1 /*
2         pd.c    (c) 1997-8  Grant R. Guenther <grant@torque.net>
3                             Under the terms of the GNU General Public License.
4 
5         This is the high-level driver for parallel port IDE hard
6         drives based on chips supported by the paride module.
7 
8 	By default, the driver will autoprobe for a single parallel
9 	port IDE drive, but if their individual parameters are
10         specified, the driver can handle up to 4 drives.
11 
12         The behaviour of the pd driver can be altered by setting
13         some parameters from the insmod command line.  The following
14         parameters are adjustable:
15 
16 	    drive0  	These four arguments can be arrays of
17 	    drive1	1-8 integers as follows:
18 	    drive2
19 	    drive3	<prt>,<pro>,<uni>,<mod>,<geo>,<sby>,<dly>,<slv>
20 
21 			Where,
22 
23 		<prt>	is the base of the parallel port address for
24 			the corresponding drive.  (required)
25 
26 		<pro>   is the protocol number for the adapter that
27 			supports this drive.  These numbers are
28                         logged by 'paride' when the protocol modules
29 			are initialised.  (0 if not given)
30 
31 		<uni>   for those adapters that support chained
32 			devices, this is the unit selector for the
33 		        chain of devices on the given port.  It should
34 			be zero for devices that don't support chaining.
35 			(0 if not given)
36 
37 		<mod>   this can be -1 to choose the best mode, or one
38 		        of the mode numbers supported by the adapter.
39 			(-1 if not given)
40 
41 		<geo>   this defaults to 0 to indicate that the driver
42 			should use the CHS geometry provided by the drive
43 			itself.  If set to 1, the driver will provide
44 			a logical geometry with 64 heads and 32 sectors
45 			per track, to be consistent with most SCSI
46 		        drivers.  (0 if not given)
47 
48 		<sby>   set this to zero to disable the power saving
49 			standby mode, if needed.  (1 if not given)
50 
51 		<dly>   some parallel ports require the driver to
52 			go more slowly.  -1 sets a default value that
53 			should work with the chosen protocol.  Otherwise,
54 			set this to a small integer, the larger it is
55 			the slower the port i/o.  In some cases, setting
56 			this to zero will speed up the device. (default -1)
57 
58 		<slv>   IDE disks can be jumpered to master or slave.
59                         Set this to 0 to choose the master drive, 1 to
60                         choose the slave, -1 (the default) to choose the
61                         first drive found.
62 
63 
64             major       You may use this parameter to override the
65                         default major number (45) that this driver
66                         will use.  Be sure to change the device
67                         name as well.
68 
69             name        This parameter is a character string that
70                         contains the name the kernel will use for this
71                         device (in /proc output, for instance).
72 			(default "pd")
73 
74 	    cluster	The driver will attempt to aggregate requests
75 			for adjacent blocks into larger multi-block
76 			clusters.  The maximum cluster size (in 512
77 			byte sectors) is set with this parameter.
78 			(default 64)
79 
80 	    verbose	This parameter controls the amount of logging
81 			that the driver will do.  Set it to 0 for
82 			normal operation, 1 to see autoprobe progress
83 			messages, or 2 to see additional debugging
84 			output.  (default 0)
85 
86             nice        This parameter controls the driver's use of
87                         idle CPU time, at the expense of some speed.
88 
89         If this driver is built into the kernel, you can use kernel
90         the following command line parameters, with the same values
91         as the corresponding module parameters listed above:
92 
93             pd.drive0
94             pd.drive1
95             pd.drive2
96             pd.drive3
97             pd.cluster
98             pd.nice
99 
100         In addition, you can use the parameter pd.disable to disable
101         the driver entirely.
102 
103 */
104 
105 /* Changes:
106 
107 	1.01	GRG 1997.01.24	Restored pd_reset()
108 				Added eject ioctl
109 	1.02    GRG 1998.05.06  SMP spinlock changes,
110 				Added slave support
111 	1.03    GRG 1998.06.16  Eliminate an Ugh.
112 	1.04	GRG 1998.08.15  Extra debugging, use HZ in loop timing
113 	1.05    GRG 1998.09.24  Added jumbo support
114 
115 */
116 
117 #define PD_VERSION      "1.05"
118 #define PD_MAJOR	45
119 #define PD_NAME		"pd"
120 #define PD_UNITS	4
121 
122 /* Here are things one can override from the insmod command.
123    Most are autoprobed by paride unless set here.  Verbose is off
124    by default.
125 
126 */
127 #include <linux/types.h>
128 
129 static int verbose = 0;
130 static int major = PD_MAJOR;
131 static char *name = PD_NAME;
132 static int cluster = 64;
133 static int nice = 0;
134 static int disable = 0;
135 
136 static int drive0[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
137 static int drive1[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
138 static int drive2[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
139 static int drive3[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
140 
141 static int (*drives[4])[8] = {&drive0, &drive1, &drive2, &drive3};
142 
143 enum {D_PRT, D_PRO, D_UNI, D_MOD, D_GEO, D_SBY, D_DLY, D_SLV};
144 
145 /* end of parameters */
146 
147 #include <linux/init.h>
148 #include <linux/module.h>
149 #include <linux/gfp.h>
150 #include <linux/fs.h>
151 #include <linux/delay.h>
152 #include <linux/hdreg.h>
153 #include <linux/cdrom.h>	/* for the eject ioctl */
154 #include <linux/blkdev.h>
155 #include <linux/blkpg.h>
156 #include <linux/kernel.h>
157 #include <linux/mutex.h>
158 #include <linux/uaccess.h>
159 #include <linux/workqueue.h>
160 
161 static DEFINE_MUTEX(pd_mutex);
162 static DEFINE_SPINLOCK(pd_lock);
163 
164 module_param(verbose, int, 0);
165 module_param(major, int, 0);
166 module_param(name, charp, 0);
167 module_param(cluster, int, 0);
168 module_param(nice, int, 0);
169 module_param_array(drive0, int, NULL, 0);
170 module_param_array(drive1, int, NULL, 0);
171 module_param_array(drive2, int, NULL, 0);
172 module_param_array(drive3, int, NULL, 0);
173 
174 #include "paride.h"
175 
176 #define PD_BITS    4
177 
178 /* numbers for "SCSI" geometry */
179 
180 #define PD_LOG_HEADS    64
181 #define PD_LOG_SECTS    32
182 
183 #define PD_ID_OFF       54
184 #define PD_ID_LEN       14
185 
186 #define PD_MAX_RETRIES  5
187 #define PD_TMO          800	/* interrupt timeout in jiffies */
188 #define PD_SPIN_DEL     50	/* spin delay in micro-seconds  */
189 
190 #define PD_SPIN         (1000000*PD_TMO)/(HZ*PD_SPIN_DEL)
191 
192 #define STAT_ERR        0x00001
193 #define STAT_INDEX      0x00002
194 #define STAT_ECC        0x00004
195 #define STAT_DRQ        0x00008
196 #define STAT_SEEK       0x00010
197 #define STAT_WRERR      0x00020
198 #define STAT_READY      0x00040
199 #define STAT_BUSY       0x00080
200 
201 #define ERR_AMNF        0x00100
202 #define ERR_TK0NF       0x00200
203 #define ERR_ABRT        0x00400
204 #define ERR_MCR         0x00800
205 #define ERR_IDNF        0x01000
206 #define ERR_MC          0x02000
207 #define ERR_UNC         0x04000
208 #define ERR_TMO         0x10000
209 
210 #define IDE_READ        	0x20
211 #define IDE_WRITE       	0x30
212 #define IDE_READ_VRFY		0x40
213 #define IDE_INIT_DEV_PARMS	0x91
214 #define IDE_STANDBY     	0x96
215 #define IDE_ACKCHANGE   	0xdb
216 #define IDE_DOORLOCK    	0xde
217 #define IDE_DOORUNLOCK  	0xdf
218 #define IDE_IDENTIFY    	0xec
219 #define IDE_EJECT		0xed
220 
221 #define PD_NAMELEN	8
222 
223 struct pd_unit {
224 	struct pi_adapter pia;	/* interface to paride layer */
225 	struct pi_adapter *pi;
226 	int access;		/* count of active opens ... */
227 	int capacity;		/* Size of this volume in sectors */
228 	int heads;		/* physical geometry */
229 	int sectors;
230 	int cylinders;
231 	int can_lba;
232 	int drive;		/* master=0 slave=1 */
233 	int changed;		/* Have we seen a disk change ? */
234 	int removable;		/* removable media device  ?  */
235 	int standby;
236 	int alt_geom;
237 	char name[PD_NAMELEN];	/* pda, pdb, etc ... */
238 	struct gendisk *gd;
239 };
240 
241 static struct pd_unit pd[PD_UNITS];
242 
243 static char pd_scratch[512];	/* scratch block buffer */
244 
245 static char *pd_errs[17] = { "ERR", "INDEX", "ECC", "DRQ", "SEEK", "WRERR",
246 	"READY", "BUSY", "AMNF", "TK0NF", "ABRT", "MCR",
247 	"IDNF", "MC", "UNC", "???", "TMO"
248 };
249 
250 static void *par_drv;		/* reference of parport driver */
251 
status_reg(struct pd_unit * disk)252 static inline int status_reg(struct pd_unit *disk)
253 {
254 	return pi_read_regr(disk->pi, 1, 6);
255 }
256 
read_reg(struct pd_unit * disk,int reg)257 static inline int read_reg(struct pd_unit *disk, int reg)
258 {
259 	return pi_read_regr(disk->pi, 0, reg);
260 }
261 
write_status(struct pd_unit * disk,int val)262 static inline void write_status(struct pd_unit *disk, int val)
263 {
264 	pi_write_regr(disk->pi, 1, 6, val);
265 }
266 
write_reg(struct pd_unit * disk,int reg,int val)267 static inline void write_reg(struct pd_unit *disk, int reg, int val)
268 {
269 	pi_write_regr(disk->pi, 0, reg, val);
270 }
271 
DRIVE(struct pd_unit * disk)272 static inline u8 DRIVE(struct pd_unit *disk)
273 {
274 	return 0xa0+0x10*disk->drive;
275 }
276 
277 /*  ide command interface */
278 
pd_print_error(struct pd_unit * disk,char * msg,int status)279 static void pd_print_error(struct pd_unit *disk, char *msg, int status)
280 {
281 	int i;
282 
283 	printk("%s: %s: status = 0x%x =", disk->name, msg, status);
284 	for (i = 0; i < ARRAY_SIZE(pd_errs); i++)
285 		if (status & (1 << i))
286 			printk(" %s", pd_errs[i]);
287 	printk("\n");
288 }
289 
pd_reset(struct pd_unit * disk)290 static void pd_reset(struct pd_unit *disk)
291 {				/* called only for MASTER drive */
292 	write_status(disk, 4);
293 	udelay(50);
294 	write_status(disk, 0);
295 	udelay(250);
296 }
297 
298 #define DBMSG(msg)	((verbose>1)?(msg):NULL)
299 
pd_wait_for(struct pd_unit * disk,int w,char * msg)300 static int pd_wait_for(struct pd_unit *disk, int w, char *msg)
301 {				/* polled wait */
302 	int k, r, e;
303 
304 	k = 0;
305 	while (k < PD_SPIN) {
306 		r = status_reg(disk);
307 		k++;
308 		if (((r & w) == w) && !(r & STAT_BUSY))
309 			break;
310 		udelay(PD_SPIN_DEL);
311 	}
312 	e = (read_reg(disk, 1) << 8) + read_reg(disk, 7);
313 	if (k >= PD_SPIN)
314 		e |= ERR_TMO;
315 	if ((e & (STAT_ERR | ERR_TMO)) && (msg != NULL))
316 		pd_print_error(disk, msg, e);
317 	return e;
318 }
319 
pd_send_command(struct pd_unit * disk,int n,int s,int h,int c0,int c1,int func)320 static void pd_send_command(struct pd_unit *disk, int n, int s, int h, int c0, int c1, int func)
321 {
322 	write_reg(disk, 6, DRIVE(disk) + h);
323 	write_reg(disk, 1, 0);		/* the IDE task file */
324 	write_reg(disk, 2, n);
325 	write_reg(disk, 3, s);
326 	write_reg(disk, 4, c0);
327 	write_reg(disk, 5, c1);
328 	write_reg(disk, 7, func);
329 
330 	udelay(1);
331 }
332 
pd_ide_command(struct pd_unit * disk,int func,int block,int count)333 static void pd_ide_command(struct pd_unit *disk, int func, int block, int count)
334 {
335 	int c1, c0, h, s;
336 
337 	if (disk->can_lba) {
338 		s = block & 255;
339 		c0 = (block >>= 8) & 255;
340 		c1 = (block >>= 8) & 255;
341 		h = ((block >>= 8) & 15) + 0x40;
342 	} else {
343 		s = (block % disk->sectors) + 1;
344 		h = (block /= disk->sectors) % disk->heads;
345 		c0 = (block /= disk->heads) % 256;
346 		c1 = (block >>= 8);
347 	}
348 	pd_send_command(disk, count, s, h, c0, c1, func);
349 }
350 
351 /* The i/o request engine */
352 
353 enum action {Fail = 0, Ok = 1, Hold, Wait};
354 
355 static struct request *pd_req;	/* current request */
356 static enum action (*phase)(void);
357 
358 static void run_fsm(void);
359 
360 static void ps_tq_int(struct work_struct *work);
361 
362 static DECLARE_DELAYED_WORK(fsm_tq, ps_tq_int);
363 
schedule_fsm(void)364 static void schedule_fsm(void)
365 {
366 	if (!nice)
367 		schedule_delayed_work(&fsm_tq, 0);
368 	else
369 		schedule_delayed_work(&fsm_tq, nice-1);
370 }
371 
ps_tq_int(struct work_struct * work)372 static void ps_tq_int(struct work_struct *work)
373 {
374 	run_fsm();
375 }
376 
377 static enum action do_pd_io_start(void);
378 static enum action pd_special(void);
379 static enum action do_pd_read_start(void);
380 static enum action do_pd_write_start(void);
381 static enum action do_pd_read_drq(void);
382 static enum action do_pd_write_done(void);
383 
384 static int pd_queue;
385 static int pd_claimed;
386 
387 static struct pd_unit *pd_current; /* current request's drive */
388 static PIA *pi_current; /* current request's PIA */
389 
set_next_request(void)390 static int set_next_request(void)
391 {
392 	struct gendisk *disk;
393 	struct request_queue *q;
394 	int old_pos = pd_queue;
395 
396 	do {
397 		disk = pd[pd_queue].gd;
398 		q = disk ? disk->queue : NULL;
399 		if (++pd_queue == PD_UNITS)
400 			pd_queue = 0;
401 		if (q) {
402 			pd_req = blk_fetch_request(q);
403 			if (pd_req)
404 				break;
405 		}
406 	} while (pd_queue != old_pos);
407 
408 	return pd_req != NULL;
409 }
410 
run_fsm(void)411 static void run_fsm(void)
412 {
413 	while (1) {
414 		enum action res;
415 		unsigned long saved_flags;
416 		int stop = 0;
417 
418 		if (!phase) {
419 			pd_current = pd_req->rq_disk->private_data;
420 			pi_current = pd_current->pi;
421 			phase = do_pd_io_start;
422 		}
423 
424 		switch (pd_claimed) {
425 			case 0:
426 				pd_claimed = 1;
427 				if (!pi_schedule_claimed(pi_current, run_fsm))
428 					return;
429 				/* fall through */
430 			case 1:
431 				pd_claimed = 2;
432 				pi_current->proto->connect(pi_current);
433 		}
434 
435 		switch(res = phase()) {
436 			case Ok: case Fail:
437 				pi_disconnect(pi_current);
438 				pd_claimed = 0;
439 				phase = NULL;
440 				spin_lock_irqsave(&pd_lock, saved_flags);
441 				if (!__blk_end_request_cur(pd_req,
442 						res == Ok ? 0 : BLK_STS_IOERR)) {
443 					if (!set_next_request())
444 						stop = 1;
445 				}
446 				spin_unlock_irqrestore(&pd_lock, saved_flags);
447 				if (stop)
448 					return;
449 				/* fall through */
450 			case Hold:
451 				schedule_fsm();
452 				return;
453 			case Wait:
454 				pi_disconnect(pi_current);
455 				pd_claimed = 0;
456 		}
457 	}
458 }
459 
460 static int pd_retries = 0;	/* i/o error retry count */
461 static int pd_block;		/* address of next requested block */
462 static int pd_count;		/* number of blocks still to do */
463 static int pd_run;		/* sectors in current cluster */
464 static char *pd_buf;		/* buffer for request in progress */
465 
do_pd_io_start(void)466 static enum action do_pd_io_start(void)
467 {
468 	switch (req_op(pd_req)) {
469 	case REQ_OP_DRV_IN:
470 		phase = pd_special;
471 		return pd_special();
472 	case REQ_OP_READ:
473 	case REQ_OP_WRITE:
474 		pd_block = blk_rq_pos(pd_req);
475 		pd_count = blk_rq_cur_sectors(pd_req);
476 		if (pd_block + pd_count > get_capacity(pd_req->rq_disk))
477 			return Fail;
478 		pd_run = blk_rq_sectors(pd_req);
479 		pd_buf = bio_data(pd_req->bio);
480 		pd_retries = 0;
481 		if (req_op(pd_req) == REQ_OP_READ)
482 			return do_pd_read_start();
483 		else
484 			return do_pd_write_start();
485 	}
486 	return Fail;
487 }
488 
pd_special(void)489 static enum action pd_special(void)
490 {
491 	enum action (*func)(struct pd_unit *) = pd_req->special;
492 	return func(pd_current);
493 }
494 
pd_next_buf(void)495 static int pd_next_buf(void)
496 {
497 	unsigned long saved_flags;
498 
499 	pd_count--;
500 	pd_run--;
501 	pd_buf += 512;
502 	pd_block++;
503 	if (!pd_run)
504 		return 1;
505 	if (pd_count)
506 		return 0;
507 	spin_lock_irqsave(&pd_lock, saved_flags);
508 	__blk_end_request_cur(pd_req, 0);
509 	pd_count = blk_rq_cur_sectors(pd_req);
510 	pd_buf = bio_data(pd_req->bio);
511 	spin_unlock_irqrestore(&pd_lock, saved_flags);
512 	return 0;
513 }
514 
515 static unsigned long pd_timeout;
516 
do_pd_read_start(void)517 static enum action do_pd_read_start(void)
518 {
519 	if (pd_wait_for(pd_current, STAT_READY, "do_pd_read") & STAT_ERR) {
520 		if (pd_retries < PD_MAX_RETRIES) {
521 			pd_retries++;
522 			return Wait;
523 		}
524 		return Fail;
525 	}
526 	pd_ide_command(pd_current, IDE_READ, pd_block, pd_run);
527 	phase = do_pd_read_drq;
528 	pd_timeout = jiffies + PD_TMO;
529 	return Hold;
530 }
531 
do_pd_write_start(void)532 static enum action do_pd_write_start(void)
533 {
534 	if (pd_wait_for(pd_current, STAT_READY, "do_pd_write") & STAT_ERR) {
535 		if (pd_retries < PD_MAX_RETRIES) {
536 			pd_retries++;
537 			return Wait;
538 		}
539 		return Fail;
540 	}
541 	pd_ide_command(pd_current, IDE_WRITE, pd_block, pd_run);
542 	while (1) {
543 		if (pd_wait_for(pd_current, STAT_DRQ, "do_pd_write_drq") & STAT_ERR) {
544 			if (pd_retries < PD_MAX_RETRIES) {
545 				pd_retries++;
546 				return Wait;
547 			}
548 			return Fail;
549 		}
550 		pi_write_block(pd_current->pi, pd_buf, 512);
551 		if (pd_next_buf())
552 			break;
553 	}
554 	phase = do_pd_write_done;
555 	pd_timeout = jiffies + PD_TMO;
556 	return Hold;
557 }
558 
pd_ready(void)559 static inline int pd_ready(void)
560 {
561 	return !(status_reg(pd_current) & STAT_BUSY);
562 }
563 
do_pd_read_drq(void)564 static enum action do_pd_read_drq(void)
565 {
566 	if (!pd_ready() && !time_after_eq(jiffies, pd_timeout))
567 		return Hold;
568 
569 	while (1) {
570 		if (pd_wait_for(pd_current, STAT_DRQ, "do_pd_read_drq") & STAT_ERR) {
571 			if (pd_retries < PD_MAX_RETRIES) {
572 				pd_retries++;
573 				phase = do_pd_read_start;
574 				return Wait;
575 			}
576 			return Fail;
577 		}
578 		pi_read_block(pd_current->pi, pd_buf, 512);
579 		if (pd_next_buf())
580 			break;
581 	}
582 	return Ok;
583 }
584 
do_pd_write_done(void)585 static enum action do_pd_write_done(void)
586 {
587 	if (!pd_ready() && !time_after_eq(jiffies, pd_timeout))
588 		return Hold;
589 
590 	if (pd_wait_for(pd_current, STAT_READY, "do_pd_write_done") & STAT_ERR) {
591 		if (pd_retries < PD_MAX_RETRIES) {
592 			pd_retries++;
593 			phase = do_pd_write_start;
594 			return Wait;
595 		}
596 		return Fail;
597 	}
598 	return Ok;
599 }
600 
601 /* special io requests */
602 
603 /* According to the ATA standard, the default CHS geometry should be
604    available following a reset.  Some Western Digital drives come up
605    in a mode where only LBA addresses are accepted until the device
606    parameters are initialised.
607 */
608 
pd_init_dev_parms(struct pd_unit * disk)609 static void pd_init_dev_parms(struct pd_unit *disk)
610 {
611 	pd_wait_for(disk, 0, DBMSG("before init_dev_parms"));
612 	pd_send_command(disk, disk->sectors, 0, disk->heads - 1, 0, 0,
613 			IDE_INIT_DEV_PARMS);
614 	udelay(300);
615 	pd_wait_for(disk, 0, "Initialise device parameters");
616 }
617 
pd_door_lock(struct pd_unit * disk)618 static enum action pd_door_lock(struct pd_unit *disk)
619 {
620 	if (!(pd_wait_for(disk, STAT_READY, "Lock") & STAT_ERR)) {
621 		pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORLOCK);
622 		pd_wait_for(disk, STAT_READY, "Lock done");
623 	}
624 	return Ok;
625 }
626 
pd_door_unlock(struct pd_unit * disk)627 static enum action pd_door_unlock(struct pd_unit *disk)
628 {
629 	if (!(pd_wait_for(disk, STAT_READY, "Lock") & STAT_ERR)) {
630 		pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORUNLOCK);
631 		pd_wait_for(disk, STAT_READY, "Lock done");
632 	}
633 	return Ok;
634 }
635 
pd_eject(struct pd_unit * disk)636 static enum action pd_eject(struct pd_unit *disk)
637 {
638 	pd_wait_for(disk, 0, DBMSG("before unlock on eject"));
639 	pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORUNLOCK);
640 	pd_wait_for(disk, 0, DBMSG("after unlock on eject"));
641 	pd_wait_for(disk, 0, DBMSG("before eject"));
642 	pd_send_command(disk, 0, 0, 0, 0, 0, IDE_EJECT);
643 	pd_wait_for(disk, 0, DBMSG("after eject"));
644 	return Ok;
645 }
646 
pd_media_check(struct pd_unit * disk)647 static enum action pd_media_check(struct pd_unit *disk)
648 {
649 	int r = pd_wait_for(disk, STAT_READY, DBMSG("before media_check"));
650 	if (!(r & STAT_ERR)) {
651 		pd_send_command(disk, 1, 1, 0, 0, 0, IDE_READ_VRFY);
652 		r = pd_wait_for(disk, STAT_READY, DBMSG("RDY after READ_VRFY"));
653 	} else
654 		disk->changed = 1;	/* say changed if other error */
655 	if (r & ERR_MC) {
656 		disk->changed = 1;
657 		pd_send_command(disk, 1, 0, 0, 0, 0, IDE_ACKCHANGE);
658 		pd_wait_for(disk, STAT_READY, DBMSG("RDY after ACKCHANGE"));
659 		pd_send_command(disk, 1, 1, 0, 0, 0, IDE_READ_VRFY);
660 		r = pd_wait_for(disk, STAT_READY, DBMSG("RDY after VRFY"));
661 	}
662 	return Ok;
663 }
664 
pd_standby_off(struct pd_unit * disk)665 static void pd_standby_off(struct pd_unit *disk)
666 {
667 	pd_wait_for(disk, 0, DBMSG("before STANDBY"));
668 	pd_send_command(disk, 0, 0, 0, 0, 0, IDE_STANDBY);
669 	pd_wait_for(disk, 0, DBMSG("after STANDBY"));
670 }
671 
pd_identify(struct pd_unit * disk)672 static enum action pd_identify(struct pd_unit *disk)
673 {
674 	int j;
675 	char id[PD_ID_LEN + 1];
676 
677 /* WARNING:  here there may be dragons.  reset() applies to both drives,
678    but we call it only on probing the MASTER. This should allow most
679    common configurations to work, but be warned that a reset can clear
680    settings on the SLAVE drive.
681 */
682 
683 	if (disk->drive == 0)
684 		pd_reset(disk);
685 
686 	write_reg(disk, 6, DRIVE(disk));
687 	pd_wait_for(disk, 0, DBMSG("before IDENT"));
688 	pd_send_command(disk, 1, 0, 0, 0, 0, IDE_IDENTIFY);
689 
690 	if (pd_wait_for(disk, STAT_DRQ, DBMSG("IDENT DRQ")) & STAT_ERR)
691 		return Fail;
692 	pi_read_block(disk->pi, pd_scratch, 512);
693 	disk->can_lba = pd_scratch[99] & 2;
694 	disk->sectors = le16_to_cpu(*(__le16 *) (pd_scratch + 12));
695 	disk->heads = le16_to_cpu(*(__le16 *) (pd_scratch + 6));
696 	disk->cylinders = le16_to_cpu(*(__le16 *) (pd_scratch + 2));
697 	if (disk->can_lba)
698 		disk->capacity = le32_to_cpu(*(__le32 *) (pd_scratch + 120));
699 	else
700 		disk->capacity = disk->sectors * disk->heads * disk->cylinders;
701 
702 	for (j = 0; j < PD_ID_LEN; j++)
703 		id[j ^ 1] = pd_scratch[j + PD_ID_OFF];
704 	j = PD_ID_LEN - 1;
705 	while ((j >= 0) && (id[j] <= 0x20))
706 		j--;
707 	j++;
708 	id[j] = 0;
709 
710 	disk->removable = pd_scratch[0] & 0x80;
711 
712 	printk("%s: %s, %s, %d blocks [%dM], (%d/%d/%d), %s media\n",
713 	       disk->name, id,
714 	       disk->drive ? "slave" : "master",
715 	       disk->capacity, disk->capacity / 2048,
716 	       disk->cylinders, disk->heads, disk->sectors,
717 	       disk->removable ? "removable" : "fixed");
718 
719 	if (disk->capacity)
720 		pd_init_dev_parms(disk);
721 	if (!disk->standby)
722 		pd_standby_off(disk);
723 
724 	return Ok;
725 }
726 
727 /* end of io request engine */
728 
do_pd_request(struct request_queue * q)729 static void do_pd_request(struct request_queue * q)
730 {
731 	if (pd_req)
732 		return;
733 	pd_req = blk_fetch_request(q);
734 	if (!pd_req)
735 		return;
736 
737 	schedule_fsm();
738 }
739 
pd_special_command(struct pd_unit * disk,enum action (* func)(struct pd_unit * disk))740 static int pd_special_command(struct pd_unit *disk,
741 		      enum action (*func)(struct pd_unit *disk))
742 {
743 	struct request *rq;
744 
745 	rq = blk_get_request(disk->gd->queue, REQ_OP_DRV_IN, 0);
746 	if (IS_ERR(rq))
747 		return PTR_ERR(rq);
748 
749 	rq->special = func;
750 	blk_execute_rq(disk->gd->queue, disk->gd, rq, 0);
751 	blk_put_request(rq);
752 	return 0;
753 }
754 
755 /* kernel glue structures */
756 
pd_open(struct block_device * bdev,fmode_t mode)757 static int pd_open(struct block_device *bdev, fmode_t mode)
758 {
759 	struct pd_unit *disk = bdev->bd_disk->private_data;
760 
761 	mutex_lock(&pd_mutex);
762 	disk->access++;
763 
764 	if (disk->removable) {
765 		pd_special_command(disk, pd_media_check);
766 		pd_special_command(disk, pd_door_lock);
767 	}
768 	mutex_unlock(&pd_mutex);
769 	return 0;
770 }
771 
pd_getgeo(struct block_device * bdev,struct hd_geometry * geo)772 static int pd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
773 {
774 	struct pd_unit *disk = bdev->bd_disk->private_data;
775 
776 	if (disk->alt_geom) {
777 		geo->heads = PD_LOG_HEADS;
778 		geo->sectors = PD_LOG_SECTS;
779 		geo->cylinders = disk->capacity / (geo->heads * geo->sectors);
780 	} else {
781 		geo->heads = disk->heads;
782 		geo->sectors = disk->sectors;
783 		geo->cylinders = disk->cylinders;
784 	}
785 
786 	return 0;
787 }
788 
pd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)789 static int pd_ioctl(struct block_device *bdev, fmode_t mode,
790 	 unsigned int cmd, unsigned long arg)
791 {
792 	struct pd_unit *disk = bdev->bd_disk->private_data;
793 
794 	switch (cmd) {
795 	case CDROMEJECT:
796 		mutex_lock(&pd_mutex);
797 		if (disk->access == 1)
798 			pd_special_command(disk, pd_eject);
799 		mutex_unlock(&pd_mutex);
800 		return 0;
801 	default:
802 		return -EINVAL;
803 	}
804 }
805 
pd_release(struct gendisk * p,fmode_t mode)806 static void pd_release(struct gendisk *p, fmode_t mode)
807 {
808 	struct pd_unit *disk = p->private_data;
809 
810 	mutex_lock(&pd_mutex);
811 	if (!--disk->access && disk->removable)
812 		pd_special_command(disk, pd_door_unlock);
813 	mutex_unlock(&pd_mutex);
814 }
815 
pd_check_events(struct gendisk * p,unsigned int clearing)816 static unsigned int pd_check_events(struct gendisk *p, unsigned int clearing)
817 {
818 	struct pd_unit *disk = p->private_data;
819 	int r;
820 	if (!disk->removable)
821 		return 0;
822 	pd_special_command(disk, pd_media_check);
823 	r = disk->changed;
824 	disk->changed = 0;
825 	return r ? DISK_EVENT_MEDIA_CHANGE : 0;
826 }
827 
pd_revalidate(struct gendisk * p)828 static int pd_revalidate(struct gendisk *p)
829 {
830 	struct pd_unit *disk = p->private_data;
831 	if (pd_special_command(disk, pd_identify) == 0)
832 		set_capacity(p, disk->capacity);
833 	else
834 		set_capacity(p, 0);
835 	return 0;
836 }
837 
838 static const struct block_device_operations pd_fops = {
839 	.owner		= THIS_MODULE,
840 	.open		= pd_open,
841 	.release	= pd_release,
842 	.ioctl		= pd_ioctl,
843 	.getgeo		= pd_getgeo,
844 	.check_events	= pd_check_events,
845 	.revalidate_disk= pd_revalidate
846 };
847 
848 /* probing */
849 
pd_probe_drive(struct pd_unit * disk)850 static void pd_probe_drive(struct pd_unit *disk)
851 {
852 	struct gendisk *p = alloc_disk(1 << PD_BITS);
853 	if (!p)
854 		return;
855 	strcpy(p->disk_name, disk->name);
856 	p->fops = &pd_fops;
857 	p->major = major;
858 	p->first_minor = (disk - pd) << PD_BITS;
859 	disk->gd = p;
860 	p->private_data = disk;
861 	p->queue = blk_init_queue(do_pd_request, &pd_lock);
862 	if (!p->queue) {
863 		disk->gd = NULL;
864 		put_disk(p);
865 		return;
866 	}
867 	blk_queue_max_hw_sectors(p->queue, cluster);
868 	blk_queue_bounce_limit(p->queue, BLK_BOUNCE_HIGH);
869 
870 	if (disk->drive == -1) {
871 		for (disk->drive = 0; disk->drive <= 1; disk->drive++)
872 			if (pd_special_command(disk, pd_identify) == 0)
873 				return;
874 	} else if (pd_special_command(disk, pd_identify) == 0)
875 		return;
876 	disk->gd = NULL;
877 	put_disk(p);
878 }
879 
pd_detect(void)880 static int pd_detect(void)
881 {
882 	int found = 0, unit, pd_drive_count = 0;
883 	struct pd_unit *disk;
884 
885 	for (unit = 0; unit < PD_UNITS; unit++) {
886 		int *parm = *drives[unit];
887 		struct pd_unit *disk = pd + unit;
888 		disk->pi = &disk->pia;
889 		disk->access = 0;
890 		disk->changed = 1;
891 		disk->capacity = 0;
892 		disk->drive = parm[D_SLV];
893 		snprintf(disk->name, PD_NAMELEN, "%s%c", name, 'a'+unit);
894 		disk->alt_geom = parm[D_GEO];
895 		disk->standby = parm[D_SBY];
896 		if (parm[D_PRT])
897 			pd_drive_count++;
898 	}
899 
900 	par_drv = pi_register_driver(name);
901 	if (!par_drv) {
902 		pr_err("failed to register %s driver\n", name);
903 		return -1;
904 	}
905 
906 	if (pd_drive_count == 0) { /* nothing spec'd - so autoprobe for 1 */
907 		disk = pd;
908 		if (pi_init(disk->pi, 1, -1, -1, -1, -1, -1, pd_scratch,
909 			    PI_PD, verbose, disk->name)) {
910 			pd_probe_drive(disk);
911 			if (!disk->gd)
912 				pi_release(disk->pi);
913 		}
914 
915 	} else {
916 		for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
917 			int *parm = *drives[unit];
918 			if (!parm[D_PRT])
919 				continue;
920 			if (pi_init(disk->pi, 0, parm[D_PRT], parm[D_MOD],
921 				     parm[D_UNI], parm[D_PRO], parm[D_DLY],
922 				     pd_scratch, PI_PD, verbose, disk->name)) {
923 				pd_probe_drive(disk);
924 				if (!disk->gd)
925 					pi_release(disk->pi);
926 			}
927 		}
928 	}
929 	for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
930 		if (disk->gd) {
931 			set_capacity(disk->gd, disk->capacity);
932 			add_disk(disk->gd);
933 			found = 1;
934 		}
935 	}
936 	if (!found) {
937 		printk("%s: no valid drive found\n", name);
938 		pi_unregister_driver(par_drv);
939 	}
940 	return found;
941 }
942 
pd_init(void)943 static int __init pd_init(void)
944 {
945 	if (disable)
946 		goto out1;
947 
948 	if (register_blkdev(major, name))
949 		goto out1;
950 
951 	printk("%s: %s version %s, major %d, cluster %d, nice %d\n",
952 	       name, name, PD_VERSION, major, cluster, nice);
953 	if (!pd_detect())
954 		goto out2;
955 
956 	return 0;
957 
958 out2:
959 	unregister_blkdev(major, name);
960 out1:
961 	return -ENODEV;
962 }
963 
pd_exit(void)964 static void __exit pd_exit(void)
965 {
966 	struct pd_unit *disk;
967 	int unit;
968 	unregister_blkdev(major, name);
969 	for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
970 		struct gendisk *p = disk->gd;
971 		if (p) {
972 			disk->gd = NULL;
973 			del_gendisk(p);
974 			blk_cleanup_queue(p->queue);
975 			put_disk(p);
976 			pi_release(disk->pi);
977 		}
978 	}
979 }
980 
981 MODULE_LICENSE("GPL");
982 module_init(pd_init)
983 module_exit(pd_exit)
984