1 /*
2 * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3 * was acquired by Western Digital in 2012.
4 *
5 * Copyright 2012 sTec, Inc.
6 * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7 *
8 * This file is part of the Linux kernel, and is made available under
9 * the terms of the GNU General Public License version 2.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <scsi/scsi.h>
36 #include <scsi/sg.h>
37 #include <linux/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/unaligned.h>
40
41 #include "skd_s1120.h"
42
43 static int skd_dbg_level;
44 static int skd_isr_comp_limit = 4;
45
46 #define SKD_ASSERT(expr) \
47 do { \
48 if (unlikely(!(expr))) { \
49 pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
50 # expr, __FILE__, __func__, __LINE__); \
51 } \
52 } while (0)
53
54 #define DRV_NAME "skd"
55 #define PFX DRV_NAME ": "
56
57 MODULE_LICENSE("GPL");
58
59 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
60
61 #define PCI_VENDOR_ID_STEC 0x1B39
62 #define PCI_DEVICE_ID_S1120 0x0001
63
64 #define SKD_FUA_NV (1 << 1)
65 #define SKD_MINORS_PER_DEVICE 16
66
67 #define SKD_MAX_QUEUE_DEPTH 200u
68
69 #define SKD_PAUSE_TIMEOUT (5 * 1000)
70
71 #define SKD_N_FITMSG_BYTES (512u)
72 #define SKD_MAX_REQ_PER_MSG 14
73
74 #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
75
76 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
77 * 128KB limit. That allows 4096*4K = 16M xfer size
78 */
79 #define SKD_N_SG_PER_REQ_DEFAULT 256u
80
81 #define SKD_N_COMPLETION_ENTRY 256u
82 #define SKD_N_READ_CAP_BYTES (8u)
83
84 #define SKD_N_INTERNAL_BYTES (512u)
85
86 #define SKD_SKCOMP_SIZE \
87 ((sizeof(struct fit_completion_entry_v1) + \
88 sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
89
90 /* 5 bits of uniqifier, 0xF800 */
91 #define SKD_ID_TABLE_MASK (3u << 8u)
92 #define SKD_ID_RW_REQUEST (0u << 8u)
93 #define SKD_ID_INTERNAL (1u << 8u)
94 #define SKD_ID_FIT_MSG (3u << 8u)
95 #define SKD_ID_SLOT_MASK 0x00FFu
96 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
97
98 #define SKD_N_MAX_SECTORS 2048u
99
100 #define SKD_MAX_RETRIES 2u
101
102 #define SKD_TIMER_SECONDS(seconds) (seconds)
103 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
104
105 #define INQ_STD_NBYTES 36
106
107 enum skd_drvr_state {
108 SKD_DRVR_STATE_LOAD,
109 SKD_DRVR_STATE_IDLE,
110 SKD_DRVR_STATE_BUSY,
111 SKD_DRVR_STATE_STARTING,
112 SKD_DRVR_STATE_ONLINE,
113 SKD_DRVR_STATE_PAUSING,
114 SKD_DRVR_STATE_PAUSED,
115 SKD_DRVR_STATE_RESTARTING,
116 SKD_DRVR_STATE_RESUMING,
117 SKD_DRVR_STATE_STOPPING,
118 SKD_DRVR_STATE_FAULT,
119 SKD_DRVR_STATE_DISAPPEARED,
120 SKD_DRVR_STATE_PROTOCOL_MISMATCH,
121 SKD_DRVR_STATE_BUSY_ERASE,
122 SKD_DRVR_STATE_BUSY_SANITIZE,
123 SKD_DRVR_STATE_BUSY_IMMINENT,
124 SKD_DRVR_STATE_WAIT_BOOT,
125 SKD_DRVR_STATE_SYNCING,
126 };
127
128 #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
129 #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
130 #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
131 #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
132 #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
133 #define SKD_START_WAIT_SECONDS 90u
134
135 enum skd_req_state {
136 SKD_REQ_STATE_IDLE,
137 SKD_REQ_STATE_SETUP,
138 SKD_REQ_STATE_BUSY,
139 SKD_REQ_STATE_COMPLETED,
140 SKD_REQ_STATE_TIMEOUT,
141 };
142
143 enum skd_check_status_action {
144 SKD_CHECK_STATUS_REPORT_GOOD,
145 SKD_CHECK_STATUS_REPORT_SMART_ALERT,
146 SKD_CHECK_STATUS_REQUEUE_REQUEST,
147 SKD_CHECK_STATUS_REPORT_ERROR,
148 SKD_CHECK_STATUS_BUSY_IMMINENT,
149 };
150
151 struct skd_msg_buf {
152 struct fit_msg_hdr fmh;
153 struct skd_scsi_request scsi[SKD_MAX_REQ_PER_MSG];
154 };
155
156 struct skd_fitmsg_context {
157 u32 id;
158
159 u32 length;
160
161 struct skd_msg_buf *msg_buf;
162 dma_addr_t mb_dma_address;
163 };
164
165 struct skd_request_context {
166 enum skd_req_state state;
167
168 u16 id;
169 u32 fitmsg_id;
170
171 u8 flush_cmd;
172
173 enum dma_data_direction data_dir;
174 struct scatterlist *sg;
175 u32 n_sg;
176 u32 sg_byte_count;
177
178 struct fit_sg_descriptor *sksg_list;
179 dma_addr_t sksg_dma_address;
180
181 struct fit_completion_entry_v1 completion;
182
183 struct fit_comp_error_info err_info;
184
185 blk_status_t status;
186 };
187
188 struct skd_special_context {
189 struct skd_request_context req;
190
191 void *data_buf;
192 dma_addr_t db_dma_address;
193
194 struct skd_msg_buf *msg_buf;
195 dma_addr_t mb_dma_address;
196 };
197
198 typedef enum skd_irq_type {
199 SKD_IRQ_LEGACY,
200 SKD_IRQ_MSI,
201 SKD_IRQ_MSIX
202 } skd_irq_type_t;
203
204 #define SKD_MAX_BARS 2
205
206 struct skd_device {
207 void __iomem *mem_map[SKD_MAX_BARS];
208 resource_size_t mem_phys[SKD_MAX_BARS];
209 u32 mem_size[SKD_MAX_BARS];
210
211 struct skd_msix_entry *msix_entries;
212
213 struct pci_dev *pdev;
214 int pcie_error_reporting_is_enabled;
215
216 spinlock_t lock;
217 struct gendisk *disk;
218 struct blk_mq_tag_set tag_set;
219 struct request_queue *queue;
220 struct skd_fitmsg_context *skmsg;
221 struct device *class_dev;
222 int gendisk_on;
223 int sync_done;
224
225 u32 devno;
226 u32 major;
227 char isr_name[30];
228
229 enum skd_drvr_state state;
230 u32 drive_state;
231
232 u32 cur_max_queue_depth;
233 u32 queue_low_water_mark;
234 u32 dev_max_queue_depth;
235
236 u32 num_fitmsg_context;
237 u32 num_req_context;
238
239 struct skd_fitmsg_context *skmsg_table;
240
241 struct skd_special_context internal_skspcl;
242 u32 read_cap_blocksize;
243 u32 read_cap_last_lba;
244 int read_cap_is_valid;
245 int inquiry_is_valid;
246 u8 inq_serial_num[13]; /*12 chars plus null term */
247
248 u8 skcomp_cycle;
249 u32 skcomp_ix;
250 struct kmem_cache *msgbuf_cache;
251 struct kmem_cache *sglist_cache;
252 struct kmem_cache *databuf_cache;
253 struct fit_completion_entry_v1 *skcomp_table;
254 struct fit_comp_error_info *skerr_table;
255 dma_addr_t cq_dma_address;
256
257 wait_queue_head_t waitq;
258
259 struct timer_list timer;
260 u32 timer_countdown;
261 u32 timer_substate;
262
263 int sgs_per_request;
264 u32 last_mtd;
265
266 u32 proto_ver;
267
268 int dbg_level;
269 u32 connect_time_stamp;
270 int connect_retries;
271 #define SKD_MAX_CONNECT_RETRIES 16
272 u32 drive_jiffies;
273
274 u32 timo_slot;
275
276 struct work_struct start_queue;
277 struct work_struct completion_worker;
278 };
279
280 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
281 #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
282 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
283
skd_reg_read32(struct skd_device * skdev,u32 offset)284 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
285 {
286 u32 val = readl(skdev->mem_map[1] + offset);
287
288 if (unlikely(skdev->dbg_level >= 2))
289 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
290 return val;
291 }
292
skd_reg_write32(struct skd_device * skdev,u32 val,u32 offset)293 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
294 u32 offset)
295 {
296 writel(val, skdev->mem_map[1] + offset);
297 if (unlikely(skdev->dbg_level >= 2))
298 dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
299 }
300
skd_reg_write64(struct skd_device * skdev,u64 val,u32 offset)301 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
302 u32 offset)
303 {
304 writeq(val, skdev->mem_map[1] + offset);
305 if (unlikely(skdev->dbg_level >= 2))
306 dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
307 val);
308 }
309
310
311 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
312 static int skd_isr_type = SKD_IRQ_DEFAULT;
313
314 module_param(skd_isr_type, int, 0444);
315 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
316 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
317
318 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
319 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
320
321 module_param(skd_max_req_per_msg, int, 0444);
322 MODULE_PARM_DESC(skd_max_req_per_msg,
323 "Maximum SCSI requests packed in a single message."
324 " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
325
326 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
328 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
329
330 module_param(skd_max_queue_depth, int, 0444);
331 MODULE_PARM_DESC(skd_max_queue_depth,
332 "Maximum SCSI requests issued to s1120."
333 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
334
335 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
336 module_param(skd_sgs_per_request, int, 0444);
337 MODULE_PARM_DESC(skd_sgs_per_request,
338 "Maximum SG elements per block request."
339 " (1-4096, default==256)");
340
341 static int skd_max_pass_thru = 1;
342 module_param(skd_max_pass_thru, int, 0444);
343 MODULE_PARM_DESC(skd_max_pass_thru,
344 "Maximum SCSI pass-thru at a time. IGNORED");
345
346 module_param(skd_dbg_level, int, 0444);
347 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
348
349 module_param(skd_isr_comp_limit, int, 0444);
350 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
351
352 /* Major device number dynamically assigned. */
353 static u32 skd_major;
354
355 static void skd_destruct(struct skd_device *skdev);
356 static const struct block_device_operations skd_blockdev_ops;
357 static void skd_send_fitmsg(struct skd_device *skdev,
358 struct skd_fitmsg_context *skmsg);
359 static void skd_send_special_fitmsg(struct skd_device *skdev,
360 struct skd_special_context *skspcl);
361 static bool skd_preop_sg_list(struct skd_device *skdev,
362 struct skd_request_context *skreq);
363 static void skd_postop_sg_list(struct skd_device *skdev,
364 struct skd_request_context *skreq);
365
366 static void skd_restart_device(struct skd_device *skdev);
367 static int skd_quiesce_dev(struct skd_device *skdev);
368 static int skd_unquiesce_dev(struct skd_device *skdev);
369 static void skd_disable_interrupts(struct skd_device *skdev);
370 static void skd_isr_fwstate(struct skd_device *skdev);
371 static void skd_recover_requests(struct skd_device *skdev);
372 static void skd_soft_reset(struct skd_device *skdev);
373
374 const char *skd_drive_state_to_str(int state);
375 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
376 static void skd_log_skdev(struct skd_device *skdev, const char *event);
377 static void skd_log_skreq(struct skd_device *skdev,
378 struct skd_request_context *skreq, const char *event);
379
380 /*
381 *****************************************************************************
382 * READ/WRITE REQUESTS
383 *****************************************************************************
384 */
skd_inc_in_flight(struct request * rq,void * data,bool reserved)385 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
386 {
387 int *count = data;
388
389 count++;
390 }
391
skd_in_flight(struct skd_device * skdev)392 static int skd_in_flight(struct skd_device *skdev)
393 {
394 int count = 0;
395
396 blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
397
398 return count;
399 }
400
401 static void
skd_prep_rw_cdb(struct skd_scsi_request * scsi_req,int data_dir,unsigned lba,unsigned count)402 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
403 int data_dir, unsigned lba,
404 unsigned count)
405 {
406 if (data_dir == READ)
407 scsi_req->cdb[0] = READ_10;
408 else
409 scsi_req->cdb[0] = WRITE_10;
410
411 scsi_req->cdb[1] = 0;
412 scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
413 scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
414 scsi_req->cdb[4] = (lba & 0xff00) >> 8;
415 scsi_req->cdb[5] = (lba & 0xff);
416 scsi_req->cdb[6] = 0;
417 scsi_req->cdb[7] = (count & 0xff00) >> 8;
418 scsi_req->cdb[8] = count & 0xff;
419 scsi_req->cdb[9] = 0;
420 }
421
422 static void
skd_prep_zerosize_flush_cdb(struct skd_scsi_request * scsi_req,struct skd_request_context * skreq)423 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
424 struct skd_request_context *skreq)
425 {
426 skreq->flush_cmd = 1;
427
428 scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
429 scsi_req->cdb[1] = 0;
430 scsi_req->cdb[2] = 0;
431 scsi_req->cdb[3] = 0;
432 scsi_req->cdb[4] = 0;
433 scsi_req->cdb[5] = 0;
434 scsi_req->cdb[6] = 0;
435 scsi_req->cdb[7] = 0;
436 scsi_req->cdb[8] = 0;
437 scsi_req->cdb[9] = 0;
438 }
439
440 /*
441 * Return true if and only if all pending requests should be failed.
442 */
skd_fail_all(struct request_queue * q)443 static bool skd_fail_all(struct request_queue *q)
444 {
445 struct skd_device *skdev = q->queuedata;
446
447 SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
448
449 skd_log_skdev(skdev, "req_not_online");
450 switch (skdev->state) {
451 case SKD_DRVR_STATE_PAUSING:
452 case SKD_DRVR_STATE_PAUSED:
453 case SKD_DRVR_STATE_STARTING:
454 case SKD_DRVR_STATE_RESTARTING:
455 case SKD_DRVR_STATE_WAIT_BOOT:
456 /* In case of starting, we haven't started the queue,
457 * so we can't get here... but requests are
458 * possibly hanging out waiting for us because we
459 * reported the dev/skd0 already. They'll wait
460 * forever if connect doesn't complete.
461 * What to do??? delay dev/skd0 ??
462 */
463 case SKD_DRVR_STATE_BUSY:
464 case SKD_DRVR_STATE_BUSY_IMMINENT:
465 case SKD_DRVR_STATE_BUSY_ERASE:
466 return false;
467
468 case SKD_DRVR_STATE_BUSY_SANITIZE:
469 case SKD_DRVR_STATE_STOPPING:
470 case SKD_DRVR_STATE_SYNCING:
471 case SKD_DRVR_STATE_FAULT:
472 case SKD_DRVR_STATE_DISAPPEARED:
473 default:
474 return true;
475 }
476 }
477
skd_mq_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * mqd)478 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
479 const struct blk_mq_queue_data *mqd)
480 {
481 struct request *const req = mqd->rq;
482 struct request_queue *const q = req->q;
483 struct skd_device *skdev = q->queuedata;
484 struct skd_fitmsg_context *skmsg;
485 struct fit_msg_hdr *fmh;
486 const u32 tag = blk_mq_unique_tag(req);
487 struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
488 struct skd_scsi_request *scsi_req;
489 unsigned long flags = 0;
490 const u32 lba = blk_rq_pos(req);
491 const u32 count = blk_rq_sectors(req);
492 const int data_dir = rq_data_dir(req);
493
494 if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
495 return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
496
497 blk_mq_start_request(req);
498
499 WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
500 tag, skd_max_queue_depth, q->nr_requests);
501
502 SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
503
504 dev_dbg(&skdev->pdev->dev,
505 "new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
506 lba, count, count, data_dir);
507
508 skreq->id = tag + SKD_ID_RW_REQUEST;
509 skreq->flush_cmd = 0;
510 skreq->n_sg = 0;
511 skreq->sg_byte_count = 0;
512
513 skreq->fitmsg_id = 0;
514
515 skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
516
517 if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
518 dev_dbg(&skdev->pdev->dev, "error Out\n");
519 skreq->status = BLK_STS_RESOURCE;
520 blk_mq_complete_request(req);
521 return BLK_STS_OK;
522 }
523
524 dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
525 skreq->n_sg *
526 sizeof(struct fit_sg_descriptor),
527 DMA_TO_DEVICE);
528
529 /* Either a FIT msg is in progress or we have to start one. */
530 if (skd_max_req_per_msg == 1) {
531 skmsg = NULL;
532 } else {
533 spin_lock_irqsave(&skdev->lock, flags);
534 skmsg = skdev->skmsg;
535 }
536 if (!skmsg) {
537 skmsg = &skdev->skmsg_table[tag];
538 skdev->skmsg = skmsg;
539
540 /* Initialize the FIT msg header */
541 fmh = &skmsg->msg_buf->fmh;
542 memset(fmh, 0, sizeof(*fmh));
543 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
544 skmsg->length = sizeof(*fmh);
545 } else {
546 fmh = &skmsg->msg_buf->fmh;
547 }
548
549 skreq->fitmsg_id = skmsg->id;
550
551 scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
552 memset(scsi_req, 0, sizeof(*scsi_req));
553
554 scsi_req->hdr.tag = skreq->id;
555 scsi_req->hdr.sg_list_dma_address =
556 cpu_to_be64(skreq->sksg_dma_address);
557
558 if (req_op(req) == REQ_OP_FLUSH) {
559 skd_prep_zerosize_flush_cdb(scsi_req, skreq);
560 SKD_ASSERT(skreq->flush_cmd == 1);
561 } else {
562 skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
563 }
564
565 if (req->cmd_flags & REQ_FUA)
566 scsi_req->cdb[1] |= SKD_FUA_NV;
567
568 scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
569
570 /* Complete resource allocations. */
571 skreq->state = SKD_REQ_STATE_BUSY;
572
573 skmsg->length += sizeof(struct skd_scsi_request);
574 fmh->num_protocol_cmds_coalesced++;
575
576 dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
577 skd_in_flight(skdev));
578
579 /*
580 * If the FIT msg buffer is full send it.
581 */
582 if (skd_max_req_per_msg == 1) {
583 skd_send_fitmsg(skdev, skmsg);
584 } else {
585 if (mqd->last ||
586 fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
587 skd_send_fitmsg(skdev, skmsg);
588 skdev->skmsg = NULL;
589 }
590 spin_unlock_irqrestore(&skdev->lock, flags);
591 }
592
593 return BLK_STS_OK;
594 }
595
skd_timed_out(struct request * req,bool reserved)596 static enum blk_eh_timer_return skd_timed_out(struct request *req,
597 bool reserved)
598 {
599 struct skd_device *skdev = req->q->queuedata;
600
601 dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
602 blk_mq_unique_tag(req));
603
604 return BLK_EH_RESET_TIMER;
605 }
606
skd_complete_rq(struct request * req)607 static void skd_complete_rq(struct request *req)
608 {
609 struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
610
611 blk_mq_end_request(req, skreq->status);
612 }
613
skd_preop_sg_list(struct skd_device * skdev,struct skd_request_context * skreq)614 static bool skd_preop_sg_list(struct skd_device *skdev,
615 struct skd_request_context *skreq)
616 {
617 struct request *req = blk_mq_rq_from_pdu(skreq);
618 struct scatterlist *sgl = &skreq->sg[0], *sg;
619 int n_sg;
620 int i;
621
622 skreq->sg_byte_count = 0;
623
624 WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
625 skreq->data_dir != DMA_FROM_DEVICE);
626
627 n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
628 if (n_sg <= 0)
629 return false;
630
631 /*
632 * Map scatterlist to PCI bus addresses.
633 * Note PCI might change the number of entries.
634 */
635 n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
636 if (n_sg <= 0)
637 return false;
638
639 SKD_ASSERT(n_sg <= skdev->sgs_per_request);
640
641 skreq->n_sg = n_sg;
642
643 for_each_sg(sgl, sg, n_sg, i) {
644 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
645 u32 cnt = sg_dma_len(sg);
646 uint64_t dma_addr = sg_dma_address(sg);
647
648 sgd->control = FIT_SGD_CONTROL_NOT_LAST;
649 sgd->byte_count = cnt;
650 skreq->sg_byte_count += cnt;
651 sgd->host_side_addr = dma_addr;
652 sgd->dev_side_addr = 0;
653 }
654
655 skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
656 skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
657
658 if (unlikely(skdev->dbg_level > 1)) {
659 dev_dbg(&skdev->pdev->dev,
660 "skreq=%x sksg_list=%p sksg_dma=%pad\n",
661 skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
662 for (i = 0; i < n_sg; i++) {
663 struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
664
665 dev_dbg(&skdev->pdev->dev,
666 " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
667 i, sgd->byte_count, sgd->control,
668 sgd->host_side_addr, sgd->next_desc_ptr);
669 }
670 }
671
672 return true;
673 }
674
skd_postop_sg_list(struct skd_device * skdev,struct skd_request_context * skreq)675 static void skd_postop_sg_list(struct skd_device *skdev,
676 struct skd_request_context *skreq)
677 {
678 /*
679 * restore the next ptr for next IO request so we
680 * don't have to set it every time.
681 */
682 skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
683 skreq->sksg_dma_address +
684 ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
685 pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
686 }
687
688 /*
689 *****************************************************************************
690 * TIMER
691 *****************************************************************************
692 */
693
694 static void skd_timer_tick_not_online(struct skd_device *skdev);
695
skd_start_queue(struct work_struct * work)696 static void skd_start_queue(struct work_struct *work)
697 {
698 struct skd_device *skdev = container_of(work, typeof(*skdev),
699 start_queue);
700
701 /*
702 * Although it is safe to call blk_start_queue() from interrupt
703 * context, blk_mq_start_hw_queues() must not be called from
704 * interrupt context.
705 */
706 blk_mq_start_hw_queues(skdev->queue);
707 }
708
skd_timer_tick(struct timer_list * t)709 static void skd_timer_tick(struct timer_list *t)
710 {
711 struct skd_device *skdev = from_timer(skdev, t, timer);
712 unsigned long reqflags;
713 u32 state;
714
715 if (skdev->state == SKD_DRVR_STATE_FAULT)
716 /* The driver has declared fault, and we want it to
717 * stay that way until driver is reloaded.
718 */
719 return;
720
721 spin_lock_irqsave(&skdev->lock, reqflags);
722
723 state = SKD_READL(skdev, FIT_STATUS);
724 state &= FIT_SR_DRIVE_STATE_MASK;
725 if (state != skdev->drive_state)
726 skd_isr_fwstate(skdev);
727
728 if (skdev->state != SKD_DRVR_STATE_ONLINE)
729 skd_timer_tick_not_online(skdev);
730
731 mod_timer(&skdev->timer, (jiffies + HZ));
732
733 spin_unlock_irqrestore(&skdev->lock, reqflags);
734 }
735
skd_timer_tick_not_online(struct skd_device * skdev)736 static void skd_timer_tick_not_online(struct skd_device *skdev)
737 {
738 switch (skdev->state) {
739 case SKD_DRVR_STATE_IDLE:
740 case SKD_DRVR_STATE_LOAD:
741 break;
742 case SKD_DRVR_STATE_BUSY_SANITIZE:
743 dev_dbg(&skdev->pdev->dev,
744 "drive busy sanitize[%x], driver[%x]\n",
745 skdev->drive_state, skdev->state);
746 /* If we've been in sanitize for 3 seconds, we figure we're not
747 * going to get anymore completions, so recover requests now
748 */
749 if (skdev->timer_countdown > 0) {
750 skdev->timer_countdown--;
751 return;
752 }
753 skd_recover_requests(skdev);
754 break;
755
756 case SKD_DRVR_STATE_BUSY:
757 case SKD_DRVR_STATE_BUSY_IMMINENT:
758 case SKD_DRVR_STATE_BUSY_ERASE:
759 dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
760 skdev->state, skdev->timer_countdown);
761 if (skdev->timer_countdown > 0) {
762 skdev->timer_countdown--;
763 return;
764 }
765 dev_dbg(&skdev->pdev->dev,
766 "busy[%x], timedout=%d, restarting device.",
767 skdev->state, skdev->timer_countdown);
768 skd_restart_device(skdev);
769 break;
770
771 case SKD_DRVR_STATE_WAIT_BOOT:
772 case SKD_DRVR_STATE_STARTING:
773 if (skdev->timer_countdown > 0) {
774 skdev->timer_countdown--;
775 return;
776 }
777 /* For now, we fault the drive. Could attempt resets to
778 * revcover at some point. */
779 skdev->state = SKD_DRVR_STATE_FAULT;
780
781 dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
782 skdev->drive_state);
783
784 /*start the queue so we can respond with error to requests */
785 /* wakeup anyone waiting for startup complete */
786 schedule_work(&skdev->start_queue);
787 skdev->gendisk_on = -1;
788 wake_up_interruptible(&skdev->waitq);
789 break;
790
791 case SKD_DRVR_STATE_ONLINE:
792 /* shouldn't get here. */
793 break;
794
795 case SKD_DRVR_STATE_PAUSING:
796 case SKD_DRVR_STATE_PAUSED:
797 break;
798
799 case SKD_DRVR_STATE_RESTARTING:
800 if (skdev->timer_countdown > 0) {
801 skdev->timer_countdown--;
802 return;
803 }
804 /* For now, we fault the drive. Could attempt resets to
805 * revcover at some point. */
806 skdev->state = SKD_DRVR_STATE_FAULT;
807 dev_err(&skdev->pdev->dev,
808 "DriveFault Reconnect Timeout (%x)\n",
809 skdev->drive_state);
810
811 /*
812 * Recovering does two things:
813 * 1. completes IO with error
814 * 2. reclaims dma resources
815 * When is it safe to recover requests?
816 * - if the drive state is faulted
817 * - if the state is still soft reset after out timeout
818 * - if the drive registers are dead (state = FF)
819 * If it is "unsafe", we still need to recover, so we will
820 * disable pci bus mastering and disable our interrupts.
821 */
822
823 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
824 (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
825 (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
826 /* It never came out of soft reset. Try to
827 * recover the requests and then let them
828 * fail. This is to mitigate hung processes. */
829 skd_recover_requests(skdev);
830 else {
831 dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
832 skdev->drive_state);
833 pci_disable_device(skdev->pdev);
834 skd_disable_interrupts(skdev);
835 skd_recover_requests(skdev);
836 }
837
838 /*start the queue so we can respond with error to requests */
839 /* wakeup anyone waiting for startup complete */
840 schedule_work(&skdev->start_queue);
841 skdev->gendisk_on = -1;
842 wake_up_interruptible(&skdev->waitq);
843 break;
844
845 case SKD_DRVR_STATE_RESUMING:
846 case SKD_DRVR_STATE_STOPPING:
847 case SKD_DRVR_STATE_SYNCING:
848 case SKD_DRVR_STATE_FAULT:
849 case SKD_DRVR_STATE_DISAPPEARED:
850 default:
851 break;
852 }
853 }
854
skd_start_timer(struct skd_device * skdev)855 static int skd_start_timer(struct skd_device *skdev)
856 {
857 int rc;
858
859 timer_setup(&skdev->timer, skd_timer_tick, 0);
860
861 rc = mod_timer(&skdev->timer, (jiffies + HZ));
862 if (rc)
863 dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
864 return rc;
865 }
866
skd_kill_timer(struct skd_device * skdev)867 static void skd_kill_timer(struct skd_device *skdev)
868 {
869 del_timer_sync(&skdev->timer);
870 }
871
872 /*
873 *****************************************************************************
874 * INTERNAL REQUESTS -- generated by driver itself
875 *****************************************************************************
876 */
877
skd_format_internal_skspcl(struct skd_device * skdev)878 static int skd_format_internal_skspcl(struct skd_device *skdev)
879 {
880 struct skd_special_context *skspcl = &skdev->internal_skspcl;
881 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
882 struct fit_msg_hdr *fmh;
883 uint64_t dma_address;
884 struct skd_scsi_request *scsi;
885
886 fmh = &skspcl->msg_buf->fmh;
887 fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
888 fmh->num_protocol_cmds_coalesced = 1;
889
890 scsi = &skspcl->msg_buf->scsi[0];
891 memset(scsi, 0, sizeof(*scsi));
892 dma_address = skspcl->req.sksg_dma_address;
893 scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
894 skspcl->req.n_sg = 1;
895 sgd->control = FIT_SGD_CONTROL_LAST;
896 sgd->byte_count = 0;
897 sgd->host_side_addr = skspcl->db_dma_address;
898 sgd->dev_side_addr = 0;
899 sgd->next_desc_ptr = 0LL;
900
901 return 1;
902 }
903
904 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
905
skd_send_internal_skspcl(struct skd_device * skdev,struct skd_special_context * skspcl,u8 opcode)906 static void skd_send_internal_skspcl(struct skd_device *skdev,
907 struct skd_special_context *skspcl,
908 u8 opcode)
909 {
910 struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
911 struct skd_scsi_request *scsi;
912 unsigned char *buf = skspcl->data_buf;
913 int i;
914
915 if (skspcl->req.state != SKD_REQ_STATE_IDLE)
916 /*
917 * A refresh is already in progress.
918 * Just wait for it to finish.
919 */
920 return;
921
922 skspcl->req.state = SKD_REQ_STATE_BUSY;
923
924 scsi = &skspcl->msg_buf->scsi[0];
925 scsi->hdr.tag = skspcl->req.id;
926
927 memset(scsi->cdb, 0, sizeof(scsi->cdb));
928
929 switch (opcode) {
930 case TEST_UNIT_READY:
931 scsi->cdb[0] = TEST_UNIT_READY;
932 sgd->byte_count = 0;
933 scsi->hdr.sg_list_len_bytes = 0;
934 break;
935
936 case READ_CAPACITY:
937 scsi->cdb[0] = READ_CAPACITY;
938 sgd->byte_count = SKD_N_READ_CAP_BYTES;
939 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
940 break;
941
942 case INQUIRY:
943 scsi->cdb[0] = INQUIRY;
944 scsi->cdb[1] = 0x01; /* evpd */
945 scsi->cdb[2] = 0x80; /* serial number page */
946 scsi->cdb[4] = 0x10;
947 sgd->byte_count = 16;
948 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
949 break;
950
951 case SYNCHRONIZE_CACHE:
952 scsi->cdb[0] = SYNCHRONIZE_CACHE;
953 sgd->byte_count = 0;
954 scsi->hdr.sg_list_len_bytes = 0;
955 break;
956
957 case WRITE_BUFFER:
958 scsi->cdb[0] = WRITE_BUFFER;
959 scsi->cdb[1] = 0x02;
960 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
961 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
962 sgd->byte_count = WR_BUF_SIZE;
963 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
964 /* fill incrementing byte pattern */
965 for (i = 0; i < sgd->byte_count; i++)
966 buf[i] = i & 0xFF;
967 break;
968
969 case READ_BUFFER:
970 scsi->cdb[0] = READ_BUFFER;
971 scsi->cdb[1] = 0x02;
972 scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
973 scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
974 sgd->byte_count = WR_BUF_SIZE;
975 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
976 memset(skspcl->data_buf, 0, sgd->byte_count);
977 break;
978
979 default:
980 SKD_ASSERT("Don't know what to send");
981 return;
982
983 }
984 skd_send_special_fitmsg(skdev, skspcl);
985 }
986
skd_refresh_device_data(struct skd_device * skdev)987 static void skd_refresh_device_data(struct skd_device *skdev)
988 {
989 struct skd_special_context *skspcl = &skdev->internal_skspcl;
990
991 skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
992 }
993
skd_chk_read_buf(struct skd_device * skdev,struct skd_special_context * skspcl)994 static int skd_chk_read_buf(struct skd_device *skdev,
995 struct skd_special_context *skspcl)
996 {
997 unsigned char *buf = skspcl->data_buf;
998 int i;
999
1000 /* check for incrementing byte pattern */
1001 for (i = 0; i < WR_BUF_SIZE; i++)
1002 if (buf[i] != (i & 0xFF))
1003 return 1;
1004
1005 return 0;
1006 }
1007
skd_log_check_status(struct skd_device * skdev,u8 status,u8 key,u8 code,u8 qual,u8 fruc)1008 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1009 u8 code, u8 qual, u8 fruc)
1010 {
1011 /* If the check condition is of special interest, log a message */
1012 if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1013 && (code == 0x04) && (qual == 0x06)) {
1014 dev_err(&skdev->pdev->dev,
1015 "*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1016 key, code, qual, fruc);
1017 }
1018 }
1019
skd_complete_internal(struct skd_device * skdev,struct fit_completion_entry_v1 * skcomp,struct fit_comp_error_info * skerr,struct skd_special_context * skspcl)1020 static void skd_complete_internal(struct skd_device *skdev,
1021 struct fit_completion_entry_v1 *skcomp,
1022 struct fit_comp_error_info *skerr,
1023 struct skd_special_context *skspcl)
1024 {
1025 u8 *buf = skspcl->data_buf;
1026 u8 status;
1027 int i;
1028 struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1029
1030 lockdep_assert_held(&skdev->lock);
1031
1032 SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1033
1034 dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1035
1036 dma_sync_single_for_cpu(&skdev->pdev->dev,
1037 skspcl->db_dma_address,
1038 skspcl->req.sksg_list[0].byte_count,
1039 DMA_BIDIRECTIONAL);
1040
1041 skspcl->req.completion = *skcomp;
1042 skspcl->req.state = SKD_REQ_STATE_IDLE;
1043
1044 status = skspcl->req.completion.status;
1045
1046 skd_log_check_status(skdev, status, skerr->key, skerr->code,
1047 skerr->qual, skerr->fruc);
1048
1049 switch (scsi->cdb[0]) {
1050 case TEST_UNIT_READY:
1051 if (status == SAM_STAT_GOOD)
1052 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1053 else if ((status == SAM_STAT_CHECK_CONDITION) &&
1054 (skerr->key == MEDIUM_ERROR))
1055 skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1056 else {
1057 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1058 dev_dbg(&skdev->pdev->dev,
1059 "TUR failed, don't send anymore state 0x%x\n",
1060 skdev->state);
1061 return;
1062 }
1063 dev_dbg(&skdev->pdev->dev,
1064 "**** TUR failed, retry skerr\n");
1065 skd_send_internal_skspcl(skdev, skspcl,
1066 TEST_UNIT_READY);
1067 }
1068 break;
1069
1070 case WRITE_BUFFER:
1071 if (status == SAM_STAT_GOOD)
1072 skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1073 else {
1074 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1075 dev_dbg(&skdev->pdev->dev,
1076 "write buffer failed, don't send anymore state 0x%x\n",
1077 skdev->state);
1078 return;
1079 }
1080 dev_dbg(&skdev->pdev->dev,
1081 "**** write buffer failed, retry skerr\n");
1082 skd_send_internal_skspcl(skdev, skspcl,
1083 TEST_UNIT_READY);
1084 }
1085 break;
1086
1087 case READ_BUFFER:
1088 if (status == SAM_STAT_GOOD) {
1089 if (skd_chk_read_buf(skdev, skspcl) == 0)
1090 skd_send_internal_skspcl(skdev, skspcl,
1091 READ_CAPACITY);
1092 else {
1093 dev_err(&skdev->pdev->dev,
1094 "*** W/R Buffer mismatch %d ***\n",
1095 skdev->connect_retries);
1096 if (skdev->connect_retries <
1097 SKD_MAX_CONNECT_RETRIES) {
1098 skdev->connect_retries++;
1099 skd_soft_reset(skdev);
1100 } else {
1101 dev_err(&skdev->pdev->dev,
1102 "W/R Buffer Connect Error\n");
1103 return;
1104 }
1105 }
1106
1107 } else {
1108 if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1109 dev_dbg(&skdev->pdev->dev,
1110 "read buffer failed, don't send anymore state 0x%x\n",
1111 skdev->state);
1112 return;
1113 }
1114 dev_dbg(&skdev->pdev->dev,
1115 "**** read buffer failed, retry skerr\n");
1116 skd_send_internal_skspcl(skdev, skspcl,
1117 TEST_UNIT_READY);
1118 }
1119 break;
1120
1121 case READ_CAPACITY:
1122 skdev->read_cap_is_valid = 0;
1123 if (status == SAM_STAT_GOOD) {
1124 skdev->read_cap_last_lba =
1125 (buf[0] << 24) | (buf[1] << 16) |
1126 (buf[2] << 8) | buf[3];
1127 skdev->read_cap_blocksize =
1128 (buf[4] << 24) | (buf[5] << 16) |
1129 (buf[6] << 8) | buf[7];
1130
1131 dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1132 skdev->read_cap_last_lba,
1133 skdev->read_cap_blocksize);
1134
1135 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1136
1137 skdev->read_cap_is_valid = 1;
1138
1139 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1140 } else if ((status == SAM_STAT_CHECK_CONDITION) &&
1141 (skerr->key == MEDIUM_ERROR)) {
1142 skdev->read_cap_last_lba = ~0;
1143 set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1144 dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1145 skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1146 } else {
1147 dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1148 skd_send_internal_skspcl(skdev, skspcl,
1149 TEST_UNIT_READY);
1150 }
1151 break;
1152
1153 case INQUIRY:
1154 skdev->inquiry_is_valid = 0;
1155 if (status == SAM_STAT_GOOD) {
1156 skdev->inquiry_is_valid = 1;
1157
1158 for (i = 0; i < 12; i++)
1159 skdev->inq_serial_num[i] = buf[i + 4];
1160 skdev->inq_serial_num[12] = 0;
1161 }
1162
1163 if (skd_unquiesce_dev(skdev) < 0)
1164 dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1165 /* connection is complete */
1166 skdev->connect_retries = 0;
1167 break;
1168
1169 case SYNCHRONIZE_CACHE:
1170 if (status == SAM_STAT_GOOD)
1171 skdev->sync_done = 1;
1172 else
1173 skdev->sync_done = -1;
1174 wake_up_interruptible(&skdev->waitq);
1175 break;
1176
1177 default:
1178 SKD_ASSERT("we didn't send this");
1179 }
1180 }
1181
1182 /*
1183 *****************************************************************************
1184 * FIT MESSAGES
1185 *****************************************************************************
1186 */
1187
skd_send_fitmsg(struct skd_device * skdev,struct skd_fitmsg_context * skmsg)1188 static void skd_send_fitmsg(struct skd_device *skdev,
1189 struct skd_fitmsg_context *skmsg)
1190 {
1191 u64 qcmd;
1192
1193 dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
1194 &skmsg->mb_dma_address, skd_in_flight(skdev));
1195 dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1196
1197 qcmd = skmsg->mb_dma_address;
1198 qcmd |= FIT_QCMD_QID_NORMAL;
1199
1200 if (unlikely(skdev->dbg_level > 1)) {
1201 u8 *bp = (u8 *)skmsg->msg_buf;
1202 int i;
1203 for (i = 0; i < skmsg->length; i += 8) {
1204 dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1205 &bp[i]);
1206 if (i == 0)
1207 i = 64 - 8;
1208 }
1209 }
1210
1211 if (skmsg->length > 256)
1212 qcmd |= FIT_QCMD_MSGSIZE_512;
1213 else if (skmsg->length > 128)
1214 qcmd |= FIT_QCMD_MSGSIZE_256;
1215 else if (skmsg->length > 64)
1216 qcmd |= FIT_QCMD_MSGSIZE_128;
1217 else
1218 /*
1219 * This makes no sense because the FIT msg header is
1220 * 64 bytes. If the msg is only 64 bytes long it has
1221 * no payload.
1222 */
1223 qcmd |= FIT_QCMD_MSGSIZE_64;
1224
1225 dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1226 skmsg->length, DMA_TO_DEVICE);
1227
1228 /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1229 smp_wmb();
1230
1231 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1232 }
1233
skd_send_special_fitmsg(struct skd_device * skdev,struct skd_special_context * skspcl)1234 static void skd_send_special_fitmsg(struct skd_device *skdev,
1235 struct skd_special_context *skspcl)
1236 {
1237 u64 qcmd;
1238
1239 WARN_ON_ONCE(skspcl->req.n_sg != 1);
1240
1241 if (unlikely(skdev->dbg_level > 1)) {
1242 u8 *bp = (u8 *)skspcl->msg_buf;
1243 int i;
1244
1245 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1246 dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1247 &bp[i]);
1248 if (i == 0)
1249 i = 64 - 8;
1250 }
1251
1252 dev_dbg(&skdev->pdev->dev,
1253 "skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
1254 skspcl, skspcl->req.id, skspcl->req.sksg_list,
1255 &skspcl->req.sksg_dma_address);
1256 for (i = 0; i < skspcl->req.n_sg; i++) {
1257 struct fit_sg_descriptor *sgd =
1258 &skspcl->req.sksg_list[i];
1259
1260 dev_dbg(&skdev->pdev->dev,
1261 " sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1262 i, sgd->byte_count, sgd->control,
1263 sgd->host_side_addr, sgd->next_desc_ptr);
1264 }
1265 }
1266
1267 /*
1268 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1269 * and one 64-byte SSDI command.
1270 */
1271 qcmd = skspcl->mb_dma_address;
1272 qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1273
1274 dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1275 SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1276 dma_sync_single_for_device(&skdev->pdev->dev,
1277 skspcl->req.sksg_dma_address,
1278 1 * sizeof(struct fit_sg_descriptor),
1279 DMA_TO_DEVICE);
1280 dma_sync_single_for_device(&skdev->pdev->dev,
1281 skspcl->db_dma_address,
1282 skspcl->req.sksg_list[0].byte_count,
1283 DMA_BIDIRECTIONAL);
1284
1285 /* Make sure skd_msg_buf is written before the doorbell is triggered. */
1286 smp_wmb();
1287
1288 SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1289 }
1290
1291 /*
1292 *****************************************************************************
1293 * COMPLETION QUEUE
1294 *****************************************************************************
1295 */
1296
1297 static void skd_complete_other(struct skd_device *skdev,
1298 struct fit_completion_entry_v1 *skcomp,
1299 struct fit_comp_error_info *skerr);
1300
1301 struct sns_info {
1302 u8 type;
1303 u8 stat;
1304 u8 key;
1305 u8 asc;
1306 u8 ascq;
1307 u8 mask;
1308 enum skd_check_status_action action;
1309 };
1310
1311 static struct sns_info skd_chkstat_table[] = {
1312 /* Good */
1313 { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
1314 SKD_CHECK_STATUS_REPORT_GOOD },
1315
1316 /* Smart alerts */
1317 { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
1318 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1319 { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
1320 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1321 { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
1322 SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1323
1324 /* Retry (with limits) */
1325 { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
1326 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1327 { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
1328 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1329 { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
1330 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1331 { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
1332 SKD_CHECK_STATUS_REQUEUE_REQUEST },
1333
1334 /* Busy (or about to be) */
1335 { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
1336 SKD_CHECK_STATUS_BUSY_IMMINENT },
1337 };
1338
1339 /*
1340 * Look up status and sense data to decide how to handle the error
1341 * from the device.
1342 * mask says which fields must match e.g., mask=0x18 means check
1343 * type and stat, ignore key, asc, ascq.
1344 */
1345
1346 static enum skd_check_status_action
skd_check_status(struct skd_device * skdev,u8 cmp_status,struct fit_comp_error_info * skerr)1347 skd_check_status(struct skd_device *skdev,
1348 u8 cmp_status, struct fit_comp_error_info *skerr)
1349 {
1350 int i;
1351
1352 dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1353 skerr->key, skerr->code, skerr->qual, skerr->fruc);
1354
1355 dev_dbg(&skdev->pdev->dev,
1356 "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1357 skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1358 skerr->fruc);
1359
1360 /* Does the info match an entry in the good category? */
1361 for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1362 struct sns_info *sns = &skd_chkstat_table[i];
1363
1364 if (sns->mask & 0x10)
1365 if (skerr->type != sns->type)
1366 continue;
1367
1368 if (sns->mask & 0x08)
1369 if (cmp_status != sns->stat)
1370 continue;
1371
1372 if (sns->mask & 0x04)
1373 if (skerr->key != sns->key)
1374 continue;
1375
1376 if (sns->mask & 0x02)
1377 if (skerr->code != sns->asc)
1378 continue;
1379
1380 if (sns->mask & 0x01)
1381 if (skerr->qual != sns->ascq)
1382 continue;
1383
1384 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1385 dev_err(&skdev->pdev->dev,
1386 "SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1387 skerr->key, skerr->code, skerr->qual);
1388 }
1389 return sns->action;
1390 }
1391
1392 /* No other match, so nonzero status means error,
1393 * zero status means good
1394 */
1395 if (cmp_status) {
1396 dev_dbg(&skdev->pdev->dev, "status check: error\n");
1397 return SKD_CHECK_STATUS_REPORT_ERROR;
1398 }
1399
1400 dev_dbg(&skdev->pdev->dev, "status check good default\n");
1401 return SKD_CHECK_STATUS_REPORT_GOOD;
1402 }
1403
skd_resolve_req_exception(struct skd_device * skdev,struct skd_request_context * skreq,struct request * req)1404 static void skd_resolve_req_exception(struct skd_device *skdev,
1405 struct skd_request_context *skreq,
1406 struct request *req)
1407 {
1408 u8 cmp_status = skreq->completion.status;
1409
1410 switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1411 case SKD_CHECK_STATUS_REPORT_GOOD:
1412 case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1413 skreq->status = BLK_STS_OK;
1414 blk_mq_complete_request(req);
1415 break;
1416
1417 case SKD_CHECK_STATUS_BUSY_IMMINENT:
1418 skd_log_skreq(skdev, skreq, "retry(busy)");
1419 blk_requeue_request(skdev->queue, req);
1420 dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1421 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1422 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1423 skd_quiesce_dev(skdev);
1424 break;
1425
1426 case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1427 if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1428 skd_log_skreq(skdev, skreq, "retry");
1429 blk_requeue_request(skdev->queue, req);
1430 break;
1431 }
1432 /* fall through */
1433
1434 case SKD_CHECK_STATUS_REPORT_ERROR:
1435 default:
1436 skreq->status = BLK_STS_IOERR;
1437 blk_mq_complete_request(req);
1438 break;
1439 }
1440 }
1441
skd_release_skreq(struct skd_device * skdev,struct skd_request_context * skreq)1442 static void skd_release_skreq(struct skd_device *skdev,
1443 struct skd_request_context *skreq)
1444 {
1445 /*
1446 * Reclaim the skd_request_context
1447 */
1448 skreq->state = SKD_REQ_STATE_IDLE;
1449 }
1450
skd_isr_completion_posted(struct skd_device * skdev,int limit,int * enqueued)1451 static int skd_isr_completion_posted(struct skd_device *skdev,
1452 int limit, int *enqueued)
1453 {
1454 struct fit_completion_entry_v1 *skcmp;
1455 struct fit_comp_error_info *skerr;
1456 u16 req_id;
1457 u32 tag;
1458 u16 hwq = 0;
1459 struct request *rq;
1460 struct skd_request_context *skreq;
1461 u16 cmp_cntxt;
1462 u8 cmp_status;
1463 u8 cmp_cycle;
1464 u32 cmp_bytes;
1465 int rc = 0;
1466 int processed = 0;
1467
1468 lockdep_assert_held(&skdev->lock);
1469
1470 for (;; ) {
1471 SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1472
1473 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1474 cmp_cycle = skcmp->cycle;
1475 cmp_cntxt = skcmp->tag;
1476 cmp_status = skcmp->status;
1477 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1478
1479 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1480
1481 dev_dbg(&skdev->pdev->dev,
1482 "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1483 skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1484 cmp_cntxt, cmp_status, skd_in_flight(skdev),
1485 cmp_bytes, skdev->proto_ver);
1486
1487 if (cmp_cycle != skdev->skcomp_cycle) {
1488 dev_dbg(&skdev->pdev->dev, "end of completions\n");
1489 break;
1490 }
1491 /*
1492 * Update the completion queue head index and possibly
1493 * the completion cycle count. 8-bit wrap-around.
1494 */
1495 skdev->skcomp_ix++;
1496 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1497 skdev->skcomp_ix = 0;
1498 skdev->skcomp_cycle++;
1499 }
1500
1501 /*
1502 * The command context is a unique 32-bit ID. The low order
1503 * bits help locate the request. The request is usually a
1504 * r/w request (see skd_start() above) or a special request.
1505 */
1506 req_id = cmp_cntxt;
1507 tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1508
1509 /* Is this other than a r/w request? */
1510 if (tag >= skdev->num_req_context) {
1511 /*
1512 * This is not a completion for a r/w request.
1513 */
1514 WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1515 tag));
1516 skd_complete_other(skdev, skcmp, skerr);
1517 continue;
1518 }
1519
1520 rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1521 if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1522 tag))
1523 continue;
1524 skreq = blk_mq_rq_to_pdu(rq);
1525
1526 /*
1527 * Make sure the request ID for the slot matches.
1528 */
1529 if (skreq->id != req_id) {
1530 dev_err(&skdev->pdev->dev,
1531 "Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1532 req_id, skreq->id, cmp_cntxt);
1533
1534 continue;
1535 }
1536
1537 SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1538
1539 skreq->completion = *skcmp;
1540 if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1541 skreq->err_info = *skerr;
1542 skd_log_check_status(skdev, cmp_status, skerr->key,
1543 skerr->code, skerr->qual,
1544 skerr->fruc);
1545 }
1546 /* Release DMA resources for the request. */
1547 if (skreq->n_sg > 0)
1548 skd_postop_sg_list(skdev, skreq);
1549
1550 skd_release_skreq(skdev, skreq);
1551
1552 /*
1553 * Capture the outcome and post it back to the native request.
1554 */
1555 if (likely(cmp_status == SAM_STAT_GOOD)) {
1556 skreq->status = BLK_STS_OK;
1557 blk_mq_complete_request(rq);
1558 } else {
1559 skd_resolve_req_exception(skdev, skreq, rq);
1560 }
1561
1562 /* skd_isr_comp_limit equal zero means no limit */
1563 if (limit) {
1564 if (++processed >= limit) {
1565 rc = 1;
1566 break;
1567 }
1568 }
1569 }
1570
1571 if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1572 skd_in_flight(skdev) == 0) {
1573 skdev->state = SKD_DRVR_STATE_PAUSED;
1574 wake_up_interruptible(&skdev->waitq);
1575 }
1576
1577 return rc;
1578 }
1579
skd_complete_other(struct skd_device * skdev,struct fit_completion_entry_v1 * skcomp,struct fit_comp_error_info * skerr)1580 static void skd_complete_other(struct skd_device *skdev,
1581 struct fit_completion_entry_v1 *skcomp,
1582 struct fit_comp_error_info *skerr)
1583 {
1584 u32 req_id = 0;
1585 u32 req_table;
1586 u32 req_slot;
1587 struct skd_special_context *skspcl;
1588
1589 lockdep_assert_held(&skdev->lock);
1590
1591 req_id = skcomp->tag;
1592 req_table = req_id & SKD_ID_TABLE_MASK;
1593 req_slot = req_id & SKD_ID_SLOT_MASK;
1594
1595 dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1596 req_id, req_slot);
1597
1598 /*
1599 * Based on the request id, determine how to dispatch this completion.
1600 * This swich/case is finding the good cases and forwarding the
1601 * completion entry. Errors are reported below the switch.
1602 */
1603 switch (req_table) {
1604 case SKD_ID_RW_REQUEST:
1605 /*
1606 * The caller, skd_isr_completion_posted() above,
1607 * handles r/w requests. The only way we get here
1608 * is if the req_slot is out of bounds.
1609 */
1610 break;
1611
1612 case SKD_ID_INTERNAL:
1613 if (req_slot == 0) {
1614 skspcl = &skdev->internal_skspcl;
1615 if (skspcl->req.id == req_id &&
1616 skspcl->req.state == SKD_REQ_STATE_BUSY) {
1617 skd_complete_internal(skdev,
1618 skcomp, skerr, skspcl);
1619 return;
1620 }
1621 }
1622 break;
1623
1624 case SKD_ID_FIT_MSG:
1625 /*
1626 * These id's should never appear in a completion record.
1627 */
1628 break;
1629
1630 default:
1631 /*
1632 * These id's should never appear anywhere;
1633 */
1634 break;
1635 }
1636
1637 /*
1638 * If we get here it is a bad or stale id.
1639 */
1640 }
1641
skd_reset_skcomp(struct skd_device * skdev)1642 static void skd_reset_skcomp(struct skd_device *skdev)
1643 {
1644 memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1645
1646 skdev->skcomp_ix = 0;
1647 skdev->skcomp_cycle = 1;
1648 }
1649
1650 /*
1651 *****************************************************************************
1652 * INTERRUPTS
1653 *****************************************************************************
1654 */
skd_completion_worker(struct work_struct * work)1655 static void skd_completion_worker(struct work_struct *work)
1656 {
1657 struct skd_device *skdev =
1658 container_of(work, struct skd_device, completion_worker);
1659 unsigned long flags;
1660 int flush_enqueued = 0;
1661
1662 spin_lock_irqsave(&skdev->lock, flags);
1663
1664 /*
1665 * pass in limit=0, which means no limit..
1666 * process everything in compq
1667 */
1668 skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1669 schedule_work(&skdev->start_queue);
1670
1671 spin_unlock_irqrestore(&skdev->lock, flags);
1672 }
1673
1674 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1675
1676 static irqreturn_t
skd_isr(int irq,void * ptr)1677 skd_isr(int irq, void *ptr)
1678 {
1679 struct skd_device *skdev = ptr;
1680 u32 intstat;
1681 u32 ack;
1682 int rc = 0;
1683 int deferred = 0;
1684 int flush_enqueued = 0;
1685
1686 spin_lock(&skdev->lock);
1687
1688 for (;; ) {
1689 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1690
1691 ack = FIT_INT_DEF_MASK;
1692 ack &= intstat;
1693
1694 dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1695 ack);
1696
1697 /* As long as there is an int pending on device, keep
1698 * running loop. When none, get out, but if we've never
1699 * done any processing, call completion handler?
1700 */
1701 if (ack == 0) {
1702 /* No interrupts on device, but run the completion
1703 * processor anyway?
1704 */
1705 if (rc == 0)
1706 if (likely (skdev->state
1707 == SKD_DRVR_STATE_ONLINE))
1708 deferred = 1;
1709 break;
1710 }
1711
1712 rc = IRQ_HANDLED;
1713
1714 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1715
1716 if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1717 (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1718 if (intstat & FIT_ISH_COMPLETION_POSTED) {
1719 /*
1720 * If we have already deferred completion
1721 * processing, don't bother running it again
1722 */
1723 if (deferred == 0)
1724 deferred =
1725 skd_isr_completion_posted(skdev,
1726 skd_isr_comp_limit, &flush_enqueued);
1727 }
1728
1729 if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1730 skd_isr_fwstate(skdev);
1731 if (skdev->state == SKD_DRVR_STATE_FAULT ||
1732 skdev->state ==
1733 SKD_DRVR_STATE_DISAPPEARED) {
1734 spin_unlock(&skdev->lock);
1735 return rc;
1736 }
1737 }
1738
1739 if (intstat & FIT_ISH_MSG_FROM_DEV)
1740 skd_isr_msg_from_dev(skdev);
1741 }
1742 }
1743
1744 if (unlikely(flush_enqueued))
1745 schedule_work(&skdev->start_queue);
1746
1747 if (deferred)
1748 schedule_work(&skdev->completion_worker);
1749 else if (!flush_enqueued)
1750 schedule_work(&skdev->start_queue);
1751
1752 spin_unlock(&skdev->lock);
1753
1754 return rc;
1755 }
1756
skd_drive_fault(struct skd_device * skdev)1757 static void skd_drive_fault(struct skd_device *skdev)
1758 {
1759 skdev->state = SKD_DRVR_STATE_FAULT;
1760 dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1761 }
1762
skd_drive_disappeared(struct skd_device * skdev)1763 static void skd_drive_disappeared(struct skd_device *skdev)
1764 {
1765 skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1766 dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1767 }
1768
skd_isr_fwstate(struct skd_device * skdev)1769 static void skd_isr_fwstate(struct skd_device *skdev)
1770 {
1771 u32 sense;
1772 u32 state;
1773 u32 mtd;
1774 int prev_driver_state = skdev->state;
1775
1776 sense = SKD_READL(skdev, FIT_STATUS);
1777 state = sense & FIT_SR_DRIVE_STATE_MASK;
1778
1779 dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1780 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1781 skd_drive_state_to_str(state), state);
1782
1783 skdev->drive_state = state;
1784
1785 switch (skdev->drive_state) {
1786 case FIT_SR_DRIVE_INIT:
1787 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1788 skd_disable_interrupts(skdev);
1789 break;
1790 }
1791 if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1792 skd_recover_requests(skdev);
1793 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1794 skdev->timer_countdown = SKD_STARTING_TIMO;
1795 skdev->state = SKD_DRVR_STATE_STARTING;
1796 skd_soft_reset(skdev);
1797 break;
1798 }
1799 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1800 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1801 skdev->last_mtd = mtd;
1802 break;
1803
1804 case FIT_SR_DRIVE_ONLINE:
1805 skdev->cur_max_queue_depth = skd_max_queue_depth;
1806 if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1807 skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1808
1809 skdev->queue_low_water_mark =
1810 skdev->cur_max_queue_depth * 2 / 3 + 1;
1811 if (skdev->queue_low_water_mark < 1)
1812 skdev->queue_low_water_mark = 1;
1813 dev_info(&skdev->pdev->dev,
1814 "Queue depth limit=%d dev=%d lowat=%d\n",
1815 skdev->cur_max_queue_depth,
1816 skdev->dev_max_queue_depth,
1817 skdev->queue_low_water_mark);
1818
1819 skd_refresh_device_data(skdev);
1820 break;
1821
1822 case FIT_SR_DRIVE_BUSY:
1823 skdev->state = SKD_DRVR_STATE_BUSY;
1824 skdev->timer_countdown = SKD_BUSY_TIMO;
1825 skd_quiesce_dev(skdev);
1826 break;
1827 case FIT_SR_DRIVE_BUSY_SANITIZE:
1828 /* set timer for 3 seconds, we'll abort any unfinished
1829 * commands after that expires
1830 */
1831 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1832 skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1833 schedule_work(&skdev->start_queue);
1834 break;
1835 case FIT_SR_DRIVE_BUSY_ERASE:
1836 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1837 skdev->timer_countdown = SKD_BUSY_TIMO;
1838 break;
1839 case FIT_SR_DRIVE_OFFLINE:
1840 skdev->state = SKD_DRVR_STATE_IDLE;
1841 break;
1842 case FIT_SR_DRIVE_SOFT_RESET:
1843 switch (skdev->state) {
1844 case SKD_DRVR_STATE_STARTING:
1845 case SKD_DRVR_STATE_RESTARTING:
1846 /* Expected by a caller of skd_soft_reset() */
1847 break;
1848 default:
1849 skdev->state = SKD_DRVR_STATE_RESTARTING;
1850 break;
1851 }
1852 break;
1853 case FIT_SR_DRIVE_FW_BOOTING:
1854 dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1855 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1856 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1857 break;
1858
1859 case FIT_SR_DRIVE_DEGRADED:
1860 case FIT_SR_PCIE_LINK_DOWN:
1861 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1862 break;
1863
1864 case FIT_SR_DRIVE_FAULT:
1865 skd_drive_fault(skdev);
1866 skd_recover_requests(skdev);
1867 schedule_work(&skdev->start_queue);
1868 break;
1869
1870 /* PCIe bus returned all Fs? */
1871 case 0xFF:
1872 dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1873 sense);
1874 skd_drive_disappeared(skdev);
1875 skd_recover_requests(skdev);
1876 schedule_work(&skdev->start_queue);
1877 break;
1878 default:
1879 /*
1880 * Uknown FW State. Wait for a state we recognize.
1881 */
1882 break;
1883 }
1884 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1885 skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1886 skd_skdev_state_to_str(skdev->state), skdev->state);
1887 }
1888
skd_recover_request(struct request * req,void * data,bool reserved)1889 static void skd_recover_request(struct request *req, void *data, bool reserved)
1890 {
1891 struct skd_device *const skdev = data;
1892 struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1893
1894 if (skreq->state != SKD_REQ_STATE_BUSY)
1895 return;
1896
1897 skd_log_skreq(skdev, skreq, "recover");
1898
1899 /* Release DMA resources for the request. */
1900 if (skreq->n_sg > 0)
1901 skd_postop_sg_list(skdev, skreq);
1902
1903 skreq->state = SKD_REQ_STATE_IDLE;
1904 skreq->status = BLK_STS_IOERR;
1905 blk_mq_complete_request(req);
1906 }
1907
skd_recover_requests(struct skd_device * skdev)1908 static void skd_recover_requests(struct skd_device *skdev)
1909 {
1910 blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1911 }
1912
skd_isr_msg_from_dev(struct skd_device * skdev)1913 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1914 {
1915 u32 mfd;
1916 u32 mtd;
1917 u32 data;
1918
1919 mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1920
1921 dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1922 skdev->last_mtd);
1923
1924 /* ignore any mtd that is an ack for something we didn't send */
1925 if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1926 return;
1927
1928 switch (FIT_MXD_TYPE(mfd)) {
1929 case FIT_MTD_FITFW_INIT:
1930 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1931
1932 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1933 dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1934 dev_err(&skdev->pdev->dev, " got=%d support=%d\n",
1935 skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1936 dev_err(&skdev->pdev->dev, " please upgrade driver\n");
1937 skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1938 skd_soft_reset(skdev);
1939 break;
1940 }
1941 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1942 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1943 skdev->last_mtd = mtd;
1944 break;
1945
1946 case FIT_MTD_GET_CMDQ_DEPTH:
1947 skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1948 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1949 SKD_N_COMPLETION_ENTRY);
1950 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1951 skdev->last_mtd = mtd;
1952 break;
1953
1954 case FIT_MTD_SET_COMPQ_DEPTH:
1955 SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1956 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1957 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1958 skdev->last_mtd = mtd;
1959 break;
1960
1961 case FIT_MTD_SET_COMPQ_ADDR:
1962 skd_reset_skcomp(skdev);
1963 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1964 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1965 skdev->last_mtd = mtd;
1966 break;
1967
1968 case FIT_MTD_CMD_LOG_HOST_ID:
1969 /* hardware interface overflows in y2106 */
1970 skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1971 data = skdev->connect_time_stamp & 0xFFFF;
1972 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1973 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1974 skdev->last_mtd = mtd;
1975 break;
1976
1977 case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1978 skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1979 data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1980 mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1981 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1982 skdev->last_mtd = mtd;
1983 break;
1984
1985 case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1986 skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1987 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1988 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1989 skdev->last_mtd = mtd;
1990
1991 dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1992 skdev->connect_time_stamp, skdev->drive_jiffies);
1993 break;
1994
1995 case FIT_MTD_ARM_QUEUE:
1996 skdev->last_mtd = 0;
1997 /*
1998 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
1999 */
2000 break;
2001
2002 default:
2003 break;
2004 }
2005 }
2006
skd_disable_interrupts(struct skd_device * skdev)2007 static void skd_disable_interrupts(struct skd_device *skdev)
2008 {
2009 u32 sense;
2010
2011 sense = SKD_READL(skdev, FIT_CONTROL);
2012 sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2013 SKD_WRITEL(skdev, sense, FIT_CONTROL);
2014 dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2015
2016 /* Note that the 1s is written. A 1-bit means
2017 * disable, a 0 means enable.
2018 */
2019 SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2020 }
2021
skd_enable_interrupts(struct skd_device * skdev)2022 static void skd_enable_interrupts(struct skd_device *skdev)
2023 {
2024 u32 val;
2025
2026 /* unmask interrupts first */
2027 val = FIT_ISH_FW_STATE_CHANGE +
2028 FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2029
2030 /* Note that the compliment of mask is written. A 1-bit means
2031 * disable, a 0 means enable. */
2032 SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2033 dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2034
2035 val = SKD_READL(skdev, FIT_CONTROL);
2036 val |= FIT_CR_ENABLE_INTERRUPTS;
2037 dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2038 SKD_WRITEL(skdev, val, FIT_CONTROL);
2039 }
2040
2041 /*
2042 *****************************************************************************
2043 * START, STOP, RESTART, QUIESCE, UNQUIESCE
2044 *****************************************************************************
2045 */
2046
skd_soft_reset(struct skd_device * skdev)2047 static void skd_soft_reset(struct skd_device *skdev)
2048 {
2049 u32 val;
2050
2051 val = SKD_READL(skdev, FIT_CONTROL);
2052 val |= (FIT_CR_SOFT_RESET);
2053 dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2054 SKD_WRITEL(skdev, val, FIT_CONTROL);
2055 }
2056
skd_start_device(struct skd_device * skdev)2057 static void skd_start_device(struct skd_device *skdev)
2058 {
2059 unsigned long flags;
2060 u32 sense;
2061 u32 state;
2062
2063 spin_lock_irqsave(&skdev->lock, flags);
2064
2065 /* ack all ghost interrupts */
2066 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2067
2068 sense = SKD_READL(skdev, FIT_STATUS);
2069
2070 dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2071
2072 state = sense & FIT_SR_DRIVE_STATE_MASK;
2073 skdev->drive_state = state;
2074 skdev->last_mtd = 0;
2075
2076 skdev->state = SKD_DRVR_STATE_STARTING;
2077 skdev->timer_countdown = SKD_STARTING_TIMO;
2078
2079 skd_enable_interrupts(skdev);
2080
2081 switch (skdev->drive_state) {
2082 case FIT_SR_DRIVE_OFFLINE:
2083 dev_err(&skdev->pdev->dev, "Drive offline...\n");
2084 break;
2085
2086 case FIT_SR_DRIVE_FW_BOOTING:
2087 dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2088 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2089 skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2090 break;
2091
2092 case FIT_SR_DRIVE_BUSY_SANITIZE:
2093 dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2094 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2095 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2096 break;
2097
2098 case FIT_SR_DRIVE_BUSY_ERASE:
2099 dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2100 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2101 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2102 break;
2103
2104 case FIT_SR_DRIVE_INIT:
2105 case FIT_SR_DRIVE_ONLINE:
2106 skd_soft_reset(skdev);
2107 break;
2108
2109 case FIT_SR_DRIVE_BUSY:
2110 dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2111 skdev->state = SKD_DRVR_STATE_BUSY;
2112 skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2113 break;
2114
2115 case FIT_SR_DRIVE_SOFT_RESET:
2116 dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2117 break;
2118
2119 case FIT_SR_DRIVE_FAULT:
2120 /* Fault state is bad...soft reset won't do it...
2121 * Hard reset, maybe, but does it work on device?
2122 * For now, just fault so the system doesn't hang.
2123 */
2124 skd_drive_fault(skdev);
2125 /*start the queue so we can respond with error to requests */
2126 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2127 schedule_work(&skdev->start_queue);
2128 skdev->gendisk_on = -1;
2129 wake_up_interruptible(&skdev->waitq);
2130 break;
2131
2132 case 0xFF:
2133 /* Most likely the device isn't there or isn't responding
2134 * to the BAR1 addresses. */
2135 skd_drive_disappeared(skdev);
2136 /*start the queue so we can respond with error to requests */
2137 dev_dbg(&skdev->pdev->dev,
2138 "starting queue to error-out reqs\n");
2139 schedule_work(&skdev->start_queue);
2140 skdev->gendisk_on = -1;
2141 wake_up_interruptible(&skdev->waitq);
2142 break;
2143
2144 default:
2145 dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2146 skdev->drive_state);
2147 break;
2148 }
2149
2150 state = SKD_READL(skdev, FIT_CONTROL);
2151 dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2152
2153 state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2154 dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2155
2156 state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2157 dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2158
2159 state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2160 dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2161
2162 state = SKD_READL(skdev, FIT_HW_VERSION);
2163 dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2164
2165 spin_unlock_irqrestore(&skdev->lock, flags);
2166 }
2167
skd_stop_device(struct skd_device * skdev)2168 static void skd_stop_device(struct skd_device *skdev)
2169 {
2170 unsigned long flags;
2171 struct skd_special_context *skspcl = &skdev->internal_skspcl;
2172 u32 dev_state;
2173 int i;
2174
2175 spin_lock_irqsave(&skdev->lock, flags);
2176
2177 if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2178 dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2179 goto stop_out;
2180 }
2181
2182 if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2183 dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2184 goto stop_out;
2185 }
2186
2187 skdev->state = SKD_DRVR_STATE_SYNCING;
2188 skdev->sync_done = 0;
2189
2190 skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2191
2192 spin_unlock_irqrestore(&skdev->lock, flags);
2193
2194 wait_event_interruptible_timeout(skdev->waitq,
2195 (skdev->sync_done), (10 * HZ));
2196
2197 spin_lock_irqsave(&skdev->lock, flags);
2198
2199 switch (skdev->sync_done) {
2200 case 0:
2201 dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2202 break;
2203 case 1:
2204 dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2205 break;
2206 default:
2207 dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2208 }
2209
2210 stop_out:
2211 skdev->state = SKD_DRVR_STATE_STOPPING;
2212 spin_unlock_irqrestore(&skdev->lock, flags);
2213
2214 skd_kill_timer(skdev);
2215
2216 spin_lock_irqsave(&skdev->lock, flags);
2217 skd_disable_interrupts(skdev);
2218
2219 /* ensure all ints on device are cleared */
2220 /* soft reset the device to unload with a clean slate */
2221 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2222 SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2223
2224 spin_unlock_irqrestore(&skdev->lock, flags);
2225
2226 /* poll every 100ms, 1 second timeout */
2227 for (i = 0; i < 10; i++) {
2228 dev_state =
2229 SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2230 if (dev_state == FIT_SR_DRIVE_INIT)
2231 break;
2232 set_current_state(TASK_INTERRUPTIBLE);
2233 schedule_timeout(msecs_to_jiffies(100));
2234 }
2235
2236 if (dev_state != FIT_SR_DRIVE_INIT)
2237 dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2238 dev_state);
2239 }
2240
2241 /* assume spinlock is held */
skd_restart_device(struct skd_device * skdev)2242 static void skd_restart_device(struct skd_device *skdev)
2243 {
2244 u32 state;
2245
2246 /* ack all ghost interrupts */
2247 SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2248
2249 state = SKD_READL(skdev, FIT_STATUS);
2250
2251 dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2252
2253 state &= FIT_SR_DRIVE_STATE_MASK;
2254 skdev->drive_state = state;
2255 skdev->last_mtd = 0;
2256
2257 skdev->state = SKD_DRVR_STATE_RESTARTING;
2258 skdev->timer_countdown = SKD_RESTARTING_TIMO;
2259
2260 skd_soft_reset(skdev);
2261 }
2262
2263 /* assume spinlock is held */
skd_quiesce_dev(struct skd_device * skdev)2264 static int skd_quiesce_dev(struct skd_device *skdev)
2265 {
2266 int rc = 0;
2267
2268 switch (skdev->state) {
2269 case SKD_DRVR_STATE_BUSY:
2270 case SKD_DRVR_STATE_BUSY_IMMINENT:
2271 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2272 blk_mq_stop_hw_queues(skdev->queue);
2273 break;
2274 case SKD_DRVR_STATE_ONLINE:
2275 case SKD_DRVR_STATE_STOPPING:
2276 case SKD_DRVR_STATE_SYNCING:
2277 case SKD_DRVR_STATE_PAUSING:
2278 case SKD_DRVR_STATE_PAUSED:
2279 case SKD_DRVR_STATE_STARTING:
2280 case SKD_DRVR_STATE_RESTARTING:
2281 case SKD_DRVR_STATE_RESUMING:
2282 default:
2283 rc = -EINVAL;
2284 dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2285 skdev->state);
2286 }
2287 return rc;
2288 }
2289
2290 /* assume spinlock is held */
skd_unquiesce_dev(struct skd_device * skdev)2291 static int skd_unquiesce_dev(struct skd_device *skdev)
2292 {
2293 int prev_driver_state = skdev->state;
2294
2295 skd_log_skdev(skdev, "unquiesce");
2296 if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2297 dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2298 return 0;
2299 }
2300 if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2301 /*
2302 * If there has been an state change to other than
2303 * ONLINE, we will rely on controller state change
2304 * to come back online and restart the queue.
2305 * The BUSY state means that driver is ready to
2306 * continue normal processing but waiting for controller
2307 * to become available.
2308 */
2309 skdev->state = SKD_DRVR_STATE_BUSY;
2310 dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2311 return 0;
2312 }
2313
2314 /*
2315 * Drive has just come online, driver is either in startup,
2316 * paused performing a task, or bust waiting for hardware.
2317 */
2318 switch (skdev->state) {
2319 case SKD_DRVR_STATE_PAUSED:
2320 case SKD_DRVR_STATE_BUSY:
2321 case SKD_DRVR_STATE_BUSY_IMMINENT:
2322 case SKD_DRVR_STATE_BUSY_ERASE:
2323 case SKD_DRVR_STATE_STARTING:
2324 case SKD_DRVR_STATE_RESTARTING:
2325 case SKD_DRVR_STATE_FAULT:
2326 case SKD_DRVR_STATE_IDLE:
2327 case SKD_DRVR_STATE_LOAD:
2328 skdev->state = SKD_DRVR_STATE_ONLINE;
2329 dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2330 skd_skdev_state_to_str(prev_driver_state),
2331 prev_driver_state, skd_skdev_state_to_str(skdev->state),
2332 skdev->state);
2333 dev_dbg(&skdev->pdev->dev,
2334 "**** device ONLINE...starting block queue\n");
2335 dev_dbg(&skdev->pdev->dev, "starting queue\n");
2336 dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2337 schedule_work(&skdev->start_queue);
2338 skdev->gendisk_on = 1;
2339 wake_up_interruptible(&skdev->waitq);
2340 break;
2341
2342 case SKD_DRVR_STATE_DISAPPEARED:
2343 default:
2344 dev_dbg(&skdev->pdev->dev,
2345 "**** driver state %d, not implemented\n",
2346 skdev->state);
2347 return -EBUSY;
2348 }
2349 return 0;
2350 }
2351
2352 /*
2353 *****************************************************************************
2354 * PCIe MSI/MSI-X INTERRUPT HANDLERS
2355 *****************************************************************************
2356 */
2357
skd_reserved_isr(int irq,void * skd_host_data)2358 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2359 {
2360 struct skd_device *skdev = skd_host_data;
2361 unsigned long flags;
2362
2363 spin_lock_irqsave(&skdev->lock, flags);
2364 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2365 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2366 dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2367 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2368 SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2369 spin_unlock_irqrestore(&skdev->lock, flags);
2370 return IRQ_HANDLED;
2371 }
2372
skd_statec_isr(int irq,void * skd_host_data)2373 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2374 {
2375 struct skd_device *skdev = skd_host_data;
2376 unsigned long flags;
2377
2378 spin_lock_irqsave(&skdev->lock, flags);
2379 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2380 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2381 SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2382 skd_isr_fwstate(skdev);
2383 spin_unlock_irqrestore(&skdev->lock, flags);
2384 return IRQ_HANDLED;
2385 }
2386
skd_comp_q(int irq,void * skd_host_data)2387 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2388 {
2389 struct skd_device *skdev = skd_host_data;
2390 unsigned long flags;
2391 int flush_enqueued = 0;
2392 int deferred;
2393
2394 spin_lock_irqsave(&skdev->lock, flags);
2395 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2396 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2397 SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2398 deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2399 &flush_enqueued);
2400 if (flush_enqueued)
2401 schedule_work(&skdev->start_queue);
2402
2403 if (deferred)
2404 schedule_work(&skdev->completion_worker);
2405 else if (!flush_enqueued)
2406 schedule_work(&skdev->start_queue);
2407
2408 spin_unlock_irqrestore(&skdev->lock, flags);
2409
2410 return IRQ_HANDLED;
2411 }
2412
skd_msg_isr(int irq,void * skd_host_data)2413 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2414 {
2415 struct skd_device *skdev = skd_host_data;
2416 unsigned long flags;
2417
2418 spin_lock_irqsave(&skdev->lock, flags);
2419 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2420 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2421 SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2422 skd_isr_msg_from_dev(skdev);
2423 spin_unlock_irqrestore(&skdev->lock, flags);
2424 return IRQ_HANDLED;
2425 }
2426
skd_qfull_isr(int irq,void * skd_host_data)2427 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2428 {
2429 struct skd_device *skdev = skd_host_data;
2430 unsigned long flags;
2431
2432 spin_lock_irqsave(&skdev->lock, flags);
2433 dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2434 SKD_READL(skdev, FIT_INT_STATUS_HOST));
2435 SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2436 spin_unlock_irqrestore(&skdev->lock, flags);
2437 return IRQ_HANDLED;
2438 }
2439
2440 /*
2441 *****************************************************************************
2442 * PCIe MSI/MSI-X SETUP
2443 *****************************************************************************
2444 */
2445
2446 struct skd_msix_entry {
2447 char isr_name[30];
2448 };
2449
2450 struct skd_init_msix_entry {
2451 const char *name;
2452 irq_handler_t handler;
2453 };
2454
2455 #define SKD_MAX_MSIX_COUNT 13
2456 #define SKD_MIN_MSIX_COUNT 7
2457 #define SKD_BASE_MSIX_IRQ 4
2458
2459 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2460 { "(DMA 0)", skd_reserved_isr },
2461 { "(DMA 1)", skd_reserved_isr },
2462 { "(DMA 2)", skd_reserved_isr },
2463 { "(DMA 3)", skd_reserved_isr },
2464 { "(State Change)", skd_statec_isr },
2465 { "(COMPL_Q)", skd_comp_q },
2466 { "(MSG)", skd_msg_isr },
2467 { "(Reserved)", skd_reserved_isr },
2468 { "(Reserved)", skd_reserved_isr },
2469 { "(Queue Full 0)", skd_qfull_isr },
2470 { "(Queue Full 1)", skd_qfull_isr },
2471 { "(Queue Full 2)", skd_qfull_isr },
2472 { "(Queue Full 3)", skd_qfull_isr },
2473 };
2474
skd_acquire_msix(struct skd_device * skdev)2475 static int skd_acquire_msix(struct skd_device *skdev)
2476 {
2477 int i, rc;
2478 struct pci_dev *pdev = skdev->pdev;
2479
2480 rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2481 PCI_IRQ_MSIX);
2482 if (rc < 0) {
2483 dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2484 goto out;
2485 }
2486
2487 skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2488 sizeof(struct skd_msix_entry), GFP_KERNEL);
2489 if (!skdev->msix_entries) {
2490 rc = -ENOMEM;
2491 dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2492 goto out;
2493 }
2494
2495 /* Enable MSI-X vectors for the base queue */
2496 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2497 struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2498
2499 snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2500 "%s%d-msix %s", DRV_NAME, skdev->devno,
2501 msix_entries[i].name);
2502
2503 rc = devm_request_irq(&skdev->pdev->dev,
2504 pci_irq_vector(skdev->pdev, i),
2505 msix_entries[i].handler, 0,
2506 qentry->isr_name, skdev);
2507 if (rc) {
2508 dev_err(&skdev->pdev->dev,
2509 "Unable to register(%d) MSI-X handler %d: %s\n",
2510 rc, i, qentry->isr_name);
2511 goto msix_out;
2512 }
2513 }
2514
2515 dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2516 SKD_MAX_MSIX_COUNT);
2517 return 0;
2518
2519 msix_out:
2520 while (--i >= 0)
2521 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2522 out:
2523 kfree(skdev->msix_entries);
2524 skdev->msix_entries = NULL;
2525 return rc;
2526 }
2527
skd_acquire_irq(struct skd_device * skdev)2528 static int skd_acquire_irq(struct skd_device *skdev)
2529 {
2530 struct pci_dev *pdev = skdev->pdev;
2531 unsigned int irq_flag = PCI_IRQ_LEGACY;
2532 int rc;
2533
2534 if (skd_isr_type == SKD_IRQ_MSIX) {
2535 rc = skd_acquire_msix(skdev);
2536 if (!rc)
2537 return 0;
2538
2539 dev_err(&skdev->pdev->dev,
2540 "failed to enable MSI-X, re-trying with MSI %d\n", rc);
2541 }
2542
2543 snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2544 skdev->devno);
2545
2546 if (skd_isr_type != SKD_IRQ_LEGACY)
2547 irq_flag |= PCI_IRQ_MSI;
2548 rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2549 if (rc < 0) {
2550 dev_err(&skdev->pdev->dev,
2551 "failed to allocate the MSI interrupt %d\n", rc);
2552 return rc;
2553 }
2554
2555 rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2556 pdev->msi_enabled ? 0 : IRQF_SHARED,
2557 skdev->isr_name, skdev);
2558 if (rc) {
2559 pci_free_irq_vectors(pdev);
2560 dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2561 rc);
2562 return rc;
2563 }
2564
2565 return 0;
2566 }
2567
skd_release_irq(struct skd_device * skdev)2568 static void skd_release_irq(struct skd_device *skdev)
2569 {
2570 struct pci_dev *pdev = skdev->pdev;
2571
2572 if (skdev->msix_entries) {
2573 int i;
2574
2575 for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2576 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2577 skdev);
2578 }
2579
2580 kfree(skdev->msix_entries);
2581 skdev->msix_entries = NULL;
2582 } else {
2583 devm_free_irq(&pdev->dev, pdev->irq, skdev);
2584 }
2585
2586 pci_free_irq_vectors(pdev);
2587 }
2588
2589 /*
2590 *****************************************************************************
2591 * CONSTRUCT
2592 *****************************************************************************
2593 */
2594
skd_alloc_dma(struct skd_device * skdev,struct kmem_cache * s,dma_addr_t * dma_handle,gfp_t gfp,enum dma_data_direction dir)2595 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2596 dma_addr_t *dma_handle, gfp_t gfp,
2597 enum dma_data_direction dir)
2598 {
2599 struct device *dev = &skdev->pdev->dev;
2600 void *buf;
2601
2602 buf = kmem_cache_alloc(s, gfp);
2603 if (!buf)
2604 return NULL;
2605 *dma_handle = dma_map_single(dev, buf,
2606 kmem_cache_size(s), dir);
2607 if (dma_mapping_error(dev, *dma_handle)) {
2608 kmem_cache_free(s, buf);
2609 buf = NULL;
2610 }
2611 return buf;
2612 }
2613
skd_free_dma(struct skd_device * skdev,struct kmem_cache * s,void * vaddr,dma_addr_t dma_handle,enum dma_data_direction dir)2614 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2615 void *vaddr, dma_addr_t dma_handle,
2616 enum dma_data_direction dir)
2617 {
2618 if (!vaddr)
2619 return;
2620
2621 dma_unmap_single(&skdev->pdev->dev, dma_handle,
2622 kmem_cache_size(s), dir);
2623 kmem_cache_free(s, vaddr);
2624 }
2625
skd_cons_skcomp(struct skd_device * skdev)2626 static int skd_cons_skcomp(struct skd_device *skdev)
2627 {
2628 int rc = 0;
2629 struct fit_completion_entry_v1 *skcomp;
2630
2631 dev_dbg(&skdev->pdev->dev,
2632 "comp pci_alloc, total bytes %zd entries %d\n",
2633 SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2634
2635 skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2636 &skdev->cq_dma_address);
2637
2638 if (skcomp == NULL) {
2639 rc = -ENOMEM;
2640 goto err_out;
2641 }
2642
2643 skdev->skcomp_table = skcomp;
2644 skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2645 sizeof(*skcomp) *
2646 SKD_N_COMPLETION_ENTRY);
2647
2648 err_out:
2649 return rc;
2650 }
2651
skd_cons_skmsg(struct skd_device * skdev)2652 static int skd_cons_skmsg(struct skd_device *skdev)
2653 {
2654 int rc = 0;
2655 u32 i;
2656
2657 dev_dbg(&skdev->pdev->dev,
2658 "skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2659 sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2660 sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2661
2662 skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2663 sizeof(struct skd_fitmsg_context),
2664 GFP_KERNEL);
2665 if (skdev->skmsg_table == NULL) {
2666 rc = -ENOMEM;
2667 goto err_out;
2668 }
2669
2670 for (i = 0; i < skdev->num_fitmsg_context; i++) {
2671 struct skd_fitmsg_context *skmsg;
2672
2673 skmsg = &skdev->skmsg_table[i];
2674
2675 skmsg->id = i + SKD_ID_FIT_MSG;
2676
2677 skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2678 SKD_N_FITMSG_BYTES,
2679 &skmsg->mb_dma_address);
2680
2681 if (skmsg->msg_buf == NULL) {
2682 rc = -ENOMEM;
2683 goto err_out;
2684 }
2685
2686 WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2687 (FIT_QCMD_ALIGN - 1),
2688 "not aligned: msg_buf %p mb_dma_address %pad\n",
2689 skmsg->msg_buf, &skmsg->mb_dma_address);
2690 memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2691 }
2692
2693 err_out:
2694 return rc;
2695 }
2696
skd_cons_sg_list(struct skd_device * skdev,u32 n_sg,dma_addr_t * ret_dma_addr)2697 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2698 u32 n_sg,
2699 dma_addr_t *ret_dma_addr)
2700 {
2701 struct fit_sg_descriptor *sg_list;
2702
2703 sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2704 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2705
2706 if (sg_list != NULL) {
2707 uint64_t dma_address = *ret_dma_addr;
2708 u32 i;
2709
2710 for (i = 0; i < n_sg - 1; i++) {
2711 uint64_t ndp_off;
2712 ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2713
2714 sg_list[i].next_desc_ptr = dma_address + ndp_off;
2715 }
2716 sg_list[i].next_desc_ptr = 0LL;
2717 }
2718
2719 return sg_list;
2720 }
2721
skd_free_sg_list(struct skd_device * skdev,struct fit_sg_descriptor * sg_list,dma_addr_t dma_addr)2722 static void skd_free_sg_list(struct skd_device *skdev,
2723 struct fit_sg_descriptor *sg_list,
2724 dma_addr_t dma_addr)
2725 {
2726 if (WARN_ON_ONCE(!sg_list))
2727 return;
2728
2729 skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2730 DMA_TO_DEVICE);
2731 }
2732
skd_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2733 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2734 unsigned int hctx_idx, unsigned int numa_node)
2735 {
2736 struct skd_device *skdev = set->driver_data;
2737 struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2738
2739 skreq->state = SKD_REQ_STATE_IDLE;
2740 skreq->sg = (void *)(skreq + 1);
2741 sg_init_table(skreq->sg, skd_sgs_per_request);
2742 skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2743 &skreq->sksg_dma_address);
2744
2745 return skreq->sksg_list ? 0 : -ENOMEM;
2746 }
2747
skd_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)2748 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2749 unsigned int hctx_idx)
2750 {
2751 struct skd_device *skdev = set->driver_data;
2752 struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2753
2754 skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2755 }
2756
skd_cons_sksb(struct skd_device * skdev)2757 static int skd_cons_sksb(struct skd_device *skdev)
2758 {
2759 int rc = 0;
2760 struct skd_special_context *skspcl;
2761
2762 skspcl = &skdev->internal_skspcl;
2763
2764 skspcl->req.id = 0 + SKD_ID_INTERNAL;
2765 skspcl->req.state = SKD_REQ_STATE_IDLE;
2766
2767 skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2768 &skspcl->db_dma_address,
2769 GFP_DMA | __GFP_ZERO,
2770 DMA_BIDIRECTIONAL);
2771 if (skspcl->data_buf == NULL) {
2772 rc = -ENOMEM;
2773 goto err_out;
2774 }
2775
2776 skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2777 &skspcl->mb_dma_address,
2778 GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2779 if (skspcl->msg_buf == NULL) {
2780 rc = -ENOMEM;
2781 goto err_out;
2782 }
2783
2784 skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2785 &skspcl->req.sksg_dma_address);
2786 if (skspcl->req.sksg_list == NULL) {
2787 rc = -ENOMEM;
2788 goto err_out;
2789 }
2790
2791 if (!skd_format_internal_skspcl(skdev)) {
2792 rc = -EINVAL;
2793 goto err_out;
2794 }
2795
2796 err_out:
2797 return rc;
2798 }
2799
2800 static const struct blk_mq_ops skd_mq_ops = {
2801 .queue_rq = skd_mq_queue_rq,
2802 .complete = skd_complete_rq,
2803 .timeout = skd_timed_out,
2804 .init_request = skd_init_request,
2805 .exit_request = skd_exit_request,
2806 };
2807
skd_cons_disk(struct skd_device * skdev)2808 static int skd_cons_disk(struct skd_device *skdev)
2809 {
2810 int rc = 0;
2811 struct gendisk *disk;
2812 struct request_queue *q;
2813 unsigned long flags;
2814
2815 disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2816 if (!disk) {
2817 rc = -ENOMEM;
2818 goto err_out;
2819 }
2820
2821 skdev->disk = disk;
2822 sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2823
2824 disk->major = skdev->major;
2825 disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2826 disk->fops = &skd_blockdev_ops;
2827 disk->private_data = skdev;
2828
2829 memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2830 skdev->tag_set.ops = &skd_mq_ops;
2831 skdev->tag_set.nr_hw_queues = 1;
2832 skdev->tag_set.queue_depth = skd_max_queue_depth;
2833 skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2834 skdev->sgs_per_request * sizeof(struct scatterlist);
2835 skdev->tag_set.numa_node = NUMA_NO_NODE;
2836 skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2837 BLK_MQ_F_SG_MERGE |
2838 BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2839 skdev->tag_set.driver_data = skdev;
2840 rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2841 if (rc)
2842 goto err_out;
2843 q = blk_mq_init_queue(&skdev->tag_set);
2844 if (IS_ERR(q)) {
2845 blk_mq_free_tag_set(&skdev->tag_set);
2846 rc = PTR_ERR(q);
2847 goto err_out;
2848 }
2849 q->queuedata = skdev;
2850
2851 skdev->queue = q;
2852 disk->queue = q;
2853
2854 blk_queue_write_cache(q, true, true);
2855 blk_queue_max_segments(q, skdev->sgs_per_request);
2856 blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2857
2858 /* set optimal I/O size to 8KB */
2859 blk_queue_io_opt(q, 8192);
2860
2861 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2862 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2863
2864 blk_queue_rq_timeout(q, 8 * HZ);
2865
2866 spin_lock_irqsave(&skdev->lock, flags);
2867 dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2868 blk_mq_stop_hw_queues(skdev->queue);
2869 spin_unlock_irqrestore(&skdev->lock, flags);
2870
2871 err_out:
2872 return rc;
2873 }
2874
2875 #define SKD_N_DEV_TABLE 16u
2876 static u32 skd_next_devno;
2877
skd_construct(struct pci_dev * pdev)2878 static struct skd_device *skd_construct(struct pci_dev *pdev)
2879 {
2880 struct skd_device *skdev;
2881 int blk_major = skd_major;
2882 size_t size;
2883 int rc;
2884
2885 skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2886
2887 if (!skdev) {
2888 dev_err(&pdev->dev, "memory alloc failure\n");
2889 return NULL;
2890 }
2891
2892 skdev->state = SKD_DRVR_STATE_LOAD;
2893 skdev->pdev = pdev;
2894 skdev->devno = skd_next_devno++;
2895 skdev->major = blk_major;
2896 skdev->dev_max_queue_depth = 0;
2897
2898 skdev->num_req_context = skd_max_queue_depth;
2899 skdev->num_fitmsg_context = skd_max_queue_depth;
2900 skdev->cur_max_queue_depth = 1;
2901 skdev->queue_low_water_mark = 1;
2902 skdev->proto_ver = 99;
2903 skdev->sgs_per_request = skd_sgs_per_request;
2904 skdev->dbg_level = skd_dbg_level;
2905
2906 spin_lock_init(&skdev->lock);
2907
2908 INIT_WORK(&skdev->start_queue, skd_start_queue);
2909 INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2910
2911 size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2912 skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2913 SLAB_HWCACHE_ALIGN, NULL);
2914 if (!skdev->msgbuf_cache)
2915 goto err_out;
2916 WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2917 "skd-msgbuf: %d < %zd\n",
2918 kmem_cache_size(skdev->msgbuf_cache), size);
2919 size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2920 skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2921 SLAB_HWCACHE_ALIGN, NULL);
2922 if (!skdev->sglist_cache)
2923 goto err_out;
2924 WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2925 "skd-sglist: %d < %zd\n",
2926 kmem_cache_size(skdev->sglist_cache), size);
2927 size = SKD_N_INTERNAL_BYTES;
2928 skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2929 SLAB_HWCACHE_ALIGN, NULL);
2930 if (!skdev->databuf_cache)
2931 goto err_out;
2932 WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2933 "skd-databuf: %d < %zd\n",
2934 kmem_cache_size(skdev->databuf_cache), size);
2935
2936 dev_dbg(&skdev->pdev->dev, "skcomp\n");
2937 rc = skd_cons_skcomp(skdev);
2938 if (rc < 0)
2939 goto err_out;
2940
2941 dev_dbg(&skdev->pdev->dev, "skmsg\n");
2942 rc = skd_cons_skmsg(skdev);
2943 if (rc < 0)
2944 goto err_out;
2945
2946 dev_dbg(&skdev->pdev->dev, "sksb\n");
2947 rc = skd_cons_sksb(skdev);
2948 if (rc < 0)
2949 goto err_out;
2950
2951 dev_dbg(&skdev->pdev->dev, "disk\n");
2952 rc = skd_cons_disk(skdev);
2953 if (rc < 0)
2954 goto err_out;
2955
2956 dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2957 return skdev;
2958
2959 err_out:
2960 dev_dbg(&skdev->pdev->dev, "construct failed\n");
2961 skd_destruct(skdev);
2962 return NULL;
2963 }
2964
2965 /*
2966 *****************************************************************************
2967 * DESTRUCT (FREE)
2968 *****************************************************************************
2969 */
2970
skd_free_skcomp(struct skd_device * skdev)2971 static void skd_free_skcomp(struct skd_device *skdev)
2972 {
2973 if (skdev->skcomp_table)
2974 pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2975 skdev->skcomp_table, skdev->cq_dma_address);
2976
2977 skdev->skcomp_table = NULL;
2978 skdev->cq_dma_address = 0;
2979 }
2980
skd_free_skmsg(struct skd_device * skdev)2981 static void skd_free_skmsg(struct skd_device *skdev)
2982 {
2983 u32 i;
2984
2985 if (skdev->skmsg_table == NULL)
2986 return;
2987
2988 for (i = 0; i < skdev->num_fitmsg_context; i++) {
2989 struct skd_fitmsg_context *skmsg;
2990
2991 skmsg = &skdev->skmsg_table[i];
2992
2993 if (skmsg->msg_buf != NULL) {
2994 pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
2995 skmsg->msg_buf,
2996 skmsg->mb_dma_address);
2997 }
2998 skmsg->msg_buf = NULL;
2999 skmsg->mb_dma_address = 0;
3000 }
3001
3002 kfree(skdev->skmsg_table);
3003 skdev->skmsg_table = NULL;
3004 }
3005
skd_free_sksb(struct skd_device * skdev)3006 static void skd_free_sksb(struct skd_device *skdev)
3007 {
3008 struct skd_special_context *skspcl = &skdev->internal_skspcl;
3009
3010 skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3011 skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3012
3013 skspcl->data_buf = NULL;
3014 skspcl->db_dma_address = 0;
3015
3016 skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3017 skspcl->mb_dma_address, DMA_TO_DEVICE);
3018
3019 skspcl->msg_buf = NULL;
3020 skspcl->mb_dma_address = 0;
3021
3022 skd_free_sg_list(skdev, skspcl->req.sksg_list,
3023 skspcl->req.sksg_dma_address);
3024
3025 skspcl->req.sksg_list = NULL;
3026 skspcl->req.sksg_dma_address = 0;
3027 }
3028
skd_free_disk(struct skd_device * skdev)3029 static void skd_free_disk(struct skd_device *skdev)
3030 {
3031 struct gendisk *disk = skdev->disk;
3032
3033 if (disk && (disk->flags & GENHD_FL_UP))
3034 del_gendisk(disk);
3035
3036 if (skdev->queue) {
3037 blk_cleanup_queue(skdev->queue);
3038 skdev->queue = NULL;
3039 if (disk)
3040 disk->queue = NULL;
3041 }
3042
3043 if (skdev->tag_set.tags)
3044 blk_mq_free_tag_set(&skdev->tag_set);
3045
3046 put_disk(disk);
3047 skdev->disk = NULL;
3048 }
3049
skd_destruct(struct skd_device * skdev)3050 static void skd_destruct(struct skd_device *skdev)
3051 {
3052 if (skdev == NULL)
3053 return;
3054
3055 cancel_work_sync(&skdev->start_queue);
3056
3057 dev_dbg(&skdev->pdev->dev, "disk\n");
3058 skd_free_disk(skdev);
3059
3060 dev_dbg(&skdev->pdev->dev, "sksb\n");
3061 skd_free_sksb(skdev);
3062
3063 dev_dbg(&skdev->pdev->dev, "skmsg\n");
3064 skd_free_skmsg(skdev);
3065
3066 dev_dbg(&skdev->pdev->dev, "skcomp\n");
3067 skd_free_skcomp(skdev);
3068
3069 kmem_cache_destroy(skdev->databuf_cache);
3070 kmem_cache_destroy(skdev->sglist_cache);
3071 kmem_cache_destroy(skdev->msgbuf_cache);
3072
3073 dev_dbg(&skdev->pdev->dev, "skdev\n");
3074 kfree(skdev);
3075 }
3076
3077 /*
3078 *****************************************************************************
3079 * BLOCK DEVICE (BDEV) GLUE
3080 *****************************************************************************
3081 */
3082
skd_bdev_getgeo(struct block_device * bdev,struct hd_geometry * geo)3083 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3084 {
3085 struct skd_device *skdev;
3086 u64 capacity;
3087
3088 skdev = bdev->bd_disk->private_data;
3089
3090 dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3091 bdev->bd_disk->disk_name, current->comm);
3092
3093 if (skdev->read_cap_is_valid) {
3094 capacity = get_capacity(skdev->disk);
3095 geo->heads = 64;
3096 geo->sectors = 255;
3097 geo->cylinders = (capacity) / (255 * 64);
3098
3099 return 0;
3100 }
3101 return -EIO;
3102 }
3103
skd_bdev_attach(struct device * parent,struct skd_device * skdev)3104 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3105 {
3106 dev_dbg(&skdev->pdev->dev, "add_disk\n");
3107 device_add_disk(parent, skdev->disk);
3108 return 0;
3109 }
3110
3111 static const struct block_device_operations skd_blockdev_ops = {
3112 .owner = THIS_MODULE,
3113 .getgeo = skd_bdev_getgeo,
3114 };
3115
3116 /*
3117 *****************************************************************************
3118 * PCIe DRIVER GLUE
3119 *****************************************************************************
3120 */
3121
3122 static const struct pci_device_id skd_pci_tbl[] = {
3123 { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3124 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3125 { 0 } /* terminate list */
3126 };
3127
3128 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3129
skd_pci_info(struct skd_device * skdev,char * str)3130 static char *skd_pci_info(struct skd_device *skdev, char *str)
3131 {
3132 int pcie_reg;
3133
3134 strcpy(str, "PCIe (");
3135 pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3136
3137 if (pcie_reg) {
3138
3139 char lwstr[6];
3140 uint16_t pcie_lstat, lspeed, lwidth;
3141
3142 pcie_reg += 0x12;
3143 pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3144 lspeed = pcie_lstat & (0xF);
3145 lwidth = (pcie_lstat & 0x3F0) >> 4;
3146
3147 if (lspeed == 1)
3148 strcat(str, "2.5GT/s ");
3149 else if (lspeed == 2)
3150 strcat(str, "5.0GT/s ");
3151 else
3152 strcat(str, "<unknown> ");
3153 snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3154 strcat(str, lwstr);
3155 }
3156 return str;
3157 }
3158
skd_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3159 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3160 {
3161 int i;
3162 int rc = 0;
3163 char pci_str[32];
3164 struct skd_device *skdev;
3165
3166 dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3167 pdev->device);
3168
3169 rc = pci_enable_device(pdev);
3170 if (rc)
3171 return rc;
3172 rc = pci_request_regions(pdev, DRV_NAME);
3173 if (rc)
3174 goto err_out;
3175 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3176 if (!rc) {
3177 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3178 dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3179 rc);
3180 }
3181 } else {
3182 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3183 if (rc) {
3184 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3185 goto err_out_regions;
3186 }
3187 }
3188
3189 if (!skd_major) {
3190 rc = register_blkdev(0, DRV_NAME);
3191 if (rc < 0)
3192 goto err_out_regions;
3193 BUG_ON(!rc);
3194 skd_major = rc;
3195 }
3196
3197 skdev = skd_construct(pdev);
3198 if (skdev == NULL) {
3199 rc = -ENOMEM;
3200 goto err_out_regions;
3201 }
3202
3203 skd_pci_info(skdev, pci_str);
3204 dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3205
3206 pci_set_master(pdev);
3207 rc = pci_enable_pcie_error_reporting(pdev);
3208 if (rc) {
3209 dev_err(&pdev->dev,
3210 "bad enable of PCIe error reporting rc=%d\n", rc);
3211 skdev->pcie_error_reporting_is_enabled = 0;
3212 } else
3213 skdev->pcie_error_reporting_is_enabled = 1;
3214
3215 pci_set_drvdata(pdev, skdev);
3216
3217 for (i = 0; i < SKD_MAX_BARS; i++) {
3218 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3219 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3220 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3221 skdev->mem_size[i]);
3222 if (!skdev->mem_map[i]) {
3223 dev_err(&pdev->dev,
3224 "Unable to map adapter memory!\n");
3225 rc = -ENODEV;
3226 goto err_out_iounmap;
3227 }
3228 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3229 skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3230 skdev->mem_size[i]);
3231 }
3232
3233 rc = skd_acquire_irq(skdev);
3234 if (rc) {
3235 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3236 goto err_out_iounmap;
3237 }
3238
3239 rc = skd_start_timer(skdev);
3240 if (rc)
3241 goto err_out_timer;
3242
3243 init_waitqueue_head(&skdev->waitq);
3244
3245 skd_start_device(skdev);
3246
3247 rc = wait_event_interruptible_timeout(skdev->waitq,
3248 (skdev->gendisk_on),
3249 (SKD_START_WAIT_SECONDS * HZ));
3250 if (skdev->gendisk_on > 0) {
3251 /* device came on-line after reset */
3252 skd_bdev_attach(&pdev->dev, skdev);
3253 rc = 0;
3254 } else {
3255 /* we timed out, something is wrong with the device,
3256 don't add the disk structure */
3257 dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3258 rc);
3259 /* in case of no error; we timeout with ENXIO */
3260 if (!rc)
3261 rc = -ENXIO;
3262 goto err_out_timer;
3263 }
3264
3265 return rc;
3266
3267 err_out_timer:
3268 skd_stop_device(skdev);
3269 skd_release_irq(skdev);
3270
3271 err_out_iounmap:
3272 for (i = 0; i < SKD_MAX_BARS; i++)
3273 if (skdev->mem_map[i])
3274 iounmap(skdev->mem_map[i]);
3275
3276 if (skdev->pcie_error_reporting_is_enabled)
3277 pci_disable_pcie_error_reporting(pdev);
3278
3279 skd_destruct(skdev);
3280
3281 err_out_regions:
3282 pci_release_regions(pdev);
3283
3284 err_out:
3285 pci_disable_device(pdev);
3286 pci_set_drvdata(pdev, NULL);
3287 return rc;
3288 }
3289
skd_pci_remove(struct pci_dev * pdev)3290 static void skd_pci_remove(struct pci_dev *pdev)
3291 {
3292 int i;
3293 struct skd_device *skdev;
3294
3295 skdev = pci_get_drvdata(pdev);
3296 if (!skdev) {
3297 dev_err(&pdev->dev, "no device data for PCI\n");
3298 return;
3299 }
3300 skd_stop_device(skdev);
3301 skd_release_irq(skdev);
3302
3303 for (i = 0; i < SKD_MAX_BARS; i++)
3304 if (skdev->mem_map[i])
3305 iounmap(skdev->mem_map[i]);
3306
3307 if (skdev->pcie_error_reporting_is_enabled)
3308 pci_disable_pcie_error_reporting(pdev);
3309
3310 skd_destruct(skdev);
3311
3312 pci_release_regions(pdev);
3313 pci_disable_device(pdev);
3314 pci_set_drvdata(pdev, NULL);
3315
3316 return;
3317 }
3318
skd_pci_suspend(struct pci_dev * pdev,pm_message_t state)3319 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3320 {
3321 int i;
3322 struct skd_device *skdev;
3323
3324 skdev = pci_get_drvdata(pdev);
3325 if (!skdev) {
3326 dev_err(&pdev->dev, "no device data for PCI\n");
3327 return -EIO;
3328 }
3329
3330 skd_stop_device(skdev);
3331
3332 skd_release_irq(skdev);
3333
3334 for (i = 0; i < SKD_MAX_BARS; i++)
3335 if (skdev->mem_map[i])
3336 iounmap(skdev->mem_map[i]);
3337
3338 if (skdev->pcie_error_reporting_is_enabled)
3339 pci_disable_pcie_error_reporting(pdev);
3340
3341 pci_release_regions(pdev);
3342 pci_save_state(pdev);
3343 pci_disable_device(pdev);
3344 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3345 return 0;
3346 }
3347
skd_pci_resume(struct pci_dev * pdev)3348 static int skd_pci_resume(struct pci_dev *pdev)
3349 {
3350 int i;
3351 int rc = 0;
3352 struct skd_device *skdev;
3353
3354 skdev = pci_get_drvdata(pdev);
3355 if (!skdev) {
3356 dev_err(&pdev->dev, "no device data for PCI\n");
3357 return -1;
3358 }
3359
3360 pci_set_power_state(pdev, PCI_D0);
3361 pci_enable_wake(pdev, PCI_D0, 0);
3362 pci_restore_state(pdev);
3363
3364 rc = pci_enable_device(pdev);
3365 if (rc)
3366 return rc;
3367 rc = pci_request_regions(pdev, DRV_NAME);
3368 if (rc)
3369 goto err_out;
3370 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3371 if (!rc) {
3372 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3373
3374 dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3375 rc);
3376 }
3377 } else {
3378 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3379 if (rc) {
3380
3381 dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3382 goto err_out_regions;
3383 }
3384 }
3385
3386 pci_set_master(pdev);
3387 rc = pci_enable_pcie_error_reporting(pdev);
3388 if (rc) {
3389 dev_err(&pdev->dev,
3390 "bad enable of PCIe error reporting rc=%d\n", rc);
3391 skdev->pcie_error_reporting_is_enabled = 0;
3392 } else
3393 skdev->pcie_error_reporting_is_enabled = 1;
3394
3395 for (i = 0; i < SKD_MAX_BARS; i++) {
3396
3397 skdev->mem_phys[i] = pci_resource_start(pdev, i);
3398 skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3399 skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3400 skdev->mem_size[i]);
3401 if (!skdev->mem_map[i]) {
3402 dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3403 rc = -ENODEV;
3404 goto err_out_iounmap;
3405 }
3406 dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3407 skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3408 skdev->mem_size[i]);
3409 }
3410 rc = skd_acquire_irq(skdev);
3411 if (rc) {
3412 dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3413 goto err_out_iounmap;
3414 }
3415
3416 rc = skd_start_timer(skdev);
3417 if (rc)
3418 goto err_out_timer;
3419
3420 init_waitqueue_head(&skdev->waitq);
3421
3422 skd_start_device(skdev);
3423
3424 return rc;
3425
3426 err_out_timer:
3427 skd_stop_device(skdev);
3428 skd_release_irq(skdev);
3429
3430 err_out_iounmap:
3431 for (i = 0; i < SKD_MAX_BARS; i++)
3432 if (skdev->mem_map[i])
3433 iounmap(skdev->mem_map[i]);
3434
3435 if (skdev->pcie_error_reporting_is_enabled)
3436 pci_disable_pcie_error_reporting(pdev);
3437
3438 err_out_regions:
3439 pci_release_regions(pdev);
3440
3441 err_out:
3442 pci_disable_device(pdev);
3443 return rc;
3444 }
3445
skd_pci_shutdown(struct pci_dev * pdev)3446 static void skd_pci_shutdown(struct pci_dev *pdev)
3447 {
3448 struct skd_device *skdev;
3449
3450 dev_err(&pdev->dev, "%s called\n", __func__);
3451
3452 skdev = pci_get_drvdata(pdev);
3453 if (!skdev) {
3454 dev_err(&pdev->dev, "no device data for PCI\n");
3455 return;
3456 }
3457
3458 dev_err(&pdev->dev, "calling stop\n");
3459 skd_stop_device(skdev);
3460 }
3461
3462 static struct pci_driver skd_driver = {
3463 .name = DRV_NAME,
3464 .id_table = skd_pci_tbl,
3465 .probe = skd_pci_probe,
3466 .remove = skd_pci_remove,
3467 .suspend = skd_pci_suspend,
3468 .resume = skd_pci_resume,
3469 .shutdown = skd_pci_shutdown,
3470 };
3471
3472 /*
3473 *****************************************************************************
3474 * LOGGING SUPPORT
3475 *****************************************************************************
3476 */
3477
skd_drive_state_to_str(int state)3478 const char *skd_drive_state_to_str(int state)
3479 {
3480 switch (state) {
3481 case FIT_SR_DRIVE_OFFLINE:
3482 return "OFFLINE";
3483 case FIT_SR_DRIVE_INIT:
3484 return "INIT";
3485 case FIT_SR_DRIVE_ONLINE:
3486 return "ONLINE";
3487 case FIT_SR_DRIVE_BUSY:
3488 return "BUSY";
3489 case FIT_SR_DRIVE_FAULT:
3490 return "FAULT";
3491 case FIT_SR_DRIVE_DEGRADED:
3492 return "DEGRADED";
3493 case FIT_SR_PCIE_LINK_DOWN:
3494 return "INK_DOWN";
3495 case FIT_SR_DRIVE_SOFT_RESET:
3496 return "SOFT_RESET";
3497 case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3498 return "NEED_FW";
3499 case FIT_SR_DRIVE_INIT_FAULT:
3500 return "INIT_FAULT";
3501 case FIT_SR_DRIVE_BUSY_SANITIZE:
3502 return "BUSY_SANITIZE";
3503 case FIT_SR_DRIVE_BUSY_ERASE:
3504 return "BUSY_ERASE";
3505 case FIT_SR_DRIVE_FW_BOOTING:
3506 return "FW_BOOTING";
3507 default:
3508 return "???";
3509 }
3510 }
3511
skd_skdev_state_to_str(enum skd_drvr_state state)3512 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3513 {
3514 switch (state) {
3515 case SKD_DRVR_STATE_LOAD:
3516 return "LOAD";
3517 case SKD_DRVR_STATE_IDLE:
3518 return "IDLE";
3519 case SKD_DRVR_STATE_BUSY:
3520 return "BUSY";
3521 case SKD_DRVR_STATE_STARTING:
3522 return "STARTING";
3523 case SKD_DRVR_STATE_ONLINE:
3524 return "ONLINE";
3525 case SKD_DRVR_STATE_PAUSING:
3526 return "PAUSING";
3527 case SKD_DRVR_STATE_PAUSED:
3528 return "PAUSED";
3529 case SKD_DRVR_STATE_RESTARTING:
3530 return "RESTARTING";
3531 case SKD_DRVR_STATE_RESUMING:
3532 return "RESUMING";
3533 case SKD_DRVR_STATE_STOPPING:
3534 return "STOPPING";
3535 case SKD_DRVR_STATE_SYNCING:
3536 return "SYNCING";
3537 case SKD_DRVR_STATE_FAULT:
3538 return "FAULT";
3539 case SKD_DRVR_STATE_DISAPPEARED:
3540 return "DISAPPEARED";
3541 case SKD_DRVR_STATE_BUSY_ERASE:
3542 return "BUSY_ERASE";
3543 case SKD_DRVR_STATE_BUSY_SANITIZE:
3544 return "BUSY_SANITIZE";
3545 case SKD_DRVR_STATE_BUSY_IMMINENT:
3546 return "BUSY_IMMINENT";
3547 case SKD_DRVR_STATE_WAIT_BOOT:
3548 return "WAIT_BOOT";
3549
3550 default:
3551 return "???";
3552 }
3553 }
3554
skd_skreq_state_to_str(enum skd_req_state state)3555 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3556 {
3557 switch (state) {
3558 case SKD_REQ_STATE_IDLE:
3559 return "IDLE";
3560 case SKD_REQ_STATE_SETUP:
3561 return "SETUP";
3562 case SKD_REQ_STATE_BUSY:
3563 return "BUSY";
3564 case SKD_REQ_STATE_COMPLETED:
3565 return "COMPLETED";
3566 case SKD_REQ_STATE_TIMEOUT:
3567 return "TIMEOUT";
3568 default:
3569 return "???";
3570 }
3571 }
3572
skd_log_skdev(struct skd_device * skdev,const char * event)3573 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3574 {
3575 dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3576 dev_dbg(&skdev->pdev->dev, " drive_state=%s(%d) driver_state=%s(%d)\n",
3577 skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3578 skd_skdev_state_to_str(skdev->state), skdev->state);
3579 dev_dbg(&skdev->pdev->dev, " busy=%d limit=%d dev=%d lowat=%d\n",
3580 skd_in_flight(skdev), skdev->cur_max_queue_depth,
3581 skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3582 dev_dbg(&skdev->pdev->dev, " cycle=%d cycle_ix=%d\n",
3583 skdev->skcomp_cycle, skdev->skcomp_ix);
3584 }
3585
skd_log_skreq(struct skd_device * skdev,struct skd_request_context * skreq,const char * event)3586 static void skd_log_skreq(struct skd_device *skdev,
3587 struct skd_request_context *skreq, const char *event)
3588 {
3589 struct request *req = blk_mq_rq_from_pdu(skreq);
3590 u32 lba = blk_rq_pos(req);
3591 u32 count = blk_rq_sectors(req);
3592
3593 dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3594 dev_dbg(&skdev->pdev->dev, " state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3595 skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3596 skreq->fitmsg_id);
3597 dev_dbg(&skdev->pdev->dev, " sg_dir=%d n_sg=%d\n",
3598 skreq->data_dir, skreq->n_sg);
3599
3600 dev_dbg(&skdev->pdev->dev,
3601 "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3602 count, count, (int)rq_data_dir(req));
3603 }
3604
3605 /*
3606 *****************************************************************************
3607 * MODULE GLUE
3608 *****************************************************************************
3609 */
3610
skd_init(void)3611 static int __init skd_init(void)
3612 {
3613 BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3614 BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3615 BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3616 BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3617 BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3618 BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3619 BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3620 BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3621
3622 switch (skd_isr_type) {
3623 case SKD_IRQ_LEGACY:
3624 case SKD_IRQ_MSI:
3625 case SKD_IRQ_MSIX:
3626 break;
3627 default:
3628 pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3629 skd_isr_type, SKD_IRQ_DEFAULT);
3630 skd_isr_type = SKD_IRQ_DEFAULT;
3631 }
3632
3633 if (skd_max_queue_depth < 1 ||
3634 skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3635 pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3636 skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3637 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3638 }
3639
3640 if (skd_max_req_per_msg < 1 ||
3641 skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3642 pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3643 skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3644 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3645 }
3646
3647 if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3648 pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3649 skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3650 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3651 }
3652
3653 if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3654 pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3655 skd_dbg_level, 0);
3656 skd_dbg_level = 0;
3657 }
3658
3659 if (skd_isr_comp_limit < 0) {
3660 pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3661 skd_isr_comp_limit, 0);
3662 skd_isr_comp_limit = 0;
3663 }
3664
3665 return pci_register_driver(&skd_driver);
3666 }
3667
skd_exit(void)3668 static void __exit skd_exit(void)
3669 {
3670 pci_unregister_driver(&skd_driver);
3671
3672 if (skd_major)
3673 unregister_blkdev(skd_major, DRV_NAME);
3674 }
3675
3676 module_init(skd_init);
3677 module_exit(skd_exit);
3678