1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <scsi/scsi.h>
36 #include <scsi/sg.h>
37 #include <linux/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/unaligned.h>
40 
41 #include "skd_s1120.h"
42 
43 static int skd_dbg_level;
44 static int skd_isr_comp_limit = 4;
45 
46 #define SKD_ASSERT(expr) \
47 	do { \
48 		if (unlikely(!(expr))) { \
49 			pr_err("Assertion failed! %s,%s,%s,line=%d\n",	\
50 			       # expr, __FILE__, __func__, __LINE__); \
51 		} \
52 	} while (0)
53 
54 #define DRV_NAME "skd"
55 #define PFX DRV_NAME ": "
56 
57 MODULE_LICENSE("GPL");
58 
59 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
60 
61 #define PCI_VENDOR_ID_STEC      0x1B39
62 #define PCI_DEVICE_ID_S1120     0x0001
63 
64 #define SKD_FUA_NV		(1 << 1)
65 #define SKD_MINORS_PER_DEVICE   16
66 
67 #define SKD_MAX_QUEUE_DEPTH     200u
68 
69 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
70 
71 #define SKD_N_FITMSG_BYTES      (512u)
72 #define SKD_MAX_REQ_PER_MSG	14
73 
74 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
75 
76 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
77  * 128KB limit.  That allows 4096*4K = 16M xfer size
78  */
79 #define SKD_N_SG_PER_REQ_DEFAULT 256u
80 
81 #define SKD_N_COMPLETION_ENTRY  256u
82 #define SKD_N_READ_CAP_BYTES    (8u)
83 
84 #define SKD_N_INTERNAL_BYTES    (512u)
85 
86 #define SKD_SKCOMP_SIZE							\
87 	((sizeof(struct fit_completion_entry_v1) +			\
88 	  sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
89 
90 /* 5 bits of uniqifier, 0xF800 */
91 #define SKD_ID_TABLE_MASK       (3u << 8u)
92 #define  SKD_ID_RW_REQUEST      (0u << 8u)
93 #define  SKD_ID_INTERNAL        (1u << 8u)
94 #define  SKD_ID_FIT_MSG         (3u << 8u)
95 #define SKD_ID_SLOT_MASK        0x00FFu
96 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
97 
98 #define SKD_N_MAX_SECTORS 2048u
99 
100 #define SKD_MAX_RETRIES 2u
101 
102 #define SKD_TIMER_SECONDS(seconds) (seconds)
103 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
104 
105 #define INQ_STD_NBYTES 36
106 
107 enum skd_drvr_state {
108 	SKD_DRVR_STATE_LOAD,
109 	SKD_DRVR_STATE_IDLE,
110 	SKD_DRVR_STATE_BUSY,
111 	SKD_DRVR_STATE_STARTING,
112 	SKD_DRVR_STATE_ONLINE,
113 	SKD_DRVR_STATE_PAUSING,
114 	SKD_DRVR_STATE_PAUSED,
115 	SKD_DRVR_STATE_RESTARTING,
116 	SKD_DRVR_STATE_RESUMING,
117 	SKD_DRVR_STATE_STOPPING,
118 	SKD_DRVR_STATE_FAULT,
119 	SKD_DRVR_STATE_DISAPPEARED,
120 	SKD_DRVR_STATE_PROTOCOL_MISMATCH,
121 	SKD_DRVR_STATE_BUSY_ERASE,
122 	SKD_DRVR_STATE_BUSY_SANITIZE,
123 	SKD_DRVR_STATE_BUSY_IMMINENT,
124 	SKD_DRVR_STATE_WAIT_BOOT,
125 	SKD_DRVR_STATE_SYNCING,
126 };
127 
128 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
129 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
130 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
131 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
132 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
133 #define SKD_START_WAIT_SECONDS  90u
134 
135 enum skd_req_state {
136 	SKD_REQ_STATE_IDLE,
137 	SKD_REQ_STATE_SETUP,
138 	SKD_REQ_STATE_BUSY,
139 	SKD_REQ_STATE_COMPLETED,
140 	SKD_REQ_STATE_TIMEOUT,
141 };
142 
143 enum skd_check_status_action {
144 	SKD_CHECK_STATUS_REPORT_GOOD,
145 	SKD_CHECK_STATUS_REPORT_SMART_ALERT,
146 	SKD_CHECK_STATUS_REQUEUE_REQUEST,
147 	SKD_CHECK_STATUS_REPORT_ERROR,
148 	SKD_CHECK_STATUS_BUSY_IMMINENT,
149 };
150 
151 struct skd_msg_buf {
152 	struct fit_msg_hdr	fmh;
153 	struct skd_scsi_request	scsi[SKD_MAX_REQ_PER_MSG];
154 };
155 
156 struct skd_fitmsg_context {
157 	u32 id;
158 
159 	u32 length;
160 
161 	struct skd_msg_buf *msg_buf;
162 	dma_addr_t mb_dma_address;
163 };
164 
165 struct skd_request_context {
166 	enum skd_req_state state;
167 
168 	u16 id;
169 	u32 fitmsg_id;
170 
171 	u8 flush_cmd;
172 
173 	enum dma_data_direction data_dir;
174 	struct scatterlist *sg;
175 	u32 n_sg;
176 	u32 sg_byte_count;
177 
178 	struct fit_sg_descriptor *sksg_list;
179 	dma_addr_t sksg_dma_address;
180 
181 	struct fit_completion_entry_v1 completion;
182 
183 	struct fit_comp_error_info err_info;
184 
185 	blk_status_t status;
186 };
187 
188 struct skd_special_context {
189 	struct skd_request_context req;
190 
191 	void *data_buf;
192 	dma_addr_t db_dma_address;
193 
194 	struct skd_msg_buf *msg_buf;
195 	dma_addr_t mb_dma_address;
196 };
197 
198 typedef enum skd_irq_type {
199 	SKD_IRQ_LEGACY,
200 	SKD_IRQ_MSI,
201 	SKD_IRQ_MSIX
202 } skd_irq_type_t;
203 
204 #define SKD_MAX_BARS                    2
205 
206 struct skd_device {
207 	void __iomem *mem_map[SKD_MAX_BARS];
208 	resource_size_t mem_phys[SKD_MAX_BARS];
209 	u32 mem_size[SKD_MAX_BARS];
210 
211 	struct skd_msix_entry *msix_entries;
212 
213 	struct pci_dev *pdev;
214 	int pcie_error_reporting_is_enabled;
215 
216 	spinlock_t lock;
217 	struct gendisk *disk;
218 	struct blk_mq_tag_set tag_set;
219 	struct request_queue *queue;
220 	struct skd_fitmsg_context *skmsg;
221 	struct device *class_dev;
222 	int gendisk_on;
223 	int sync_done;
224 
225 	u32 devno;
226 	u32 major;
227 	char isr_name[30];
228 
229 	enum skd_drvr_state state;
230 	u32 drive_state;
231 
232 	u32 cur_max_queue_depth;
233 	u32 queue_low_water_mark;
234 	u32 dev_max_queue_depth;
235 
236 	u32 num_fitmsg_context;
237 	u32 num_req_context;
238 
239 	struct skd_fitmsg_context *skmsg_table;
240 
241 	struct skd_special_context internal_skspcl;
242 	u32 read_cap_blocksize;
243 	u32 read_cap_last_lba;
244 	int read_cap_is_valid;
245 	int inquiry_is_valid;
246 	u8 inq_serial_num[13];  /*12 chars plus null term */
247 
248 	u8 skcomp_cycle;
249 	u32 skcomp_ix;
250 	struct kmem_cache *msgbuf_cache;
251 	struct kmem_cache *sglist_cache;
252 	struct kmem_cache *databuf_cache;
253 	struct fit_completion_entry_v1 *skcomp_table;
254 	struct fit_comp_error_info *skerr_table;
255 	dma_addr_t cq_dma_address;
256 
257 	wait_queue_head_t waitq;
258 
259 	struct timer_list timer;
260 	u32 timer_countdown;
261 	u32 timer_substate;
262 
263 	int sgs_per_request;
264 	u32 last_mtd;
265 
266 	u32 proto_ver;
267 
268 	int dbg_level;
269 	u32 connect_time_stamp;
270 	int connect_retries;
271 #define SKD_MAX_CONNECT_RETRIES 16
272 	u32 drive_jiffies;
273 
274 	u32 timo_slot;
275 
276 	struct work_struct start_queue;
277 	struct work_struct completion_worker;
278 };
279 
280 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
281 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
282 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
283 
skd_reg_read32(struct skd_device * skdev,u32 offset)284 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
285 {
286 	u32 val = readl(skdev->mem_map[1] + offset);
287 
288 	if (unlikely(skdev->dbg_level >= 2))
289 		dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
290 	return val;
291 }
292 
skd_reg_write32(struct skd_device * skdev,u32 val,u32 offset)293 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
294 				   u32 offset)
295 {
296 	writel(val, skdev->mem_map[1] + offset);
297 	if (unlikely(skdev->dbg_level >= 2))
298 		dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
299 }
300 
skd_reg_write64(struct skd_device * skdev,u64 val,u32 offset)301 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
302 				   u32 offset)
303 {
304 	writeq(val, skdev->mem_map[1] + offset);
305 	if (unlikely(skdev->dbg_level >= 2))
306 		dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
307 			val);
308 }
309 
310 
311 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
312 static int skd_isr_type = SKD_IRQ_DEFAULT;
313 
314 module_param(skd_isr_type, int, 0444);
315 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
316 		 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
317 
318 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
319 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
320 
321 module_param(skd_max_req_per_msg, int, 0444);
322 MODULE_PARM_DESC(skd_max_req_per_msg,
323 		 "Maximum SCSI requests packed in a single message."
324 		 " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
325 
326 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
328 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
329 
330 module_param(skd_max_queue_depth, int, 0444);
331 MODULE_PARM_DESC(skd_max_queue_depth,
332 		 "Maximum SCSI requests issued to s1120."
333 		 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
334 
335 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
336 module_param(skd_sgs_per_request, int, 0444);
337 MODULE_PARM_DESC(skd_sgs_per_request,
338 		 "Maximum SG elements per block request."
339 		 " (1-4096, default==256)");
340 
341 static int skd_max_pass_thru = 1;
342 module_param(skd_max_pass_thru, int, 0444);
343 MODULE_PARM_DESC(skd_max_pass_thru,
344 		 "Maximum SCSI pass-thru at a time. IGNORED");
345 
346 module_param(skd_dbg_level, int, 0444);
347 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
348 
349 module_param(skd_isr_comp_limit, int, 0444);
350 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
351 
352 /* Major device number dynamically assigned. */
353 static u32 skd_major;
354 
355 static void skd_destruct(struct skd_device *skdev);
356 static const struct block_device_operations skd_blockdev_ops;
357 static void skd_send_fitmsg(struct skd_device *skdev,
358 			    struct skd_fitmsg_context *skmsg);
359 static void skd_send_special_fitmsg(struct skd_device *skdev,
360 				    struct skd_special_context *skspcl);
361 static bool skd_preop_sg_list(struct skd_device *skdev,
362 			     struct skd_request_context *skreq);
363 static void skd_postop_sg_list(struct skd_device *skdev,
364 			       struct skd_request_context *skreq);
365 
366 static void skd_restart_device(struct skd_device *skdev);
367 static int skd_quiesce_dev(struct skd_device *skdev);
368 static int skd_unquiesce_dev(struct skd_device *skdev);
369 static void skd_disable_interrupts(struct skd_device *skdev);
370 static void skd_isr_fwstate(struct skd_device *skdev);
371 static void skd_recover_requests(struct skd_device *skdev);
372 static void skd_soft_reset(struct skd_device *skdev);
373 
374 const char *skd_drive_state_to_str(int state);
375 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
376 static void skd_log_skdev(struct skd_device *skdev, const char *event);
377 static void skd_log_skreq(struct skd_device *skdev,
378 			  struct skd_request_context *skreq, const char *event);
379 
380 /*
381  *****************************************************************************
382  * READ/WRITE REQUESTS
383  *****************************************************************************
384  */
skd_inc_in_flight(struct request * rq,void * data,bool reserved)385 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
386 {
387 	int *count = data;
388 
389 	count++;
390 }
391 
skd_in_flight(struct skd_device * skdev)392 static int skd_in_flight(struct skd_device *skdev)
393 {
394 	int count = 0;
395 
396 	blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
397 
398 	return count;
399 }
400 
401 static void
skd_prep_rw_cdb(struct skd_scsi_request * scsi_req,int data_dir,unsigned lba,unsigned count)402 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
403 		int data_dir, unsigned lba,
404 		unsigned count)
405 {
406 	if (data_dir == READ)
407 		scsi_req->cdb[0] = READ_10;
408 	else
409 		scsi_req->cdb[0] = WRITE_10;
410 
411 	scsi_req->cdb[1] = 0;
412 	scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
413 	scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
414 	scsi_req->cdb[4] = (lba & 0xff00) >> 8;
415 	scsi_req->cdb[5] = (lba & 0xff);
416 	scsi_req->cdb[6] = 0;
417 	scsi_req->cdb[7] = (count & 0xff00) >> 8;
418 	scsi_req->cdb[8] = count & 0xff;
419 	scsi_req->cdb[9] = 0;
420 }
421 
422 static void
skd_prep_zerosize_flush_cdb(struct skd_scsi_request * scsi_req,struct skd_request_context * skreq)423 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
424 			    struct skd_request_context *skreq)
425 {
426 	skreq->flush_cmd = 1;
427 
428 	scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
429 	scsi_req->cdb[1] = 0;
430 	scsi_req->cdb[2] = 0;
431 	scsi_req->cdb[3] = 0;
432 	scsi_req->cdb[4] = 0;
433 	scsi_req->cdb[5] = 0;
434 	scsi_req->cdb[6] = 0;
435 	scsi_req->cdb[7] = 0;
436 	scsi_req->cdb[8] = 0;
437 	scsi_req->cdb[9] = 0;
438 }
439 
440 /*
441  * Return true if and only if all pending requests should be failed.
442  */
skd_fail_all(struct request_queue * q)443 static bool skd_fail_all(struct request_queue *q)
444 {
445 	struct skd_device *skdev = q->queuedata;
446 
447 	SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
448 
449 	skd_log_skdev(skdev, "req_not_online");
450 	switch (skdev->state) {
451 	case SKD_DRVR_STATE_PAUSING:
452 	case SKD_DRVR_STATE_PAUSED:
453 	case SKD_DRVR_STATE_STARTING:
454 	case SKD_DRVR_STATE_RESTARTING:
455 	case SKD_DRVR_STATE_WAIT_BOOT:
456 	/* In case of starting, we haven't started the queue,
457 	 * so we can't get here... but requests are
458 	 * possibly hanging out waiting for us because we
459 	 * reported the dev/skd0 already.  They'll wait
460 	 * forever if connect doesn't complete.
461 	 * What to do??? delay dev/skd0 ??
462 	 */
463 	case SKD_DRVR_STATE_BUSY:
464 	case SKD_DRVR_STATE_BUSY_IMMINENT:
465 	case SKD_DRVR_STATE_BUSY_ERASE:
466 		return false;
467 
468 	case SKD_DRVR_STATE_BUSY_SANITIZE:
469 	case SKD_DRVR_STATE_STOPPING:
470 	case SKD_DRVR_STATE_SYNCING:
471 	case SKD_DRVR_STATE_FAULT:
472 	case SKD_DRVR_STATE_DISAPPEARED:
473 	default:
474 		return true;
475 	}
476 }
477 
skd_mq_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * mqd)478 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
479 				    const struct blk_mq_queue_data *mqd)
480 {
481 	struct request *const req = mqd->rq;
482 	struct request_queue *const q = req->q;
483 	struct skd_device *skdev = q->queuedata;
484 	struct skd_fitmsg_context *skmsg;
485 	struct fit_msg_hdr *fmh;
486 	const u32 tag = blk_mq_unique_tag(req);
487 	struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
488 	struct skd_scsi_request *scsi_req;
489 	unsigned long flags = 0;
490 	const u32 lba = blk_rq_pos(req);
491 	const u32 count = blk_rq_sectors(req);
492 	const int data_dir = rq_data_dir(req);
493 
494 	if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
495 		return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
496 
497 	blk_mq_start_request(req);
498 
499 	WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
500 		  tag, skd_max_queue_depth, q->nr_requests);
501 
502 	SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
503 
504 	dev_dbg(&skdev->pdev->dev,
505 		"new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
506 		lba, count, count, data_dir);
507 
508 	skreq->id = tag + SKD_ID_RW_REQUEST;
509 	skreq->flush_cmd = 0;
510 	skreq->n_sg = 0;
511 	skreq->sg_byte_count = 0;
512 
513 	skreq->fitmsg_id = 0;
514 
515 	skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
516 
517 	if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
518 		dev_dbg(&skdev->pdev->dev, "error Out\n");
519 		skreq->status = BLK_STS_RESOURCE;
520 		blk_mq_complete_request(req);
521 		return BLK_STS_OK;
522 	}
523 
524 	dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
525 				   skreq->n_sg *
526 				   sizeof(struct fit_sg_descriptor),
527 				   DMA_TO_DEVICE);
528 
529 	/* Either a FIT msg is in progress or we have to start one. */
530 	if (skd_max_req_per_msg == 1) {
531 		skmsg = NULL;
532 	} else {
533 		spin_lock_irqsave(&skdev->lock, flags);
534 		skmsg = skdev->skmsg;
535 	}
536 	if (!skmsg) {
537 		skmsg = &skdev->skmsg_table[tag];
538 		skdev->skmsg = skmsg;
539 
540 		/* Initialize the FIT msg header */
541 		fmh = &skmsg->msg_buf->fmh;
542 		memset(fmh, 0, sizeof(*fmh));
543 		fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
544 		skmsg->length = sizeof(*fmh);
545 	} else {
546 		fmh = &skmsg->msg_buf->fmh;
547 	}
548 
549 	skreq->fitmsg_id = skmsg->id;
550 
551 	scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
552 	memset(scsi_req, 0, sizeof(*scsi_req));
553 
554 	scsi_req->hdr.tag = skreq->id;
555 	scsi_req->hdr.sg_list_dma_address =
556 		cpu_to_be64(skreq->sksg_dma_address);
557 
558 	if (req_op(req) == REQ_OP_FLUSH) {
559 		skd_prep_zerosize_flush_cdb(scsi_req, skreq);
560 		SKD_ASSERT(skreq->flush_cmd == 1);
561 	} else {
562 		skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
563 	}
564 
565 	if (req->cmd_flags & REQ_FUA)
566 		scsi_req->cdb[1] |= SKD_FUA_NV;
567 
568 	scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
569 
570 	/* Complete resource allocations. */
571 	skreq->state = SKD_REQ_STATE_BUSY;
572 
573 	skmsg->length += sizeof(struct skd_scsi_request);
574 	fmh->num_protocol_cmds_coalesced++;
575 
576 	dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
577 		skd_in_flight(skdev));
578 
579 	/*
580 	 * If the FIT msg buffer is full send it.
581 	 */
582 	if (skd_max_req_per_msg == 1) {
583 		skd_send_fitmsg(skdev, skmsg);
584 	} else {
585 		if (mqd->last ||
586 		    fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
587 			skd_send_fitmsg(skdev, skmsg);
588 			skdev->skmsg = NULL;
589 		}
590 		spin_unlock_irqrestore(&skdev->lock, flags);
591 	}
592 
593 	return BLK_STS_OK;
594 }
595 
skd_timed_out(struct request * req,bool reserved)596 static enum blk_eh_timer_return skd_timed_out(struct request *req,
597 					      bool reserved)
598 {
599 	struct skd_device *skdev = req->q->queuedata;
600 
601 	dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
602 		blk_mq_unique_tag(req));
603 
604 	return BLK_EH_RESET_TIMER;
605 }
606 
skd_complete_rq(struct request * req)607 static void skd_complete_rq(struct request *req)
608 {
609 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
610 
611 	blk_mq_end_request(req, skreq->status);
612 }
613 
skd_preop_sg_list(struct skd_device * skdev,struct skd_request_context * skreq)614 static bool skd_preop_sg_list(struct skd_device *skdev,
615 			     struct skd_request_context *skreq)
616 {
617 	struct request *req = blk_mq_rq_from_pdu(skreq);
618 	struct scatterlist *sgl = &skreq->sg[0], *sg;
619 	int n_sg;
620 	int i;
621 
622 	skreq->sg_byte_count = 0;
623 
624 	WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
625 		     skreq->data_dir != DMA_FROM_DEVICE);
626 
627 	n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
628 	if (n_sg <= 0)
629 		return false;
630 
631 	/*
632 	 * Map scatterlist to PCI bus addresses.
633 	 * Note PCI might change the number of entries.
634 	 */
635 	n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
636 	if (n_sg <= 0)
637 		return false;
638 
639 	SKD_ASSERT(n_sg <= skdev->sgs_per_request);
640 
641 	skreq->n_sg = n_sg;
642 
643 	for_each_sg(sgl, sg, n_sg, i) {
644 		struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
645 		u32 cnt = sg_dma_len(sg);
646 		uint64_t dma_addr = sg_dma_address(sg);
647 
648 		sgd->control = FIT_SGD_CONTROL_NOT_LAST;
649 		sgd->byte_count = cnt;
650 		skreq->sg_byte_count += cnt;
651 		sgd->host_side_addr = dma_addr;
652 		sgd->dev_side_addr = 0;
653 	}
654 
655 	skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
656 	skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
657 
658 	if (unlikely(skdev->dbg_level > 1)) {
659 		dev_dbg(&skdev->pdev->dev,
660 			"skreq=%x sksg_list=%p sksg_dma=%pad\n",
661 			skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
662 		for (i = 0; i < n_sg; i++) {
663 			struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
664 
665 			dev_dbg(&skdev->pdev->dev,
666 				"  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
667 				i, sgd->byte_count, sgd->control,
668 				sgd->host_side_addr, sgd->next_desc_ptr);
669 		}
670 	}
671 
672 	return true;
673 }
674 
skd_postop_sg_list(struct skd_device * skdev,struct skd_request_context * skreq)675 static void skd_postop_sg_list(struct skd_device *skdev,
676 			       struct skd_request_context *skreq)
677 {
678 	/*
679 	 * restore the next ptr for next IO request so we
680 	 * don't have to set it every time.
681 	 */
682 	skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
683 		skreq->sksg_dma_address +
684 		((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
685 	pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
686 }
687 
688 /*
689  *****************************************************************************
690  * TIMER
691  *****************************************************************************
692  */
693 
694 static void skd_timer_tick_not_online(struct skd_device *skdev);
695 
skd_start_queue(struct work_struct * work)696 static void skd_start_queue(struct work_struct *work)
697 {
698 	struct skd_device *skdev = container_of(work, typeof(*skdev),
699 						start_queue);
700 
701 	/*
702 	 * Although it is safe to call blk_start_queue() from interrupt
703 	 * context, blk_mq_start_hw_queues() must not be called from
704 	 * interrupt context.
705 	 */
706 	blk_mq_start_hw_queues(skdev->queue);
707 }
708 
skd_timer_tick(struct timer_list * t)709 static void skd_timer_tick(struct timer_list *t)
710 {
711 	struct skd_device *skdev = from_timer(skdev, t, timer);
712 	unsigned long reqflags;
713 	u32 state;
714 
715 	if (skdev->state == SKD_DRVR_STATE_FAULT)
716 		/* The driver has declared fault, and we want it to
717 		 * stay that way until driver is reloaded.
718 		 */
719 		return;
720 
721 	spin_lock_irqsave(&skdev->lock, reqflags);
722 
723 	state = SKD_READL(skdev, FIT_STATUS);
724 	state &= FIT_SR_DRIVE_STATE_MASK;
725 	if (state != skdev->drive_state)
726 		skd_isr_fwstate(skdev);
727 
728 	if (skdev->state != SKD_DRVR_STATE_ONLINE)
729 		skd_timer_tick_not_online(skdev);
730 
731 	mod_timer(&skdev->timer, (jiffies + HZ));
732 
733 	spin_unlock_irqrestore(&skdev->lock, reqflags);
734 }
735 
skd_timer_tick_not_online(struct skd_device * skdev)736 static void skd_timer_tick_not_online(struct skd_device *skdev)
737 {
738 	switch (skdev->state) {
739 	case SKD_DRVR_STATE_IDLE:
740 	case SKD_DRVR_STATE_LOAD:
741 		break;
742 	case SKD_DRVR_STATE_BUSY_SANITIZE:
743 		dev_dbg(&skdev->pdev->dev,
744 			"drive busy sanitize[%x], driver[%x]\n",
745 			skdev->drive_state, skdev->state);
746 		/* If we've been in sanitize for 3 seconds, we figure we're not
747 		 * going to get anymore completions, so recover requests now
748 		 */
749 		if (skdev->timer_countdown > 0) {
750 			skdev->timer_countdown--;
751 			return;
752 		}
753 		skd_recover_requests(skdev);
754 		break;
755 
756 	case SKD_DRVR_STATE_BUSY:
757 	case SKD_DRVR_STATE_BUSY_IMMINENT:
758 	case SKD_DRVR_STATE_BUSY_ERASE:
759 		dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
760 			skdev->state, skdev->timer_countdown);
761 		if (skdev->timer_countdown > 0) {
762 			skdev->timer_countdown--;
763 			return;
764 		}
765 		dev_dbg(&skdev->pdev->dev,
766 			"busy[%x], timedout=%d, restarting device.",
767 			skdev->state, skdev->timer_countdown);
768 		skd_restart_device(skdev);
769 		break;
770 
771 	case SKD_DRVR_STATE_WAIT_BOOT:
772 	case SKD_DRVR_STATE_STARTING:
773 		if (skdev->timer_countdown > 0) {
774 			skdev->timer_countdown--;
775 			return;
776 		}
777 		/* For now, we fault the drive.  Could attempt resets to
778 		 * revcover at some point. */
779 		skdev->state = SKD_DRVR_STATE_FAULT;
780 
781 		dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
782 			skdev->drive_state);
783 
784 		/*start the queue so we can respond with error to requests */
785 		/* wakeup anyone waiting for startup complete */
786 		schedule_work(&skdev->start_queue);
787 		skdev->gendisk_on = -1;
788 		wake_up_interruptible(&skdev->waitq);
789 		break;
790 
791 	case SKD_DRVR_STATE_ONLINE:
792 		/* shouldn't get here. */
793 		break;
794 
795 	case SKD_DRVR_STATE_PAUSING:
796 	case SKD_DRVR_STATE_PAUSED:
797 		break;
798 
799 	case SKD_DRVR_STATE_RESTARTING:
800 		if (skdev->timer_countdown > 0) {
801 			skdev->timer_countdown--;
802 			return;
803 		}
804 		/* For now, we fault the drive. Could attempt resets to
805 		 * revcover at some point. */
806 		skdev->state = SKD_DRVR_STATE_FAULT;
807 		dev_err(&skdev->pdev->dev,
808 			"DriveFault Reconnect Timeout (%x)\n",
809 			skdev->drive_state);
810 
811 		/*
812 		 * Recovering does two things:
813 		 * 1. completes IO with error
814 		 * 2. reclaims dma resources
815 		 * When is it safe to recover requests?
816 		 * - if the drive state is faulted
817 		 * - if the state is still soft reset after out timeout
818 		 * - if the drive registers are dead (state = FF)
819 		 * If it is "unsafe", we still need to recover, so we will
820 		 * disable pci bus mastering and disable our interrupts.
821 		 */
822 
823 		if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
824 		    (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
825 		    (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
826 			/* It never came out of soft reset. Try to
827 			 * recover the requests and then let them
828 			 * fail. This is to mitigate hung processes. */
829 			skd_recover_requests(skdev);
830 		else {
831 			dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
832 				skdev->drive_state);
833 			pci_disable_device(skdev->pdev);
834 			skd_disable_interrupts(skdev);
835 			skd_recover_requests(skdev);
836 		}
837 
838 		/*start the queue so we can respond with error to requests */
839 		/* wakeup anyone waiting for startup complete */
840 		schedule_work(&skdev->start_queue);
841 		skdev->gendisk_on = -1;
842 		wake_up_interruptible(&skdev->waitq);
843 		break;
844 
845 	case SKD_DRVR_STATE_RESUMING:
846 	case SKD_DRVR_STATE_STOPPING:
847 	case SKD_DRVR_STATE_SYNCING:
848 	case SKD_DRVR_STATE_FAULT:
849 	case SKD_DRVR_STATE_DISAPPEARED:
850 	default:
851 		break;
852 	}
853 }
854 
skd_start_timer(struct skd_device * skdev)855 static int skd_start_timer(struct skd_device *skdev)
856 {
857 	int rc;
858 
859 	timer_setup(&skdev->timer, skd_timer_tick, 0);
860 
861 	rc = mod_timer(&skdev->timer, (jiffies + HZ));
862 	if (rc)
863 		dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
864 	return rc;
865 }
866 
skd_kill_timer(struct skd_device * skdev)867 static void skd_kill_timer(struct skd_device *skdev)
868 {
869 	del_timer_sync(&skdev->timer);
870 }
871 
872 /*
873  *****************************************************************************
874  * INTERNAL REQUESTS -- generated by driver itself
875  *****************************************************************************
876  */
877 
skd_format_internal_skspcl(struct skd_device * skdev)878 static int skd_format_internal_skspcl(struct skd_device *skdev)
879 {
880 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
881 	struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
882 	struct fit_msg_hdr *fmh;
883 	uint64_t dma_address;
884 	struct skd_scsi_request *scsi;
885 
886 	fmh = &skspcl->msg_buf->fmh;
887 	fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
888 	fmh->num_protocol_cmds_coalesced = 1;
889 
890 	scsi = &skspcl->msg_buf->scsi[0];
891 	memset(scsi, 0, sizeof(*scsi));
892 	dma_address = skspcl->req.sksg_dma_address;
893 	scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
894 	skspcl->req.n_sg = 1;
895 	sgd->control = FIT_SGD_CONTROL_LAST;
896 	sgd->byte_count = 0;
897 	sgd->host_side_addr = skspcl->db_dma_address;
898 	sgd->dev_side_addr = 0;
899 	sgd->next_desc_ptr = 0LL;
900 
901 	return 1;
902 }
903 
904 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
905 
skd_send_internal_skspcl(struct skd_device * skdev,struct skd_special_context * skspcl,u8 opcode)906 static void skd_send_internal_skspcl(struct skd_device *skdev,
907 				     struct skd_special_context *skspcl,
908 				     u8 opcode)
909 {
910 	struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
911 	struct skd_scsi_request *scsi;
912 	unsigned char *buf = skspcl->data_buf;
913 	int i;
914 
915 	if (skspcl->req.state != SKD_REQ_STATE_IDLE)
916 		/*
917 		 * A refresh is already in progress.
918 		 * Just wait for it to finish.
919 		 */
920 		return;
921 
922 	skspcl->req.state = SKD_REQ_STATE_BUSY;
923 
924 	scsi = &skspcl->msg_buf->scsi[0];
925 	scsi->hdr.tag = skspcl->req.id;
926 
927 	memset(scsi->cdb, 0, sizeof(scsi->cdb));
928 
929 	switch (opcode) {
930 	case TEST_UNIT_READY:
931 		scsi->cdb[0] = TEST_UNIT_READY;
932 		sgd->byte_count = 0;
933 		scsi->hdr.sg_list_len_bytes = 0;
934 		break;
935 
936 	case READ_CAPACITY:
937 		scsi->cdb[0] = READ_CAPACITY;
938 		sgd->byte_count = SKD_N_READ_CAP_BYTES;
939 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
940 		break;
941 
942 	case INQUIRY:
943 		scsi->cdb[0] = INQUIRY;
944 		scsi->cdb[1] = 0x01;    /* evpd */
945 		scsi->cdb[2] = 0x80;    /* serial number page */
946 		scsi->cdb[4] = 0x10;
947 		sgd->byte_count = 16;
948 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
949 		break;
950 
951 	case SYNCHRONIZE_CACHE:
952 		scsi->cdb[0] = SYNCHRONIZE_CACHE;
953 		sgd->byte_count = 0;
954 		scsi->hdr.sg_list_len_bytes = 0;
955 		break;
956 
957 	case WRITE_BUFFER:
958 		scsi->cdb[0] = WRITE_BUFFER;
959 		scsi->cdb[1] = 0x02;
960 		scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
961 		scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
962 		sgd->byte_count = WR_BUF_SIZE;
963 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
964 		/* fill incrementing byte pattern */
965 		for (i = 0; i < sgd->byte_count; i++)
966 			buf[i] = i & 0xFF;
967 		break;
968 
969 	case READ_BUFFER:
970 		scsi->cdb[0] = READ_BUFFER;
971 		scsi->cdb[1] = 0x02;
972 		scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
973 		scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
974 		sgd->byte_count = WR_BUF_SIZE;
975 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
976 		memset(skspcl->data_buf, 0, sgd->byte_count);
977 		break;
978 
979 	default:
980 		SKD_ASSERT("Don't know what to send");
981 		return;
982 
983 	}
984 	skd_send_special_fitmsg(skdev, skspcl);
985 }
986 
skd_refresh_device_data(struct skd_device * skdev)987 static void skd_refresh_device_data(struct skd_device *skdev)
988 {
989 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
990 
991 	skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
992 }
993 
skd_chk_read_buf(struct skd_device * skdev,struct skd_special_context * skspcl)994 static int skd_chk_read_buf(struct skd_device *skdev,
995 			    struct skd_special_context *skspcl)
996 {
997 	unsigned char *buf = skspcl->data_buf;
998 	int i;
999 
1000 	/* check for incrementing byte pattern */
1001 	for (i = 0; i < WR_BUF_SIZE; i++)
1002 		if (buf[i] != (i & 0xFF))
1003 			return 1;
1004 
1005 	return 0;
1006 }
1007 
skd_log_check_status(struct skd_device * skdev,u8 status,u8 key,u8 code,u8 qual,u8 fruc)1008 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1009 				 u8 code, u8 qual, u8 fruc)
1010 {
1011 	/* If the check condition is of special interest, log a message */
1012 	if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1013 	    && (code == 0x04) && (qual == 0x06)) {
1014 		dev_err(&skdev->pdev->dev,
1015 			"*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1016 			key, code, qual, fruc);
1017 	}
1018 }
1019 
skd_complete_internal(struct skd_device * skdev,struct fit_completion_entry_v1 * skcomp,struct fit_comp_error_info * skerr,struct skd_special_context * skspcl)1020 static void skd_complete_internal(struct skd_device *skdev,
1021 				  struct fit_completion_entry_v1 *skcomp,
1022 				  struct fit_comp_error_info *skerr,
1023 				  struct skd_special_context *skspcl)
1024 {
1025 	u8 *buf = skspcl->data_buf;
1026 	u8 status;
1027 	int i;
1028 	struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1029 
1030 	lockdep_assert_held(&skdev->lock);
1031 
1032 	SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1033 
1034 	dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1035 
1036 	dma_sync_single_for_cpu(&skdev->pdev->dev,
1037 				skspcl->db_dma_address,
1038 				skspcl->req.sksg_list[0].byte_count,
1039 				DMA_BIDIRECTIONAL);
1040 
1041 	skspcl->req.completion = *skcomp;
1042 	skspcl->req.state = SKD_REQ_STATE_IDLE;
1043 
1044 	status = skspcl->req.completion.status;
1045 
1046 	skd_log_check_status(skdev, status, skerr->key, skerr->code,
1047 			     skerr->qual, skerr->fruc);
1048 
1049 	switch (scsi->cdb[0]) {
1050 	case TEST_UNIT_READY:
1051 		if (status == SAM_STAT_GOOD)
1052 			skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1053 		else if ((status == SAM_STAT_CHECK_CONDITION) &&
1054 			 (skerr->key == MEDIUM_ERROR))
1055 			skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1056 		else {
1057 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1058 				dev_dbg(&skdev->pdev->dev,
1059 					"TUR failed, don't send anymore state 0x%x\n",
1060 					skdev->state);
1061 				return;
1062 			}
1063 			dev_dbg(&skdev->pdev->dev,
1064 				"**** TUR failed, retry skerr\n");
1065 			skd_send_internal_skspcl(skdev, skspcl,
1066 						 TEST_UNIT_READY);
1067 		}
1068 		break;
1069 
1070 	case WRITE_BUFFER:
1071 		if (status == SAM_STAT_GOOD)
1072 			skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1073 		else {
1074 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1075 				dev_dbg(&skdev->pdev->dev,
1076 					"write buffer failed, don't send anymore state 0x%x\n",
1077 					skdev->state);
1078 				return;
1079 			}
1080 			dev_dbg(&skdev->pdev->dev,
1081 				"**** write buffer failed, retry skerr\n");
1082 			skd_send_internal_skspcl(skdev, skspcl,
1083 						 TEST_UNIT_READY);
1084 		}
1085 		break;
1086 
1087 	case READ_BUFFER:
1088 		if (status == SAM_STAT_GOOD) {
1089 			if (skd_chk_read_buf(skdev, skspcl) == 0)
1090 				skd_send_internal_skspcl(skdev, skspcl,
1091 							 READ_CAPACITY);
1092 			else {
1093 				dev_err(&skdev->pdev->dev,
1094 					"*** W/R Buffer mismatch %d ***\n",
1095 					skdev->connect_retries);
1096 				if (skdev->connect_retries <
1097 				    SKD_MAX_CONNECT_RETRIES) {
1098 					skdev->connect_retries++;
1099 					skd_soft_reset(skdev);
1100 				} else {
1101 					dev_err(&skdev->pdev->dev,
1102 						"W/R Buffer Connect Error\n");
1103 					return;
1104 				}
1105 			}
1106 
1107 		} else {
1108 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1109 				dev_dbg(&skdev->pdev->dev,
1110 					"read buffer failed, don't send anymore state 0x%x\n",
1111 					skdev->state);
1112 				return;
1113 			}
1114 			dev_dbg(&skdev->pdev->dev,
1115 				"**** read buffer failed, retry skerr\n");
1116 			skd_send_internal_skspcl(skdev, skspcl,
1117 						 TEST_UNIT_READY);
1118 		}
1119 		break;
1120 
1121 	case READ_CAPACITY:
1122 		skdev->read_cap_is_valid = 0;
1123 		if (status == SAM_STAT_GOOD) {
1124 			skdev->read_cap_last_lba =
1125 				(buf[0] << 24) | (buf[1] << 16) |
1126 				(buf[2] << 8) | buf[3];
1127 			skdev->read_cap_blocksize =
1128 				(buf[4] << 24) | (buf[5] << 16) |
1129 				(buf[6] << 8) | buf[7];
1130 
1131 			dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1132 				skdev->read_cap_last_lba,
1133 				skdev->read_cap_blocksize);
1134 
1135 			set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1136 
1137 			skdev->read_cap_is_valid = 1;
1138 
1139 			skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1140 		} else if ((status == SAM_STAT_CHECK_CONDITION) &&
1141 			   (skerr->key == MEDIUM_ERROR)) {
1142 			skdev->read_cap_last_lba = ~0;
1143 			set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1144 			dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1145 			skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1146 		} else {
1147 			dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1148 			skd_send_internal_skspcl(skdev, skspcl,
1149 						 TEST_UNIT_READY);
1150 		}
1151 		break;
1152 
1153 	case INQUIRY:
1154 		skdev->inquiry_is_valid = 0;
1155 		if (status == SAM_STAT_GOOD) {
1156 			skdev->inquiry_is_valid = 1;
1157 
1158 			for (i = 0; i < 12; i++)
1159 				skdev->inq_serial_num[i] = buf[i + 4];
1160 			skdev->inq_serial_num[12] = 0;
1161 		}
1162 
1163 		if (skd_unquiesce_dev(skdev) < 0)
1164 			dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1165 		 /* connection is complete */
1166 		skdev->connect_retries = 0;
1167 		break;
1168 
1169 	case SYNCHRONIZE_CACHE:
1170 		if (status == SAM_STAT_GOOD)
1171 			skdev->sync_done = 1;
1172 		else
1173 			skdev->sync_done = -1;
1174 		wake_up_interruptible(&skdev->waitq);
1175 		break;
1176 
1177 	default:
1178 		SKD_ASSERT("we didn't send this");
1179 	}
1180 }
1181 
1182 /*
1183  *****************************************************************************
1184  * FIT MESSAGES
1185  *****************************************************************************
1186  */
1187 
skd_send_fitmsg(struct skd_device * skdev,struct skd_fitmsg_context * skmsg)1188 static void skd_send_fitmsg(struct skd_device *skdev,
1189 			    struct skd_fitmsg_context *skmsg)
1190 {
1191 	u64 qcmd;
1192 
1193 	dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
1194 		&skmsg->mb_dma_address, skd_in_flight(skdev));
1195 	dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1196 
1197 	qcmd = skmsg->mb_dma_address;
1198 	qcmd |= FIT_QCMD_QID_NORMAL;
1199 
1200 	if (unlikely(skdev->dbg_level > 1)) {
1201 		u8 *bp = (u8 *)skmsg->msg_buf;
1202 		int i;
1203 		for (i = 0; i < skmsg->length; i += 8) {
1204 			dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1205 				&bp[i]);
1206 			if (i == 0)
1207 				i = 64 - 8;
1208 		}
1209 	}
1210 
1211 	if (skmsg->length > 256)
1212 		qcmd |= FIT_QCMD_MSGSIZE_512;
1213 	else if (skmsg->length > 128)
1214 		qcmd |= FIT_QCMD_MSGSIZE_256;
1215 	else if (skmsg->length > 64)
1216 		qcmd |= FIT_QCMD_MSGSIZE_128;
1217 	else
1218 		/*
1219 		 * This makes no sense because the FIT msg header is
1220 		 * 64 bytes. If the msg is only 64 bytes long it has
1221 		 * no payload.
1222 		 */
1223 		qcmd |= FIT_QCMD_MSGSIZE_64;
1224 
1225 	dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1226 				   skmsg->length, DMA_TO_DEVICE);
1227 
1228 	/* Make sure skd_msg_buf is written before the doorbell is triggered. */
1229 	smp_wmb();
1230 
1231 	SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1232 }
1233 
skd_send_special_fitmsg(struct skd_device * skdev,struct skd_special_context * skspcl)1234 static void skd_send_special_fitmsg(struct skd_device *skdev,
1235 				    struct skd_special_context *skspcl)
1236 {
1237 	u64 qcmd;
1238 
1239 	WARN_ON_ONCE(skspcl->req.n_sg != 1);
1240 
1241 	if (unlikely(skdev->dbg_level > 1)) {
1242 		u8 *bp = (u8 *)skspcl->msg_buf;
1243 		int i;
1244 
1245 		for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1246 			dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1247 				&bp[i]);
1248 			if (i == 0)
1249 				i = 64 - 8;
1250 		}
1251 
1252 		dev_dbg(&skdev->pdev->dev,
1253 			"skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
1254 			skspcl, skspcl->req.id, skspcl->req.sksg_list,
1255 			&skspcl->req.sksg_dma_address);
1256 		for (i = 0; i < skspcl->req.n_sg; i++) {
1257 			struct fit_sg_descriptor *sgd =
1258 				&skspcl->req.sksg_list[i];
1259 
1260 			dev_dbg(&skdev->pdev->dev,
1261 				"  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1262 				i, sgd->byte_count, sgd->control,
1263 				sgd->host_side_addr, sgd->next_desc_ptr);
1264 		}
1265 	}
1266 
1267 	/*
1268 	 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1269 	 * and one 64-byte SSDI command.
1270 	 */
1271 	qcmd = skspcl->mb_dma_address;
1272 	qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1273 
1274 	dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1275 				   SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1276 	dma_sync_single_for_device(&skdev->pdev->dev,
1277 				   skspcl->req.sksg_dma_address,
1278 				   1 * sizeof(struct fit_sg_descriptor),
1279 				   DMA_TO_DEVICE);
1280 	dma_sync_single_for_device(&skdev->pdev->dev,
1281 				   skspcl->db_dma_address,
1282 				   skspcl->req.sksg_list[0].byte_count,
1283 				   DMA_BIDIRECTIONAL);
1284 
1285 	/* Make sure skd_msg_buf is written before the doorbell is triggered. */
1286 	smp_wmb();
1287 
1288 	SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1289 }
1290 
1291 /*
1292  *****************************************************************************
1293  * COMPLETION QUEUE
1294  *****************************************************************************
1295  */
1296 
1297 static void skd_complete_other(struct skd_device *skdev,
1298 			       struct fit_completion_entry_v1 *skcomp,
1299 			       struct fit_comp_error_info *skerr);
1300 
1301 struct sns_info {
1302 	u8 type;
1303 	u8 stat;
1304 	u8 key;
1305 	u8 asc;
1306 	u8 ascq;
1307 	u8 mask;
1308 	enum skd_check_status_action action;
1309 };
1310 
1311 static struct sns_info skd_chkstat_table[] = {
1312 	/* Good */
1313 	{ 0x70, 0x02, RECOVERED_ERROR, 0,    0,	   0x1c,
1314 	  SKD_CHECK_STATUS_REPORT_GOOD },
1315 
1316 	/* Smart alerts */
1317 	{ 0x70, 0x02, NO_SENSE,	       0x0B, 0x00, 0x1E,	/* warnings */
1318 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1319 	{ 0x70, 0x02, NO_SENSE,	       0x5D, 0x00, 0x1E,	/* thresholds */
1320 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1321 	{ 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1322 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1323 
1324 	/* Retry (with limits) */
1325 	{ 0x70, 0x02, 0x0B,	       0,    0,	   0x1C,        /* This one is for DMA ERROR */
1326 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1327 	{ 0x70, 0x02, 0x06,	       0x0B, 0x00, 0x1E,        /* warnings */
1328 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1329 	{ 0x70, 0x02, 0x06,	       0x5D, 0x00, 0x1E,        /* thresholds */
1330 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1331 	{ 0x70, 0x02, 0x06,	       0x80, 0x30, 0x1F,        /* backup power */
1332 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1333 
1334 	/* Busy (or about to be) */
1335 	{ 0x70, 0x02, 0x06,	       0x3f, 0x01, 0x1F, /* fw changed */
1336 	  SKD_CHECK_STATUS_BUSY_IMMINENT },
1337 };
1338 
1339 /*
1340  * Look up status and sense data to decide how to handle the error
1341  * from the device.
1342  * mask says which fields must match e.g., mask=0x18 means check
1343  * type and stat, ignore key, asc, ascq.
1344  */
1345 
1346 static enum skd_check_status_action
skd_check_status(struct skd_device * skdev,u8 cmp_status,struct fit_comp_error_info * skerr)1347 skd_check_status(struct skd_device *skdev,
1348 		 u8 cmp_status, struct fit_comp_error_info *skerr)
1349 {
1350 	int i;
1351 
1352 	dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1353 		skerr->key, skerr->code, skerr->qual, skerr->fruc);
1354 
1355 	dev_dbg(&skdev->pdev->dev,
1356 		"stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1357 		skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1358 		skerr->fruc);
1359 
1360 	/* Does the info match an entry in the good category? */
1361 	for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1362 		struct sns_info *sns = &skd_chkstat_table[i];
1363 
1364 		if (sns->mask & 0x10)
1365 			if (skerr->type != sns->type)
1366 				continue;
1367 
1368 		if (sns->mask & 0x08)
1369 			if (cmp_status != sns->stat)
1370 				continue;
1371 
1372 		if (sns->mask & 0x04)
1373 			if (skerr->key != sns->key)
1374 				continue;
1375 
1376 		if (sns->mask & 0x02)
1377 			if (skerr->code != sns->asc)
1378 				continue;
1379 
1380 		if (sns->mask & 0x01)
1381 			if (skerr->qual != sns->ascq)
1382 				continue;
1383 
1384 		if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1385 			dev_err(&skdev->pdev->dev,
1386 				"SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1387 				skerr->key, skerr->code, skerr->qual);
1388 		}
1389 		return sns->action;
1390 	}
1391 
1392 	/* No other match, so nonzero status means error,
1393 	 * zero status means good
1394 	 */
1395 	if (cmp_status) {
1396 		dev_dbg(&skdev->pdev->dev, "status check: error\n");
1397 		return SKD_CHECK_STATUS_REPORT_ERROR;
1398 	}
1399 
1400 	dev_dbg(&skdev->pdev->dev, "status check good default\n");
1401 	return SKD_CHECK_STATUS_REPORT_GOOD;
1402 }
1403 
skd_resolve_req_exception(struct skd_device * skdev,struct skd_request_context * skreq,struct request * req)1404 static void skd_resolve_req_exception(struct skd_device *skdev,
1405 				      struct skd_request_context *skreq,
1406 				      struct request *req)
1407 {
1408 	u8 cmp_status = skreq->completion.status;
1409 
1410 	switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1411 	case SKD_CHECK_STATUS_REPORT_GOOD:
1412 	case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1413 		skreq->status = BLK_STS_OK;
1414 		blk_mq_complete_request(req);
1415 		break;
1416 
1417 	case SKD_CHECK_STATUS_BUSY_IMMINENT:
1418 		skd_log_skreq(skdev, skreq, "retry(busy)");
1419 		blk_requeue_request(skdev->queue, req);
1420 		dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1421 		skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1422 		skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1423 		skd_quiesce_dev(skdev);
1424 		break;
1425 
1426 	case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1427 		if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1428 			skd_log_skreq(skdev, skreq, "retry");
1429 			blk_requeue_request(skdev->queue, req);
1430 			break;
1431 		}
1432 		/* fall through */
1433 
1434 	case SKD_CHECK_STATUS_REPORT_ERROR:
1435 	default:
1436 		skreq->status = BLK_STS_IOERR;
1437 		blk_mq_complete_request(req);
1438 		break;
1439 	}
1440 }
1441 
skd_release_skreq(struct skd_device * skdev,struct skd_request_context * skreq)1442 static void skd_release_skreq(struct skd_device *skdev,
1443 			      struct skd_request_context *skreq)
1444 {
1445 	/*
1446 	 * Reclaim the skd_request_context
1447 	 */
1448 	skreq->state = SKD_REQ_STATE_IDLE;
1449 }
1450 
skd_isr_completion_posted(struct skd_device * skdev,int limit,int * enqueued)1451 static int skd_isr_completion_posted(struct skd_device *skdev,
1452 					int limit, int *enqueued)
1453 {
1454 	struct fit_completion_entry_v1 *skcmp;
1455 	struct fit_comp_error_info *skerr;
1456 	u16 req_id;
1457 	u32 tag;
1458 	u16 hwq = 0;
1459 	struct request *rq;
1460 	struct skd_request_context *skreq;
1461 	u16 cmp_cntxt;
1462 	u8 cmp_status;
1463 	u8 cmp_cycle;
1464 	u32 cmp_bytes;
1465 	int rc = 0;
1466 	int processed = 0;
1467 
1468 	lockdep_assert_held(&skdev->lock);
1469 
1470 	for (;; ) {
1471 		SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1472 
1473 		skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1474 		cmp_cycle = skcmp->cycle;
1475 		cmp_cntxt = skcmp->tag;
1476 		cmp_status = skcmp->status;
1477 		cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1478 
1479 		skerr = &skdev->skerr_table[skdev->skcomp_ix];
1480 
1481 		dev_dbg(&skdev->pdev->dev,
1482 			"cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1483 			skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1484 			cmp_cntxt, cmp_status, skd_in_flight(skdev),
1485 			cmp_bytes, skdev->proto_ver);
1486 
1487 		if (cmp_cycle != skdev->skcomp_cycle) {
1488 			dev_dbg(&skdev->pdev->dev, "end of completions\n");
1489 			break;
1490 		}
1491 		/*
1492 		 * Update the completion queue head index and possibly
1493 		 * the completion cycle count. 8-bit wrap-around.
1494 		 */
1495 		skdev->skcomp_ix++;
1496 		if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1497 			skdev->skcomp_ix = 0;
1498 			skdev->skcomp_cycle++;
1499 		}
1500 
1501 		/*
1502 		 * The command context is a unique 32-bit ID. The low order
1503 		 * bits help locate the request. The request is usually a
1504 		 * r/w request (see skd_start() above) or a special request.
1505 		 */
1506 		req_id = cmp_cntxt;
1507 		tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1508 
1509 		/* Is this other than a r/w request? */
1510 		if (tag >= skdev->num_req_context) {
1511 			/*
1512 			 * This is not a completion for a r/w request.
1513 			 */
1514 			WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1515 						      tag));
1516 			skd_complete_other(skdev, skcmp, skerr);
1517 			continue;
1518 		}
1519 
1520 		rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1521 		if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1522 			 tag))
1523 			continue;
1524 		skreq = blk_mq_rq_to_pdu(rq);
1525 
1526 		/*
1527 		 * Make sure the request ID for the slot matches.
1528 		 */
1529 		if (skreq->id != req_id) {
1530 			dev_err(&skdev->pdev->dev,
1531 				"Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1532 				req_id, skreq->id, cmp_cntxt);
1533 
1534 			continue;
1535 		}
1536 
1537 		SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1538 
1539 		skreq->completion = *skcmp;
1540 		if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1541 			skreq->err_info = *skerr;
1542 			skd_log_check_status(skdev, cmp_status, skerr->key,
1543 					     skerr->code, skerr->qual,
1544 					     skerr->fruc);
1545 		}
1546 		/* Release DMA resources for the request. */
1547 		if (skreq->n_sg > 0)
1548 			skd_postop_sg_list(skdev, skreq);
1549 
1550 		skd_release_skreq(skdev, skreq);
1551 
1552 		/*
1553 		 * Capture the outcome and post it back to the native request.
1554 		 */
1555 		if (likely(cmp_status == SAM_STAT_GOOD)) {
1556 			skreq->status = BLK_STS_OK;
1557 			blk_mq_complete_request(rq);
1558 		} else {
1559 			skd_resolve_req_exception(skdev, skreq, rq);
1560 		}
1561 
1562 		/* skd_isr_comp_limit equal zero means no limit */
1563 		if (limit) {
1564 			if (++processed >= limit) {
1565 				rc = 1;
1566 				break;
1567 			}
1568 		}
1569 	}
1570 
1571 	if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1572 	    skd_in_flight(skdev) == 0) {
1573 		skdev->state = SKD_DRVR_STATE_PAUSED;
1574 		wake_up_interruptible(&skdev->waitq);
1575 	}
1576 
1577 	return rc;
1578 }
1579 
skd_complete_other(struct skd_device * skdev,struct fit_completion_entry_v1 * skcomp,struct fit_comp_error_info * skerr)1580 static void skd_complete_other(struct skd_device *skdev,
1581 			       struct fit_completion_entry_v1 *skcomp,
1582 			       struct fit_comp_error_info *skerr)
1583 {
1584 	u32 req_id = 0;
1585 	u32 req_table;
1586 	u32 req_slot;
1587 	struct skd_special_context *skspcl;
1588 
1589 	lockdep_assert_held(&skdev->lock);
1590 
1591 	req_id = skcomp->tag;
1592 	req_table = req_id & SKD_ID_TABLE_MASK;
1593 	req_slot = req_id & SKD_ID_SLOT_MASK;
1594 
1595 	dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1596 		req_id, req_slot);
1597 
1598 	/*
1599 	 * Based on the request id, determine how to dispatch this completion.
1600 	 * This swich/case is finding the good cases and forwarding the
1601 	 * completion entry. Errors are reported below the switch.
1602 	 */
1603 	switch (req_table) {
1604 	case SKD_ID_RW_REQUEST:
1605 		/*
1606 		 * The caller, skd_isr_completion_posted() above,
1607 		 * handles r/w requests. The only way we get here
1608 		 * is if the req_slot is out of bounds.
1609 		 */
1610 		break;
1611 
1612 	case SKD_ID_INTERNAL:
1613 		if (req_slot == 0) {
1614 			skspcl = &skdev->internal_skspcl;
1615 			if (skspcl->req.id == req_id &&
1616 			    skspcl->req.state == SKD_REQ_STATE_BUSY) {
1617 				skd_complete_internal(skdev,
1618 						      skcomp, skerr, skspcl);
1619 				return;
1620 			}
1621 		}
1622 		break;
1623 
1624 	case SKD_ID_FIT_MSG:
1625 		/*
1626 		 * These id's should never appear in a completion record.
1627 		 */
1628 		break;
1629 
1630 	default:
1631 		/*
1632 		 * These id's should never appear anywhere;
1633 		 */
1634 		break;
1635 	}
1636 
1637 	/*
1638 	 * If we get here it is a bad or stale id.
1639 	 */
1640 }
1641 
skd_reset_skcomp(struct skd_device * skdev)1642 static void skd_reset_skcomp(struct skd_device *skdev)
1643 {
1644 	memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1645 
1646 	skdev->skcomp_ix = 0;
1647 	skdev->skcomp_cycle = 1;
1648 }
1649 
1650 /*
1651  *****************************************************************************
1652  * INTERRUPTS
1653  *****************************************************************************
1654  */
skd_completion_worker(struct work_struct * work)1655 static void skd_completion_worker(struct work_struct *work)
1656 {
1657 	struct skd_device *skdev =
1658 		container_of(work, struct skd_device, completion_worker);
1659 	unsigned long flags;
1660 	int flush_enqueued = 0;
1661 
1662 	spin_lock_irqsave(&skdev->lock, flags);
1663 
1664 	/*
1665 	 * pass in limit=0, which means no limit..
1666 	 * process everything in compq
1667 	 */
1668 	skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1669 	schedule_work(&skdev->start_queue);
1670 
1671 	spin_unlock_irqrestore(&skdev->lock, flags);
1672 }
1673 
1674 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1675 
1676 static irqreturn_t
skd_isr(int irq,void * ptr)1677 skd_isr(int irq, void *ptr)
1678 {
1679 	struct skd_device *skdev = ptr;
1680 	u32 intstat;
1681 	u32 ack;
1682 	int rc = 0;
1683 	int deferred = 0;
1684 	int flush_enqueued = 0;
1685 
1686 	spin_lock(&skdev->lock);
1687 
1688 	for (;; ) {
1689 		intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1690 
1691 		ack = FIT_INT_DEF_MASK;
1692 		ack &= intstat;
1693 
1694 		dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1695 			ack);
1696 
1697 		/* As long as there is an int pending on device, keep
1698 		 * running loop.  When none, get out, but if we've never
1699 		 * done any processing, call completion handler?
1700 		 */
1701 		if (ack == 0) {
1702 			/* No interrupts on device, but run the completion
1703 			 * processor anyway?
1704 			 */
1705 			if (rc == 0)
1706 				if (likely (skdev->state
1707 					== SKD_DRVR_STATE_ONLINE))
1708 					deferred = 1;
1709 			break;
1710 		}
1711 
1712 		rc = IRQ_HANDLED;
1713 
1714 		SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1715 
1716 		if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1717 			   (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1718 			if (intstat & FIT_ISH_COMPLETION_POSTED) {
1719 				/*
1720 				 * If we have already deferred completion
1721 				 * processing, don't bother running it again
1722 				 */
1723 				if (deferred == 0)
1724 					deferred =
1725 						skd_isr_completion_posted(skdev,
1726 						skd_isr_comp_limit, &flush_enqueued);
1727 			}
1728 
1729 			if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1730 				skd_isr_fwstate(skdev);
1731 				if (skdev->state == SKD_DRVR_STATE_FAULT ||
1732 				    skdev->state ==
1733 				    SKD_DRVR_STATE_DISAPPEARED) {
1734 					spin_unlock(&skdev->lock);
1735 					return rc;
1736 				}
1737 			}
1738 
1739 			if (intstat & FIT_ISH_MSG_FROM_DEV)
1740 				skd_isr_msg_from_dev(skdev);
1741 		}
1742 	}
1743 
1744 	if (unlikely(flush_enqueued))
1745 		schedule_work(&skdev->start_queue);
1746 
1747 	if (deferred)
1748 		schedule_work(&skdev->completion_worker);
1749 	else if (!flush_enqueued)
1750 		schedule_work(&skdev->start_queue);
1751 
1752 	spin_unlock(&skdev->lock);
1753 
1754 	return rc;
1755 }
1756 
skd_drive_fault(struct skd_device * skdev)1757 static void skd_drive_fault(struct skd_device *skdev)
1758 {
1759 	skdev->state = SKD_DRVR_STATE_FAULT;
1760 	dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1761 }
1762 
skd_drive_disappeared(struct skd_device * skdev)1763 static void skd_drive_disappeared(struct skd_device *skdev)
1764 {
1765 	skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1766 	dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1767 }
1768 
skd_isr_fwstate(struct skd_device * skdev)1769 static void skd_isr_fwstate(struct skd_device *skdev)
1770 {
1771 	u32 sense;
1772 	u32 state;
1773 	u32 mtd;
1774 	int prev_driver_state = skdev->state;
1775 
1776 	sense = SKD_READL(skdev, FIT_STATUS);
1777 	state = sense & FIT_SR_DRIVE_STATE_MASK;
1778 
1779 	dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1780 		skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1781 		skd_drive_state_to_str(state), state);
1782 
1783 	skdev->drive_state = state;
1784 
1785 	switch (skdev->drive_state) {
1786 	case FIT_SR_DRIVE_INIT:
1787 		if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1788 			skd_disable_interrupts(skdev);
1789 			break;
1790 		}
1791 		if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1792 			skd_recover_requests(skdev);
1793 		if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1794 			skdev->timer_countdown = SKD_STARTING_TIMO;
1795 			skdev->state = SKD_DRVR_STATE_STARTING;
1796 			skd_soft_reset(skdev);
1797 			break;
1798 		}
1799 		mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1800 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1801 		skdev->last_mtd = mtd;
1802 		break;
1803 
1804 	case FIT_SR_DRIVE_ONLINE:
1805 		skdev->cur_max_queue_depth = skd_max_queue_depth;
1806 		if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1807 			skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1808 
1809 		skdev->queue_low_water_mark =
1810 			skdev->cur_max_queue_depth * 2 / 3 + 1;
1811 		if (skdev->queue_low_water_mark < 1)
1812 			skdev->queue_low_water_mark = 1;
1813 		dev_info(&skdev->pdev->dev,
1814 			 "Queue depth limit=%d dev=%d lowat=%d\n",
1815 			 skdev->cur_max_queue_depth,
1816 			 skdev->dev_max_queue_depth,
1817 			 skdev->queue_low_water_mark);
1818 
1819 		skd_refresh_device_data(skdev);
1820 		break;
1821 
1822 	case FIT_SR_DRIVE_BUSY:
1823 		skdev->state = SKD_DRVR_STATE_BUSY;
1824 		skdev->timer_countdown = SKD_BUSY_TIMO;
1825 		skd_quiesce_dev(skdev);
1826 		break;
1827 	case FIT_SR_DRIVE_BUSY_SANITIZE:
1828 		/* set timer for 3 seconds, we'll abort any unfinished
1829 		 * commands after that expires
1830 		 */
1831 		skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1832 		skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1833 		schedule_work(&skdev->start_queue);
1834 		break;
1835 	case FIT_SR_DRIVE_BUSY_ERASE:
1836 		skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1837 		skdev->timer_countdown = SKD_BUSY_TIMO;
1838 		break;
1839 	case FIT_SR_DRIVE_OFFLINE:
1840 		skdev->state = SKD_DRVR_STATE_IDLE;
1841 		break;
1842 	case FIT_SR_DRIVE_SOFT_RESET:
1843 		switch (skdev->state) {
1844 		case SKD_DRVR_STATE_STARTING:
1845 		case SKD_DRVR_STATE_RESTARTING:
1846 			/* Expected by a caller of skd_soft_reset() */
1847 			break;
1848 		default:
1849 			skdev->state = SKD_DRVR_STATE_RESTARTING;
1850 			break;
1851 		}
1852 		break;
1853 	case FIT_SR_DRIVE_FW_BOOTING:
1854 		dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1855 		skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1856 		skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1857 		break;
1858 
1859 	case FIT_SR_DRIVE_DEGRADED:
1860 	case FIT_SR_PCIE_LINK_DOWN:
1861 	case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1862 		break;
1863 
1864 	case FIT_SR_DRIVE_FAULT:
1865 		skd_drive_fault(skdev);
1866 		skd_recover_requests(skdev);
1867 		schedule_work(&skdev->start_queue);
1868 		break;
1869 
1870 	/* PCIe bus returned all Fs? */
1871 	case 0xFF:
1872 		dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1873 			 sense);
1874 		skd_drive_disappeared(skdev);
1875 		skd_recover_requests(skdev);
1876 		schedule_work(&skdev->start_queue);
1877 		break;
1878 	default:
1879 		/*
1880 		 * Uknown FW State. Wait for a state we recognize.
1881 		 */
1882 		break;
1883 	}
1884 	dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1885 		skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1886 		skd_skdev_state_to_str(skdev->state), skdev->state);
1887 }
1888 
skd_recover_request(struct request * req,void * data,bool reserved)1889 static void skd_recover_request(struct request *req, void *data, bool reserved)
1890 {
1891 	struct skd_device *const skdev = data;
1892 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1893 
1894 	if (skreq->state != SKD_REQ_STATE_BUSY)
1895 		return;
1896 
1897 	skd_log_skreq(skdev, skreq, "recover");
1898 
1899 	/* Release DMA resources for the request. */
1900 	if (skreq->n_sg > 0)
1901 		skd_postop_sg_list(skdev, skreq);
1902 
1903 	skreq->state = SKD_REQ_STATE_IDLE;
1904 	skreq->status = BLK_STS_IOERR;
1905 	blk_mq_complete_request(req);
1906 }
1907 
skd_recover_requests(struct skd_device * skdev)1908 static void skd_recover_requests(struct skd_device *skdev)
1909 {
1910 	blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1911 }
1912 
skd_isr_msg_from_dev(struct skd_device * skdev)1913 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1914 {
1915 	u32 mfd;
1916 	u32 mtd;
1917 	u32 data;
1918 
1919 	mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1920 
1921 	dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1922 		skdev->last_mtd);
1923 
1924 	/* ignore any mtd that is an ack for something we didn't send */
1925 	if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1926 		return;
1927 
1928 	switch (FIT_MXD_TYPE(mfd)) {
1929 	case FIT_MTD_FITFW_INIT:
1930 		skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1931 
1932 		if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1933 			dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1934 			dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1935 				skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1936 			dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1937 			skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1938 			skd_soft_reset(skdev);
1939 			break;
1940 		}
1941 		mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1942 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1943 		skdev->last_mtd = mtd;
1944 		break;
1945 
1946 	case FIT_MTD_GET_CMDQ_DEPTH:
1947 		skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1948 		mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1949 				   SKD_N_COMPLETION_ENTRY);
1950 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1951 		skdev->last_mtd = mtd;
1952 		break;
1953 
1954 	case FIT_MTD_SET_COMPQ_DEPTH:
1955 		SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1956 		mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1957 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1958 		skdev->last_mtd = mtd;
1959 		break;
1960 
1961 	case FIT_MTD_SET_COMPQ_ADDR:
1962 		skd_reset_skcomp(skdev);
1963 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1964 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1965 		skdev->last_mtd = mtd;
1966 		break;
1967 
1968 	case FIT_MTD_CMD_LOG_HOST_ID:
1969 		/* hardware interface overflows in y2106 */
1970 		skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1971 		data = skdev->connect_time_stamp & 0xFFFF;
1972 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1973 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1974 		skdev->last_mtd = mtd;
1975 		break;
1976 
1977 	case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1978 		skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1979 		data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1980 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1981 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1982 		skdev->last_mtd = mtd;
1983 		break;
1984 
1985 	case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1986 		skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1987 		mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1988 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1989 		skdev->last_mtd = mtd;
1990 
1991 		dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1992 			skdev->connect_time_stamp, skdev->drive_jiffies);
1993 		break;
1994 
1995 	case FIT_MTD_ARM_QUEUE:
1996 		skdev->last_mtd = 0;
1997 		/*
1998 		 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
1999 		 */
2000 		break;
2001 
2002 	default:
2003 		break;
2004 	}
2005 }
2006 
skd_disable_interrupts(struct skd_device * skdev)2007 static void skd_disable_interrupts(struct skd_device *skdev)
2008 {
2009 	u32 sense;
2010 
2011 	sense = SKD_READL(skdev, FIT_CONTROL);
2012 	sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2013 	SKD_WRITEL(skdev, sense, FIT_CONTROL);
2014 	dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2015 
2016 	/* Note that the 1s is written. A 1-bit means
2017 	 * disable, a 0 means enable.
2018 	 */
2019 	SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2020 }
2021 
skd_enable_interrupts(struct skd_device * skdev)2022 static void skd_enable_interrupts(struct skd_device *skdev)
2023 {
2024 	u32 val;
2025 
2026 	/* unmask interrupts first */
2027 	val = FIT_ISH_FW_STATE_CHANGE +
2028 	      FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2029 
2030 	/* Note that the compliment of mask is written. A 1-bit means
2031 	 * disable, a 0 means enable. */
2032 	SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2033 	dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2034 
2035 	val = SKD_READL(skdev, FIT_CONTROL);
2036 	val |= FIT_CR_ENABLE_INTERRUPTS;
2037 	dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2038 	SKD_WRITEL(skdev, val, FIT_CONTROL);
2039 }
2040 
2041 /*
2042  *****************************************************************************
2043  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2044  *****************************************************************************
2045  */
2046 
skd_soft_reset(struct skd_device * skdev)2047 static void skd_soft_reset(struct skd_device *skdev)
2048 {
2049 	u32 val;
2050 
2051 	val = SKD_READL(skdev, FIT_CONTROL);
2052 	val |= (FIT_CR_SOFT_RESET);
2053 	dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2054 	SKD_WRITEL(skdev, val, FIT_CONTROL);
2055 }
2056 
skd_start_device(struct skd_device * skdev)2057 static void skd_start_device(struct skd_device *skdev)
2058 {
2059 	unsigned long flags;
2060 	u32 sense;
2061 	u32 state;
2062 
2063 	spin_lock_irqsave(&skdev->lock, flags);
2064 
2065 	/* ack all ghost interrupts */
2066 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2067 
2068 	sense = SKD_READL(skdev, FIT_STATUS);
2069 
2070 	dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2071 
2072 	state = sense & FIT_SR_DRIVE_STATE_MASK;
2073 	skdev->drive_state = state;
2074 	skdev->last_mtd = 0;
2075 
2076 	skdev->state = SKD_DRVR_STATE_STARTING;
2077 	skdev->timer_countdown = SKD_STARTING_TIMO;
2078 
2079 	skd_enable_interrupts(skdev);
2080 
2081 	switch (skdev->drive_state) {
2082 	case FIT_SR_DRIVE_OFFLINE:
2083 		dev_err(&skdev->pdev->dev, "Drive offline...\n");
2084 		break;
2085 
2086 	case FIT_SR_DRIVE_FW_BOOTING:
2087 		dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2088 		skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2089 		skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2090 		break;
2091 
2092 	case FIT_SR_DRIVE_BUSY_SANITIZE:
2093 		dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2094 		skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2095 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2096 		break;
2097 
2098 	case FIT_SR_DRIVE_BUSY_ERASE:
2099 		dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2100 		skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2101 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2102 		break;
2103 
2104 	case FIT_SR_DRIVE_INIT:
2105 	case FIT_SR_DRIVE_ONLINE:
2106 		skd_soft_reset(skdev);
2107 		break;
2108 
2109 	case FIT_SR_DRIVE_BUSY:
2110 		dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2111 		skdev->state = SKD_DRVR_STATE_BUSY;
2112 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2113 		break;
2114 
2115 	case FIT_SR_DRIVE_SOFT_RESET:
2116 		dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2117 		break;
2118 
2119 	case FIT_SR_DRIVE_FAULT:
2120 		/* Fault state is bad...soft reset won't do it...
2121 		 * Hard reset, maybe, but does it work on device?
2122 		 * For now, just fault so the system doesn't hang.
2123 		 */
2124 		skd_drive_fault(skdev);
2125 		/*start the queue so we can respond with error to requests */
2126 		dev_dbg(&skdev->pdev->dev, "starting queue\n");
2127 		schedule_work(&skdev->start_queue);
2128 		skdev->gendisk_on = -1;
2129 		wake_up_interruptible(&skdev->waitq);
2130 		break;
2131 
2132 	case 0xFF:
2133 		/* Most likely the device isn't there or isn't responding
2134 		 * to the BAR1 addresses. */
2135 		skd_drive_disappeared(skdev);
2136 		/*start the queue so we can respond with error to requests */
2137 		dev_dbg(&skdev->pdev->dev,
2138 			"starting queue to error-out reqs\n");
2139 		schedule_work(&skdev->start_queue);
2140 		skdev->gendisk_on = -1;
2141 		wake_up_interruptible(&skdev->waitq);
2142 		break;
2143 
2144 	default:
2145 		dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2146 			skdev->drive_state);
2147 		break;
2148 	}
2149 
2150 	state = SKD_READL(skdev, FIT_CONTROL);
2151 	dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2152 
2153 	state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2154 	dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2155 
2156 	state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2157 	dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2158 
2159 	state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2160 	dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2161 
2162 	state = SKD_READL(skdev, FIT_HW_VERSION);
2163 	dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2164 
2165 	spin_unlock_irqrestore(&skdev->lock, flags);
2166 }
2167 
skd_stop_device(struct skd_device * skdev)2168 static void skd_stop_device(struct skd_device *skdev)
2169 {
2170 	unsigned long flags;
2171 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
2172 	u32 dev_state;
2173 	int i;
2174 
2175 	spin_lock_irqsave(&skdev->lock, flags);
2176 
2177 	if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2178 		dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2179 		goto stop_out;
2180 	}
2181 
2182 	if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2183 		dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2184 		goto stop_out;
2185 	}
2186 
2187 	skdev->state = SKD_DRVR_STATE_SYNCING;
2188 	skdev->sync_done = 0;
2189 
2190 	skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2191 
2192 	spin_unlock_irqrestore(&skdev->lock, flags);
2193 
2194 	wait_event_interruptible_timeout(skdev->waitq,
2195 					 (skdev->sync_done), (10 * HZ));
2196 
2197 	spin_lock_irqsave(&skdev->lock, flags);
2198 
2199 	switch (skdev->sync_done) {
2200 	case 0:
2201 		dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2202 		break;
2203 	case 1:
2204 		dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2205 		break;
2206 	default:
2207 		dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2208 	}
2209 
2210 stop_out:
2211 	skdev->state = SKD_DRVR_STATE_STOPPING;
2212 	spin_unlock_irqrestore(&skdev->lock, flags);
2213 
2214 	skd_kill_timer(skdev);
2215 
2216 	spin_lock_irqsave(&skdev->lock, flags);
2217 	skd_disable_interrupts(skdev);
2218 
2219 	/* ensure all ints on device are cleared */
2220 	/* soft reset the device to unload with a clean slate */
2221 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2222 	SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2223 
2224 	spin_unlock_irqrestore(&skdev->lock, flags);
2225 
2226 	/* poll every 100ms, 1 second timeout */
2227 	for (i = 0; i < 10; i++) {
2228 		dev_state =
2229 			SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2230 		if (dev_state == FIT_SR_DRIVE_INIT)
2231 			break;
2232 		set_current_state(TASK_INTERRUPTIBLE);
2233 		schedule_timeout(msecs_to_jiffies(100));
2234 	}
2235 
2236 	if (dev_state != FIT_SR_DRIVE_INIT)
2237 		dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2238 			dev_state);
2239 }
2240 
2241 /* assume spinlock is held */
skd_restart_device(struct skd_device * skdev)2242 static void skd_restart_device(struct skd_device *skdev)
2243 {
2244 	u32 state;
2245 
2246 	/* ack all ghost interrupts */
2247 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2248 
2249 	state = SKD_READL(skdev, FIT_STATUS);
2250 
2251 	dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2252 
2253 	state &= FIT_SR_DRIVE_STATE_MASK;
2254 	skdev->drive_state = state;
2255 	skdev->last_mtd = 0;
2256 
2257 	skdev->state = SKD_DRVR_STATE_RESTARTING;
2258 	skdev->timer_countdown = SKD_RESTARTING_TIMO;
2259 
2260 	skd_soft_reset(skdev);
2261 }
2262 
2263 /* assume spinlock is held */
skd_quiesce_dev(struct skd_device * skdev)2264 static int skd_quiesce_dev(struct skd_device *skdev)
2265 {
2266 	int rc = 0;
2267 
2268 	switch (skdev->state) {
2269 	case SKD_DRVR_STATE_BUSY:
2270 	case SKD_DRVR_STATE_BUSY_IMMINENT:
2271 		dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2272 		blk_mq_stop_hw_queues(skdev->queue);
2273 		break;
2274 	case SKD_DRVR_STATE_ONLINE:
2275 	case SKD_DRVR_STATE_STOPPING:
2276 	case SKD_DRVR_STATE_SYNCING:
2277 	case SKD_DRVR_STATE_PAUSING:
2278 	case SKD_DRVR_STATE_PAUSED:
2279 	case SKD_DRVR_STATE_STARTING:
2280 	case SKD_DRVR_STATE_RESTARTING:
2281 	case SKD_DRVR_STATE_RESUMING:
2282 	default:
2283 		rc = -EINVAL;
2284 		dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2285 			skdev->state);
2286 	}
2287 	return rc;
2288 }
2289 
2290 /* assume spinlock is held */
skd_unquiesce_dev(struct skd_device * skdev)2291 static int skd_unquiesce_dev(struct skd_device *skdev)
2292 {
2293 	int prev_driver_state = skdev->state;
2294 
2295 	skd_log_skdev(skdev, "unquiesce");
2296 	if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2297 		dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2298 		return 0;
2299 	}
2300 	if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2301 		/*
2302 		 * If there has been an state change to other than
2303 		 * ONLINE, we will rely on controller state change
2304 		 * to come back online and restart the queue.
2305 		 * The BUSY state means that driver is ready to
2306 		 * continue normal processing but waiting for controller
2307 		 * to become available.
2308 		 */
2309 		skdev->state = SKD_DRVR_STATE_BUSY;
2310 		dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2311 		return 0;
2312 	}
2313 
2314 	/*
2315 	 * Drive has just come online, driver is either in startup,
2316 	 * paused performing a task, or bust waiting for hardware.
2317 	 */
2318 	switch (skdev->state) {
2319 	case SKD_DRVR_STATE_PAUSED:
2320 	case SKD_DRVR_STATE_BUSY:
2321 	case SKD_DRVR_STATE_BUSY_IMMINENT:
2322 	case SKD_DRVR_STATE_BUSY_ERASE:
2323 	case SKD_DRVR_STATE_STARTING:
2324 	case SKD_DRVR_STATE_RESTARTING:
2325 	case SKD_DRVR_STATE_FAULT:
2326 	case SKD_DRVR_STATE_IDLE:
2327 	case SKD_DRVR_STATE_LOAD:
2328 		skdev->state = SKD_DRVR_STATE_ONLINE;
2329 		dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2330 			skd_skdev_state_to_str(prev_driver_state),
2331 			prev_driver_state, skd_skdev_state_to_str(skdev->state),
2332 			skdev->state);
2333 		dev_dbg(&skdev->pdev->dev,
2334 			"**** device ONLINE...starting block queue\n");
2335 		dev_dbg(&skdev->pdev->dev, "starting queue\n");
2336 		dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2337 		schedule_work(&skdev->start_queue);
2338 		skdev->gendisk_on = 1;
2339 		wake_up_interruptible(&skdev->waitq);
2340 		break;
2341 
2342 	case SKD_DRVR_STATE_DISAPPEARED:
2343 	default:
2344 		dev_dbg(&skdev->pdev->dev,
2345 			"**** driver state %d, not implemented\n",
2346 			skdev->state);
2347 		return -EBUSY;
2348 	}
2349 	return 0;
2350 }
2351 
2352 /*
2353  *****************************************************************************
2354  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2355  *****************************************************************************
2356  */
2357 
skd_reserved_isr(int irq,void * skd_host_data)2358 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2359 {
2360 	struct skd_device *skdev = skd_host_data;
2361 	unsigned long flags;
2362 
2363 	spin_lock_irqsave(&skdev->lock, flags);
2364 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2365 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2366 	dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2367 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2368 	SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2369 	spin_unlock_irqrestore(&skdev->lock, flags);
2370 	return IRQ_HANDLED;
2371 }
2372 
skd_statec_isr(int irq,void * skd_host_data)2373 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2374 {
2375 	struct skd_device *skdev = skd_host_data;
2376 	unsigned long flags;
2377 
2378 	spin_lock_irqsave(&skdev->lock, flags);
2379 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2380 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2381 	SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2382 	skd_isr_fwstate(skdev);
2383 	spin_unlock_irqrestore(&skdev->lock, flags);
2384 	return IRQ_HANDLED;
2385 }
2386 
skd_comp_q(int irq,void * skd_host_data)2387 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2388 {
2389 	struct skd_device *skdev = skd_host_data;
2390 	unsigned long flags;
2391 	int flush_enqueued = 0;
2392 	int deferred;
2393 
2394 	spin_lock_irqsave(&skdev->lock, flags);
2395 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2396 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2397 	SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2398 	deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2399 						&flush_enqueued);
2400 	if (flush_enqueued)
2401 		schedule_work(&skdev->start_queue);
2402 
2403 	if (deferred)
2404 		schedule_work(&skdev->completion_worker);
2405 	else if (!flush_enqueued)
2406 		schedule_work(&skdev->start_queue);
2407 
2408 	spin_unlock_irqrestore(&skdev->lock, flags);
2409 
2410 	return IRQ_HANDLED;
2411 }
2412 
skd_msg_isr(int irq,void * skd_host_data)2413 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2414 {
2415 	struct skd_device *skdev = skd_host_data;
2416 	unsigned long flags;
2417 
2418 	spin_lock_irqsave(&skdev->lock, flags);
2419 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2420 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2421 	SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2422 	skd_isr_msg_from_dev(skdev);
2423 	spin_unlock_irqrestore(&skdev->lock, flags);
2424 	return IRQ_HANDLED;
2425 }
2426 
skd_qfull_isr(int irq,void * skd_host_data)2427 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2428 {
2429 	struct skd_device *skdev = skd_host_data;
2430 	unsigned long flags;
2431 
2432 	spin_lock_irqsave(&skdev->lock, flags);
2433 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2434 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2435 	SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2436 	spin_unlock_irqrestore(&skdev->lock, flags);
2437 	return IRQ_HANDLED;
2438 }
2439 
2440 /*
2441  *****************************************************************************
2442  * PCIe MSI/MSI-X SETUP
2443  *****************************************************************************
2444  */
2445 
2446 struct skd_msix_entry {
2447 	char isr_name[30];
2448 };
2449 
2450 struct skd_init_msix_entry {
2451 	const char *name;
2452 	irq_handler_t handler;
2453 };
2454 
2455 #define SKD_MAX_MSIX_COUNT              13
2456 #define SKD_MIN_MSIX_COUNT              7
2457 #define SKD_BASE_MSIX_IRQ               4
2458 
2459 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2460 	{ "(DMA 0)",	    skd_reserved_isr },
2461 	{ "(DMA 1)",	    skd_reserved_isr },
2462 	{ "(DMA 2)",	    skd_reserved_isr },
2463 	{ "(DMA 3)",	    skd_reserved_isr },
2464 	{ "(State Change)", skd_statec_isr   },
2465 	{ "(COMPL_Q)",	    skd_comp_q	     },
2466 	{ "(MSG)",	    skd_msg_isr	     },
2467 	{ "(Reserved)",	    skd_reserved_isr },
2468 	{ "(Reserved)",	    skd_reserved_isr },
2469 	{ "(Queue Full 0)", skd_qfull_isr    },
2470 	{ "(Queue Full 1)", skd_qfull_isr    },
2471 	{ "(Queue Full 2)", skd_qfull_isr    },
2472 	{ "(Queue Full 3)", skd_qfull_isr    },
2473 };
2474 
skd_acquire_msix(struct skd_device * skdev)2475 static int skd_acquire_msix(struct skd_device *skdev)
2476 {
2477 	int i, rc;
2478 	struct pci_dev *pdev = skdev->pdev;
2479 
2480 	rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2481 			PCI_IRQ_MSIX);
2482 	if (rc < 0) {
2483 		dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2484 		goto out;
2485 	}
2486 
2487 	skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2488 			sizeof(struct skd_msix_entry), GFP_KERNEL);
2489 	if (!skdev->msix_entries) {
2490 		rc = -ENOMEM;
2491 		dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2492 		goto out;
2493 	}
2494 
2495 	/* Enable MSI-X vectors for the base queue */
2496 	for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2497 		struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2498 
2499 		snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2500 			 "%s%d-msix %s", DRV_NAME, skdev->devno,
2501 			 msix_entries[i].name);
2502 
2503 		rc = devm_request_irq(&skdev->pdev->dev,
2504 				pci_irq_vector(skdev->pdev, i),
2505 				msix_entries[i].handler, 0,
2506 				qentry->isr_name, skdev);
2507 		if (rc) {
2508 			dev_err(&skdev->pdev->dev,
2509 				"Unable to register(%d) MSI-X handler %d: %s\n",
2510 				rc, i, qentry->isr_name);
2511 			goto msix_out;
2512 		}
2513 	}
2514 
2515 	dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2516 		SKD_MAX_MSIX_COUNT);
2517 	return 0;
2518 
2519 msix_out:
2520 	while (--i >= 0)
2521 		devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2522 out:
2523 	kfree(skdev->msix_entries);
2524 	skdev->msix_entries = NULL;
2525 	return rc;
2526 }
2527 
skd_acquire_irq(struct skd_device * skdev)2528 static int skd_acquire_irq(struct skd_device *skdev)
2529 {
2530 	struct pci_dev *pdev = skdev->pdev;
2531 	unsigned int irq_flag = PCI_IRQ_LEGACY;
2532 	int rc;
2533 
2534 	if (skd_isr_type == SKD_IRQ_MSIX) {
2535 		rc = skd_acquire_msix(skdev);
2536 		if (!rc)
2537 			return 0;
2538 
2539 		dev_err(&skdev->pdev->dev,
2540 			"failed to enable MSI-X, re-trying with MSI %d\n", rc);
2541 	}
2542 
2543 	snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2544 			skdev->devno);
2545 
2546 	if (skd_isr_type != SKD_IRQ_LEGACY)
2547 		irq_flag |= PCI_IRQ_MSI;
2548 	rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2549 	if (rc < 0) {
2550 		dev_err(&skdev->pdev->dev,
2551 			"failed to allocate the MSI interrupt %d\n", rc);
2552 		return rc;
2553 	}
2554 
2555 	rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2556 			pdev->msi_enabled ? 0 : IRQF_SHARED,
2557 			skdev->isr_name, skdev);
2558 	if (rc) {
2559 		pci_free_irq_vectors(pdev);
2560 		dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2561 			rc);
2562 		return rc;
2563 	}
2564 
2565 	return 0;
2566 }
2567 
skd_release_irq(struct skd_device * skdev)2568 static void skd_release_irq(struct skd_device *skdev)
2569 {
2570 	struct pci_dev *pdev = skdev->pdev;
2571 
2572 	if (skdev->msix_entries) {
2573 		int i;
2574 
2575 		for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2576 			devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2577 					skdev);
2578 		}
2579 
2580 		kfree(skdev->msix_entries);
2581 		skdev->msix_entries = NULL;
2582 	} else {
2583 		devm_free_irq(&pdev->dev, pdev->irq, skdev);
2584 	}
2585 
2586 	pci_free_irq_vectors(pdev);
2587 }
2588 
2589 /*
2590  *****************************************************************************
2591  * CONSTRUCT
2592  *****************************************************************************
2593  */
2594 
skd_alloc_dma(struct skd_device * skdev,struct kmem_cache * s,dma_addr_t * dma_handle,gfp_t gfp,enum dma_data_direction dir)2595 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2596 			   dma_addr_t *dma_handle, gfp_t gfp,
2597 			   enum dma_data_direction dir)
2598 {
2599 	struct device *dev = &skdev->pdev->dev;
2600 	void *buf;
2601 
2602 	buf = kmem_cache_alloc(s, gfp);
2603 	if (!buf)
2604 		return NULL;
2605 	*dma_handle = dma_map_single(dev, buf,
2606 				     kmem_cache_size(s), dir);
2607 	if (dma_mapping_error(dev, *dma_handle)) {
2608 		kmem_cache_free(s, buf);
2609 		buf = NULL;
2610 	}
2611 	return buf;
2612 }
2613 
skd_free_dma(struct skd_device * skdev,struct kmem_cache * s,void * vaddr,dma_addr_t dma_handle,enum dma_data_direction dir)2614 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2615 			 void *vaddr, dma_addr_t dma_handle,
2616 			 enum dma_data_direction dir)
2617 {
2618 	if (!vaddr)
2619 		return;
2620 
2621 	dma_unmap_single(&skdev->pdev->dev, dma_handle,
2622 			 kmem_cache_size(s), dir);
2623 	kmem_cache_free(s, vaddr);
2624 }
2625 
skd_cons_skcomp(struct skd_device * skdev)2626 static int skd_cons_skcomp(struct skd_device *skdev)
2627 {
2628 	int rc = 0;
2629 	struct fit_completion_entry_v1 *skcomp;
2630 
2631 	dev_dbg(&skdev->pdev->dev,
2632 		"comp pci_alloc, total bytes %zd entries %d\n",
2633 		SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2634 
2635 	skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2636 				       &skdev->cq_dma_address);
2637 
2638 	if (skcomp == NULL) {
2639 		rc = -ENOMEM;
2640 		goto err_out;
2641 	}
2642 
2643 	skdev->skcomp_table = skcomp;
2644 	skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2645 							   sizeof(*skcomp) *
2646 							   SKD_N_COMPLETION_ENTRY);
2647 
2648 err_out:
2649 	return rc;
2650 }
2651 
skd_cons_skmsg(struct skd_device * skdev)2652 static int skd_cons_skmsg(struct skd_device *skdev)
2653 {
2654 	int rc = 0;
2655 	u32 i;
2656 
2657 	dev_dbg(&skdev->pdev->dev,
2658 		"skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2659 		sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2660 		sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2661 
2662 	skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2663 				     sizeof(struct skd_fitmsg_context),
2664 				     GFP_KERNEL);
2665 	if (skdev->skmsg_table == NULL) {
2666 		rc = -ENOMEM;
2667 		goto err_out;
2668 	}
2669 
2670 	for (i = 0; i < skdev->num_fitmsg_context; i++) {
2671 		struct skd_fitmsg_context *skmsg;
2672 
2673 		skmsg = &skdev->skmsg_table[i];
2674 
2675 		skmsg->id = i + SKD_ID_FIT_MSG;
2676 
2677 		skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2678 						      SKD_N_FITMSG_BYTES,
2679 						      &skmsg->mb_dma_address);
2680 
2681 		if (skmsg->msg_buf == NULL) {
2682 			rc = -ENOMEM;
2683 			goto err_out;
2684 		}
2685 
2686 		WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2687 		     (FIT_QCMD_ALIGN - 1),
2688 		     "not aligned: msg_buf %p mb_dma_address %pad\n",
2689 		     skmsg->msg_buf, &skmsg->mb_dma_address);
2690 		memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2691 	}
2692 
2693 err_out:
2694 	return rc;
2695 }
2696 
skd_cons_sg_list(struct skd_device * skdev,u32 n_sg,dma_addr_t * ret_dma_addr)2697 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2698 						  u32 n_sg,
2699 						  dma_addr_t *ret_dma_addr)
2700 {
2701 	struct fit_sg_descriptor *sg_list;
2702 
2703 	sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2704 				GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2705 
2706 	if (sg_list != NULL) {
2707 		uint64_t dma_address = *ret_dma_addr;
2708 		u32 i;
2709 
2710 		for (i = 0; i < n_sg - 1; i++) {
2711 			uint64_t ndp_off;
2712 			ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2713 
2714 			sg_list[i].next_desc_ptr = dma_address + ndp_off;
2715 		}
2716 		sg_list[i].next_desc_ptr = 0LL;
2717 	}
2718 
2719 	return sg_list;
2720 }
2721 
skd_free_sg_list(struct skd_device * skdev,struct fit_sg_descriptor * sg_list,dma_addr_t dma_addr)2722 static void skd_free_sg_list(struct skd_device *skdev,
2723 			     struct fit_sg_descriptor *sg_list,
2724 			     dma_addr_t dma_addr)
2725 {
2726 	if (WARN_ON_ONCE(!sg_list))
2727 		return;
2728 
2729 	skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2730 		     DMA_TO_DEVICE);
2731 }
2732 
skd_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2733 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2734 			    unsigned int hctx_idx, unsigned int numa_node)
2735 {
2736 	struct skd_device *skdev = set->driver_data;
2737 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2738 
2739 	skreq->state = SKD_REQ_STATE_IDLE;
2740 	skreq->sg = (void *)(skreq + 1);
2741 	sg_init_table(skreq->sg, skd_sgs_per_request);
2742 	skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2743 					    &skreq->sksg_dma_address);
2744 
2745 	return skreq->sksg_list ? 0 : -ENOMEM;
2746 }
2747 
skd_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)2748 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2749 			     unsigned int hctx_idx)
2750 {
2751 	struct skd_device *skdev = set->driver_data;
2752 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2753 
2754 	skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2755 }
2756 
skd_cons_sksb(struct skd_device * skdev)2757 static int skd_cons_sksb(struct skd_device *skdev)
2758 {
2759 	int rc = 0;
2760 	struct skd_special_context *skspcl;
2761 
2762 	skspcl = &skdev->internal_skspcl;
2763 
2764 	skspcl->req.id = 0 + SKD_ID_INTERNAL;
2765 	skspcl->req.state = SKD_REQ_STATE_IDLE;
2766 
2767 	skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2768 					 &skspcl->db_dma_address,
2769 					 GFP_DMA | __GFP_ZERO,
2770 					 DMA_BIDIRECTIONAL);
2771 	if (skspcl->data_buf == NULL) {
2772 		rc = -ENOMEM;
2773 		goto err_out;
2774 	}
2775 
2776 	skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2777 					&skspcl->mb_dma_address,
2778 					GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2779 	if (skspcl->msg_buf == NULL) {
2780 		rc = -ENOMEM;
2781 		goto err_out;
2782 	}
2783 
2784 	skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2785 						 &skspcl->req.sksg_dma_address);
2786 	if (skspcl->req.sksg_list == NULL) {
2787 		rc = -ENOMEM;
2788 		goto err_out;
2789 	}
2790 
2791 	if (!skd_format_internal_skspcl(skdev)) {
2792 		rc = -EINVAL;
2793 		goto err_out;
2794 	}
2795 
2796 err_out:
2797 	return rc;
2798 }
2799 
2800 static const struct blk_mq_ops skd_mq_ops = {
2801 	.queue_rq	= skd_mq_queue_rq,
2802 	.complete	= skd_complete_rq,
2803 	.timeout	= skd_timed_out,
2804 	.init_request	= skd_init_request,
2805 	.exit_request	= skd_exit_request,
2806 };
2807 
skd_cons_disk(struct skd_device * skdev)2808 static int skd_cons_disk(struct skd_device *skdev)
2809 {
2810 	int rc = 0;
2811 	struct gendisk *disk;
2812 	struct request_queue *q;
2813 	unsigned long flags;
2814 
2815 	disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2816 	if (!disk) {
2817 		rc = -ENOMEM;
2818 		goto err_out;
2819 	}
2820 
2821 	skdev->disk = disk;
2822 	sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2823 
2824 	disk->major = skdev->major;
2825 	disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2826 	disk->fops = &skd_blockdev_ops;
2827 	disk->private_data = skdev;
2828 
2829 	memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2830 	skdev->tag_set.ops = &skd_mq_ops;
2831 	skdev->tag_set.nr_hw_queues = 1;
2832 	skdev->tag_set.queue_depth = skd_max_queue_depth;
2833 	skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2834 		skdev->sgs_per_request * sizeof(struct scatterlist);
2835 	skdev->tag_set.numa_node = NUMA_NO_NODE;
2836 	skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2837 		BLK_MQ_F_SG_MERGE |
2838 		BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2839 	skdev->tag_set.driver_data = skdev;
2840 	rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2841 	if (rc)
2842 		goto err_out;
2843 	q = blk_mq_init_queue(&skdev->tag_set);
2844 	if (IS_ERR(q)) {
2845 		blk_mq_free_tag_set(&skdev->tag_set);
2846 		rc = PTR_ERR(q);
2847 		goto err_out;
2848 	}
2849 	q->queuedata = skdev;
2850 
2851 	skdev->queue = q;
2852 	disk->queue = q;
2853 
2854 	blk_queue_write_cache(q, true, true);
2855 	blk_queue_max_segments(q, skdev->sgs_per_request);
2856 	blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2857 
2858 	/* set optimal I/O size to 8KB */
2859 	blk_queue_io_opt(q, 8192);
2860 
2861 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2862 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2863 
2864 	blk_queue_rq_timeout(q, 8 * HZ);
2865 
2866 	spin_lock_irqsave(&skdev->lock, flags);
2867 	dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2868 	blk_mq_stop_hw_queues(skdev->queue);
2869 	spin_unlock_irqrestore(&skdev->lock, flags);
2870 
2871 err_out:
2872 	return rc;
2873 }
2874 
2875 #define SKD_N_DEV_TABLE         16u
2876 static u32 skd_next_devno;
2877 
skd_construct(struct pci_dev * pdev)2878 static struct skd_device *skd_construct(struct pci_dev *pdev)
2879 {
2880 	struct skd_device *skdev;
2881 	int blk_major = skd_major;
2882 	size_t size;
2883 	int rc;
2884 
2885 	skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2886 
2887 	if (!skdev) {
2888 		dev_err(&pdev->dev, "memory alloc failure\n");
2889 		return NULL;
2890 	}
2891 
2892 	skdev->state = SKD_DRVR_STATE_LOAD;
2893 	skdev->pdev = pdev;
2894 	skdev->devno = skd_next_devno++;
2895 	skdev->major = blk_major;
2896 	skdev->dev_max_queue_depth = 0;
2897 
2898 	skdev->num_req_context = skd_max_queue_depth;
2899 	skdev->num_fitmsg_context = skd_max_queue_depth;
2900 	skdev->cur_max_queue_depth = 1;
2901 	skdev->queue_low_water_mark = 1;
2902 	skdev->proto_ver = 99;
2903 	skdev->sgs_per_request = skd_sgs_per_request;
2904 	skdev->dbg_level = skd_dbg_level;
2905 
2906 	spin_lock_init(&skdev->lock);
2907 
2908 	INIT_WORK(&skdev->start_queue, skd_start_queue);
2909 	INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2910 
2911 	size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2912 	skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2913 						SLAB_HWCACHE_ALIGN, NULL);
2914 	if (!skdev->msgbuf_cache)
2915 		goto err_out;
2916 	WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2917 		  "skd-msgbuf: %d < %zd\n",
2918 		  kmem_cache_size(skdev->msgbuf_cache), size);
2919 	size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2920 	skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2921 						SLAB_HWCACHE_ALIGN, NULL);
2922 	if (!skdev->sglist_cache)
2923 		goto err_out;
2924 	WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2925 		  "skd-sglist: %d < %zd\n",
2926 		  kmem_cache_size(skdev->sglist_cache), size);
2927 	size = SKD_N_INTERNAL_BYTES;
2928 	skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2929 						 SLAB_HWCACHE_ALIGN, NULL);
2930 	if (!skdev->databuf_cache)
2931 		goto err_out;
2932 	WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2933 		  "skd-databuf: %d < %zd\n",
2934 		  kmem_cache_size(skdev->databuf_cache), size);
2935 
2936 	dev_dbg(&skdev->pdev->dev, "skcomp\n");
2937 	rc = skd_cons_skcomp(skdev);
2938 	if (rc < 0)
2939 		goto err_out;
2940 
2941 	dev_dbg(&skdev->pdev->dev, "skmsg\n");
2942 	rc = skd_cons_skmsg(skdev);
2943 	if (rc < 0)
2944 		goto err_out;
2945 
2946 	dev_dbg(&skdev->pdev->dev, "sksb\n");
2947 	rc = skd_cons_sksb(skdev);
2948 	if (rc < 0)
2949 		goto err_out;
2950 
2951 	dev_dbg(&skdev->pdev->dev, "disk\n");
2952 	rc = skd_cons_disk(skdev);
2953 	if (rc < 0)
2954 		goto err_out;
2955 
2956 	dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2957 	return skdev;
2958 
2959 err_out:
2960 	dev_dbg(&skdev->pdev->dev, "construct failed\n");
2961 	skd_destruct(skdev);
2962 	return NULL;
2963 }
2964 
2965 /*
2966  *****************************************************************************
2967  * DESTRUCT (FREE)
2968  *****************************************************************************
2969  */
2970 
skd_free_skcomp(struct skd_device * skdev)2971 static void skd_free_skcomp(struct skd_device *skdev)
2972 {
2973 	if (skdev->skcomp_table)
2974 		pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2975 				    skdev->skcomp_table, skdev->cq_dma_address);
2976 
2977 	skdev->skcomp_table = NULL;
2978 	skdev->cq_dma_address = 0;
2979 }
2980 
skd_free_skmsg(struct skd_device * skdev)2981 static void skd_free_skmsg(struct skd_device *skdev)
2982 {
2983 	u32 i;
2984 
2985 	if (skdev->skmsg_table == NULL)
2986 		return;
2987 
2988 	for (i = 0; i < skdev->num_fitmsg_context; i++) {
2989 		struct skd_fitmsg_context *skmsg;
2990 
2991 		skmsg = &skdev->skmsg_table[i];
2992 
2993 		if (skmsg->msg_buf != NULL) {
2994 			pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
2995 					    skmsg->msg_buf,
2996 					    skmsg->mb_dma_address);
2997 		}
2998 		skmsg->msg_buf = NULL;
2999 		skmsg->mb_dma_address = 0;
3000 	}
3001 
3002 	kfree(skdev->skmsg_table);
3003 	skdev->skmsg_table = NULL;
3004 }
3005 
skd_free_sksb(struct skd_device * skdev)3006 static void skd_free_sksb(struct skd_device *skdev)
3007 {
3008 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
3009 
3010 	skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3011 		     skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3012 
3013 	skspcl->data_buf = NULL;
3014 	skspcl->db_dma_address = 0;
3015 
3016 	skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3017 		     skspcl->mb_dma_address, DMA_TO_DEVICE);
3018 
3019 	skspcl->msg_buf = NULL;
3020 	skspcl->mb_dma_address = 0;
3021 
3022 	skd_free_sg_list(skdev, skspcl->req.sksg_list,
3023 			 skspcl->req.sksg_dma_address);
3024 
3025 	skspcl->req.sksg_list = NULL;
3026 	skspcl->req.sksg_dma_address = 0;
3027 }
3028 
skd_free_disk(struct skd_device * skdev)3029 static void skd_free_disk(struct skd_device *skdev)
3030 {
3031 	struct gendisk *disk = skdev->disk;
3032 
3033 	if (disk && (disk->flags & GENHD_FL_UP))
3034 		del_gendisk(disk);
3035 
3036 	if (skdev->queue) {
3037 		blk_cleanup_queue(skdev->queue);
3038 		skdev->queue = NULL;
3039 		if (disk)
3040 			disk->queue = NULL;
3041 	}
3042 
3043 	if (skdev->tag_set.tags)
3044 		blk_mq_free_tag_set(&skdev->tag_set);
3045 
3046 	put_disk(disk);
3047 	skdev->disk = NULL;
3048 }
3049 
skd_destruct(struct skd_device * skdev)3050 static void skd_destruct(struct skd_device *skdev)
3051 {
3052 	if (skdev == NULL)
3053 		return;
3054 
3055 	cancel_work_sync(&skdev->start_queue);
3056 
3057 	dev_dbg(&skdev->pdev->dev, "disk\n");
3058 	skd_free_disk(skdev);
3059 
3060 	dev_dbg(&skdev->pdev->dev, "sksb\n");
3061 	skd_free_sksb(skdev);
3062 
3063 	dev_dbg(&skdev->pdev->dev, "skmsg\n");
3064 	skd_free_skmsg(skdev);
3065 
3066 	dev_dbg(&skdev->pdev->dev, "skcomp\n");
3067 	skd_free_skcomp(skdev);
3068 
3069 	kmem_cache_destroy(skdev->databuf_cache);
3070 	kmem_cache_destroy(skdev->sglist_cache);
3071 	kmem_cache_destroy(skdev->msgbuf_cache);
3072 
3073 	dev_dbg(&skdev->pdev->dev, "skdev\n");
3074 	kfree(skdev);
3075 }
3076 
3077 /*
3078  *****************************************************************************
3079  * BLOCK DEVICE (BDEV) GLUE
3080  *****************************************************************************
3081  */
3082 
skd_bdev_getgeo(struct block_device * bdev,struct hd_geometry * geo)3083 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3084 {
3085 	struct skd_device *skdev;
3086 	u64 capacity;
3087 
3088 	skdev = bdev->bd_disk->private_data;
3089 
3090 	dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3091 		bdev->bd_disk->disk_name, current->comm);
3092 
3093 	if (skdev->read_cap_is_valid) {
3094 		capacity = get_capacity(skdev->disk);
3095 		geo->heads = 64;
3096 		geo->sectors = 255;
3097 		geo->cylinders = (capacity) / (255 * 64);
3098 
3099 		return 0;
3100 	}
3101 	return -EIO;
3102 }
3103 
skd_bdev_attach(struct device * parent,struct skd_device * skdev)3104 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3105 {
3106 	dev_dbg(&skdev->pdev->dev, "add_disk\n");
3107 	device_add_disk(parent, skdev->disk);
3108 	return 0;
3109 }
3110 
3111 static const struct block_device_operations skd_blockdev_ops = {
3112 	.owner		= THIS_MODULE,
3113 	.getgeo		= skd_bdev_getgeo,
3114 };
3115 
3116 /*
3117  *****************************************************************************
3118  * PCIe DRIVER GLUE
3119  *****************************************************************************
3120  */
3121 
3122 static const struct pci_device_id skd_pci_tbl[] = {
3123 	{ PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3124 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3125 	{ 0 }                     /* terminate list */
3126 };
3127 
3128 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3129 
skd_pci_info(struct skd_device * skdev,char * str)3130 static char *skd_pci_info(struct skd_device *skdev, char *str)
3131 {
3132 	int pcie_reg;
3133 
3134 	strcpy(str, "PCIe (");
3135 	pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3136 
3137 	if (pcie_reg) {
3138 
3139 		char lwstr[6];
3140 		uint16_t pcie_lstat, lspeed, lwidth;
3141 
3142 		pcie_reg += 0x12;
3143 		pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3144 		lspeed = pcie_lstat & (0xF);
3145 		lwidth = (pcie_lstat & 0x3F0) >> 4;
3146 
3147 		if (lspeed == 1)
3148 			strcat(str, "2.5GT/s ");
3149 		else if (lspeed == 2)
3150 			strcat(str, "5.0GT/s ");
3151 		else
3152 			strcat(str, "<unknown> ");
3153 		snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3154 		strcat(str, lwstr);
3155 	}
3156 	return str;
3157 }
3158 
skd_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3159 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3160 {
3161 	int i;
3162 	int rc = 0;
3163 	char pci_str[32];
3164 	struct skd_device *skdev;
3165 
3166 	dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3167 		pdev->device);
3168 
3169 	rc = pci_enable_device(pdev);
3170 	if (rc)
3171 		return rc;
3172 	rc = pci_request_regions(pdev, DRV_NAME);
3173 	if (rc)
3174 		goto err_out;
3175 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3176 	if (!rc) {
3177 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3178 			dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3179 				rc);
3180 		}
3181 	} else {
3182 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3183 		if (rc) {
3184 			dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3185 			goto err_out_regions;
3186 		}
3187 	}
3188 
3189 	if (!skd_major) {
3190 		rc = register_blkdev(0, DRV_NAME);
3191 		if (rc < 0)
3192 			goto err_out_regions;
3193 		BUG_ON(!rc);
3194 		skd_major = rc;
3195 	}
3196 
3197 	skdev = skd_construct(pdev);
3198 	if (skdev == NULL) {
3199 		rc = -ENOMEM;
3200 		goto err_out_regions;
3201 	}
3202 
3203 	skd_pci_info(skdev, pci_str);
3204 	dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3205 
3206 	pci_set_master(pdev);
3207 	rc = pci_enable_pcie_error_reporting(pdev);
3208 	if (rc) {
3209 		dev_err(&pdev->dev,
3210 			"bad enable of PCIe error reporting rc=%d\n", rc);
3211 		skdev->pcie_error_reporting_is_enabled = 0;
3212 	} else
3213 		skdev->pcie_error_reporting_is_enabled = 1;
3214 
3215 	pci_set_drvdata(pdev, skdev);
3216 
3217 	for (i = 0; i < SKD_MAX_BARS; i++) {
3218 		skdev->mem_phys[i] = pci_resource_start(pdev, i);
3219 		skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3220 		skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3221 					    skdev->mem_size[i]);
3222 		if (!skdev->mem_map[i]) {
3223 			dev_err(&pdev->dev,
3224 				"Unable to map adapter memory!\n");
3225 			rc = -ENODEV;
3226 			goto err_out_iounmap;
3227 		}
3228 		dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3229 			skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3230 			skdev->mem_size[i]);
3231 	}
3232 
3233 	rc = skd_acquire_irq(skdev);
3234 	if (rc) {
3235 		dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3236 		goto err_out_iounmap;
3237 	}
3238 
3239 	rc = skd_start_timer(skdev);
3240 	if (rc)
3241 		goto err_out_timer;
3242 
3243 	init_waitqueue_head(&skdev->waitq);
3244 
3245 	skd_start_device(skdev);
3246 
3247 	rc = wait_event_interruptible_timeout(skdev->waitq,
3248 					      (skdev->gendisk_on),
3249 					      (SKD_START_WAIT_SECONDS * HZ));
3250 	if (skdev->gendisk_on > 0) {
3251 		/* device came on-line after reset */
3252 		skd_bdev_attach(&pdev->dev, skdev);
3253 		rc = 0;
3254 	} else {
3255 		/* we timed out, something is wrong with the device,
3256 		   don't add the disk structure */
3257 		dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3258 			rc);
3259 		/* in case of no error; we timeout with ENXIO */
3260 		if (!rc)
3261 			rc = -ENXIO;
3262 		goto err_out_timer;
3263 	}
3264 
3265 	return rc;
3266 
3267 err_out_timer:
3268 	skd_stop_device(skdev);
3269 	skd_release_irq(skdev);
3270 
3271 err_out_iounmap:
3272 	for (i = 0; i < SKD_MAX_BARS; i++)
3273 		if (skdev->mem_map[i])
3274 			iounmap(skdev->mem_map[i]);
3275 
3276 	if (skdev->pcie_error_reporting_is_enabled)
3277 		pci_disable_pcie_error_reporting(pdev);
3278 
3279 	skd_destruct(skdev);
3280 
3281 err_out_regions:
3282 	pci_release_regions(pdev);
3283 
3284 err_out:
3285 	pci_disable_device(pdev);
3286 	pci_set_drvdata(pdev, NULL);
3287 	return rc;
3288 }
3289 
skd_pci_remove(struct pci_dev * pdev)3290 static void skd_pci_remove(struct pci_dev *pdev)
3291 {
3292 	int i;
3293 	struct skd_device *skdev;
3294 
3295 	skdev = pci_get_drvdata(pdev);
3296 	if (!skdev) {
3297 		dev_err(&pdev->dev, "no device data for PCI\n");
3298 		return;
3299 	}
3300 	skd_stop_device(skdev);
3301 	skd_release_irq(skdev);
3302 
3303 	for (i = 0; i < SKD_MAX_BARS; i++)
3304 		if (skdev->mem_map[i])
3305 			iounmap(skdev->mem_map[i]);
3306 
3307 	if (skdev->pcie_error_reporting_is_enabled)
3308 		pci_disable_pcie_error_reporting(pdev);
3309 
3310 	skd_destruct(skdev);
3311 
3312 	pci_release_regions(pdev);
3313 	pci_disable_device(pdev);
3314 	pci_set_drvdata(pdev, NULL);
3315 
3316 	return;
3317 }
3318 
skd_pci_suspend(struct pci_dev * pdev,pm_message_t state)3319 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3320 {
3321 	int i;
3322 	struct skd_device *skdev;
3323 
3324 	skdev = pci_get_drvdata(pdev);
3325 	if (!skdev) {
3326 		dev_err(&pdev->dev, "no device data for PCI\n");
3327 		return -EIO;
3328 	}
3329 
3330 	skd_stop_device(skdev);
3331 
3332 	skd_release_irq(skdev);
3333 
3334 	for (i = 0; i < SKD_MAX_BARS; i++)
3335 		if (skdev->mem_map[i])
3336 			iounmap(skdev->mem_map[i]);
3337 
3338 	if (skdev->pcie_error_reporting_is_enabled)
3339 		pci_disable_pcie_error_reporting(pdev);
3340 
3341 	pci_release_regions(pdev);
3342 	pci_save_state(pdev);
3343 	pci_disable_device(pdev);
3344 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
3345 	return 0;
3346 }
3347 
skd_pci_resume(struct pci_dev * pdev)3348 static int skd_pci_resume(struct pci_dev *pdev)
3349 {
3350 	int i;
3351 	int rc = 0;
3352 	struct skd_device *skdev;
3353 
3354 	skdev = pci_get_drvdata(pdev);
3355 	if (!skdev) {
3356 		dev_err(&pdev->dev, "no device data for PCI\n");
3357 		return -1;
3358 	}
3359 
3360 	pci_set_power_state(pdev, PCI_D0);
3361 	pci_enable_wake(pdev, PCI_D0, 0);
3362 	pci_restore_state(pdev);
3363 
3364 	rc = pci_enable_device(pdev);
3365 	if (rc)
3366 		return rc;
3367 	rc = pci_request_regions(pdev, DRV_NAME);
3368 	if (rc)
3369 		goto err_out;
3370 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3371 	if (!rc) {
3372 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3373 
3374 			dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3375 				rc);
3376 		}
3377 	} else {
3378 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3379 		if (rc) {
3380 
3381 			dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3382 			goto err_out_regions;
3383 		}
3384 	}
3385 
3386 	pci_set_master(pdev);
3387 	rc = pci_enable_pcie_error_reporting(pdev);
3388 	if (rc) {
3389 		dev_err(&pdev->dev,
3390 			"bad enable of PCIe error reporting rc=%d\n", rc);
3391 		skdev->pcie_error_reporting_is_enabled = 0;
3392 	} else
3393 		skdev->pcie_error_reporting_is_enabled = 1;
3394 
3395 	for (i = 0; i < SKD_MAX_BARS; i++) {
3396 
3397 		skdev->mem_phys[i] = pci_resource_start(pdev, i);
3398 		skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3399 		skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3400 					    skdev->mem_size[i]);
3401 		if (!skdev->mem_map[i]) {
3402 			dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3403 			rc = -ENODEV;
3404 			goto err_out_iounmap;
3405 		}
3406 		dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3407 			skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3408 			skdev->mem_size[i]);
3409 	}
3410 	rc = skd_acquire_irq(skdev);
3411 	if (rc) {
3412 		dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3413 		goto err_out_iounmap;
3414 	}
3415 
3416 	rc = skd_start_timer(skdev);
3417 	if (rc)
3418 		goto err_out_timer;
3419 
3420 	init_waitqueue_head(&skdev->waitq);
3421 
3422 	skd_start_device(skdev);
3423 
3424 	return rc;
3425 
3426 err_out_timer:
3427 	skd_stop_device(skdev);
3428 	skd_release_irq(skdev);
3429 
3430 err_out_iounmap:
3431 	for (i = 0; i < SKD_MAX_BARS; i++)
3432 		if (skdev->mem_map[i])
3433 			iounmap(skdev->mem_map[i]);
3434 
3435 	if (skdev->pcie_error_reporting_is_enabled)
3436 		pci_disable_pcie_error_reporting(pdev);
3437 
3438 err_out_regions:
3439 	pci_release_regions(pdev);
3440 
3441 err_out:
3442 	pci_disable_device(pdev);
3443 	return rc;
3444 }
3445 
skd_pci_shutdown(struct pci_dev * pdev)3446 static void skd_pci_shutdown(struct pci_dev *pdev)
3447 {
3448 	struct skd_device *skdev;
3449 
3450 	dev_err(&pdev->dev, "%s called\n", __func__);
3451 
3452 	skdev = pci_get_drvdata(pdev);
3453 	if (!skdev) {
3454 		dev_err(&pdev->dev, "no device data for PCI\n");
3455 		return;
3456 	}
3457 
3458 	dev_err(&pdev->dev, "calling stop\n");
3459 	skd_stop_device(skdev);
3460 }
3461 
3462 static struct pci_driver skd_driver = {
3463 	.name		= DRV_NAME,
3464 	.id_table	= skd_pci_tbl,
3465 	.probe		= skd_pci_probe,
3466 	.remove		= skd_pci_remove,
3467 	.suspend	= skd_pci_suspend,
3468 	.resume		= skd_pci_resume,
3469 	.shutdown	= skd_pci_shutdown,
3470 };
3471 
3472 /*
3473  *****************************************************************************
3474  * LOGGING SUPPORT
3475  *****************************************************************************
3476  */
3477 
skd_drive_state_to_str(int state)3478 const char *skd_drive_state_to_str(int state)
3479 {
3480 	switch (state) {
3481 	case FIT_SR_DRIVE_OFFLINE:
3482 		return "OFFLINE";
3483 	case FIT_SR_DRIVE_INIT:
3484 		return "INIT";
3485 	case FIT_SR_DRIVE_ONLINE:
3486 		return "ONLINE";
3487 	case FIT_SR_DRIVE_BUSY:
3488 		return "BUSY";
3489 	case FIT_SR_DRIVE_FAULT:
3490 		return "FAULT";
3491 	case FIT_SR_DRIVE_DEGRADED:
3492 		return "DEGRADED";
3493 	case FIT_SR_PCIE_LINK_DOWN:
3494 		return "INK_DOWN";
3495 	case FIT_SR_DRIVE_SOFT_RESET:
3496 		return "SOFT_RESET";
3497 	case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3498 		return "NEED_FW";
3499 	case FIT_SR_DRIVE_INIT_FAULT:
3500 		return "INIT_FAULT";
3501 	case FIT_SR_DRIVE_BUSY_SANITIZE:
3502 		return "BUSY_SANITIZE";
3503 	case FIT_SR_DRIVE_BUSY_ERASE:
3504 		return "BUSY_ERASE";
3505 	case FIT_SR_DRIVE_FW_BOOTING:
3506 		return "FW_BOOTING";
3507 	default:
3508 		return "???";
3509 	}
3510 }
3511 
skd_skdev_state_to_str(enum skd_drvr_state state)3512 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3513 {
3514 	switch (state) {
3515 	case SKD_DRVR_STATE_LOAD:
3516 		return "LOAD";
3517 	case SKD_DRVR_STATE_IDLE:
3518 		return "IDLE";
3519 	case SKD_DRVR_STATE_BUSY:
3520 		return "BUSY";
3521 	case SKD_DRVR_STATE_STARTING:
3522 		return "STARTING";
3523 	case SKD_DRVR_STATE_ONLINE:
3524 		return "ONLINE";
3525 	case SKD_DRVR_STATE_PAUSING:
3526 		return "PAUSING";
3527 	case SKD_DRVR_STATE_PAUSED:
3528 		return "PAUSED";
3529 	case SKD_DRVR_STATE_RESTARTING:
3530 		return "RESTARTING";
3531 	case SKD_DRVR_STATE_RESUMING:
3532 		return "RESUMING";
3533 	case SKD_DRVR_STATE_STOPPING:
3534 		return "STOPPING";
3535 	case SKD_DRVR_STATE_SYNCING:
3536 		return "SYNCING";
3537 	case SKD_DRVR_STATE_FAULT:
3538 		return "FAULT";
3539 	case SKD_DRVR_STATE_DISAPPEARED:
3540 		return "DISAPPEARED";
3541 	case SKD_DRVR_STATE_BUSY_ERASE:
3542 		return "BUSY_ERASE";
3543 	case SKD_DRVR_STATE_BUSY_SANITIZE:
3544 		return "BUSY_SANITIZE";
3545 	case SKD_DRVR_STATE_BUSY_IMMINENT:
3546 		return "BUSY_IMMINENT";
3547 	case SKD_DRVR_STATE_WAIT_BOOT:
3548 		return "WAIT_BOOT";
3549 
3550 	default:
3551 		return "???";
3552 	}
3553 }
3554 
skd_skreq_state_to_str(enum skd_req_state state)3555 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3556 {
3557 	switch (state) {
3558 	case SKD_REQ_STATE_IDLE:
3559 		return "IDLE";
3560 	case SKD_REQ_STATE_SETUP:
3561 		return "SETUP";
3562 	case SKD_REQ_STATE_BUSY:
3563 		return "BUSY";
3564 	case SKD_REQ_STATE_COMPLETED:
3565 		return "COMPLETED";
3566 	case SKD_REQ_STATE_TIMEOUT:
3567 		return "TIMEOUT";
3568 	default:
3569 		return "???";
3570 	}
3571 }
3572 
skd_log_skdev(struct skd_device * skdev,const char * event)3573 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3574 {
3575 	dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3576 	dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3577 		skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3578 		skd_skdev_state_to_str(skdev->state), skdev->state);
3579 	dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3580 		skd_in_flight(skdev), skdev->cur_max_queue_depth,
3581 		skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3582 	dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3583 		skdev->skcomp_cycle, skdev->skcomp_ix);
3584 }
3585 
skd_log_skreq(struct skd_device * skdev,struct skd_request_context * skreq,const char * event)3586 static void skd_log_skreq(struct skd_device *skdev,
3587 			  struct skd_request_context *skreq, const char *event)
3588 {
3589 	struct request *req = blk_mq_rq_from_pdu(skreq);
3590 	u32 lba = blk_rq_pos(req);
3591 	u32 count = blk_rq_sectors(req);
3592 
3593 	dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3594 	dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3595 		skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3596 		skreq->fitmsg_id);
3597 	dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3598 		skreq->data_dir, skreq->n_sg);
3599 
3600 	dev_dbg(&skdev->pdev->dev,
3601 		"req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3602 		count, count, (int)rq_data_dir(req));
3603 }
3604 
3605 /*
3606  *****************************************************************************
3607  * MODULE GLUE
3608  *****************************************************************************
3609  */
3610 
skd_init(void)3611 static int __init skd_init(void)
3612 {
3613 	BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3614 	BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3615 	BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3616 	BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3617 	BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3618 	BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3619 	BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3620 	BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3621 
3622 	switch (skd_isr_type) {
3623 	case SKD_IRQ_LEGACY:
3624 	case SKD_IRQ_MSI:
3625 	case SKD_IRQ_MSIX:
3626 		break;
3627 	default:
3628 		pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3629 		       skd_isr_type, SKD_IRQ_DEFAULT);
3630 		skd_isr_type = SKD_IRQ_DEFAULT;
3631 	}
3632 
3633 	if (skd_max_queue_depth < 1 ||
3634 	    skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3635 		pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3636 		       skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3637 		skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3638 	}
3639 
3640 	if (skd_max_req_per_msg < 1 ||
3641 	    skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3642 		pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3643 		       skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3644 		skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3645 	}
3646 
3647 	if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3648 		pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3649 		       skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3650 		skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3651 	}
3652 
3653 	if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3654 		pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3655 		       skd_dbg_level, 0);
3656 		skd_dbg_level = 0;
3657 	}
3658 
3659 	if (skd_isr_comp_limit < 0) {
3660 		pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3661 		       skd_isr_comp_limit, 0);
3662 		skd_isr_comp_limit = 0;
3663 	}
3664 
3665 	return pci_register_driver(&skd_driver);
3666 }
3667 
skd_exit(void)3668 static void __exit skd_exit(void)
3669 {
3670 	pci_unregister_driver(&skd_driver);
3671 
3672 	if (skd_major)
3673 		unregister_blkdev(skd_major, DRV_NAME);
3674 }
3675 
3676 module_init(skd_init);
3677 module_exit(skd_exit);
3678