1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/cpu_cooling.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/pm_opp.h>
18 #include <linux/platform_device.h>
19 #include <linux/regulator/consumer.h>
20 
21 #define PU_SOC_VOLTAGE_NORMAL	1250000
22 #define PU_SOC_VOLTAGE_HIGH	1275000
23 #define FREQ_1P2_GHZ		1200000000
24 
25 static struct regulator *arm_reg;
26 static struct regulator *pu_reg;
27 static struct regulator *soc_reg;
28 
29 enum IMX6_CPUFREQ_CLKS {
30 	ARM,
31 	PLL1_SYS,
32 	STEP,
33 	PLL1_SW,
34 	PLL2_PFD2_396M,
35 	/* MX6UL requires two more clks */
36 	PLL2_BUS,
37 	SECONDARY_SEL,
38 };
39 #define IMX6Q_CPUFREQ_CLK_NUM		5
40 #define IMX6UL_CPUFREQ_CLK_NUM		7
41 
42 static int num_clks;
43 static struct clk_bulk_data clks[] = {
44 	{ .id = "arm" },
45 	{ .id = "pll1_sys" },
46 	{ .id = "step" },
47 	{ .id = "pll1_sw" },
48 	{ .id = "pll2_pfd2_396m" },
49 	{ .id = "pll2_bus" },
50 	{ .id = "secondary_sel" },
51 };
52 
53 static struct device *cpu_dev;
54 static struct thermal_cooling_device *cdev;
55 static bool free_opp;
56 static struct cpufreq_frequency_table *freq_table;
57 static unsigned int max_freq;
58 static unsigned int transition_latency;
59 
60 static u32 *imx6_soc_volt;
61 static u32 soc_opp_count;
62 
imx6q_set_target(struct cpufreq_policy * policy,unsigned int index)63 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
64 {
65 	struct dev_pm_opp *opp;
66 	unsigned long freq_hz, volt, volt_old;
67 	unsigned int old_freq, new_freq;
68 	bool pll1_sys_temp_enabled = false;
69 	int ret;
70 
71 	new_freq = freq_table[index].frequency;
72 	freq_hz = new_freq * 1000;
73 	old_freq = clk_get_rate(clks[ARM].clk) / 1000;
74 
75 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
76 	if (IS_ERR(opp)) {
77 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
78 		return PTR_ERR(opp);
79 	}
80 
81 	volt = dev_pm_opp_get_voltage(opp);
82 	dev_pm_opp_put(opp);
83 
84 	volt_old = regulator_get_voltage(arm_reg);
85 
86 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
87 		old_freq / 1000, volt_old / 1000,
88 		new_freq / 1000, volt / 1000);
89 
90 	/* scaling up?  scale voltage before frequency */
91 	if (new_freq > old_freq) {
92 		if (!IS_ERR(pu_reg)) {
93 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
94 			if (ret) {
95 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
96 				return ret;
97 			}
98 		}
99 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
100 		if (ret) {
101 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
102 			return ret;
103 		}
104 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
105 		if (ret) {
106 			dev_err(cpu_dev,
107 				"failed to scale vddarm up: %d\n", ret);
108 			return ret;
109 		}
110 	}
111 
112 	/*
113 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
114 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
115 	 * PLL1 is as below.
116 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
117 	 * flow is slightly different from other i.MX6 OSC.
118 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
119 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
120 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
121 	 *  - Disable pll2_pfd2_396m_clk
122 	 */
123 	if (of_machine_is_compatible("fsl,imx6ul") ||
124 	    of_machine_is_compatible("fsl,imx6ull")) {
125 		/*
126 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
127 		 * CPU may run at higher than 528MHz, this will lead to
128 		 * the system unstable if the voltage is lower than the
129 		 * voltage of 528MHz, so lower the CPU frequency to one
130 		 * half before changing CPU frequency.
131 		 */
132 		clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
133 		clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
134 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
135 			clk_set_parent(clks[SECONDARY_SEL].clk,
136 				       clks[PLL2_BUS].clk);
137 		else
138 			clk_set_parent(clks[SECONDARY_SEL].clk,
139 				       clks[PLL2_PFD2_396M].clk);
140 		clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
141 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
142 		if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
143 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
144 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
145 		}
146 	} else {
147 		clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
148 		clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
149 		if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
150 			clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
151 			clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
152 		} else {
153 			/* pll1_sys needs to be enabled for divider rate change to work. */
154 			pll1_sys_temp_enabled = true;
155 			clk_prepare_enable(clks[PLL1_SYS].clk);
156 		}
157 	}
158 
159 	/* Ensure the arm clock divider is what we expect */
160 	ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
161 	if (ret) {
162 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
163 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
164 		return ret;
165 	}
166 
167 	/* PLL1 is only needed until after ARM-PODF is set. */
168 	if (pll1_sys_temp_enabled)
169 		clk_disable_unprepare(clks[PLL1_SYS].clk);
170 
171 	/* scaling down?  scale voltage after frequency */
172 	if (new_freq < old_freq) {
173 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
174 		if (ret) {
175 			dev_warn(cpu_dev,
176 				 "failed to scale vddarm down: %d\n", ret);
177 			ret = 0;
178 		}
179 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
180 		if (ret) {
181 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
182 			ret = 0;
183 		}
184 		if (!IS_ERR(pu_reg)) {
185 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
186 			if (ret) {
187 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
188 				ret = 0;
189 			}
190 		}
191 	}
192 
193 	return 0;
194 }
195 
imx6q_cpufreq_ready(struct cpufreq_policy * policy)196 static void imx6q_cpufreq_ready(struct cpufreq_policy *policy)
197 {
198 	cdev = of_cpufreq_cooling_register(policy);
199 
200 	if (!cdev)
201 		dev_err(cpu_dev,
202 			"running cpufreq without cooling device: %ld\n",
203 			PTR_ERR(cdev));
204 }
205 
imx6q_cpufreq_init(struct cpufreq_policy * policy)206 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
207 {
208 	int ret;
209 
210 	policy->clk = clks[ARM].clk;
211 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
212 	policy->suspend_freq = max_freq;
213 
214 	return ret;
215 }
216 
imx6q_cpufreq_exit(struct cpufreq_policy * policy)217 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
218 {
219 	cpufreq_cooling_unregister(cdev);
220 
221 	return 0;
222 }
223 
224 static struct cpufreq_driver imx6q_cpufreq_driver = {
225 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
226 	.verify = cpufreq_generic_frequency_table_verify,
227 	.target_index = imx6q_set_target,
228 	.get = cpufreq_generic_get,
229 	.init = imx6q_cpufreq_init,
230 	.exit = imx6q_cpufreq_exit,
231 	.name = "imx6q-cpufreq",
232 	.ready = imx6q_cpufreq_ready,
233 	.attr = cpufreq_generic_attr,
234 	.suspend = cpufreq_generic_suspend,
235 };
236 
237 #define OCOTP_CFG3			0x440
238 #define OCOTP_CFG3_SPEED_SHIFT		16
239 #define OCOTP_CFG3_SPEED_1P2GHZ		0x3
240 #define OCOTP_CFG3_SPEED_996MHZ		0x2
241 #define OCOTP_CFG3_SPEED_852MHZ		0x1
242 
imx6q_opp_check_speed_grading(struct device * dev)243 static void imx6q_opp_check_speed_grading(struct device *dev)
244 {
245 	struct device_node *np;
246 	void __iomem *base;
247 	u32 val;
248 
249 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
250 	if (!np)
251 		return;
252 
253 	base = of_iomap(np, 0);
254 	if (!base) {
255 		dev_err(dev, "failed to map ocotp\n");
256 		goto put_node;
257 	}
258 
259 	/*
260 	 * SPEED_GRADING[1:0] defines the max speed of ARM:
261 	 * 2b'11: 1200000000Hz;
262 	 * 2b'10: 996000000Hz;
263 	 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
264 	 * 2b'00: 792000000Hz;
265 	 * We need to set the max speed of ARM according to fuse map.
266 	 */
267 	val = readl_relaxed(base + OCOTP_CFG3);
268 	val >>= OCOTP_CFG3_SPEED_SHIFT;
269 	val &= 0x3;
270 
271 	if (val < OCOTP_CFG3_SPEED_996MHZ)
272 		if (dev_pm_opp_disable(dev, 996000000))
273 			dev_warn(dev, "failed to disable 996MHz OPP\n");
274 
275 	if (of_machine_is_compatible("fsl,imx6q") ||
276 	    of_machine_is_compatible("fsl,imx6qp")) {
277 		if (val != OCOTP_CFG3_SPEED_852MHZ)
278 			if (dev_pm_opp_disable(dev, 852000000))
279 				dev_warn(dev, "failed to disable 852MHz OPP\n");
280 		if (val != OCOTP_CFG3_SPEED_1P2GHZ)
281 			if (dev_pm_opp_disable(dev, 1200000000))
282 				dev_warn(dev, "failed to disable 1.2GHz OPP\n");
283 	}
284 	iounmap(base);
285 put_node:
286 	of_node_put(np);
287 }
288 
289 #define OCOTP_CFG3_6UL_SPEED_696MHZ	0x2
290 #define OCOTP_CFG3_6ULL_SPEED_792MHZ	0x2
291 #define OCOTP_CFG3_6ULL_SPEED_900MHZ	0x3
292 
imx6ul_opp_check_speed_grading(struct device * dev)293 static void imx6ul_opp_check_speed_grading(struct device *dev)
294 {
295 	struct device_node *np;
296 	void __iomem *base;
297 	u32 val;
298 
299 	np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
300 	if (!np)
301 		return;
302 
303 	base = of_iomap(np, 0);
304 	if (!base) {
305 		dev_err(dev, "failed to map ocotp\n");
306 		goto put_node;
307 	}
308 
309 	/*
310 	 * Speed GRADING[1:0] defines the max speed of ARM:
311 	 * 2b'00: Reserved;
312 	 * 2b'01: 528000000Hz;
313 	 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
314 	 * 2b'11: 900000000Hz on i.MX6ULL only;
315 	 * We need to set the max speed of ARM according to fuse map.
316 	 */
317 	val = readl_relaxed(base + OCOTP_CFG3);
318 	val >>= OCOTP_CFG3_SPEED_SHIFT;
319 	val &= 0x3;
320 
321 	if (of_machine_is_compatible("fsl,imx6ul")) {
322 		if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
323 			if (dev_pm_opp_disable(dev, 696000000))
324 				dev_warn(dev, "failed to disable 696MHz OPP\n");
325 	}
326 
327 	if (of_machine_is_compatible("fsl,imx6ull")) {
328 		if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
329 			if (dev_pm_opp_disable(dev, 792000000))
330 				dev_warn(dev, "failed to disable 792MHz OPP\n");
331 
332 		if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
333 			if (dev_pm_opp_disable(dev, 900000000))
334 				dev_warn(dev, "failed to disable 900MHz OPP\n");
335 	}
336 
337 	iounmap(base);
338 put_node:
339 	of_node_put(np);
340 }
341 
imx6q_cpufreq_probe(struct platform_device * pdev)342 static int imx6q_cpufreq_probe(struct platform_device *pdev)
343 {
344 	struct device_node *np;
345 	struct dev_pm_opp *opp;
346 	unsigned long min_volt, max_volt;
347 	int num, ret;
348 	const struct property *prop;
349 	const __be32 *val;
350 	u32 nr, i, j;
351 
352 	cpu_dev = get_cpu_device(0);
353 	if (!cpu_dev) {
354 		pr_err("failed to get cpu0 device\n");
355 		return -ENODEV;
356 	}
357 
358 	np = of_node_get(cpu_dev->of_node);
359 	if (!np) {
360 		dev_err(cpu_dev, "failed to find cpu0 node\n");
361 		return -ENOENT;
362 	}
363 
364 	if (of_machine_is_compatible("fsl,imx6ul") ||
365 	    of_machine_is_compatible("fsl,imx6ull"))
366 		num_clks = IMX6UL_CPUFREQ_CLK_NUM;
367 	else
368 		num_clks = IMX6Q_CPUFREQ_CLK_NUM;
369 
370 	ret = clk_bulk_get(cpu_dev, num_clks, clks);
371 	if (ret)
372 		goto put_node;
373 
374 	arm_reg = regulator_get(cpu_dev, "arm");
375 	pu_reg = regulator_get_optional(cpu_dev, "pu");
376 	soc_reg = regulator_get(cpu_dev, "soc");
377 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
378 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
379 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
380 		ret = -EPROBE_DEFER;
381 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
382 		goto put_reg;
383 	}
384 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
385 		dev_err(cpu_dev, "failed to get regulators\n");
386 		ret = -ENOENT;
387 		goto put_reg;
388 	}
389 
390 	ret = dev_pm_opp_of_add_table(cpu_dev);
391 	if (ret < 0) {
392 		dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
393 		goto put_reg;
394 	}
395 
396 	if (of_machine_is_compatible("fsl,imx6ul") ||
397 	    of_machine_is_compatible("fsl,imx6ull"))
398 		imx6ul_opp_check_speed_grading(cpu_dev);
399 	else
400 		imx6q_opp_check_speed_grading(cpu_dev);
401 
402 	/* Because we have added the OPPs here, we must free them */
403 	free_opp = true;
404 	num = dev_pm_opp_get_opp_count(cpu_dev);
405 	if (num < 0) {
406 		ret = num;
407 		dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
408 		goto out_free_opp;
409 	}
410 
411 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
412 	if (ret) {
413 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
414 		goto out_free_opp;
415 	}
416 
417 	/* Make imx6_soc_volt array's size same as arm opp number */
418 	imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
419 				     GFP_KERNEL);
420 	if (imx6_soc_volt == NULL) {
421 		ret = -ENOMEM;
422 		goto free_freq_table;
423 	}
424 
425 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
426 	if (!prop || !prop->value)
427 		goto soc_opp_out;
428 
429 	/*
430 	 * Each OPP is a set of tuples consisting of frequency and
431 	 * voltage like <freq-kHz vol-uV>.
432 	 */
433 	nr = prop->length / sizeof(u32);
434 	if (nr % 2 || (nr / 2) < num)
435 		goto soc_opp_out;
436 
437 	for (j = 0; j < num; j++) {
438 		val = prop->value;
439 		for (i = 0; i < nr / 2; i++) {
440 			unsigned long freq = be32_to_cpup(val++);
441 			unsigned long volt = be32_to_cpup(val++);
442 			if (freq_table[j].frequency == freq) {
443 				imx6_soc_volt[soc_opp_count++] = volt;
444 				break;
445 			}
446 		}
447 	}
448 
449 soc_opp_out:
450 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
451 	if (soc_opp_count != num) {
452 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
453 		for (j = 0; j < num; j++)
454 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
455 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
456 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
457 	}
458 
459 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
460 		transition_latency = CPUFREQ_ETERNAL;
461 
462 	/*
463 	 * Calculate the ramp time for max voltage change in the
464 	 * VDDSOC and VDDPU regulators.
465 	 */
466 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
467 	if (ret > 0)
468 		transition_latency += ret * 1000;
469 	if (!IS_ERR(pu_reg)) {
470 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
471 		if (ret > 0)
472 			transition_latency += ret * 1000;
473 	}
474 
475 	/*
476 	 * OPP is maintained in order of increasing frequency, and
477 	 * freq_table initialised from OPP is therefore sorted in the
478 	 * same order.
479 	 */
480 	max_freq = freq_table[--num].frequency;
481 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
482 				  freq_table[0].frequency * 1000, true);
483 	min_volt = dev_pm_opp_get_voltage(opp);
484 	dev_pm_opp_put(opp);
485 	opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
486 	max_volt = dev_pm_opp_get_voltage(opp);
487 	dev_pm_opp_put(opp);
488 
489 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
490 	if (ret > 0)
491 		transition_latency += ret * 1000;
492 
493 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
494 	if (ret) {
495 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
496 		goto free_freq_table;
497 	}
498 
499 	of_node_put(np);
500 	return 0;
501 
502 free_freq_table:
503 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
504 out_free_opp:
505 	if (free_opp)
506 		dev_pm_opp_of_remove_table(cpu_dev);
507 put_reg:
508 	if (!IS_ERR(arm_reg))
509 		regulator_put(arm_reg);
510 	if (!IS_ERR(pu_reg))
511 		regulator_put(pu_reg);
512 	if (!IS_ERR(soc_reg))
513 		regulator_put(soc_reg);
514 
515 	clk_bulk_put(num_clks, clks);
516 put_node:
517 	of_node_put(np);
518 
519 	return ret;
520 }
521 
imx6q_cpufreq_remove(struct platform_device * pdev)522 static int imx6q_cpufreq_remove(struct platform_device *pdev)
523 {
524 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
525 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
526 	if (free_opp)
527 		dev_pm_opp_of_remove_table(cpu_dev);
528 	regulator_put(arm_reg);
529 	if (!IS_ERR(pu_reg))
530 		regulator_put(pu_reg);
531 	regulator_put(soc_reg);
532 
533 	clk_bulk_put(num_clks, clks);
534 
535 	return 0;
536 }
537 
538 static struct platform_driver imx6q_cpufreq_platdrv = {
539 	.driver = {
540 		.name	= "imx6q-cpufreq",
541 	},
542 	.probe		= imx6q_cpufreq_probe,
543 	.remove		= imx6q_cpufreq_remove,
544 };
545 module_platform_driver(imx6q_cpufreq_platdrv);
546 
547 MODULE_ALIAS("platform:imx6q-cpufreq");
548 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
549 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
550 MODULE_LICENSE("GPL");
551