1 /*
2 *
3 * Copyright (C) 2007 Google, Inc.
4 * Copyright (c) 2009-2012,2014, The Linux Foundation. All rights reserved.
5 *
6 * This software is licensed under the terms of the GNU General Public
7 * License version 2, as published by the Free Software Foundation, and
8 * may be copied, distributed, and modified under those terms.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16
17 #include <linux/clocksource.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/sched_clock.h>
28
29 #include <asm/delay.h>
30
31 #define TIMER_MATCH_VAL 0x0000
32 #define TIMER_COUNT_VAL 0x0004
33 #define TIMER_ENABLE 0x0008
34 #define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1)
35 #define TIMER_ENABLE_EN BIT(0)
36 #define TIMER_CLEAR 0x000C
37 #define DGT_CLK_CTL 0x10
38 #define DGT_CLK_CTL_DIV_4 0x3
39 #define TIMER_STS_GPT0_CLR_PEND BIT(10)
40
41 #define GPT_HZ 32768
42
43 static void __iomem *event_base;
44 static void __iomem *sts_base;
45
msm_timer_interrupt(int irq,void * dev_id)46 static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
47 {
48 struct clock_event_device *evt = dev_id;
49 /* Stop the timer tick */
50 if (clockevent_state_oneshot(evt)) {
51 u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
52 ctrl &= ~TIMER_ENABLE_EN;
53 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
54 }
55 evt->event_handler(evt);
56 return IRQ_HANDLED;
57 }
58
msm_timer_set_next_event(unsigned long cycles,struct clock_event_device * evt)59 static int msm_timer_set_next_event(unsigned long cycles,
60 struct clock_event_device *evt)
61 {
62 u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
63
64 ctrl &= ~TIMER_ENABLE_EN;
65 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
66
67 writel_relaxed(ctrl, event_base + TIMER_CLEAR);
68 writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
69
70 if (sts_base)
71 while (readl_relaxed(sts_base) & TIMER_STS_GPT0_CLR_PEND)
72 cpu_relax();
73
74 writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
75 return 0;
76 }
77
msm_timer_shutdown(struct clock_event_device * evt)78 static int msm_timer_shutdown(struct clock_event_device *evt)
79 {
80 u32 ctrl;
81
82 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
83 ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
84 writel_relaxed(ctrl, event_base + TIMER_ENABLE);
85 return 0;
86 }
87
88 static struct clock_event_device __percpu *msm_evt;
89
90 static void __iomem *source_base;
91
msm_read_timer_count(struct clocksource * cs)92 static notrace u64 msm_read_timer_count(struct clocksource *cs)
93 {
94 return readl_relaxed(source_base + TIMER_COUNT_VAL);
95 }
96
97 static struct clocksource msm_clocksource = {
98 .name = "dg_timer",
99 .rating = 300,
100 .read = msm_read_timer_count,
101 .mask = CLOCKSOURCE_MASK(32),
102 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
103 };
104
105 static int msm_timer_irq;
106 static int msm_timer_has_ppi;
107
msm_local_timer_starting_cpu(unsigned int cpu)108 static int msm_local_timer_starting_cpu(unsigned int cpu)
109 {
110 struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu);
111 int err;
112
113 evt->irq = msm_timer_irq;
114 evt->name = "msm_timer";
115 evt->features = CLOCK_EVT_FEAT_ONESHOT;
116 evt->rating = 200;
117 evt->set_state_shutdown = msm_timer_shutdown;
118 evt->set_state_oneshot = msm_timer_shutdown;
119 evt->tick_resume = msm_timer_shutdown;
120 evt->set_next_event = msm_timer_set_next_event;
121 evt->cpumask = cpumask_of(cpu);
122
123 clockevents_config_and_register(evt, GPT_HZ, 4, 0xffffffff);
124
125 if (msm_timer_has_ppi) {
126 enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
127 } else {
128 err = request_irq(evt->irq, msm_timer_interrupt,
129 IRQF_TIMER | IRQF_NOBALANCING |
130 IRQF_TRIGGER_RISING, "gp_timer", evt);
131 if (err)
132 pr_err("request_irq failed\n");
133 }
134
135 return 0;
136 }
137
msm_local_timer_dying_cpu(unsigned int cpu)138 static int msm_local_timer_dying_cpu(unsigned int cpu)
139 {
140 struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu);
141
142 evt->set_state_shutdown(evt);
143 disable_percpu_irq(evt->irq);
144 return 0;
145 }
146
msm_sched_clock_read(void)147 static u64 notrace msm_sched_clock_read(void)
148 {
149 return msm_clocksource.read(&msm_clocksource);
150 }
151
msm_read_current_timer(void)152 static unsigned long msm_read_current_timer(void)
153 {
154 return msm_clocksource.read(&msm_clocksource);
155 }
156
157 static struct delay_timer msm_delay_timer = {
158 .read_current_timer = msm_read_current_timer,
159 };
160
msm_timer_init(u32 dgt_hz,int sched_bits,int irq,bool percpu)161 static int __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
162 bool percpu)
163 {
164 struct clocksource *cs = &msm_clocksource;
165 int res = 0;
166
167 msm_timer_irq = irq;
168 msm_timer_has_ppi = percpu;
169
170 msm_evt = alloc_percpu(struct clock_event_device);
171 if (!msm_evt) {
172 pr_err("memory allocation failed for clockevents\n");
173 goto err;
174 }
175
176 if (percpu)
177 res = request_percpu_irq(irq, msm_timer_interrupt,
178 "gp_timer", msm_evt);
179
180 if (res) {
181 pr_err("request_percpu_irq failed\n");
182 } else {
183 /* Install and invoke hotplug callbacks */
184 res = cpuhp_setup_state(CPUHP_AP_QCOM_TIMER_STARTING,
185 "clockevents/qcom/timer:starting",
186 msm_local_timer_starting_cpu,
187 msm_local_timer_dying_cpu);
188 if (res) {
189 free_percpu_irq(irq, msm_evt);
190 goto err;
191 }
192 }
193
194 err:
195 writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
196 res = clocksource_register_hz(cs, dgt_hz);
197 if (res)
198 pr_err("clocksource_register failed\n");
199 sched_clock_register(msm_sched_clock_read, sched_bits, dgt_hz);
200 msm_delay_timer.freq = dgt_hz;
201 register_current_timer_delay(&msm_delay_timer);
202
203 return res;
204 }
205
msm_dt_timer_init(struct device_node * np)206 static int __init msm_dt_timer_init(struct device_node *np)
207 {
208 u32 freq;
209 int irq, ret;
210 struct resource res;
211 u32 percpu_offset;
212 void __iomem *base;
213 void __iomem *cpu0_base;
214
215 base = of_iomap(np, 0);
216 if (!base) {
217 pr_err("Failed to map event base\n");
218 return -ENXIO;
219 }
220
221 /* We use GPT0 for the clockevent */
222 irq = irq_of_parse_and_map(np, 1);
223 if (irq <= 0) {
224 pr_err("Can't get irq\n");
225 return -EINVAL;
226 }
227
228 /* We use CPU0's DGT for the clocksource */
229 if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
230 percpu_offset = 0;
231
232 ret = of_address_to_resource(np, 0, &res);
233 if (ret) {
234 pr_err("Failed to parse DGT resource\n");
235 return ret;
236 }
237
238 cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res));
239 if (!cpu0_base) {
240 pr_err("Failed to map source base\n");
241 return -EINVAL;
242 }
243
244 if (of_property_read_u32(np, "clock-frequency", &freq)) {
245 pr_err("Unknown frequency\n");
246 return -EINVAL;
247 }
248
249 event_base = base + 0x4;
250 sts_base = base + 0x88;
251 source_base = cpu0_base + 0x24;
252 freq /= 4;
253 writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL);
254
255 return msm_timer_init(freq, 32, irq, !!percpu_offset);
256 }
257 TIMER_OF_DECLARE(kpss_timer, "qcom,kpss-timer", msm_dt_timer_init);
258 TIMER_OF_DECLARE(scss_timer, "qcom,scss-timer", msm_dt_timer_init);
259