1 /*
2  *
3  * Copyright (C) 2007 Google, Inc.
4  * Copyright (c) 2009-2012,2014, The Linux Foundation. All rights reserved.
5  *
6  * This software is licensed under the terms of the GNU General Public
7  * License version 2, as published by the Free Software Foundation, and
8  * may be copied, distributed, and modified under those terms.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 #include <linux/clocksource.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/sched_clock.h>
28 
29 #include <asm/delay.h>
30 
31 #define TIMER_MATCH_VAL			0x0000
32 #define TIMER_COUNT_VAL			0x0004
33 #define TIMER_ENABLE			0x0008
34 #define TIMER_ENABLE_CLR_ON_MATCH_EN	BIT(1)
35 #define TIMER_ENABLE_EN			BIT(0)
36 #define TIMER_CLEAR			0x000C
37 #define DGT_CLK_CTL			0x10
38 #define DGT_CLK_CTL_DIV_4		0x3
39 #define TIMER_STS_GPT0_CLR_PEND		BIT(10)
40 
41 #define GPT_HZ 32768
42 
43 static void __iomem *event_base;
44 static void __iomem *sts_base;
45 
msm_timer_interrupt(int irq,void * dev_id)46 static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
47 {
48 	struct clock_event_device *evt = dev_id;
49 	/* Stop the timer tick */
50 	if (clockevent_state_oneshot(evt)) {
51 		u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
52 		ctrl &= ~TIMER_ENABLE_EN;
53 		writel_relaxed(ctrl, event_base + TIMER_ENABLE);
54 	}
55 	evt->event_handler(evt);
56 	return IRQ_HANDLED;
57 }
58 
msm_timer_set_next_event(unsigned long cycles,struct clock_event_device * evt)59 static int msm_timer_set_next_event(unsigned long cycles,
60 				    struct clock_event_device *evt)
61 {
62 	u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
63 
64 	ctrl &= ~TIMER_ENABLE_EN;
65 	writel_relaxed(ctrl, event_base + TIMER_ENABLE);
66 
67 	writel_relaxed(ctrl, event_base + TIMER_CLEAR);
68 	writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
69 
70 	if (sts_base)
71 		while (readl_relaxed(sts_base) & TIMER_STS_GPT0_CLR_PEND)
72 			cpu_relax();
73 
74 	writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
75 	return 0;
76 }
77 
msm_timer_shutdown(struct clock_event_device * evt)78 static int msm_timer_shutdown(struct clock_event_device *evt)
79 {
80 	u32 ctrl;
81 
82 	ctrl = readl_relaxed(event_base + TIMER_ENABLE);
83 	ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
84 	writel_relaxed(ctrl, event_base + TIMER_ENABLE);
85 	return 0;
86 }
87 
88 static struct clock_event_device __percpu *msm_evt;
89 
90 static void __iomem *source_base;
91 
msm_read_timer_count(struct clocksource * cs)92 static notrace u64 msm_read_timer_count(struct clocksource *cs)
93 {
94 	return readl_relaxed(source_base + TIMER_COUNT_VAL);
95 }
96 
97 static struct clocksource msm_clocksource = {
98 	.name	= "dg_timer",
99 	.rating	= 300,
100 	.read	= msm_read_timer_count,
101 	.mask	= CLOCKSOURCE_MASK(32),
102 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
103 };
104 
105 static int msm_timer_irq;
106 static int msm_timer_has_ppi;
107 
msm_local_timer_starting_cpu(unsigned int cpu)108 static int msm_local_timer_starting_cpu(unsigned int cpu)
109 {
110 	struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu);
111 	int err;
112 
113 	evt->irq = msm_timer_irq;
114 	evt->name = "msm_timer";
115 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
116 	evt->rating = 200;
117 	evt->set_state_shutdown = msm_timer_shutdown;
118 	evt->set_state_oneshot = msm_timer_shutdown;
119 	evt->tick_resume = msm_timer_shutdown;
120 	evt->set_next_event = msm_timer_set_next_event;
121 	evt->cpumask = cpumask_of(cpu);
122 
123 	clockevents_config_and_register(evt, GPT_HZ, 4, 0xffffffff);
124 
125 	if (msm_timer_has_ppi) {
126 		enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
127 	} else {
128 		err = request_irq(evt->irq, msm_timer_interrupt,
129 				IRQF_TIMER | IRQF_NOBALANCING |
130 				IRQF_TRIGGER_RISING, "gp_timer", evt);
131 		if (err)
132 			pr_err("request_irq failed\n");
133 	}
134 
135 	return 0;
136 }
137 
msm_local_timer_dying_cpu(unsigned int cpu)138 static int msm_local_timer_dying_cpu(unsigned int cpu)
139 {
140 	struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu);
141 
142 	evt->set_state_shutdown(evt);
143 	disable_percpu_irq(evt->irq);
144 	return 0;
145 }
146 
msm_sched_clock_read(void)147 static u64 notrace msm_sched_clock_read(void)
148 {
149 	return msm_clocksource.read(&msm_clocksource);
150 }
151 
msm_read_current_timer(void)152 static unsigned long msm_read_current_timer(void)
153 {
154 	return msm_clocksource.read(&msm_clocksource);
155 }
156 
157 static struct delay_timer msm_delay_timer = {
158 	.read_current_timer = msm_read_current_timer,
159 };
160 
msm_timer_init(u32 dgt_hz,int sched_bits,int irq,bool percpu)161 static int __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
162 				  bool percpu)
163 {
164 	struct clocksource *cs = &msm_clocksource;
165 	int res = 0;
166 
167 	msm_timer_irq = irq;
168 	msm_timer_has_ppi = percpu;
169 
170 	msm_evt = alloc_percpu(struct clock_event_device);
171 	if (!msm_evt) {
172 		pr_err("memory allocation failed for clockevents\n");
173 		goto err;
174 	}
175 
176 	if (percpu)
177 		res = request_percpu_irq(irq, msm_timer_interrupt,
178 					 "gp_timer", msm_evt);
179 
180 	if (res) {
181 		pr_err("request_percpu_irq failed\n");
182 	} else {
183 		/* Install and invoke hotplug callbacks */
184 		res = cpuhp_setup_state(CPUHP_AP_QCOM_TIMER_STARTING,
185 					"clockevents/qcom/timer:starting",
186 					msm_local_timer_starting_cpu,
187 					msm_local_timer_dying_cpu);
188 		if (res) {
189 			free_percpu_irq(irq, msm_evt);
190 			goto err;
191 		}
192 	}
193 
194 err:
195 	writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
196 	res = clocksource_register_hz(cs, dgt_hz);
197 	if (res)
198 		pr_err("clocksource_register failed\n");
199 	sched_clock_register(msm_sched_clock_read, sched_bits, dgt_hz);
200 	msm_delay_timer.freq = dgt_hz;
201 	register_current_timer_delay(&msm_delay_timer);
202 
203 	return res;
204 }
205 
msm_dt_timer_init(struct device_node * np)206 static int __init msm_dt_timer_init(struct device_node *np)
207 {
208 	u32 freq;
209 	int irq, ret;
210 	struct resource res;
211 	u32 percpu_offset;
212 	void __iomem *base;
213 	void __iomem *cpu0_base;
214 
215 	base = of_iomap(np, 0);
216 	if (!base) {
217 		pr_err("Failed to map event base\n");
218 		return -ENXIO;
219 	}
220 
221 	/* We use GPT0 for the clockevent */
222 	irq = irq_of_parse_and_map(np, 1);
223 	if (irq <= 0) {
224 		pr_err("Can't get irq\n");
225 		return -EINVAL;
226 	}
227 
228 	/* We use CPU0's DGT for the clocksource */
229 	if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
230 		percpu_offset = 0;
231 
232 	ret = of_address_to_resource(np, 0, &res);
233 	if (ret) {
234 		pr_err("Failed to parse DGT resource\n");
235 		return ret;
236 	}
237 
238 	cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res));
239 	if (!cpu0_base) {
240 		pr_err("Failed to map source base\n");
241 		return -EINVAL;
242 	}
243 
244 	if (of_property_read_u32(np, "clock-frequency", &freq)) {
245 		pr_err("Unknown frequency\n");
246 		return -EINVAL;
247 	}
248 
249 	event_base = base + 0x4;
250 	sts_base = base + 0x88;
251 	source_base = cpu0_base + 0x24;
252 	freq /= 4;
253 	writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL);
254 
255 	return msm_timer_init(freq, 32, irq, !!percpu_offset);
256 }
257 TIMER_OF_DECLARE(kpss_timer, "qcom,kpss-timer", msm_dt_timer_init);
258 TIMER_OF_DECLARE(scss_timer, "qcom,scss-timer", msm_dt_timer_init);
259