SHA1_H2;
70 		octx->hash[3] = SHA1_H3;
71 	}
72 
73 	return 0;
74 }
75 
sun4i_hash_import_md5(struct ahash_request * areq,const void * in)76 int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
77 {
78 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
79 	const struct md5_state *ictx = in;
80 	int i;
81 
82 	sun4i_hash_init(areq);
83 
84 	op->byte_count = ictx->byte_count & ~0x3F;
85 	op->len = ictx->byte_count & 0x3F;
86 
87 	memcpy(op->buf, ictx->block, op->len);
88 
89 	for (i = 0; i < 4; i++)
90 		op->hash[i] = ictx->hash[i];
91 
92 	return 0;
93 }
94 
sun4i_hash_export_sha1(struct ahash_request * areq,void * out)95 int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
96 {
97 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
98 	struct sha1_state *octx = out;
99 	int i;
100 
101 	octx->count = op->byte_count + op->len;
102 
103 	memcpy(octx->buffer, op->buf, op->len);
104 
105 	if (op->byte_count) {
106 		for (i = 0; i < 5; i++)
107 			octx->state[i] = op->hash[i];
108 	} else {
109 		octx->state[0] = SHA1_H0;
110 		octx->state[1] = SHA1_H1;
111 		octx->state[2] = SHA1_H2;
112 		octx->state[3] = SHA1_H3;
113 		octx->state[4] = SHA1_H4;
114 	}
115 
116 	return 0;
117 }
118 
sun4i_hash_import_sha1(struct ahash_request * areq,const void * in)119 int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
120 {
121 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
122 	const struct sha1_state *ictx = in;
123 	int i;
124 
125 	sun4i_hash_init(areq);
126 
127 	op->byte_count = ictx->count & ~0x3F;
128 	op->len = ictx->count & 0x3F;
129 
130 	memcpy(op->buf, ictx->buffer, op->len);
131 
132 	for (i = 0; i < 5; i++)
133 		op->hash[i] = ictx->state[i];
134 
135 	return 0;
136 }
137 
138 #define SS_HASH_UPDATE 1
139 #define SS_HASH_FINAL 2
140 
141 /*
142  * sun4i_hash_update: update hash engine
143  *
144  * Could be used for both SHA1 and MD5
145  * Write data by step of 32bits and put then in the SS.
146  *
147  * Since we cannot leave partial data and hash state in the engine,
148  * we need to get the hash state at the end of this function.
149  * We can get the hash state every 64 bytes
150  *
151  * So the first work is to get the number of bytes to write to SS modulo 64
152  * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
153  *
154  * So at the begin of update()
155  * if op->len + areq->nbytes < 64
156  * => all data will be written to wait buffer (op->buf) and end=0
157  * if not, write all data from op->buf to the device and position end to
158  * complete to 64bytes
159  *
160  * example 1:
161  * update1 60o => op->len=60
162  * update2 60o => need one more word to have 64 bytes
163  * end=4
164  * so write all data from op->buf and one word of SGs
165  * write remaining data in op->buf
166  * final state op->len=56
167  */
sun4i_hash(struct ahash_request * areq)168 static int sun4i_hash(struct ahash_request *areq)
169 {
170 	/*
171 	 * i is the total bytes read from SGs, to be compared to areq->nbytes
172 	 * i is important because we cannot rely on SG length since the sum of
173 	 * SG->length could be greater than areq->nbytes
174 	 *
175 	 * end is the position when we need to stop writing to the device,
176 	 * to be compared to i
177 	 *
178 	 * in_i: advancement in the current SG
179 	 */
180 	unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
181 	unsigned int in_i = 0;
182 	u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, wb = 0, v, ivmode = 0;
183 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
184 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
185 	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
186 	struct sun4i_ss_ctx *ss = tfmctx->ss;
187 	struct scatterlist *in_sg = areq->src;
188 	struct sg_mapping_iter mi;
189 	int in_r, err = 0;
190 	size_t copied = 0;
191 
192 	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
193 		__func__, crypto_tfm_alg_name(areq->base.tfm),
194 		op->byte_count, areq->nbytes, op->mode,
195 		op->len, op->hash[0]);
196 
197 	if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
198 		return 0;
199 
200 	/* protect against overflow */
201 	if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
202 		dev_err(ss->dev, "Cannot process too large request\n");
203 		return -EINVAL;
204 	}
205 
206 	if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
207 		/* linearize data to op->buf */
208 		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
209 					    op->buf + op->len, areq->nbytes, 0);
210 		op->len += copied;
211 		return 0;
212 	}
213 
214 	spin_lock_bh(&ss->slock);
215 
216 	/*
217 	 * if some data have been processed before,
218 	 * we need to restore the partial hash state
219 	 */
220 	if (op->byte_count) {
221 		ivmode = SS_IV_ARBITRARY;
222 		for (i = 0; i < 5; i++)
223 			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
224 	}
225 	/* Enable the device */
226 	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
227 
228 	if (!(op->flags & SS_HASH_UPDATE))
229 		goto hash_final;
230 
231 	/* start of handling data */
232 	if (!(op->flags & SS_HASH_FINAL)) {
233 		end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
234 
235 		if (end > areq->nbytes || areq->nbytes - end > 63) {
236 			dev_err(ss->dev, "ERROR: Bound error %u %u\n",
237 				end, areq->nbytes);
238 			err = -EINVAL;
239 			goto release_ss;
240 		}
241 	} else {
242 		/* Since we have the flag final, we can go up to modulo 4 */
243 		end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
244 	}
245 
246 	/* TODO if SGlen % 4 and !op->len then DMA */
247 	i = 1;
248 	while (in_sg && i == 1) {
249 		if (in_sg->length % 4)
250 			i = 0;
251 		in_sg = sg_next(in_sg);
252 	}
253 	if (i == 1 && !op->len && areq->nbytes)
254 		dev_dbg(ss->dev, "We can DMA\n");
255 
256 	i = 0;
257 	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
258 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
259 	sg_miter_next(&mi);
260 	in_i = 0;
261 
262 	do {
263 		/*
264 		 * we need to linearize in two case:
265 		 * - the buffer is already used
266 		 * - the SG does not have enough byte remaining ( < 4)
267 		 */
268 		if (op->len || (mi.length - in_i) < 4) {
269 			/*
270 			 * if we have entered here we have two reason to stop
271 			 * - the buffer is full
272 			 * - reach the end
273 			 */
274 			while (op->len < 64 && i < end) {
275 				/* how many bytes we can read from current SG */
276 				in_r = min3(mi.length - in_i, end - i,
277 					    64 - op->len);
278 				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
279 				op->len += in_r;
280 				i += in_r;
281 				in_i += in_r;
282 				if (in_i == mi.length) {
283 					sg_miter_next(&mi);
284 					in_i = 0;
285 				}
286 			}
287 			if (op->len > 3 && !(op->len % 4)) {
288 				/* write buf to the device */
289 				writesl(ss->base + SS_RXFIFO, op->buf,
290 					op->len / 4);
291 				op->byte_count += op->len;
292 				op->len = 0;
293 			}
294 		}
295 		if (mi.length - in_i > 3 && i < end) {
296 			/* how many bytes we can read from current SG */
297 			in_r = min3(mi.length - in_i, areq->nbytes - i,
298 				    ((mi.length - in_i) / 4) * 4);
299 			/* how many bytes we can write in the device*/
300 			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
301 			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
302 			op->byte_count += todo * 4;
303 			i += todo * 4;
304 			in_i += todo * 4;
305 			rx_cnt -= todo;
306 			if (!rx_cnt) {
307 				spaces = readl(ss->base + SS_FCSR);
308 				rx_cnt = SS_RXFIFO_SPACES(spaces);
309 			}
310 			if (in_i == mi.length) {
311 				sg_miter_next(&mi);
312 				in_i = 0;
313 			}
314 		}
315 	} while (i < end);
316 
317 	/*
318 	 * Now we have written to the device all that we can,
319 	 * store the remaining bytes in op->buf
320 	 */
321 	if ((areq->nbytes - i) < 64) {
322 		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
323 			/* how many bytes we can read from current SG */
324 			in_r = min3(mi.length - in_i, areq->nbytes - i,
325 				    64 - op->len);
326 			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
327 			op->len += in_r;
328 			i += in_r;
329 			in_i += in_r;
330 			if (in_i == mi.length) {
331 				sg_miter_next(&mi);
332 				in_i = 0;
333 			}
334 		}
335 	}
336 
337 	sg_miter_stop(&mi);
338 
339 	/*
340 	 * End of data process
341 	 * Now if we have the flag final go to finalize part
342 	 * If not, store the partial hash
343 	 */
344 	if (op->flags & SS_HASH_FINAL)
345 		goto hash_final;
346 
347 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
348 	i = 0;
349 	do {
350 		v = readl(ss->base + SS_CTL);
351 		i++;
352 	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
353 	if (unlikely(i >= SS_TIMEOUT)) {
354 		dev_err_ratelimited(ss->dev,
355 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
356 				    i, SS_TIMEOUT, v, areq->nbytes);
357 		err = -EIO;
358 		goto release_ss;
359 	}
360 
361 	/*
362 	 * The datasheet isn't very clear about when to retrieve the digest. The
363 	 * bit SS_DATA_END is cleared when the engine has processed the data and
364 	 * when the digest is computed *but* it doesn't mean the digest is
365 	 * available in the digest registers. Hence the delay to be sure we can
366 	 * read it.
367 	 */
368 	ndelay(1);
369 
370 	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
371 		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
372 
373 	goto release_ss;
374 
375 /*
376  * hash_final: finalize hashing operation
377  *
378  * If we have some remaining bytes, we write them.
379  * Then ask the SS for finalizing the hashing operation
380  *
381  * I do not check RX FIFO size in this function since the size is 32
382  * after each enabling and this function neither write more than 32 words.
383  * If we come from the update part, we cannot have more than
384  * 3 remaining bytes to write and SS is fast enough to not care about it.
385  */
386 
387 hash_final:
388 
389 	/* write the remaining words of the wait buffer */
390 	if (op->len) {
391 		nwait = op->len / 4;
392 		if (nwait) {
393 			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
394 			op->byte_count += 4 * nwait;
395 		}
396 
397 		nbw = op->len - 4 * nwait;
398 		if (nbw) {
399 			wb = *(u32 *)(op->buf + nwait * 4);
400 			wb &= GENMASK((nbw * 8) - 1, 0);
401 
402 			op->byte_count += nbw;
403 		}
404 	}
405 
406 	/* write the remaining bytes of the nbw buffer */
407 	wb |= ((1 << 7) << (nbw * 8));
408 	bf[j++] = wb;
409 
410 	/*
411 	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
412 	 * I take the operations from other MD5/SHA1 implementations
413 	 */
414 
415 	/* last block size */
416 	fill = 64 - (op->byte_count % 64);
417 	min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
418 
419 	/* if we can't fill all data, jump to the next 64 block */
420 	if (fill < min_fill)
421 		fill += 64;
422 
423 	j += (fill - min_fill) / sizeof(u32);
424 
425 	/* write the length of data */
426 	if (op->mode == SS_OP_SHA1) {
427 		__be64 bits = cpu_to_be64(op->byte_count << 3);
428 		bf[j++] = lower_32_bits(bits);
429 		bf[j++] = upper_32_bits(bits);
430 	} else {
431 		__le64 bits = op->byte_count << 3;
432 		bf[j++] = lower_32_bits(bits);
433 		bf[j++] = upper_32_bits(bits);
434 	}
435 	writesl(ss->base + SS_RXFIFO, bf, j);
436 
437 	/* Tell the SS to stop the hashing */
438 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
439 
440 	/*
441 	 * Wait for SS to finish the hash.
442 	 * The timeout could happen only in case of bad overclocking
443 	 * or driver bug.
444 	 */
445 	i = 0;
446 	do {
447 		v = readl(ss->base + SS_CTL);
448 		i++;
449 	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
450 	if (unlikely(i >= SS_TIMEOUT)) {
451 		dev_err_ratelimited(ss->dev,
452 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
453 				    i, SS_TIMEOUT, v, areq->nbytes);
454 		err = -EIO;
455 		goto release_ss;
456 	}
457 
458 	/*
459 	 * The datasheet isn't very clear about when to retrieve the digest. The
460 	 * bit SS_DATA_END is cleared when the engine has processed the data and
461 	 * when the digest is computed *but* it doesn't mean the digest is
462 	 * available in the digest registers. Hence the delay to be sure we can
463 	 * read it.
464 	 */
465 	ndelay(1);
466 
467 	/* Get the hash from the device */
468 	if (op->mode == SS_OP_SHA1) {
469 		for (i = 0; i < 5; i++) {
470 			v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
471 			memcpy(areq->result + i * 4, &v, 4);
472 		}
473 	} else {
474 		for (i = 0; i < 4; i++) {
475 			v = readl(ss->base + SS_MD0 + i * 4);
476 			memcpy(areq->result + i * 4, &v, 4);
477 		}
478 	}
479 
480 release_ss:
481 	writel(0, ss->base + SS_CTL);
482 	spin_unlock_bh(&ss->slock);
483 	return err;
484 }
485 
sun4i_hash_final(struct ahash_request * areq)486 int sun4i_hash_final(struct ahash_request *areq)
487 {
488 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
489 
490 	op->flags = SS_HASH_FINAL;
491 	return sun4i_hash(areq);
492 }
493 
sun4i_hash_update(struct ahash_request * areq)494 int sun4i_hash_update(struct ahash_request *areq)
495 {
496 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
497 
498 	op->flags = SS_HASH_UPDATE;
499 	return sun4i_hash(areq);
500 }
501 
502 /* sun4i_hash_finup: finalize hashing operation after an update */
sun4i_hash_finup(struct ahash_request * areq)503 int sun4i_hash_finup(struct ahash_request *areq)
504 {
505 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
506 
507 	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
508 	return sun4i_hash(areq);
509 }
510 
511 /* combo of init/update/final functions */
sun4i_hash_digest(struct ahash_request * areq)512 int sun4i_hash_digest(struct ahash_request *areq)
513 {
514 	int err;
515 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
516 
517 	err = sun4i_hash_init(areq);
518 	if (err)
519 		return err;
520 
521 	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
522 	return sun4i_hash(areq);
523 }
524